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1. Introduction

Since the first works on asymmetrical auctions, by Vickrey (1961) and Griesmer,
Levitan and Shubik (1967), many theoretical papers have considered the question on the
equilibrium existence for such games, among which we can cite Amman and Leininger
(1996), Lebrun (1999), Lizzeri and Persico (2000), Maskin and Riley (2000), Athey
(2001), Reny and Zamir (2004) and Jackson and Swinkels (2005).1 The methods to
prove the existence of equilibrium are essentially of two kind. The first papers appeal
to a system of differential equations whose solution is shown to be an equilibrium. The
later ones discretize the space of types or bids, obtain the equilibrium in this case and
then proves that the limit when the grid is made fine is an equilibrium.2

In this paper, we take another route to prove the equilibrium existence for monotonic
asymmetrical auctions with independent types. We allow assumptions weaker than the
usual: we do not assume that the utilities are increasing in all types but only on the
own bidder’s type and the payment can depend on all bids. Thus, we treat in a single
framework many kind of asymmetrical auctions with unitary demand, which includes
double auctions.
We work on the set of non-decreasing functions, N , and of smooth increasing func-

tions, I. We prove that the set of best response to functions in I is a unitary subset of
N . Since I is dense in N and N is compact in the L1 topology, we find a perturbation
of the best response transformation that is a continuous map and has a fixed point.
The limit of these fixed points when the perturbation disappears is shown to be an
equilibrium.

We are grateful to Paulo K. Monteiro for helpful suggestions.
1While Vickrey (1961), Athey (2001) and Jackson and Swinkels (2005) consider many kind of games

and Amman and Leininger (1996) treat all-pay auctions, the rest of these papers are mainly concerned
with first-price auctions, as do Griesmer, Levitan and Shubik (1967).

2Jackson and Swinkels (2005) can be considered an exception, because they appeal to more general
theorems about existence of Nash equilibrium.
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The method has the advantage of being simple, direct and general. Because of the
generality of our setting, the possibility of ties with positive probability is unavoidable.
We prove the existence with an endogenous tie-breaking rule à la Simon and Zame
(1990) and Jackson, Simon, Swinkels and Zame (2002).
In section 2, we describe the model and present the preliminary results. In section

3, we present our main results. Section 4 is a discussion about the contributions of the
paper. All proofs are collected in section 5.

2. The Model

There are n players: 1, ..., n. Player i ∈ {1, ..., n} receives a private information, ti,
and choose an action that is a real number (i.e., she submits a bid bi). The auctioneer
compares the bids and determines who “wins” and who “looses”. The rules for this are
standard, but are well specified below (see allocation).
If player i wins, she receives ui (t, b) and if she looses, she receives ui (t, b), where

t = (ti, t−i) is the profile of all signals and b = (bi, b−i) is the profile of bids submitted.3

2.1. Information. Types are independent. Because ui (t, b) and ui (t, b) can have any
form, we may assume without loss of generality that the private signal of each player,
ti, is a real number uniformly distributed on [0, 1].

4 To summarize, we are assuming
the following:

(A0) Types are independent and uniformly distributed on [0, 1].

2.2. Bidding. After receiving the private information, each player submits a sealed
proposal, that is, a bid (or offer) that is a real number. There is a reserve price bmin
and a maximum allowed bid (bmax), which are commonly know.

5 In addition, the
bidders can take a non-participation decision bOUT < bmin. Then, the space of bids is
B = {bOUT} ∪ [bmin, bmax].

2.3. Allocation. Given a profile of bids b−i = (b1, ..., bi−1, bi+1, ..., bn), we assume
that there is a bid, denoted by b(−i), which determines the threshold of the winning and
losing events for bidder i. For instance, if the auction is an one-object auction where all
players are buyers, b(−i) is the maximal bid of the opponents, that is, b(−i) ≡ maxj 6=i bj ,
provided bj > bmin for at least one player j 6= i. If there are k objects for selling and a
reserve price bmin, then b(−i) ≡ max

n
bmin, b

−i
(k)

o
, where b−i(k) is the k-th order statistic

of (b1, ..., bi−1, bi+1, ..., bn), that is, b−i(1) > b
−i
(2) > ... > b

−i
(n−1).

3We consider the dependence on b instead of bi because we want to include in our results auctions
where the payoff depends on bids of the opponents, as the second price auction, for instance. This also
allows us to study “exotic” auctions, i.e., auctions where the payment is an arbitrary function of all
bids.

4Assume that the original type is hi, distributed in
£
hi, hi

¤
according the strictly increasing and

continuous c.d.f. Fi (·) and that the value of the object is given by vi (hi, h−i). Then, we can define
ti = Fi (hi) and ui (ti, t−i) ≡ vi

¡
F−1i (ti) , F

−1
−i (t−i)

¢
. Now, the type ti is uniformly distributed on

[0, 1] . Thus, our assumption rules out just the cases of atoms or gaps in the distribution of types.
5If there is no reserve price (in the usual sense), let bmin = 0. We are assuming a maximum permitted

bid to rule out behaviors (equilibria) in which one bidder bids arbitrarily high and the others bid zero.
This could happen in third price auctions, for instance.
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In double auctions between k sellers and l = n − k buyers, there are k objects for
selling and the k highest bids are “winners” in the sense that they end the auction with
one object, being the player a buyer or a seller. Then, for a player i (buyer or seller)

b(−i) ≡ max
n
bmin, b

−i
(k)

o
.

If bi = bOUT < bmin (that is, player i does not participate), the payoff is 0. If
bi > b(−i), player i is “holder of an object” (and she has a ex-post payoff ui (t, b) in this
situation). If bmin 6 bi < b(−i), player i receives ui (t, b).6
Observe that the model permits to treat buyers and sellers in the similar manner.

