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hazard models, has not been confirmed by empirical work. We propose a moral
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the profits. The possibility of risk reduction allows the agent’s marginal utility
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not observable and adverse selection precedes moral hazard.
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1. ������	
����

Moral hazard plays a central role in problems involving delegation of tasks. When the
principal cannot perfectly observe the effort exerted by a risk-averse agent, payment must
be designed by taking into account the trade-off between incentives and risk sharing. As
the optimal level of incentives depends on the variance of output, the relationship between
risk and incentives is an important testable implication of incentive models.

Standard models of moral hazard predict a negative relationship between risk and
incentives. The central reference is the model presented in Holmstrom and Milgrom (1987).
They analyze the conditions in which optimal contracts are linear, that is, the agent’s payoff
is a fixed part plus a proportion of profits. In their model, the negative relationship between
risk and incentives results from the interaction between these two variables in the agent’s
risk premium. As the agent is risk averse and incentives put risk in the agent’s payoff,
incentives incur a cost in utility. At the optimal incentive, an increase in risk is balanced
by a reduction in incentives.

The empirical work does not verify the negative relationship between risk and incentives,
and sometimes finds opposite results. Prendergast (2002) presents a survey of empirical
studies in three fields of application, namely, executive compensation, sharecropping and
franchising. Positive or insignificant relationships are found in all three fields, while neg-
ative relationship is found only in studies on executive compensation. The conclusion is
that the evidence is weak. Similarly, in insurance literature, the monotone relationship
between risk and coverage is not verified, as reported in Chiappori and Salanié (2000).

The lack of empirical support has stimulated the search for alternative models that
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are compatible with the observed facts. Prendergast (2002) suggests a theoretical model
that assumes monitoring is harder in riskier environments. As incentives are a substitute
for monitoring, incentives and risk are positively related. His model departs from the
Holmstrom—Milgrom structure and risk aversion plays no role. To analyze contracts in
agriculture, Ghatak and Pandey (2000) develop a moral hazard model assuming linear
contracts, risk-neutral agents and limited liability. Their model is related to ours, since
the agent controls the mean and variance of output. However, as limited liability induces
riskier behavior, they obtain the optimization trade-off by assuming that the agent pays a
cost to increase the risk of the project.

We propose a model with moral hazard and multitask in which the manager can control
the mean and the variance of the profits. Note that the resulting variance is endogenous,
and we can define two types of risk: the exogenous risk is the natural risk of the firm,
and the endogenous risk is the one resulting from the agent’s effort in reducing variance.
Principal is risk neutral and the agent is risk averse. Multitask models were first developed
in Holmstrom and Milgrom (1991), but in these models, effort controls exclusively the
mean of the profits. Sung (1995) allows the agent to control the risk and shows that
linear contracts are optimal in this class of moral hazard problems. We also examine an
extension with adverse selection before moral hazard. In this case, the principal does not
know the agent’s risk aversion and designs a menu of contracts so that self-selection reveals
the type of agent. Sung (2002) shows that linear contracts are optimal for mixed models
of adverse selection before moral hazard and controllable variance. However, as he models
an observable project choice, variance is assumed to be a contractible variable, while we
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assume the principal cannot observe the choice of variance. Since the optimality of linear
contracts is not established for our model, we assume linearity and restrict the analysis to
the space of linear contracts.

When the agent cannot control the risk of the project, the marginal cost of incentive is
higher for an agent with more risk aversion. For this reason, the principal assigns lower-
powered incentive contracts to more risk-averse agents. However, when agents can exert
effort in risk reduction, the marginal cost of incentive may decrease with risk aversion. The
principal may assign a high incentive contract to a high risk aversion, because he can reduce
risk and the cost associated with risk. Technically speaking, since our model does not have
the single-crossing property, the relationship between the incentive given to the agent and
his risk aversion is ambiguous. We examined the linear-quadratic specification for the
model and mapped the values of parameters that generate positive or negative relationship
between risk and incentives. In general terms, the positive relationship is more likely for
low risk aversion and intermediate levels of exogenous risk. Then we considered the case in
which risk aversion is not observed by the principal. We computed the optimal contracts
for representative situations and found that the relationship between endogenous risk and
incentives is ambiguous. For a set of agent types with high risk aversion, incentives and
endogenous risk are negatively related. Conversely, for a set of agents with low risk aversion,
the relationship is positive. With respect to the exogenous risk, the Holmstrom—Milgrom
result is preserved: exogenous risk and incentives are negatively related. In Araujo and
Moreira (2001b), a model akin to the one presented here is applied to the insurance market
and an ambiguous relationship between coverage and risk is found.
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The rest of the paper is organized as follows. In Section 2, we present the moral hazard
model. In Section 3 we adopt the linear-quadratic specification and analyze the relationship
between risk and incentives. Then, as a robustness check, we examine the case in which
the agent’s risk aversion is not observable. Section 4 presents the model; Section 5 studies
the linear-quadratic specifications and computes the optimal contracts for relevant cases.
We find positive and negative relationships between risk and incentives. Section 6 states
the concluding remarks; in the Appendix, we discuss implementability and optimality in
adverse selection models without the single-crossing property, and examine the technical
conditions for computing the optimal contract.

