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ABSTRACT

We consider the class of quadratically-constrained quadratic-programming methods in
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stronger nor weaker): we prove primal-dual quadratic convergence under the linear
independence constraint qualification, strict complementarity, and a second-order suf-
ficiency condition. Additionally, our results apply to variational problems beyond the
optimization case. Finally, we provide a necessary and sufficient condition for super-
linear convergence of the primal sequence under a Dennis-Moré type condition.
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† Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico,
Rio de Janeiro, RJ 22460-320, Brazil.
Email : dfernan@impa.br and solodov@impa.br



1 Introduction

Given sufficiently smooth mappings F : <n → <n and g : <n → <m (precise smooth-
ness requirements will be specified later, within the statements of our convergence
results), we consider the following variational problem [7]:

Find x ∈ D s.t. 〈F (x), y − x〉 ≥ 0 ∀ y ∈ (x+ T (x;D)), (1)

where
D = {x ∈ <n | gi(x) ≤ 0, i = 1, . . . ,m}

and T (x;D) is the (standard) tangent cone to D at x ∈ D. When for some smooth
function f : <n → < it holds that

F (x) = f ′(x), x ∈ <n, (2)

then (1) describes (primal) first-order necessary optimality conditions for the optimiza-
tion problem

min f(x) s.t. x ∈ D. (3)

We consider the following iterative procedure. (As will be seen below, in the case
of the optimization problem (3) it reduces to the sequential quadratically-constrained
quadratic-programming method, e.g., [1, 8, 19]. In the variational setting, this method
appears to be new.) If xk ∈ <n is the current iterate, then the next iterate xk+1

is obtained as a solution of an approximation of the variational problem (1) of the
following form:

Find x ∈ Dk s.t. 〈Fk(x), y − x〉 ≥ 0 ∀ y ∈ (x+ T (x;Dk)), (4)

where
Fk(x) = F (xk) + F ′(xk)(x− xk), x ∈ <n,

Dk =

{
x ∈ <n

∣∣∣∣∣ gi(xk) + 〈g′i(xk), x− xk〉+ 1
2
〈g′′i (xk)(x− xk), x− xk〉 ≤ 0,

i = 1, . . . ,m.

}
,

and T (x;Dk) is the tangent cone to Dk at x ∈ Dk. Subproblem (4) can be considered
as a “one-step-further” approximation when compared to the classical Josephy-Newton
method for variational inequalities [10, 7], where at every step the mapping F is ap-
proximated to the first order (as in (4)), but the set D is not being simplified (unlike
in (4)). Specifically, given the current iterate xk, the Josephy-Newton method solves
the following subproblem:

Find x ∈ D s.t. 〈Fk(x), y − x〉 ≥ 0 ∀ y ∈ (x+ T (x;D)). (5)

It is clear that subproblem (4) is structurally simpler than (5) (in (5) the constraints
are general nonlinear, while in (4) they are quadratic). Thus, in principle, (4) should
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be easier to solve. That said, we shall not be concerned here with specific methods for
solving subproblems of the structure of (4) (at the very least, the same techniques as
for (5) can be used). In the case of optimization, as discussed below, specific methods
are readily available.

For optimization problems (3), an iteration of the sequential quadratically-constrained
quadratic-programming method (SQCQP) consists of minimizing a quadratic approx-
imation of the objective function subject to a quadratic approximation of the con-
straints. Specifically, if xk ∈ <n is the current iterate, then the next iterate xk+1 is
obtained as a solution of the following approximation of the original problem:

min fk(x) := 〈f ′(xk), x− xk〉+
1

2
〈f ′′(xk)(x− xk), x− xk〉 s.t. x ∈ Dk. (6)

Note that taking into account (2), the variational subproblem (4) describes (primal)
first-order necessary optimality conditions for (6). Therefore, SQCQP for optimization
is a special case in our framework.

As some previous work on SQCQP and related methods, we mention [16, 17, 21,
11, 1, 8, 19]. In the convex case, subproblem (6) can be cast as a second-order cone
program [12, 15], which can be solved efficiently by interior-point algorithms (such as
[14, 20]). In [1], nonconvex subproblems (6) were also handled quite efficiently by using
other nonlinear programming techniques. Even though quadratically constrained sub-
problems are computationally more difficult than linearly constrained (as in the more
traditional SQP methods, [2]), they are manageable by modern computational tools
and the extra effort in solving them can be worth it. I.e., at least in some situations,
one may expect that fewer subproblems will need to be solved, when compared to SQP.
Some numerical validation of this can be found in computational experiments of [1].

In order to guarantee global convergence, SQCQP methods require some modifi-
cations to subproblem (6), as well as a linesearch procedure for an adequately chosen
penalty function. (See, for example, [8, 19]). But under certain assumptions, locally
all those modifications reduce precisely to (6). Moreover, the unit stepsize satisfies
the linesearch criteria under very mild conditions [19, Proposition 8] (in particular, no
second-order sufficiency is needed for this), which is one of the attractive features of
SQCQP. Thus, what is relevant for local convergence analysis is precisely the method
given by (6), and this is the subject of this paper (except that we consider the more
general variational setting of (4)). Note that, as a consequence of acceptance of the
unit stepsize, the Maratos effect [13, 18] does not occur in SQCQP (of course, Maratos
effect can also be avoided in SQP methods, by introducing second-order correction or
the augmented Lagrangian merit function).