The difference is just that, if player i is a seller, she begins with a object and if bi < b(−i),
she sells her object. If she is a buyer, the situation bi < b(−i) corresponds to maintain
her previous situation: without the object. Also, the model allows for any specification
of the price to be paid by the bidders.
If bi = b(−i), there is a tie and a specific rule (that may include a random device

and/or the requirement of a further action) may determine if the player is a winner
or a looser.7 We model this by assuming that there is a function a : [0, 1]n → {0, 1}n
such that

Pn
i=1 ai (t) = k ∀t ∈ [0, 1]n, where k is the number of objects in the auction.

Thus, in the case of a tie, bidder i receives ui (t, b) if ai (t) = 1, and ui (t, b) otherwise.
8

2.4. Assumptions on the Payoff Functions. We will assume that the functions
ui, ui : [0, 1]

n ×Bn → R satisfy the following conditions for all i ∈ I:
(A1) ui and ui are absolutely continuous on t and b.

9

(A2) ui ≡ ui − ui is strictly increasing in ti.
(A3) For all t = (ti, t−i), t0 = (t0i, t−i) ∈ [0, 1]n and b ∈ B, ti 6 t0i ⇒ ∂biui (b, t) 6

∂biui (b, t
0), when these derivatives exists.

(A4) For all t = (ti, t−i), t0 = (t0i, t−i) ∈ [0, 1]n and b ∈ B, ti 6 t0i ⇒ ∂biui (b, t) 6
∂biui (b, t

0), when these derivatives exists.

It is worth to discuss the hypotheses. It is standard in auction theory to assume
continuity or differentiability of the utility functions. (A1) weaken differentiability, but
rules out continuous functions with singular parts. (A2) is a rather weak monotonicity
condition. In interdependent value auctions, it is almost always assumed that the
functions are increasing in the own bidder’s type and nondecreasing in the other types.
In contrast, (A2) allows the utility function to be decreasing in the opponents’ types.

6In most auctions, ui is normalized as 0. However, in double and all-pay auctions or if there is an
entry fee, this is not the case.

7The required action can be the submission of another bid for a Vickrey auction that will decide
who will receive the object (as in Maskin and Riley (2000)) or the announcement of the type (as in
Jackson et. al. (2002)). Since the only revealed information in the case of a tie is its occurrence, the
action can be required together with the submission of the bid.

8The specification of a tie-breaking rule is important for the existence of equilibria, as shown by
examples in Simon and Zame (1990) and Jackson et al. (2002). (See footnote 10.) With this terminol-
ogy, the proposal of an “endogenous tie-breaking rule” corresponds to specify endogenously a in order
to ensure the equilibrium existence.

9Since the domains are compact sets, this implies that the functions are bounded. The absolutely
continuity implies the existence of derivatives almost everywhere and that the function is equal to the
integral of its derivative.
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For instance, it is included in our framework the example 1 of Jackson, Swinkels, Simon
and Zame (2002), where ui (b, t) = 5 + ti − 4t−i − bi and ui (b, t) = 0.10
Assumption (A3) and (A4) are weaker versions of super modularity (∂2bitiui > 0

and ∂2bitiui > 0). Roughly speaking, this means that a bidder with higher valuation is
less sensible to changes in his bid. This assumption is always satisfied in the second
price auction. For the first price auction, ui (t

0
i, t−i, b) = U (v (t)− bi), then ∂2bitiui =

U 00 · (−1) · v0. If v0 > 0, as usual, then ∂2bitiui > 0⇔ U 00 6 0, i.e., in this setting, super
modularity is equivalent to weak risk aversion.
This setting is very general and applies to a broad class of discontinuous games. For

example, ui (t, b) = vi (t) − bi and ui (t, b) = 0 correspond to a first price auction with
risk neutrality. If ui (t, b) = vi (t) − bi and ui (t, b) = −bi we have the all-pay auction.
If ui (t, b) = vi (t) − b(−i) and ui (t, b) = −bi, this is the war of attrition. As pointed
out by Lizzeri and Persico (2000), we can have also combinations of these games. For
example, ui (t, b) = vi (t) − αbi − (1− α) b(−i) and ui (t, b) = 0, with α ∈ (0, 1), gives
a combination of the first and second price auctions. Another possibility is the “third
price auction” or an auction where the payment is a general function of the others’
bids.
The assumptions are easy to be satisfied by double auctions. To see this, assume

that bidders 1,..., k are sellers and bidders k+1, ...., n are buyers and that the utilities
are given as follows:

ui (t, b) =

½
Ui (vi (t)− ei) , if i ∈ {1, ...., k}
Ui (vi (t)− p (b)) , if i ∈ {k + 1, ...., n}

and

ui (t, b) =

½
Ui (p (b)) , if i ∈ {1, ...., k}
Ui (−ei) , if i ∈ {k + 1, ...., n}

where p (b) is a payment function that may depend on all bids and ei is a participation
fee (that may be zero). Thus, (A1)-(A4) are satisfied if we have: (i) Ui and vi are
strictly increasing and differentiable for all i; (ii) Ui is concave for all i ∈ {k + 1, ...., n};
(iii) p (b) is differentiable and non-decreasing in bi.

11

2.5. Notation. Let Ñ be the set of nondecreasing functions from [0, 1] to B = {bOUT}
∪ [bmin, bmax]. Let Ĩ be defined as follows the set of functions g ∈ Ñ such that g and is
strictly increasing and infinitely differentiable in (0, 1) or there is a t ∈ [0, 1] such that
g ([0, t)) = {bOUT} and g is strictly increasing and infinitely differentiable in (t, 1) .
For a function g ∈ Ñ , let [g] be the equivalence class of the functions that differ of g

only in a set of zero measure. Now, define N as
n
[g] : g ∈ Ñ

o
and I as

n
[g] : g ∈ Ĩ

o
.

As usual, we will abuse terminology by calling of functions the equivalence classes.
Occasionally, by another abuse of terminology and notation, we may say that functions

10For this example, they prove that a standard tie-breaking rule cannot ensure the equilibrium
existence for such a game. (See also Jackson et. al. (2004)). As in their case, this example justifies
the “endogenous tie-breaking rule” solution concept that we adopt in our proof. See also Araujo, de
Castro and Moreira (2004) on another tie-breaking rule.