2. ��
������� ��
� ����
���

The principal delegates the management of the firm to the agent, whose effort can
affect the probability distribution of the profits. The agent may exert effort e increasing
the mean, and effort f reducing the variance. The profits, denoted by z, have normal
distribution N(µ(e), σ2(f)). Let c(e) and k(f) denote the cost of the efforts for the agent.
The agent has exponential utility with risk aversion θ, a public available information. As
shown in Sung (1995), linear contract is optimal in the Holmstrom—Milgrom setting where
agent has control of risk. So the wage is a linear function of the profits, that is, w = αz+β,
α ≥ 0. The contract parameter α is the proportion of the profits received by the agent and
is called the incentive, or the power, of the contract. The parameter β is the fixed part of
the contract which is adjusted in order to induce the agent to participate.

The timing of the problem is as follows: (1) the principal and the agent learn the type
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θ, then (2) the principal offers a contract w = αz + β, (3) the agent may accept or reject
the contract. If he accepts, then (4) he exerts effort accordingly, (5) the firm produces
profit z, (6) the agent receives w = αz + β and the principal earns the net profit, z − w.
The certainty equivalence of the agent’s utility is

VCE(α, β, θ, e, f) = β + αµ(e)− c(e)− k(f)− α2
2 θσ

2(f),

that is, the expected wage, minus the cost of the effort and the risk premium. In the
traditional moral hazard model, the last term originates the negative relationship between
risk and incentives. The risk premium acts as a cost because the principal must compensate
the agent to induce him to participate. Since the marginal risk premium with respect to α
is increasing in both α and σ2, the principal compensates an increase in σ2 by a reduction
in α, and equates the marginal cost and the marginal benefit of incentive. In our model,
the last term has the same role, but the possibility of variance reduction modifies the
relationship between risk and incentives.

The costs are convex and efforts increase mean and reduce variance with diminishing
returns to scale. The following assumption summarizes these properties:

A��
������ 1 c′(·) > 0, c′′(·) > 0, k′(·) > 0, k′′(·) > 0, µ′(·) > 0, µ′′(·) ≤ 0, σ2′(·) < 0
and σ2′′(·) > 0.

2.1. Solving the Agent’s Problem. Given the contract (α,β), the agent with risk aver-
sion θ chooses effort levels e∗ and f∗ that maximize his utility. The first-order conditions
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for the agent’s problem are

αµ′(e∗) = c′(e∗) and k′(f∗) + α2
2 θσ

2′(f∗) = 0.(1)

Note that e∗ and f∗ do not depend on β, and that, as a consequence of the separability of
costs, e∗ does not depend on θ. Let e∗(α) and f∗(α, θ) denote the agent θ’s optimal choice
of efforts, given the incentives α. Differentiating the first-order condition, we find that the
derivatives of effort with respect to incentives and risk aversion have well defined signs,

e∗α = µ′(e∗)
c′′(e∗)− αµ′′(e∗) > 0,

f∗α = − αθσ2′(f∗)
k′′(f∗) + 12α2θσ2′′(f∗)

> 0,(2)

f∗θ = − 12α2σ2′(f∗)
k′′(f∗) + 12α2θσ2′′(f∗)

> 0.(3)

The higher the incentive, the higher the effort in mean increasing and in variance
reduction. The higher the risk aversion, the higher the effort in variance reduction. Con-
sequently, the endogenous variance is decreasing in α and in θ. This is the expected result,
since higher α provides incentive to the agent increase average profits, but simultaneously
increases the risk of his payoff. The risk-averse agent is induced to reduce risk by increasing
f∗, and this effect is stronger, the higher is the risk aversion. Using e∗(α) and f∗(α, θ), the
indirect utility is V (α, β, θ) = β + v(α, θ), which is quasi-linear in β. The non-linear term
is

v(α, θ) = αµ(e∗(α))− c(e∗(α))− k(f∗(α, θ))− 1
2α

2θσ2(f∗(α, θ)).(4)

By the envelope theorem, we find that vθ(α, θ) = −α2σ2(f∗(α, θ))/2 < 0. This means
that, comparing two agents with marginally distinct risk aversion under the same contract
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(α,β), the more risk-averse agent has higher risk premium and lower utility, even when his
choice of risk-reduction effort is taken into account.