We next survey the previous local rate of convergence results and compare them
to ours. As already mentioned, in the variational setting our method appears to be
new. Therefore, we limit our discussion to the case of optimization. In [1], local primal
superlinear rate of convergence of a trust-region SQCQP method is obtained under
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the Mangasarian-Fromovitz constraint qualification (MFCQ) and a certain quadratic
growth condition. We note that, under MFCQ, quadratic growth is equivalent to
the second-order sufficient condition for optimality (SOSC), see [3, Theorem 3.70].
Quadratic convergence of the primal-dual sequence is obtained in [8] (the dual part
of the sequence is formed by the Lagrange multipliers associated to solutions of (6)).
The assumptions in [8] are as follows: convexity of f and of g, the Slater condition
(equivalent to MFCQ in the convex case) and a strong second-order sufficient condition
(implying quadratic growth). This set of assumptions is stronger than in [1], but the
assertions in the two papers are different and not comparable to each other. Thus,
neither of the two results implies the other one. To complement the picture, in this
paper we prove a third local convergence result, which is in the same relation to the
two previous ones: it neither follows from them nor implies them. Specifically, we shall
establish primal-dual quadratic convergence under the linear independence constraint
qualification (LICQ), strict complementarity condition, and SOSC. Compared to [8],
our assumptions are essentially different (we do not make any convexity assumptions;
while [8] makes weaker regularity assumptions). Our assertions are stronger than in
[8], because in addition to primal-dual quadratic convergence we also prove superlinear
primal convergence. Compared to [1], our assumptions are more restrictive, of course.
But our assertions are stronger as well: we prove quadratic primal-dual convergence
and superlinear primal convergence instead of superlinear primal convergence only. In
addition, we shall exhibit a Dennis-Moré type [6] necessary and sufficient condition
for superlinear convergence of the primal sequence in the case when the primal-dual
convergence is given.

A few words about our notation. For a matrix M of arbitrary dimensions, MI

denotes the submatrix of M with rows indexed by I. When in matrix notation, vectors
are considered columns, and for a vector x we denote by xI the subvector of x with
coordinates indexed by I. By 〈·, ·〉 we denote the Euclidean inner product, with ‖ · ‖
being the associated norm (the space will always be clear from the context). We use
the notation φ(t) = o(t) for any function φ : <+ → <p such that limt→0 t

−1φ(t) = 0.
For a function Ψ : <n×<m → <p, we denote by Ψ′(x̄, µ̄) the full derivative of Ψ at the
point (x̄, µ̄), and by Ψ′x(x̄, µ̄) the partial derivative of Ψ with respect to x at the same
point.

If Φ : <s × <p → <p is Lipschitz continuous in a neighborhood of a point (σ̄, ξ̄) ∈
<s ×<p, by ∂Φ(σ̄, ξ̄) we denote the Clarke generalized Jacobian of Φ at (σ̄, ξ̄), i.e.,

∂Φ(σ̄, ξ̄) = conv
{

lim
l→∞

Φ′(σl, ξl) | (σl, ξl)→ (σ̄, ξ̄), (σl, ξl) ∈ NΦ

}
,

where conv denotes convex hull of a set, and NΦ is the set of points at which Φ is
differentiable (by Rademacher’s Theorem, Φ is differentiable almost everywhere in a
neighborhood of (σ̄, ξ̄)). In the sequel, we shall make use of the following Implicit
Function Theorem.
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Theorem 1 [4, p. 256] Let Φ : <s × <p → <p be Lipschitz continuous in a neighbor-
hood of a point (σ̄, ξ̄) ∈ <s ×<p such that Φ(σ̄, ξ̄) = 0.

Suppose that the set of p× p matrices M , for which there exists a p× s matrix N
such that [N , M ] ∈ ∂Φ(σ̄, ξ̄), has full rank.

Then there exist a neighborhood U0 of σ̄, a neighborhood Ω0 of ξ̄, and the unique
Lipschitz continuous function ξ : U0 → Ω0 such that Φ(σ, ξ(σ)) = 0 for all σ ∈ U0.

2 Primal-dual quadratic convergence

As is well-known, under adequate constraint qualifications (which would be the case
here), the variational problem (1) is equivalent to solving the Karush-Kuhn-Tucker
(KKT) system: find (x, µ) ∈ <n ×<m such that

F (x) +
∑m
i=1 µig

′
i(x) = 0,

gi(x) ≤ 0, µi ≥ 0, µigi(x) = 0, i = 1, . . . ,m.
(7)

For the same reason, solutions of subproblem (4) are described by the following mixed
complementarity problem [7] in (x, µ) ∈ <n ×<m:

F (xk) + F ′(xk)(x− xk) +
m∑
i=1

µi(g
′
i(x

k) + g′′i (xk)(x− xk)) = 0, (8)

and for all i = 1, . . . ,m, it holds that

gi(x
k) + 〈g′i(xk), x− xk〉+

1

2
〈g′′i (xk)(x− xk), x− xk〉 ≤ 0, (9)

µi ≥ 0, (10)

µi(gi(x
k) + 〈g′i(xk), x− xk〉+

1

2
〈g′′i (xk)(x− xk), x− xk〉) = 0. (11)

Note that in the case of the optimization problem (3), i.e., when (2) holds, the above
are precisely the optimality conditions for SQCQP subproblem (6).

Let (x̄, µ̄) ∈ <n × <m be some fixed solution of the KKT system (7), which by
virtue of further assumptions will be locally unique.