11(A1) and (A2) are immediate. For sellers, (A3) and (A4) hold trivially because ∂biui and ∂biui
do not depend on ti. For buyers, (A4) holds for a similar reason. Now, ti 6 t0i implies vi (ti, t−i) −
p (b) 6 vi (t0i, t−i)−p (b) by (i), which in turn implies −U 0i (vi (ti, t−i)− p (b)) 6 −U 0i (vi (ti, t−i)− p (b))
because of (ii). Now, (iii) implies that ∂bip (b) > 0 and (A3) follows from the expression ∂biui (b, t) =
−U 0i (vi (t)− p (b)) · ∂bip (b).
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in I are infinitely differentiable and increasing. We endow N and I with the norm
topology of L1 ([0, 1] ,R). It is easy to see that N is compact and I is dense in N .12,13

In order to avoid confusion with the bids, we will use bold letters to denote bidding
functions, i.e., b = (b1, ...,bn) ∈ Nn. If we fix the other than i’s strategies, b−i =
(b1, ...,bi−1,bi+1, ...bn), let Fb(−i) (β) ≡ λn−1 ({t−i : b−i (t−i) 6 β}) and fb(−i) (·) be
its Radon-Nykodim derivative with respect to the Lebesgue measure λn−1, which clearly
exists if b−i ∈ In−1. Indeed, if b−i ∈ In−1 and b(−i) = maxj 6=i bj (tj), then Fb(−i) (β)
=
Q
j 6=i
³
b−1j (β)

´
and

fb(−i) (β) =
X
k 6=i

1

b0k
¡
b−1k (β)

¢ Y
j 6=i,j 6=k

³
b−1j (β)

´
.

For b−i ∈ In−1, let us define b∗ ≡ inf{β ∈ [bmin, bmax]: fb(−i) (β) > 0} and b∗ ≡
sup{β ∈ [bmin, bmax]: fb(−i) (β) > 0}.
If the profile b−i is fixed, the expected payoff of bidder i of type ti, when bidding

bi ∈ [bmin, bmax] is:14

Πi(ti, bi,b−i) ≡
Z £

ui (t, bi,b−i (t−i)) 1Wi(ti,bi,b−i)

+ui (t, bi,b−i (t−i)) 1Li(ti,bi,b−i)
¤
dt−i,

where

Wi(ti, bi,b−i) ≡ {t−i ∈ [0, 1]n : bi > b(−i) (t−i) or bi = b(−i) (t−i) and ai (t) = 1},
and

Li(ti, bi,b−i) ≡ {t−i ∈ [0, 1]n : bi < b(−i) (t−i) or bi = b(−i) (t−i) and ai (t) = 0}.
When there is no possibility of confusion, we will write Πi(ti, bi) for Πi(ti, bi,b−i),

Wi (bi) for Wi (t, bi,b−i), Li (bi) for Li (t, bi,b−i) and omit the arguments and the mea-
sure (dt−i).
Let ui ≡ ui − ui be the net payoff.
Finally, we define the interim and the ex-ante best-reply correspondence, respectively,

by

Θi (ti,b−i) ≡ argmax
β∈B

Πi (ti,β,b−i) ,

12One way to see the compacity is to remember Helly’s Theorem, that says that a sequence of
nondecreasing functions has a subsequence that converges pointwise to a nondecreasing function for all
the continuity points of the limit function. The pointwise convergence implies the convergence in L1.
Thus, the representative function in each equivalence class bmi ∈ N has a convergent subsequence that
converges to bi ∈ N . Another way to see this is to prove that N is totally bounded, constructing,
for each ε > 0, a finite covering of N with sets of diameter less than ε. This can be done with step
functions for a sufficiently fine grid.

13It is well known that C∞is dense in Lp, for 1 6 p < ∞. For each function in N , we have a t
such that in (t, 1) the function has values in [bmin, bmax]. Thus, one can show that given g ∈ N and
ε > 0, there is a function ĝ ∈I that is strictly increasing and infinitely differentiable in (t, 1) such that
kg− ĝk1 < ε.

14We are assuming that Πi(ti, bi,b−i) = 0 if bi /∈ [bmin, bmax].
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and

Γi (b−i) ≡ arg max
bi∈L1([0,1],B)

Vi (bi,b−i) ,

where Vi (bi,b−i) =
R
Πi (ti,bi (ti) ,b−i) dti is the ex-ante payoff.

3. Main Results

Our first result is related to Proposition 1 of Maskin and Riley (2000). Such propo-
sition says that if there is a best reply, it is monotonic, but they proved it for first
price auctions only. Theorem 1 says that there exists a monotonic best reply to regular
functions and it is unique, in the sense made clear in the Remark 1, below.

Theorem 1. Assume (A0)-(A4). Fix a profile b−i ∈ In−1. Then, for each ti,
Θi (ti,b−i) is non-empty. Moreover, if t1i < t

2
i , b

1
i ∈ Θi

¡
t1i ,b−i

¢
, b2i ∈ Θi

¡
t2i ,b−i

¢
, b1i ,

b2i ∈ [b∗, b∗], then b1i 6 b2i .