2.2. The Principal’s Problem. We assume that the principal is risk-neutral. Her
utility is, given the agent’s effort choice, the expectation of the net profit, that is, the
profit after the wage is paid to the agent,

U(α, β) = E[z −w] = (1− α)µ(e∗(α))− β,
where the expectation is taken with respect to the conditional distribution of z, given the
agent θ’s effort choice under the contract (α,β). Note that the principal’s utility does not
depend directly on the risk aversion, but the optimal contract may depend.

Denote as (α(θ), β(θ)) the optimal contract for the agent of type θ. For all θ, this is
the solution of the principal’s maximization problem,

(α(θ), β(θ)) ∈ argmax
α̃,β̃

U(α̃, β̃),(5)

subject to

V (α̃, β̃, θ) ≥ 0.(6)

The constraint (6) is the participation constraint where the reservation utility is normalized
to be zero. As V is increasing and U is decreasing in β, condition (6) holds with equality
and β may be eliminated from the objective function. The maximization problem is then,
for all θ,

maxα̃ S(α̃, θ),(7)
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where S(α, θ) is the social surplus,

S(α, θ) = (1− α)µ(e∗(α)) + v(α, θ).
Whenever first- and second-order conditions are sufficient, the optimal contract is char-

acterized by Sα(α(θ), θ) = 0 and Sαα(α(θ), θ) < 0.
Note that, as e∗ does not depend on θ, Sαθ(α, θ) = vαθ(α, θ), and by the implicit

function theorem
dα
dθ = − vαθ(α(θ), θ)Sαα(α(θ), θ) ,(8)

which states that the relationship between incentives and risk aversion has the same sign as
vαθ(α(θ), θ), and reveals a close relationship between the cross-derivative of agent’s utility
and dα/dθ. By straightforward calculation, we find that Sα(α, θ) = (1−α)µ′(e∗(α))e∗α(α)−
αθσ2(f∗(α, θ)), which implies Sα(1, 0) = 0. Therefore, whenever the first-order condition
solves (7), the optimal contract α(θ), for θ > 0, may be found by solving the differential
equation (8), for θ ≥ 0, with initial condition α(0) = 1.

Applying the envelope theorem on α, the marginal utility of incentives is vα(α, θ) =
µ(e∗(α))−αθσ2(f∗(α, θ)). The first term does not dependent on risk aversion. The second
term represents the marginal cost of risk premium and is related to the risk aversion
through two channels. Using Assumption 1 and equation (3), we can study the sign of the
cross-derivative of indirect utility,

vαθ(α, θ) = −ασ2(f∗(α, θ))︸ ︷︷ ︸
<0

− αθσ2′(f∗(α, θ))f∗θ (α, θ)︸ ︷︷ ︸
>0

.(9)

It clarifies the relationship between marginal utility of incentives and risk aversion. The
first term is the direct effect and the second is the variance-reduction effect. The direct
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effect occurs as more risk-averse agents are more sensitive to the increase in variance when
incentives increase; and the variance-reduction effect reflects the higher risk-reduction effort
exerted by more risk-averse agents. As direct and variance-reduction effects have opposite
signs, vαθ(α, θ) may have any sign. Therefore, in this model, the single-crossing condition
does not hold in general.

The interpretation of the relationship between the sign of dα/dθ and the sign of
vαθ(α(θ), θ), provided by equation (8), is that, in the optimal contract, when direct ef-
fect dominates, higher risk-aversion agents incur for the principal greater marginal cost
of incentives and, for this reason, receives lower incentives; when variance reduction effect
dominates, higher risk-aversion agents represent lower marginal cost to the principal as
they strongly reduce the variance and the principal provides more incentives.