We say that LICQ holds at x̄ if

{g′i(x̄), i ∈ I} is a linearly independent set, (12)

where
I = I(x̄) = {i = 1, . . . ,m | gi(x̄) = 0}

is the index set of constraints active at x̄ ∈ D. Under LICQ, the multiplier µ̄ associated
to the given x̄ is unique by necessity. We shall also use the following partitioning of I:

I+ = I+(x̄, µ̄) = {i ∈ I | µ̄i > 0}, I0 = I0(x̄, µ̄) = {i ∈ I | µ̄i = 0} = I \ I+,
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corresponding to strongly and weakly active constraints, respectively. Define

Ψ : <n ×<m → <n, Ψ(x, µ) = F (x) +
m∑
i=1

µig
′
i(x), (13)

which is the mapping appearing in the pure equality part of the KKT system (7). We
say that (x̄, µ̄) satisfies the second-order sufficiency condition (SOSC) if

〈Ψ′x(x̄, µ̄)d, d〉 6= 0 ∀ d ∈ K \ {0}, (14)

where

K = K(x̄) = {d ∈ <n | 〈g′i(x̄), d〉 ≤ 0, i ∈ I0; 〈g′i(x̄), d〉 = 0, i ∈ I+}. (15)

Note that since the cone K is convex, (14) means that the quadratic form has the
same nonzero sign for all d ∈ K \ {0}. The word “sufficiency” should not be taken
literally in the setting of a general KKT system; it is used here by analogy with the
optimization case, where conditions of this form (with the positive sign) are sufficient
for optimality. In the case of the optimization problem corresponding to (2), K is the
standard critical cone of (3) at x̄, and

Ψ(x, µ) = L′x(x, µ),

where

L : <n ×<m → <, L(x, µ) = f(x) +
m∑
i=1

µigi(x)

is the Lagrangian of (3). Then (14) with the positive sign reduces to the classical
second-order sufficient condition for optimality

〈L′′xx(x̄, µ̄)d, d〉 > 0 ∀ d ∈ K \ {0}.

Finally, we say that the condition of strict complementarity holds at (x̄, µ̄) if I0 = ∅
or, equivalently,

µ̄i > 0 ∀ i ∈ I. (16)

We are now in position to state our first convergence result. Since we are not
making any convexity/monotonicity type assumptions, even under the stated below
conditions at (x̄, µ̄), the mixed complementarity problem (8)-(11) (or the optimization
subproblem (6)) may have solutions “of no interest”, far from xk (or x̄). We therefore
talk about the specific solution closest to xk. This is typical in results of this nature.

Theorem 2 Let (x̄, µ̄) ∈ <n ×<m be a solution of the KKT system (7). Suppose that
F is differentiable and g is twice differentiable in some neighborhood of x̄, and that
the first derivative of F and the second derivative of g are Lipschitz continuous in this

5



neighborhood. Suppose further that LICQ (12), SOSC (14) and the strict complemen-
tarity condition (16) are satisfied.

Then there exists a neighborhood U of x̄ such that if xk ∈ U , then the mixed com-
plementarity problem (8)-(11) has a solution (xk+1, µk+1) ∈ <n × <m. Moreover, if
x0 ∈ U and, for each k ≥ 0, xk+1 is the closest to xk solution of (8)-(11), then there
exists a neighborhood V of µ̄ such that (8)-(11) defines unique sequence {(xk+1, µk+1)}
which stays in U × V and converges quadratically to (x̄, µ̄).

Proof. We first prove existence of a solution for the mixed complementarity problem

(8)-(11), starting with the equations (8) and (11). To this end, we shall apply the
Implicit Function Theorem (Theorem 1) to the mapping Φ : <n×<n×<m → <n×<m
defined by

Φ(x; y, µ) =


Ψ(x, µ) + Ψ′x(x, µ)(y − x)

µ1(g1(x) + 〈g′1(x), y − x〉+ 1
2
〈g′′1(x)(y − x), y − x〉)

...
µm(gm(x) + 〈g′m(x), y − x〉+ 1

2
〈g′′m(x)(y − x), y − x〉)

 , (17)

where Ψ is given by (13). Thinking of x ∈ <n as a parameter, the system Φ(x; y, µ) = 0
has n+m equations and n+m unknowns (y, µ) ∈ <n ×<m .

Since (x̄, µ̄) is a solution of the KKT system (7), we have that Φ(x̄; x̄, µ̄) = 0. By
our smoothness hypotheses on F and g, Φ is Lipschitz continuous in a neighborhood
of (x̄; x̄, µ̄). Moreover, since Φ is continuously differentiable with respect to y and µ, it
easily follows that ∂Φ(x̄; x̄, µ̄) is the set of matrices [N,M ], where M is given by

M =
(
Φ′y,Φ

′
µ

)
(x̄; x̄, µ̄) =



Ψ′x(x̄, µ̄) g′1(x̄) g′2(x̄) . . . g′m(x̄)
µ̄1g

′
1(x̄)> g1(x̄) 0 . . . 0

µ̄2g
′
2(x̄)> 0 g2(x̄) . . . 0
...

...
. . .

...
µ̄mg

′
m(x̄)> 0 . . . 0 gm(x̄)

 , (18)

and

N ∈ conv
{

lim
l→∞

Φ′x(x
l; yl, µl) | (xl; yl, µl)→ (x̄; x̄, µ̄), (xl; yl, µl) ∈ NΦ

}
.

To apply Theorem 1, it remains to show that M is nonsingular. Suppose that M
(
v
w

)
=

0, where v ∈ <n and w ∈ <m. Then we have

Ψ′x(x̄, µ̄)v +
m∑
i=1

wig
′
i(x̄) = 0, (19)

µ̄i〈g′i(x̄), v〉+ wigi(x̄) = 0, i = 1, . . . ,m. (20)
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Since gi(x̄) < 0 and µ̄i = 0 for all i 6∈ I; and by the strict complementarity condition
(16), gi(x̄) = 0 and µ̄i > 0 for all i ∈ I, it follows from (20) that

〈g′i(x̄), v〉 = 0, ∀ i ∈ I,
wi = 0, ∀ i /∈ I. (21)

Since strict complementarity means that I0 = ∅, from (15) and (21) we have that
v ∈ K. Multiplying both sides in (19) by v, we obtain

0 = 〈Ψ′x(x̄, µ̄)v, v〉 +
∑
i∈I

wi〈g′i(x̄), v〉+
∑
i/∈I

wi〈g′i(x̄), v〉

= 〈Ψ′x(x̄, µ̄)v, v〉,

where the second equality is by (21). Since v ∈ K, SOSC (14) implies that v = 0. Now
by (19) and (21), using also that v = 0, we obtain that

0 =
∑
i∈I

wig
′
i(x̄).