Remark 1. Theorem 1 has an important consequence. It implies that if b−i ∈ In−1,
then Γi (b−i) is a unitary set in N . To see why, let b−i ∈ In−1. Theorem 1 implies that
the sets Θi (ti,b−i) and Θi (t0i,b−i) has at most one point in common if ti 6= t0i. Thus,
the set of types ti where Θi (ti,b−i) has diameter greater than ε > 0 is finite. Then,
Θi (ti,b−i) is uni-valued except for a countable set of types ti. Thus, the correspondence
ti 7−→ Θi (ti,b−i) has a unique selection in L1. By the definition of Γi (b−i), we conclude
that this selection is the unique function in Γi (b−i), and it is non-decreasing.¥

Remark 1 made clear that the function ti 7−→ Θi (ti,b−i) is in N if b−i ∈ In−1.
Thus, for each i = 1, ..., n, the correspondence of best replies to b−i is, in fact a
function Γi : I

n−1 → N . Let us prove that Γi is continuous.
Consider a sequence

©
bm−i

ª
m∈N ⊂ In−1, bm−i → b−i, b−i ∈ In−1, and let bi ≡

Γi
¡
b−i

¢
. Consider also {bmi }m ⊂ N , bmi = Γi

¡
bm−i

¢
. Then, Vi

¡
bmi ,b

m
−i
¢
> Vi

¡
bi,b

m
−i
¢
,

∀bi ∈ L1. In particular, Vi
¡
bmi ,b

m
−i
¢
> Vi

¡
bi,b

m
−i
¢
. Since N is compact, there is a

subsequence of bmi converging to a function bi. Since b−i is strictly increasing, Vi is
continuous at

¡
bi,b−i

¢
. Then, we have Vi

¡
bi,b−i

¢
> Vi

¡
bi,b−i

¢
by the continuity

and Vi
¡
bi,b−i

¢
> Vi

¡
bi,b−i

¢
because bi ≡ Γi

¡
b−i

¢
. But then, bi is also a best-reply,

what we have seen to be unique. Hence, bi ≡ bi and Γi is continuous.
Now, for each bi ∈ I, let Um (bi) be the open set (with respect to N)

Um (bi) = {ebi ∈ N :
°°°ebi − bi°°°

1
<
1

m
},

where k·k1 is the norm of L1. It is easy to see that ∪bi∈IUm (bi) is a open cover
of N . Since N is compact, it has a finite subcover. Let Km be the finite set of
indices λ such that ∪λ∈KmUm

¡
bλi
¢
= N and bλi ∈ I, ∀λ ∈ Km. Let

©
ψλ
ª
λ∈Km be a

partition of the unity subordinate to this finite open cover. That is, ψλ : N → [0, 1],P
λ∈Km ψλ (bi) = 1 for all bi ∈ N and ψλ (bi) = 0, unless bi ∈ Um

¡
bλi
¢
. Define the

continuous transformation:

Λmi (bi) =
X

λ∈Km

ψλ (bi)b
λ
i .
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Since bλi ∈ I, ∀λ ∈ Km, Λmi (bi) ∈ I.15
It is clear that Λmi :N → I is continuous. Now we define Λm−i : Nn−1 → In−1 as

Λm−i ≡ ×j 6=iΛmj and Λm : Nn → In as Λm≡ ¡Λmi ,Λm−i¢. We can conclude that for all
m ∈ N, the transformation Γ ◦ Λm : Nn → Nn, defined by

Γ ◦ Λm (b) ≡ ¡Γi ¡Λm−i (b−i)¢¢ni=1 ,
is continuous. By the Schauder-Tychonoff Theorem, Γ ◦ Λm has a fixed point, which
we denote by bm.16

To understand the meaning of bmi , suppose that for all j 6= i, player j follows bmj , but
player i 6= j mistakenly considers that every player j 6= i is using strategy Λmj

³
bmj

´
(·).

Then, the best strategy for bidder i is to follow bmi .
Now, since N is compact in the strong topology of L1, there is a convergent subse-

quence that converges to a bidding function b∗. Now, we have just to prove that b∗ is
equilibrium, that is,

Vi
¡
b∗i ,b

∗
−i
¢
> Vi

¡
bi,b

∗
−i
¢
,∀bi ∈ L1 ([0, 1] , B) ,∀i.

Equivalently, we need to show that for all i and almost all ti ∈ [0, 1] ,

Πi
¡
ti,b

∗
i (ti) ,b

∗
−i
¢
> Πi

¡
ti,β,b

∗
−i
¢
,∀β ∈ B.

If b∗ does not have ties with positive probability, the event {t ∈ T : b∗i (ti) =
b∗(−i) (t−i) for at least one player i} has zero measure. Then, the continuity of ui and
ui imply that Vi is continuous. The result now follows from the definition of bmi , that
says that Vi

¡
bmi ,Λ

m−i
¡
bm−i

¢¢
> Vi

¡
bi,Λ

m−i
¡
bm−i

¢¢
, ∀bi, ∀i. Thus, we need only to deal

with the possibility of ties.
To check this, let us define the allocation function am : [0, 1]n → {0, 1}n as

am (t) = (am1 (t) , ..., a
m
n (t)) ,

where

ami (ti, t−i) =

(
1, if Λmi (b

m
i ) (ti) > Λ

m
(−i)

¡
bm−i

¢
(t−i)

0, if Λmi (b
m
i ) (ti) < Λ

m
(−i)

¡
bm−i

¢
(t−i)

Observe that ami (t) is well defined for almost all t because Λ
m
i (b

m
i ) and Λ

m
(−i)

¡
bm−i

¢
are

increasing. Observe also that
Pn
i=1 a

m
i (t) = k, the number of objects in the auction,

as required to an allocation rule.
Thus, am (t) is well defined in L1 ([0, 1]n , {0, 1}n) for all m ∈ N. The set {am}m∈N

is compact in L1 ([0, 1]n , {0, 1}n). To see this, observe that for each i, ami (ti, t−i) is
nondecreasing in ti and non-increasing in t−i. Thus, for each i, {ami (·)}m∈N is compact
and the claim follows. So, there is a convergent subsequence (that we will denote by

15If ti < t0i, b
λ
i (ti) < bλi (t

0
i) and ψλ (bi)b

λ
i (ti) < ψλ (bi)b

λ
i (t

0
i) for each λ ∈ Km

i such that
ψλ (bi) > 0. Then, Λmi (bi) (ti) < Λmi (bi) (t

0
i), since they are finite sums of ψλ (bi)b

λ
i (ti) and

ψλ (bi)b
λ
i (t

0
i), respectively. The differentiability comes from similar argument.

16A reference for Schauder-Tychonoff Theorem is Theorem V.10.5, p. 456, of Dunford and Schwartz
(1958). Observe that N is convex and compact.