2.3. Risk and Incentives. Our main interest is on the relationship between variance of
profits and incentives. The variance is directly related to the risk-reduction effort f∗(α, θ).
Let α̂(θ; f) be defined by f∗(α̂(θ; f), θ) = f . For a given f , α̂(θ) is the constant-risk curve,
which is negatively sloped, since

dα̂
dθ = −f∗θf∗α = − α2θ < 0,(10)

by (2) and (3). Constant-risk curves may be plotted in a θ × α plane. As f∗(α, θ) is
increasing in α and θ, the constant-risk curves closer to the upper-left corner correspond
to lower risk. Inspecting equation (1), it is clear that f∗ is determined only by α2θ. As f∗

is constant if and only if α2θ is constant, constant-risk curves are defined by α̂(θ) = κ/√θ,
where κ is a constant. We reach the same result by solving the diferential equation in (10).
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Another related result concerns the locus of vαθ(α, θ) = 0. From equations (3) and (9),
vαθ(α, θ) = 0, if and only if

σ2(f∗(α, θ))− 12α2θ
[σ2′(f∗(α, θ))]2

k′′(f∗(α, θ)) + 12α2θσ2′′(f∗(α, θ))
= 0.(11)

As f∗(α, θ) depends on α and θ only through α2θ, the whole expression depends on α and
θ only through α2θ. Therefore, if vαθ(α0, θ0) = 0, then, for the whole constant-risk curve
associated to (α0, θ0), vαθ(α, θ) = 0 holds.

0

1

α

θ

v αθ = 0

Risk increasing 
d irect io n

C o nst ant - risk 
cu rv es

Figure 1: Constant-risk curves.

In Figure 1, the dotted lines are constant-risk curves associated to different risk levels.
Risk is greater for low incentives and low risk aversion. Lower risk is associated to high
incentives and high risk aversion. The thick line is the set of points where vαθ(α, θ) = 0
and coincides with a constant-risk curve.
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The analysis above results from the maximizing effort choices by the agent. The fi-
nal relationship between incentives and risk must take into account the optimal contract
designed by the principal. The following proposition relates the direction of the risk and
incentive relationship with the parameters of the model.

P���������� 1 Let the contract α(θ) be defined by the first-order condition Sα(α, θ) = 0.
If vαθ(α(θ), θ) �= 0 and Sαα(α(θ), θ) < 0,

sign
{dσ2
dα

}
= sign

{[ vαθ
Sαα − α

2θ
]
vαθ

}
.

P����. As the variance of profits is σ2(f∗(α, θ)), the relationship between incentives and
risk, in a neighborhood of α(θ), is given by

dσ2
dα =

[
f∗α + f∗θ

(dα
dθ

)−1]
σ2′(f∗),

provided that dα/dθ �= 0. As σ2′ < 0 and f∗α > 0,

sign
{dσ2
dα

}
= sign

{−[dα
dθ + f∗θ

f∗α
] dα
dθ

}
.

By equation (8), vαθ �= 0 implies dα/dθ �= 0, and, by equations (2) and (3), f∗θ /f∗α = α2θ ,
which establishes the desired result. �

When incentives are increasing in risk aversion, risk-reduction effort is increasing in
incentives. Consequently, risk and incentives are negatively related. On the other hand,
when incentives are decreasing in risk aversion, the direction of the relationship between
risk and incentives depends on the balance between the risk aversion and incentive effects.
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α

θ

v αθ >  0

v αθ <  0

α1( θ)

α2( θ)
P2

P1

θ1θ2

Figure 2: Optimal contracts and constant-risk curves.

Proposition 1 can be graphically interpreted as an interaction between the optimal con-
tracts and constant-risk curves. Figure 2 shows the same constant-risk curves in Figure 1.
We assume vαθ(α, θ) is positive above and negative below the vαθ(α, θ) = 0 curve. As an il-
lustration, an optimal contract, α1(θ), is plotted. Let P1 be the point where vαθ(α1, θ) = 0.
As required by equation (8), α1(θ) is increasing when vαθ(α1(θ), θ) > 0 and decreasing when
vαθ(α1(θ), θ) < 0. For θ > θ1, vαθ(α1(θ), θ) > 0, therefore, for higher risk aversion, incen-
tives are higher and risk-reduction effort increases. As a consequence, incentives and risk
are negatively related. For θ < θ1, the contract curve is flatter than constant-risk curve.
In this case, a moderate reduction in incentives is sufficient to compensate an increase in
risk aversion; as risk aversion dominates in the determination of risk-reduction effort, the
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risk decreases. Therefore, risk and incentives are positively related.
The contract α2(θ) illustrate another case. At P2, the slope of contract curve is equal

to the slope of constant-risk curve,

dα
dθ = −f∗θf∗α .