Then LICQ (12) implies that wi = 0 for all i ∈ I. Taking into account (21), we
conclude that w = 0, so that (v, w) = 0. Hence, M is nonsingular.

Then, by Theorem 1, there exist a neighborhood U0 of x̄ in <n, a neighborhood
Ω0 of (x̄, µ̄) in <n × <m, and a Lipschitz continuous function ξ : U0 → Ω0 such
that Φ(x; ξ(x)) = 0 for all x ∈ U0, where ξ(x) = (y(x), µ(x)) and ξ(x̄) = (x̄, µ̄).
Furthermore, ξ is unique in the sense that if x̂ ∈ U0, (ŷ, µ̂) ∈ Ω0 and Φ(x̂; ŷ, µ̂) = 0,
then (ŷ, µ̂) = ξ(x̂).

Using the continuity of y and µ at x̄ and the strict complementarity condition (16),
it follows that the sets

U1 = {x ∈ U0 | gi(x) + 〈g′i(x), y(x)− x〉+
1

2
〈g′′i (x)(y(x)− x), y(x)− x〉 < 0,∀i /∈ I},

U2 = {x ∈ U0 | µi(x) > 0,∀i ∈ I},

are nonempty and open (and they contain x̄). Furthermore, since Ω0 is a neighborhood
of (x̄, µ̄), there exist a neighborhood W of x̄ in <n and a neighborhood V of µ̄ in <m
such that W × V ⊂ Ω0. Let

U3 = {x ∈ U1 ∩ U2 | ξ(x) ∈ W × V }.

If x ∈ U3, then (y(x), µ(x)) ∈ W ×V and since Φ(x; ξ(x)) = 0, using the definitions
of U1 and U2, we conclude that

0 = gi(x) + 〈g′i(x), y(x)− x〉+
1

2
〈g′′i (x)(y(x)− x), y(x)− x〉,∀ i ∈ I, (22)

0 = µi(x),∀ i /∈ I.
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Now, combining Φ(x; ξ(x)) = 0 with (22) and with the definitions of U1 and U2, we
obtain that (y(x), µ(x)) is a solution of the mixed complementarity problem (8)-(11).

Now let xk ∈ U3, k ≥ 0. We next show that if xk+1 is the closest to xk solution
of (8)-(11) and µk+1 is the associated multiplier, then these are uniquely defined by
xk+1 = y(xk) and µk+1 = µ(xk). First, note that the gradients of constraints in (9),
which are active at y(xk) form the set {g′i(xk) + g′′i (xk)(y(xk) − xk), i ∈ I}. For xk

sufficiently close to x̄, this is a small perturbation of the linearly independent set in the
LICQ condition (12). Thus, it is linearly independent itself, which implies that µ(xk)
is in fact the unique multiplier associated to y(xk). Taking U0 sufficiently small (so
that U3 is sufficiently small), it can also be seen that the closest to xk solution (among
all the solutions of (8)-(11)) is precisely y(xk), since it is the only solution in W . From
now on, xk ∈ U3, xk+1 = y(xk) and µk+1 = µ(xk).

By (8), we have that

0 = F (xk) +
m∑
i=1

µk+1
i g′i(x

k)

+

(
F ′(xk) +

m∑
i=1

µk+1
i g′′i (xk)

)
(xk+1 − xk)

= F (xk) +
∑
i∈I

µki g
′
i(x

k) +
∑
i∈I

(µk+1
i − µki )g′i(xk)

+

(
F ′(xk) +

∑
i∈I

µki g
′′
i (xk)

)
(xk+1 − xk)

+
∑
i∈I

(µk+1
i − µki )g′′i (xk)(xk+1 − xk), (23)

where we have taken into account that µk+1
i = 0 for all i /∈ I.

By (22), we also have that

0 = gi(x
k) + 〈g′i(xk), xk+1 − xk〉+

1

2
〈g′′i (xk)(xk+1 − xk), xk+1 − xk〉,∀ i ∈ I. (24)

Defining

H : <n ×<|I| → <n ×<|I|, H(z) =

(
F (x) +

∑
i∈I µig

′
i(x)

gI(x)

)
, z = (x, µI),

relations (23) and (24) can be written as

0 = H(zk) +H ′(zk)(zk+1 − zk) + Ek,k+1, (25)

where

Ek,k+1 =

( ∑
i∈I(µ

k+1
i − µki )g′′i (xk)(xk+1 − xk)

1
2
〈g′′i (xk)(xk+1 − xk), xk+1 − xk〉, i ∈ I

)
.
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Note that (25) is not a Newton equation, as it is not linear with respect to zk+1.
However, we shall relate it, a posteriori, to a specially perturbed Newton type iterative
process. The rest of the proof makes this precise and establishes the quadratic rate of
convergence.

First, note that H(z̄) = 0. By a proof similar to that for the nonsingularity of the
matrix M defined in (18), it can be seen that the matrix

H ′(z̄) =

(
Ψ′x(x̄, µ̄) g′I(x̄)>

g′I(x̄) 0

)

is nonsingular (in the above formula for H ′(z̄), we have used the fact that µ̄i = 0 for
all i /∈ I). Since H ′(z̄) is nonsingular, there exists a constant η > 0 such that

z̄ ∈ Ũ4 = {z ∈ <n+|I| | ‖H ′(z)−1‖ < η}.