8 ALOISIO ARAUJO AND LUCIANO I. DE CASTRO

the same superscript), am (t) → a (t), which is also an allocation rule. From now, fix
such function a (t).

Tie-Breaking Rule: If there is a tie at β, all bidders are requested to reveal their
types and the final allocation is given by a (t), that is, bidder i receives an object if and
only if ai (t) = 1. Nevertheless, if a bidder announces an inconsistent type, that is, t

0
i

such that b∗i (t
0
i) 6= β, he receives a (sufficiently great) penalty.17

With the Tie-Breaking Rule just defined (which is an endogenous tie-breaking rule),
we have equilibrium. This will follow from two lemmas. The first shows that there is
no profitable deviation from bidding differently of the bid specified by b∗. The second
says that it is optimum to state the true type in case of bidding.

Lemma 2. If bmi (ti)→ b∗i (ti) = β, there is no β0 ∈ B such that

Πi
¡
ti,b

∗
i (ti) ,b

∗
−i
¢
< Πi

¡
ti,β

0,b∗−i
¢
.

The idea of the proof is very simple. If there is such β0, then β0 would be a profitable
deviation along the sequence, which is impossible because bmi (ti) is the best reply, by
definition. For the next lemma, the idea of proof is similar. (See the details in the
appendix.)

Lemma 3. In case of a tie, it is optimum for all bidders to reveal their true types.

These two lemmas prove the following:

Theorem 2. Assume (A0)-(A4) and the tie-breaking rule just specified. Then, there
exists a pure strategy non-decreasing equilibrium.

One question that can arise is whether we could use Athey’s proof to obtain our
results. A slight modification of the proof of Theorem 1 can show that the game
considered satisfies single crossing of incremental returns (SCP-IR) in (bi, ti) (see Athey
(2001), Definition 1), for b−i ∈ In−1. Nevertheless, we didn’t prove that the game in
general does not satisfy Athey’s Single Crossing Condition, because this requires that
SCP-IR holds for non-decreasing b−i.18 Moreover, even if we could establish the SCC,
we are yet not able to apply Athey (2001)’s Theorems 6 or 7, because our setting does
not satisfy her assumptions (A2)(iv), which requires that ui is strictly decreasing with
bi, which rules out double auctions. In sum, our results cannot be derived from Athey
(2001).

17Thus, the tie-breaking rule depends on the sequence and on the equilibrium bidding functions,
b∗. Observe that is never optimal to announce a type t0i such that b

∗
i (t

0
i) 6= β. We could avoid such

penalty by the requirement that the allocation rule a (t) also depends on the bids.
18Reny and Zamir (2004) modify Athey’s SCC for an another condition: individually rational tieless

single crossing condition (IRT-SCC). One can modify the arguments in the proof of Theorem 1 to
establish this.
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4. Conclusion

Now, we review the contributions of this paper in the light of the received literature.
Jacskon, Simon, Swinkels and Zame (2002) prove the existence of asymmetrical mixed
strategy equilibrium with any distribution of types. They used the “endogenously
defined” tie-breaking rule solution concept introduced by Simon and Zame (1990), as
we also do. We particularize their assumptions to the independent types’ case, but we
are able to obtain the existence in monotonic pure strategies.
Athey (2001), for general games, and Reny and Zamir (2004), for first-price auctions,

obtained monotonic pure strategy equilibrium without special tie-breaking rules. Nev-
ertheless, they assumed the monotonicity of the utilities with respect to all types and
do not consider double auctions, as we do.
Williams (1991) consider symmetric double auctions with independent types. Jack-

son and Swinkels (2005) consider (multi-unit) asymmetrical double auctions with gen-
eral distribution of types, but they are restricted to the private values case. In this
setting, they are able to prove that the tie-breaking rule does not matter, a result that
does not hold in our setting, as we already argued. Reny and Perry (2003) and Funden-
berg, Mobius and Szeil (2003) consider symmetrical double-auctions with conditionally
independent types but are able to prove the existence of equilibrium just when the
number of players is high. Thus, these works do not cover our equilibrium existence
result for asymmetrical double auctions with interdependent values.

Appendix
Proof of Theorem 1.
The prove of Theorem 1 requires the following lemma.

Lemma 1. Assume (A0). Fix a profile of bidding functions b−i ∈ In−1. The payoff
can be expressed by

Πi(ti, bi,b−i) = Πi(ti, b∗) +
Z
[b∗,bi)

∂biΠi(ti,β)dβ.

where ∂biΠi(ti,β) exists for almost all β ∈ (b∗, b∗) and is given by

∂βΠi(ti,β,b−i) = E
h
∂biui

¡
t1i , ·

¢
1[β>b(−i)]

i
(1)

+E
h
∂biui

¡
t1i , ·

¢
1[β<b(−i)]

i
+E [ui (t,β,b−i (t−i)) |b−i (t−i) = β] fb−i (β) .

This lemma can be proved using the Leibiniz’s rule. For a proof in a more general
setting, see de Castro (2004). Now, we proceed to the proof of Theorem 1.
Fix types t1i < t2i , b

1
i ∈ Θi

¡
t1i ,b−i

¢
and b2i ∈ Θi

¡
t2i ,b−i

¢
, where b−i is a fixed

regular strategy. For a contradiction, suppose that b2i < b1i and that the support of
the distribution of b−i has a non-trivial intersection with

£
b2i , b

1
i

¤
(remember that by

assumption, Fb(−i)
¡
b1i
¢
> 0). Since [0, 1]n−1 and Bn are compact and ui is (absolutely)

continuous, there exists δ > 0 such that ui
¡
t1i , t−i, b

¢
+ 2δ < ui

¡
t2i , t−i, b

¢
for all t−i ∈
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[0, 1]n−1 and all b ∈ Bn. For a bid β ∈ B, define the functions
g1 (t−i) = ui

¡
t1i , t−i,β,b−i (t−i)

¢
, and

g2 (t−i) = ui
¡
t2i , t−i,β,b−i (t−i)

¢
.