Since F ′ and g′′i , i = 1, . . . ,m, are Lipschitz continuous functions in a neighborhood of
x̄, taking ρ > 0 sufficiently small, there exists a constant L > 0 such that ‖H ′(w) −
H ′(z)‖ ≤ L‖w− z‖ for all w, z ∈ B(z̄, ρ), where B(z̄, ρ) denotes the open ball in <n+|I|

with center at z̄ and radius ρ.
We next show that if zk ∈ B(z̄, ρ) then there exists a constant c > 0 such that

‖Ek,k+1‖ ≤ c‖zk+1− zk‖2 for all k ≥ 1, where zk = (xk, µkI ). Since g′′i , i = 1, . . . ,m, are
continuous at x̄, there exists a constant γ > 0 such that ‖g′′i (x)‖ ≤ γ, i = 1, . . . ,m, for
all x ∈ <n such that ‖x − x̄‖ ≤ ρ. Since zk ∈ B(z̄, ρ) implies ‖xk − x̄‖ < ρ, we have
that

‖Ek,k+1‖ ≤
√
nγ‖µk+1

I − µkI‖ ‖xk+1 − xk‖+
γ

2

∑
i∈I
‖xk+1 − xk‖2

≤
√
nγ(max{‖µk+1

I − µkI‖ , ‖xk+1 − xk‖})2 +
γm

2
‖xk+1 − xk‖2

≤
√
nγ‖zk+1 − zk‖2 +

γm

2
‖xk+1 − xk‖2

≤ γ(
√
n+m/2)‖zk+1 − zk‖2

= c‖zk+1 − zk‖2, (26)

where the monotonicity of the norm has been used repeatedly.
Let r = 1/(2η(L+4c)), and define U5 = {x ∈ U3 | ‖y(x)− x̄‖2 +‖µ(x)− µ̄‖2 < r2},

Ũ5 = U5 ×<|I|. Then there exists δ > 0 such that B(z̄, δ) ⊂ Ũ4 ∩ Ũ5.
Let ε = min{δ, r, ρ}, and define

U = {x ∈ <n | ‖y(x)− x̄‖2 + ‖µ(x)− µ̄‖2 < ε2}.

Then x0 ∈ U implies that ‖z1 − z̄‖ < ε.
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Now, proceeding by induction, we will show that if ‖zk−z̄‖ < ε then ‖zk+1−z̄‖ < ε.
By the construction of the set U , if ‖zk − z̄‖ < ε then the following properties hold:

‖H ′(zk)−1‖ < η, (27)

‖zk − z̄‖ < r =
1

2η(L+ 4c)
, (28)

‖zk+1 − z̄‖ < r <
1

4ηc
, (29)

where in (27) we use that zk ∈ Ũ4, (28) holds since ε ≤ r, and (29) follows from
xk ∈ U5. Also, because xk ∈ U3, by (25) it follows that

zk+1 = zk −H ′(zk)−1(H(zk)−H(z̄) + Ek,k+1),

where H(z̄) = 0 was also taken into account. We further obtain

‖zk+1 − z̄‖ = ‖zk − z̄ −H ′(zk)−1(H(zk)−H(z̄) + Ek,k+1)‖
≤ ‖H ′(zk)−1‖ ‖H ′(zk)(zk − z̄) +H(z̄)−H(zk)− Ek,k+1‖

≤ η
∥∥∥∥∫ 1

0
[H ′(zk)−H ′(z̄ + t(zk − z̄))](zk − z̄)dt− Ek,k+1

∥∥∥∥
≤ η

(
L‖zk − z̄‖2

∫ 1

0
(1− t)dt+ c‖zk+1 − zk‖2

)
≤ ηL

2
‖zk − z̄‖2 + 2ηc‖zk+1 − z̄‖2 + 2ηc‖zk − z̄‖2

≤ η
(
L

2
+ 2c

)
‖zk − z̄‖2 +

1

2
‖zk+1 − z̄‖,

where the second inequality follows from (27) and the Mean-Value Theorem, in the
third inequality we use the Lipschitz continuity of H ′ and (26), for the fourth inequality
we use that ‖zk+1− zk‖2 ≤ 2(‖zk+1− z̄‖2 + ‖zk − z̄‖2), and the fifth inequality follows
from 2ηc‖zk+1 − z̄‖ < 1

2
, which is ensured by (29).

Now, rearranging terms in the relation above, we deduce that

‖zk+1 − z̄‖ ≤ η(L+ 4c)‖zk − z̄‖2. (30)

Then, by (28), we have ‖zk+1 − z̄‖ < 1
2
‖zk − z̄‖ < ε.

In consequence, if x0 ∈ U then (xk+1, µk+1) ∈ U × V for all k ≥ 0, and since
µk+1
i = µ̄i = 0 for all i /∈ I, we have

‖(xk+1, µk+1)− (x̄, µ̄)‖ = ‖zk+1 − z̄‖ < 1

2
‖zk − z̄‖ < . . . <

(
1

2

)k
‖z1 − z̄‖,

so that {(xk+1, µk+1)} converges to (x̄, µ̄). Then, by (30), we conclude that the rate of
convergence is quadratic.
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3 Primal superlinear convergence

As is well known, quadratic convergence of {(xk, µk)} to (x̄, µ̄) does not imply even
superlinear or linear convergence of {xk} to x̄. Assuming that some type of convergence
occurs, we next give necessary and sufficient conditions for superlinear convergence of
the primal sequence. This condition is of the Dennis-Moré type [6], allowing for using
approximations of derivatives. Specific update rules of quasi-Newton type are certainly
of great interest, yet this is beyond the scope of this paper. But we note that our
analysis covers the situations where computing the derivatives involves computational
work and the precision of approximation can be controlled. Such is the case, for
example, when the derivatives are approximated by finite-difference procedures. The
accuracy parameter can be controlled using estimates for the distance to the solution
via error bounds (see [7] for a discussion of error bounds for variational problems
and [9, 5] for detailed comparisons in the context of KKT systems specifically). In
particular, those estimates give some idea of how precise should be the approximation
in order to conform to conditions (37) or (38) below.

Let Hk be some approximation of F ′(xk) and Gi,k be some approximation of g′′i (xk)
(of course, this includes the possibility of exact derivatives, as in the setting of Section
2). We consider a sequence {(xk, µk)} generated by the following process. Given
xk ∈ <n, Hk ∈ <n×n and Gi,k ∈ <n×n, i = 1, . . . ,m, find (xk+1, µk+1) ∈ <n × <m such
that:

F (xk) +Hk(x
k+1 − xk) +

m∑
i=1

µk+1
i (g′i(x

k) +Gi,k(x
k+1 − xk)) = 0, (31)

and for all i = 1, . . . ,m, it holds that

gi(x
k) + 〈g′i(xk), xk+1 − xk〉+

1

2
〈Gi,k(x

k+1 − xk), xk+1 − xk〉 ≤ 0, (32)

µk+1
i ≥ 0, (33)

µk+1
i (gi(x

k) + 〈g′i(xk), xk+1 − xk〉+
1

2
〈Gi,k(x

k+1 − xk), xk+1 − xk〉) = 0. (34)

In the sequel, we shall consider separately the two possible cases in SOSC (14) (i.e.,
when (14) holds with the positive sign and when it holds with the negative sign). Note
also that since the cone K is closed, those two cases can be stated as follows: there
exists t > 0 such that

〈Ψ′x(x̄, µ̄)d, d〉 ≥ t‖d‖2 ∀ d ∈ K, (35)

or
−〈Ψ′x(x̄, µ̄)d, d〉 ≥ t‖d‖2 ∀ d ∈ K. (36)

Theorem 3 Let (x̄, µ̄) ∈ <n×<m be a solution of the KKT system (7). Suppose that F
is differentiable and g is twice differentiable in some neighborhood of x̄. Suppose further
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that a sequence {(xk, µk)}, generated according to (31)-(34) with uniformly bounded
Gi,k, i = 1, . . . ,m, converges to (x̄, µ̄).

If {xk} converges superlinearly to x̄ then

PK
[
(Ψ′x(x̄, µ̄)−Mk) (xk+1 − xk)

]
= o(‖xk+1 − xk‖), (37)

where PK [·] denotes the orthogonal projector onto the cone K defined in (15) and

Mk = Hk +
m∑
i=1

µk+1
i Gi,k.

Conversely, if LICQ (12) and SOSC (14) are satisfied, then the rate of convergence
of {xk} to x̄ is superlinear if (35) and (37) hold, or if (36) holds and

PK
[
(Mk −Ψ′x(x̄, µ̄)) (xk+1 − xk)

]
= o(‖xk+1 − xk‖). (38)

Proof. Denote dk = xk+1 − xk. By (31), we have that

0 = F (xk) +Hkd
k +

m∑
i=1

µk+1
i (g′i(x

k) +Gi,kd
k) = Ψ(xk, µk+1) +Mkd

k. (39)

Also, we have

Ψ(xk, µ̄) = Ψ(xk, µk+1) +
m∑
i=1

(µ̄i − µk+1
i )g′i(x

k)

= Ψ(xk, µk+1) +
m∑
i=1

(µ̄i − µk+1
i )g′i(x̄) + o(‖xk − x̄‖)

= −Mkd
k +

m∑
i=1

(µ̄i − µk+1
i )g′i(x̄) + o(‖xk − x̄‖, (40)

where the last equality is by (39).
Suppose first that {xk} converges to x̄ superlinearly, i.e., xk+1 − x̄ = o(‖xk − x̄‖).

Since Ψ(x̄, µ̄) = 0, it holds that

Ψ(xk, µ̄) = Ψ(x̄, µ̄) + Ψ′x(x̄, µ̄)(xk − x̄) + o(‖xk − x̄‖)
= −Ψ′x(x̄, µ̄)dk + Ψ′x(x̄, µ̄)(xk+1 − x̄) + o(‖xk − x̄‖)
= −Ψ′x(x̄, µ̄)dk + o(‖xk − x̄‖). (41)

Combining (41) and (40), we obtain

(Ψ′x(x̄, µ̄)−Mk) d
k =

m∑
i=1

(µk+1
i − µ̄i)g′i(x̄) + o(‖xk − x̄‖). (42)
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Taking into account that Gi,k are uniformly bounded and using the continuity
argument in (34), we conclude that for all sufficiently large k, it holds that µk+1

i − µ̄i =
0,∀ i /∈ I, and µk+1

i − µ̄i = µk+1
i ≥ 0,∀ i ∈ I0. Then, by (42), for all v ∈ K it holds that

〈
(Ψ′x(x̄, µ̄)−Mk) d

k − o(‖xk − x̄‖), v
〉

=
m∑
i=1

(µk+1
i − µ̄i)〈g′i(x̄), v〉

=
∑
i∈I

(µk+1
i − µ̄i)〈g′i(x̄), v〉

=
∑
i∈I0

(µk+1
i − µ̄i)〈g′i(x̄), v〉

=
∑
i∈I0

µk+1
i 〈g′i(x̄), v〉 ≤ 0, (43)

where we have used that 〈g′i(x̄), v〉 = 0,∀ i ∈ I+, 〈g′i(x̄), v〉 ≤ 0,∀ i ∈ I0 (see (15)). By
properties of projection operator onto a convex cone, inequality (43) means that

PK
[
(Ψ′x(x̄, µ̄)−Mk)d

k − o(‖xk − x̄‖)
]

= 0.