Then, g1 (t−i) + 2δ < g2 (t−i). By the positivity of conditional expectations,19

E
£
g2 − g1 − 2δ|b(−i) = β

¤
> 0.

So, by the independence (A1), we conclude that

E[ui
¡
t1i , ·

¢ |b(−i) = β] + δ < E[ui
¡
t2i , ·

¢ |b(−i) = β].(2)

By assumptions A3 and A4,

E
h
∂biui

¡
t1i , ·

¢
1[β>b(−i)]

i
6 E

h
∂biui

¡
t2i , ·

¢
1[β>b(−i)]

i
.(3)

and

E
h
∂biui

¡
t1i , ·

¢
1[β<b(−i)]

i
6 E

h
∂biui

¡
t2i , ·

¢
1[β<b(−i)]

i
.(4)

Then, (2), (3), (4) and the expression of ∂biΠi(ti,β,b−i) given by (1) imply that for
almost all β,

∂biΠi(t
2
i ,β,b−i) > ∂biΠi(t

1
i ,β,b−i) + δfb(−i) (β) .(5)

Since b−i is regular, the difference Πi(t2i , b
1
i ,b−i)−Πi(t2i , b2i ,b−i) can be written as the

integral:Z
[b2i ,b1i )

∂biΠi(t
2
i ,β,b−i)dβ >

Z
[b2i ,b1i )

∂biΠi(t
1
i ,β,b−i)dβ + δ

Z
[b2i ,b1i )

fb(−i) (β) dβ

> δ
h
Fb(−i)

¡
b1i
¢− Fb(−i) ¡b2i ¢i

> 0,
where the first inequality comes from (5);20 the second comes from the fact that b1i ∈
Θi
¡
t1i ,b−i

¢
, that is, Z

[b2i ,b1i )
∂biΠi(t

1
i ,β,b−i)dβ > 0;

and the third comes the assumption that b1i > b
2
i . Now, this implies thatΠi

¡
t2i , b

1
i ,b−i

¢
>

Πi
¡
t2i , b

2
i ,b−i

¢
, which contradicts the fact that b2i ∈ Θi

¡
t2i ,b−i

¢
.¥

Proof of Lemma 2.
For this and the next lemma, we will use the following notation:

Wm
i (β) =

n
t−i ∈ [0, 1]n−1 : β > Λm(−i)

¡
bm−i

¢
(t−i)

o
;

Lmi (β) =
n
t−i ∈ [0, 1]n−1 : β < Λm(−i)

¡
bm−i

¢
(t−i)

o
.

Observe that it is consistent with the allocation rule am, as defined in the text.
Fix a type ti and let us denote b

∗
i (ti) by β

∗ and Λmi (b
m
i ) (ti) by β

m.By contradiction,
suppose that there is a bid β0 and η > 0 such that

19See, for instance, Kallenberg (2002), Theorem 6.1, p. 104.
20The fact that is strict depends on Fb(−i)

¡
b1i
¢
> 0, otherwise Pr

£
b2i , b

1
i

¢
= 0 and the integrals

would be zero in both sides.
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Πi(ti,β
0,b−i)−Πi

¡
ti,β

∗,b∗−i
¢
> η.

To fix ideas, suppose that β0 > β∗ (the other case is completely analogous). Then,
Wi (β

∗) ⊂Wi

¡
β0
¢
and Li (β

∗) ⊃ Li
¡
β0
¢
, where

Wi (β) = {t−i ∈ [0, 1]n : β > b∗(−i) (t−i) or β = b∗(−i) (t−i) and ai (t) = 1},
and

Li (β) = {t−i ∈ [0, 1]n : β < b∗(−i) (t−i) or β = b∗(−i) (t−i) and ai (t) = 0}.
From the definitions , we have that (passing to a subsequence, if needed) when

m→∞, βm → β∗, 1Wm
i (β

m) → 1Wi(β
∗), 1Lmi (β

m) → 1Li(β∗), Λ
m
−i
¡
bm−i

¢
(t−i)→ b∗−i (t−i)

for almost all t−i.
Now, observe that

Πi(ti,β
m,Λm−i

¡
bm−i

¢
)−Πi

¡
ti,β

∗,b∗−i
¢

=

ÃZ
Wm
i (β

m)
ui +

Z
Lmi (β

m)
ui

!
−
ÃZ

Wi(β
∗)
ui +

Z
Li(β

∗)
ui

!

=

Z
Wi(β

∗)

£
ui
¡
ti, t−i,βm,Λm−i

¡
bm−i

¢
(t−i)

¢− ui ¡ti, t−i,β∗,b∗−i (t−i)¢¤
+

Z
Lmi (β

m)

£
ui
¡
ti, t−i,βm,Λm−i

¡
bm−i

¢
(t−i)

¢− ui ¡ti, t−i,β∗,b∗−i (t−i)¢¤
+

Z
Wm
i (β

m)\Wi(β
∗)
ui
¡
ti, t−i,βm,Λm−i

¡
bm−i

¢
(t−i)

¢
−
Z
Li(β

∗)\Lmi (βm)
ui
¡
ti, t−i,β∗,b∗−i (t−i)

¢
.

From the continuity of the ui and ui and the limits, we have that for sufficiently high
m, ¯̄

Πi(ti,β
m,Λm−i

¡
bm−i

¢
)−Πi

¡
ti,β

∗,b∗−i
¢¯̄
<

η

3
.

Similarly, we obtain that¯̄
Πi(ti,β

0,Λm−i
¡
bm−i

¢
)−Πi

¡
ti,β

0,b∗−i
¢¯̄
<

η

3
.

Thus,

Πi(ti,β
0,Λm−i

¡
bm−i

¢
)−Πi(ti,βm,Λm−i

¡
bm−i

¢
) >

η

3
> 0,

which is an absurd, since

βm ∈ Θi
¡
ti,Λ

m
−i
¡
bm−i

¢¢
= argmax

β∈B
Πi
¡
ti,β,Λ

m
−i
¡
bm−i

¢¢
.