Then, by nonexpansiveness of the projection operator, it follows that∥∥∥PK [(Ψ′x(x̄, µ̄)−Mk)d
k
]∥∥∥ =

∥∥∥PK [(Ψ′x(x̄, µ̄)−Mk)d
k − o(‖xk − x̄‖)

]
−PK

[
(Ψ′x(x̄, µ̄)−Mk)d

k
]∥∥∥

= o(‖xk − x̄‖).

It remains to show that o(‖xk − x̄‖) = o(‖dk‖). For this, note that

o(‖xk − x̄‖)
‖dk‖

≤ o(‖xk − x̄‖)
‖xk − x̄‖ − ‖xk+1 − x̄‖

=
o(‖xk − x̄‖)

‖xk − x̄‖ − o(‖xk − x̄‖)

=
o(‖xk − x̄‖)/‖xk − x̄‖

1− o(‖xk − x̄‖)/‖xk − x̄‖
→ 0 as k →∞.

This concludes the proof of (37).
We now prove the sufficiency part, assuming LICQ and SOSC. Denote

Γi,k = gi(x
k) + 〈g′i(xk), dk〉+

1

2
〈Gi,kd

k, dk〉.

By the continuity argument (taking also into account uniform boundedness of Gi,k),
{Γi,k} converges to gi(x̄), as k → ∞. Thus for all k sufficiently large, taking into
account (34), we have that

Γi,k < 0, µk+1
i = 0, ∀ i /∈ I,

Γi,k = 0, µk+1
i > 0, ∀ i ∈ I+.

(44)
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By the Mean-Value Theorem, for each i = 1, . . . ,m, there exists a vector zi,k in the
line segment joining xk and x̄, such that

gi(x
k) = gi(x̄) + 〈g′i(x̄), xk − x̄〉+

1

2
〈g′′i (zi,k)(xk − x̄), xk − x̄〉.

Note that {zi,k} converges to x̄ when k →∞. For i ∈ I, we then obtain

Γi,k = gi(x̄) + 〈g′i(x̄), xk − x̄〉+
1

2
〈g′′i (zi,k)(xk − x̄), xk − x̄〉

+〈g′i(xk), dk〉+
1

2
〈Gi,kd

k, dk〉

= 〈g′i(x̄), xk+1 − x̄〉+ wki , (45)

where

wki = 〈g′i(xk)− g′i(x̄), dk〉+
1

2
〈g′′i (zi,k)(xk − x̄), xk − x̄〉+

1

2
〈Gi,kd

k, dk〉.

Clearly,
wki = o(‖xk − x̄‖) + o(‖dk‖).

By LICQ (12), for each k, there exists uk ∈ <n such that

g′I(x̄)uk = wkI , where uk = o(‖xk − x̄‖) + o(‖dk‖). (46)

Let vk = xk+1 − x̄+ uk. Then by (46) and (45), we have

〈g′i(x̄), vk〉 = 〈g′i(x̄), xk+1 − x̄〉+ wki = Γi,k ∀ i ∈ I. (47)

Since Γi,k = 0, ∀ i ∈ I+ (by (44)) and Γi,k ≤ 0, ∀ i ∈ I0 (by (32)), relation (47) shows
that vk ∈ K. Since Ψ(x̄, µ̄) = 0, we have that

0 = 〈Ψ(x̄, µ̄), vk〉 = 〈F (x̄), vk〉+
∑
i∈I+

µ̄i〈g′i(x̄), vk〉 = 〈F (x̄), vk〉.

We then obtain

〈Ψ(x̄, µk+1), vk〉 = 〈F (x̄), vk〉+
m∑
i=1

µk+1
i 〈g′i(x̄), vk〉

=
∑
i/∈I

µk+1
i 〈g′i(x̄), vk〉+

∑
i∈I

µk+1
i Γi,k

= 0, (48)

where we have used (47) for the second equality, and (44) with (34) for the last equality.
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Also,

Ψ(xk+1, µk+1) = Ψ(xk, µk+1) + Ψ′x(x
k, µk+1)dk + o(‖dk‖)

= (Ψ′x(x
k, µk+1)−Mk)d

k + o(‖dk‖)
= (Ψ′x(x̄, µ̄)−Mk)d

k + (Ψ′x(x
k, µk+1)−Ψ′x(x̄, µ̄))dk + o(‖dk‖)

= (Ψ′x(x̄, µ̄)−Mk)d
k + o(‖dk‖), (49)

where (39) has been used in the second equality, and the last equality is by the continu-
ity of Ψ′x. Let pk = vk/‖vk‖. Multiplying both sides in (49) by pk (which is bounded),
we conclude that〈

Ψ(xk+1, µk+1), pk
〉

=
〈
(Ψ′x(x̄, µ̄)−Mk)d

k, pk
〉

+ o(‖dk‖). (50)

On the other hand,〈
Ψ(xk+1, µk+1), pk

〉
=

〈
Ψ(x̄, µk+1), pk

〉
+
〈
Ψ′x(x̄, µ

k+1)(xk+1 − x̄), pk
〉

+ o(‖xk+1 − x̄‖)

=
〈
Ψ′x(x̄, µ

k+1)(xk+1 − x̄), pk
〉

+ o(‖xk+1 − x̄‖)

=
〈
Ψ′x(x̄, µ̄)(xk+1 − x̄), pk

〉
+ o(‖xk+1 − x̄‖), (51)

where the second equality follows from (48), and the last follows from the continuity
of Ψ′x and boundedness of {pk}.

Combining (50) and (51), we conclude that〈
Ψ′x(x̄, µ̄)(xk+1 − x̄), pk

〉
=
〈
(Ψ′x(x̄, µ̄)−Mk)d

k, pk
〉

+ o(‖dk‖) + o(‖xk+1 − x̄‖). (52)

Suppose now that SOSC holds. Then for the case (36) and (38), by (52) and (46),
we have

t‖vk‖ ≤ −〈Ψ′x(x̄, µ̄)vk, pk〉
=

〈
Ψ′x(x̄, µ̄)(x̄− xk+1), pk

〉
−
〈
Ψ′x(x̄, µ̄)uk, pk

〉
=

〈
(Mk −Ψ′x(x̄, µ̄))dk, pk

〉
+ o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)

≤
〈
PK

[
(Mk −Ψ′x(x̄, µ̄))dk

]
, pk

〉
+ o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)

= o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖),
where the second inequality follows from the fact that for any closed convex cone C
and v ∈ C, it holds that 〈x, v〉 ≤ 〈PC [x], v〉 ∀x. Similarly, for the case (35) and (37) we
obtain

t‖vk‖ ≤ 〈Ψ′x(x̄, µ̄)vk, pk〉
=

〈
(Ψ′x(x̄, µ̄)−Mk)d

k, pk
〉

+ o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)

≤
〈
PK

[
(Ψ′x(x̄, µ̄)−Mk)d

k
]
, pk

〉
+ o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)

= o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖).
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Summarizing, in both cases vk = o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖).
Since xk+1 − x̄ = vk − uk = o(‖xk+1 − x̄‖) + o(‖xk − x̄‖) + o(‖dk‖), there exists a

sequence {tk} converging to 0 such that

‖xk+1 − x̄‖ ≤ tk
(
‖xk+1 − x̄‖+ ‖xk − x̄‖+ ‖dk‖

)
≤ 2tk

(
‖xk+1 − x̄‖+ ‖xk − x̄‖

)
.

(53)

Since tk < 1/2 for k sufficiently large, rearranging terms in (53) we obtain

‖xk+1 − x̄‖
‖xk − x̄‖

≤ 2tk
1− 2tk

→ 0 as k →∞.

In consequence, xk+1 − x̄ = o(‖xk − x̄‖), i.e., {xk} converges superlinearly to x̄.

In particular, Theorem 3 shows superlinear convergence of {xk} to x̄ in the setting
of Theorem 2, where Hk = F ′(xk), Gi,k = g′′i (xk), i = 1, . . . ,m, so that Mk = Hk +∑m
i=1 µ

k+1
i Gi,k → F ′(x̄) +

∑m
i=1 µ̄ig

′′
i (x̄) = Ψ′x(x̄, µ̄) as k → ∞. In this case, conditions

(37) and (38) are automatically satisfied.
We also note that in the setting of Theorem 2 (or more generally, when cone K is

a subspace), we do not have to consider separately the two cases of SOSC ((35) and
(36)) and the two cases of the Dennis-Moré condition ((37) and (38)). Indeed, when
K is a subspace, we have 〈x, v〉 = 〈PK [x], v〉 for all v ∈ K. We can further state the
SOSC (14) as

|〈Ψ′x(x̄, µ̄)v, v〉| ≥ t‖v‖2 ∀ v ∈ K,

and modify the corresponding parts of the proof of Theorem 3, as follows.
For the necessity part, note that for any x ∈ <n, there exists the unique decomposi-

tion x = v+v∗ with v = PK [x] ∈ K and v∗ ∈ K⊥. Evidently, changing the sign, one has
−x = −v− v∗, where −v = PK [−x] ∈ K and −v∗ ∈ K⊥. Hence, ‖PK [x]‖ = ‖PK [−x]‖
for any x ∈ <n. It follows that in this case, conditions (37) and (38) are equivalent.

For the sufficiency part, we have that

t‖vk‖ ≤
∣∣∣〈Ψ′x(x̄, µ̄)vk, pk〉

∣∣∣
≤

∣∣∣〈(Ψ′x(x̄, µ̄)−Mk)d
k, pk

〉∣∣∣+ o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)

=
∣∣∣〈PK [(Ψ′x(x̄, µ̄)−Mk)d

k
]
, pk

〉∣∣∣+ o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖)

= o(‖dk‖) + o(‖xk+1 − x̄‖) + o(‖xk − x̄‖),

and the rest of the proof applies.
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4 Concluding remarks

We have established a new result on the quadratic convergence of the primal-dual se-
quence of the sequential quadratically-constrained quadratic-programming method. A
necessary and sufficient characterization of the superlinear convergence of the primal
sequence has also been provided. Additionally, the class of methods under considera-
tion has been extended from the optimization setting to the more general variational
problems.

References

[1] M. Anitescu. A superlinearly convergent sequential quadratically constrained
quadratic programming algorithm for degenerate nonlinear programming. SIAM
Journal on Optimization, 12:949–978, 2002.

[2] B.T. Boggs and J.W. Tolle. Sequential quadratic programming. Acta Numerica,
4:1–51, 1996.

[3] J.F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems.
Springer–Verlag, New York, NY, 2000.

[4] F.H. Clarke. Optimization and Nonsmooth Analysis. SIAM Publications, Philadel-
phia, 1990.

[5] A.N. Daryina, A.F. Izmailov, and M.V. Solodov. A class of active-set Newton
methods for mixed complementarity problems. SIAM Journal on Optimization,
15:409–429, 2004.
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