This concludes the proof.¥

Proof of Lemma 3.
Now, we have to distinguish the winning events for the announced types. So, let

Wi

¡
β, t̃i

¢
= {t−i ∈ [0, 1]n : β > b∗(−i) (t−i) or β = b∗(−i) (t−i) and ai

¡
t̃i, t−i

¢
= 1},
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and

Li
¡
β, t̃i

¢
= {t−i ∈ [0, 1]n : β < b∗(−i) (t−i) or β = b∗(−i) (t−i) and ai

¡
t̃i, t−i

¢
= 0},

By contradiction assume that there is a type t̂i 6= ti such that for η > 0, we haveÃZ
Wi(β∗,t̂i)

ui +

Z
Li(β∗,t̂i)

ui

!
−
ÃZ

Wi(β
∗,ti)

ui +

Z
Li(β

∗,ti)
ui

!
> 10η,(6)

where we are denoting b∗i (ti) by β∗. Let us also denote Λmi (b
m
i ) (ti) by βm and

Λmi (b
m
i )
¡
t̂i
¢
by β̂

m
.

To fix ideas, assume that t0i > ti, so that Wi (β
∗, ti) ⊂ Wi (β

∗, t0i) and Li (β
∗, ti) ⊃

Li (β
∗, t0i), because b

m
−i, b

∗
−i ∈ Nn−1. Simplifying the expression above, we obtain:Z

Wi(β
∗,ti)

£
ui
¡
ti, t−i,β∗,b∗−i (t−i)

¢− ui ¡ti, t−i,β∗,b∗−i (t−i)¢¤
+

Z
Li(β∗,t0i)

£
ui
¡
ti, t−i,β∗,b∗−i (t−i)

¢− ui ¡ti, t−i,β∗,b∗−i (t−i)¢¤
+

Z
Wi(β∗,t0i)\Wi(β

∗,ti)
ui (β

∗, ·)−
Z
Li(β

∗,ti)\Li(β∗,t0i)
ui (β

∗, ·)

The first two integrals are zero. Observe that the setWi (β
∗, t0i) \Wi (β

∗, ti) is exactly
Li (β

∗, ti) \Li (β∗, t0i). Let us call it A. It is easy and useful to see that
A ⊂

n
t−i : b∗(−i) (t−i) = β∗

o
.(7)

If we remember that ui ≡ ui − ui, we can rewrite (6) asZ
A
ui(ti, t−i,β∗,b∗−i (t−i))dt−i > 10η.(8)

Let M be an upper bound for max {|ui| , |ui| , |ui|}. Because b∗−i (·) is nondecreasing,
there exists δ1 > 0 such that

Pr{t−i : β∗ − 2δ1 < b∗(−i) (t−i) < β∗} < η/M.(9)

and

Pr{t−i : β∗ < b∗(−i) (t−i) < β∗ + 2δ1} < η/M.(10)

Indeed, this comes from the continuity of the probability:

lim
δ↓0
Pr
³
{t−i : β∗ − 2δ < b∗(−i) (t−i) < β∗}

´
= Pr

Ã\
δ>0

{t−i : β∗ − 2δ < b∗(−i) (t−i) < β∗}
!

= 0,

and analogously for Pr{t−i : β∗ < b∗(−i) (t−i) < β∗ + 2δ1}.
Since ui, ui and ui are absolutely continuous, there exists δ2 > 0, such that for all

ti, t−i, bi, b−i, b0−i, β
00 and β0,¯̄

β00 − β0
¯̄
< 4δ2 ⇒

¯̄
ui(ti, t−i,β00, b−i)− ui(ti, t−i,β0, b−i)

¯̄
< η,(11)
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β00 − β0

¯̄
< 4δ2 ⇒

¯̄
ui(ti, t−i,β

00, b−i)− ui(ti, t−i,β0, b−i)
¯̄
< η.(12)

There exists δ3 such that

max
k 6=i

¯̄
bk − b0k

¯̄
< 4δ3 ⇒

¯̄
ui(ti, t−i, bi, b−i)− ui(ti, t−i, bi, b0−i)

¯̄
< η.(13)

Fix 0 < δ < min {δ1, δ2, δ3}.
The functions Λmj

³
bmj

´
are nondecreasing and converge to b∗j . Moreover, there

exists a set U ⊂ [0, 1]n−1 such that Λm−i
¡
bm−i

¢ → b∗−i uniformly on U and such that

Pr
³
[0, 1]n−1 \U

´
< η/M . So, there exists m1 such that m > m1 implies that

sup
t−i∈U

max
j 6=i

|Λmj
¡
bmj
¢
(tj)− b∗j (tj) | < δ.(14)

Also, there is m2 such that m > m2 implies |βm − β∗| < δ. We will define

Am ≡Wm
i

³
β̂
m
´
\Wm

i (β
m)

=
©
t−i : am

¡
t0i, t−i

¢
= 1 and am (ti, t−i) = 0

ª
.

Remember that, since b∗i (t
0
i) = b

∗
i (ti) = β∗,

A ≡Wi

¡
β∗, t0i

¢ \Wi (β
∗, ti)

=
©
t−i : a

¡
t0i, t−i

¢
= 1 and a (ti, t−i) = 0

ª
.

We know that am → a in L1. Finally, there is m3 such that m > m3 implies

Pr (Am∆A) <
η

M
.(15)

Fix some m > max {m1,m2,m3}. We have:

Πi

³
ti, β̂

m
,Λm−i

¡
bm−i

¢´−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
=

Z
Wm
i (β̂

m
)
ui(ti, t−i, β̂

m
,Λm−i

¡
bm−i

¢
(t−i))

+

Z
Lmi (β̂

m
)
ui(ti, t−i, β̂

m
,Λm−i

¡
bm−i

¢
(t−i))

−
Z
Wm
i (β

m)
ui(ti, t−i,βm,Λm−i

¡
bm−i

¢
(t−i))

−
Z
Lmi (β

m)
ui(ti, t−i,β

m,Λm−i
¡
bm−i

¢
(t−i))

From now on, we will substitute the arguments (ti, t−i, β̂
m
,Λm−i

¡
bm−i

¢
(t−i)) and

(ti, t−i,βm,Λm−i
¡
bm−i

¢
(t−i)) by (β̂

m
, ·) and (βm, ·), respectively. Since ui > −M, ui >



14 ALOISIO ARAUJO AND LUCIANO I. DE CASTRO

−M and ui > − M , we have:
Πi

³
ti, β̂

m
,Λm−i

¡
bm−i

¢´−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
>

Z
U∩Wm

i (β̂
m
)
ui(β̂

m
, ·) +

Z
U∩Lmi (β̂

m
)
ui(β̂

m
, ·)

−
Z
U∩Wm

i (β
m)
ui(β

m, ·)−
Z
U∩Lmi (βm)

ui(β
m, ·)

+

Z
[0,1]n−1\U

(−M)

Since Pr
³
[0, 1]n−1 \U

´
< η/M , the last integral is greater than −η. Rearranging the

terms,

Πi

³
ti, β̂

m
,Λm−i

¡
bm−i

¢´−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
> −η +

Z
U∩Wm

i (β̂
m
)\Wm

i (β
m)

h
ui(β̂

m
, ·)− ui(βm, ·)

i
+

Z
U∩Wm

i (β
m)

h
ui(β̂

m
, ·)− ui(βm, ·)

i
+

Z
U∩Lmi (β̂

m
)

h
ui(β̂

m
, ·)− ui(βm, ·)

i
From (14) and (11),Z

U∩Wm
i (β

m)

h
ui(β̂

m
, ·)− ui(βm, ·)

i
>

Z
U∩Wm

i (β
m)
(−η) > −η.

Analogously, from (14) and (12),Z
U∩Lmi (β̂

m
)

h
ui(β̂

m
, ·)− ui(βm, ·)

i
>

Z
U∩Lmi (β̂

m
)
(−η) > −η

Remember that Am ≡Wm
i

³
β̂
m
´
\Wm

i (β
m). Thus,

Πi

³
ti, β̂

m
,Λm−i

¡
bm−i

¢´−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
>
Z
U∩Am

h
ui(β̂

m
, ·)− ui(βm, ·)

i
− 3η

From (11) and (12), for t−i ∈ U ∩Am,
ui

³
ti, t−i, β̂

m
,Λm−i

¡
bm−i

¢
(t−i)

´
− ui

¡
ti, t−i,βm,Λm−i

¡
bm−i

¢
(t−i)

¢
> ui

¡
ti, t−i,β∗,Λm−i

¡
bm−i

¢
(t−i)

¢− 2η.
We obtain:

Πi

³
ti, β̂

m
,Λm−i

¡
bm−i

¢´−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
>
µZ

U∩Am
ui(β

∗, ·)
¶
− 5η.
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For t−i ∈ U ∩ Am, we have maxk 6=i |Λmk (bmk ) (tk)− b∗k (tk)| < δ, from (14). Also,
Λm(−i)

¡
bm−i

¢
(t−i) ∈ [βm,β∗ + δ), because in the event Am, Λm(−i)

¡
bm−i

¢
(t−i) > βm. Thus,

Λm(−i)
¡
bm−i

¢
(t−i) ∈ (β∗ − δ,β∗ + δ), that is,

¯̄̄
Λm(−i)

¡
bm−i

¢
(t−i)− β∗

¯̄̄
< δ.

So, for t−i ∈ U ∩Am,
¯̄̄
b∗(−i) (t−i)− β∗

¯̄̄
< 2δ. The event U ∩Am is contained in the

union of the following events:

U− = U ∩Am ∩
h
β∗ − 2δ1 < b∗(−i) (t−i) < β∗

i
;

U0 = U ∩Am ∩
h
b∗(−i) (t−i) = β∗

i
;

U+ = U ∩Am ∩
h
β∗ < b∗(−i) (t−i) < β∗ + 2δ1

i
.

By (9) and (10), PrU− < η/M and PrU+ < η/M . Thus, we have

Πi

³
ti, β̂

m
,Λm−i

¡
bm−i

¢´−Πi ¡ti,βm,Λm−i ¡bm−i¢¢ > Z
U0

ui(β
∗, ·)− 7η.

The argument in the function above is (ti, t−i,β∗,Λm−i
¡
bm−i

¢
(t−i)). Observe that in U0,

maxk 6=i |Λmk (bmk ) (tk)− b∗k (tk)| < δ. So, (13) implies that

Πi

³
ti, β̂

m
,Λm−i

¡
bm−i

¢´−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
>
Z
U0

ui(ti, t−i,β∗,b∗−i (t−i))− 8η.

From (7), we know that A ⊂
h
b∗(−i) (t−i) = β∗

i
. So, we haveZ

U0

ui =

Z
U∩Am∩

h
b∗
(−i)(t−i)=β

∗
i ui

=

Z
U∩Am∩A

ui +

Z
U∩Am∩

h
b∗
(−i)(t−i)=β

∗
i
\A
ui

=

Z
A
ui −

Z
A\(U∩Am)

ui +

Z
(Am\A)∩U∩

h
b∗
(−i)(t−i)=β

∗
i ui

>
Z
A
ui −

Z
A\Am

M −
Z
Am\A

M

=

Z
A
ui −M Pr (A∆Am)

>

Z
A
ui − η,

where the last line comes from (15). Now we can use (8) to conclude that

Πi

³
ti, β̂

m
,Λm−i

¡
bm−i

¢´−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
>

Z
A
ui(ti, t−i,β∗,b∗−i (t−i))dt−i − 9η

> 10η − 9η
= η > 0.
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But the fact that βm ∈ Θi
¡
ti,Λ

m
−i
¡
bm−i

¢¢
, implies

Πi
¡
ti,β

0,Λm−i
¡
bm−i

¢¢−Πi ¡ti,βm,Λm−i ¡bm−i¢¢ 6 0
for all β0. This contradiction concludes the proof.¥
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