For θ > θ2, the reduction in incentives is strong enough to make the agent reduce effort in
risk reduction and risk increases. In this case, risk and incentives are negatively related.

The analysis above is concerned with the endogenous risk, the risk that remains after
the risk-reduction effort. Assume now that there is an exogenous parameter of risk. Let σ20
be the exogenous variance; this is the natural risk of the project, which would be observed if
the agent exert no effort to reduce risk. We rewrite the endogenous variance as a function of
effort and the exogenous variance, σ2(f, σ20), and assume σ2(0, σ20) = σ20 and ∂σ2/∂σ20 > 0.
Analogously, for a given θ, we rewrite the indirect utility and social surplus as v(α, σ20) and
S(α,σ20).

We are interested in the effect of a change in the exogenous risk on incentives. From
equation (1), e∗ does not depend on σ20 and

f∗σ2
0
= − 12α2θ ∂2σ2

∂f∂σ2
0

k′′(f∗) + 12α2θ ∂2σ2

∂f2

.

The following proposition relates the exogenous risk and incentives.

P���������� 2 For a given θ, if the optimal contract α is defined by Sα(α,σ20) = 0 and

Sαα(α, σ20) < 0,
sign

{ dα
dσ20

}
= sign

{−[∂σ2
∂f f

∗
σ2
0
+ ∂σ2
∂σ20

]}
.
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P����. As the optimal contract is characterized by Sα(α,σ20) = 0, the relationship
between exogenous risk and incentives is given by

dα
dσ20 = −vασ2

0
(α, σ20)

Sαα(α, σ20) ,

that has the same sign as vασ2
0
.

By the envelope theorem vα(α,σ20) = µ(e∗(α))− αθσ2(f∗(α, σ20), σ20). Then
vασ2

0
(α, σ20) = −αθ [∂σ2(f∗(α, σ20), σ20)∂f f∗σ2

0
(α,σ20) + ∂σ2(f∗(α, σ20), σ20)

∂σ20
]
.

�

The following corollary is a straightforward consequence of Proposition 2.

C�����	�� 1 If ∂2σ2

∂f∂σ2
0
> 0, then incentives and exogenous risk are negatively related.

Propositions 1 and 2 and Corollary 1 are helpful for explaining the failure of empirical
research in the verification of the Holmstrom—Milgrom prediction. Under certain condi-
tions, exogenous risk and incentives are negatively related for any level of risk aversion.
However, empirical work does not measure exogenous risk directly. As agents exert effort
in reducing risk, the empirically relevant risk is the endogenous risk that may be positively
or negatively related to incentives.

3. ��� ������-�	������
 
��
���
�����

To find numerical solutions of optimal contracts, we assume specific functions. The
mean of profits is linear, and the variance and the cost functions are quadratic function of
efforts.
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A��
������ 2 µ(e) =me, σ2(f) = (σ0 − f)2, c = 12e2 and k = 12f2.

Using the first-order conditions of the agent’s problem (1), the effort levels are

e∗ = αm, and f∗ = α2θ
1 + α2θσ0 < σ0.(12)

The effort in variance reduction is increasing with respect to the exogenous variance. The
endogenous variance is σ2(f∗(α, θ)) = σ20/(1 + α2θ)2.

The cross-derivative of the indirect utility,

vαθ(α, θ) = −α(1− α2θ)
(1 + α2θ)3 σ

20,(13)

indicates that vαθ is positive above and negative below the decreasing curve α = 1/√θ
as illustrated in Figure 2. When α < 1/√θ, the direct effect dominates and the optimal
contract α(θ) is decreasing in risk aversion. Conversely, if α > 1/√θ, the variance-reduction
effect dominates and α(θ) is increasing.

Using the functions specified above, the social surplus becomes

S(α, θ) =
(
1− α

2
)
αm2 − α2θ

2(1 + α2θ)σ
20.

The first-order condition for the principal’s problem, Sα(α, θ) = 0, is reduced to

m2(1− α)(1 + α2θ)2 − αθσ20 = 0.(14)

Note that, for θ > 0, the left-hand side is positive when α ≤ 0 and negative when α ≥ 1.
Thus, by continuity, there is at least one solution and all solutions are in the interval (0, 1).

A��
������ 3 The parameter of risk aversion is restricted to 0 ≤ θ < 4.
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Under Assumption 3, the solution of equation (14) is unique and gives the optimal level
of incentives for each θ.2

3.1. Risk and Incentives. To analyze the relationship between risk and incentives, we
have to examine the properties of

vαθ(α, θ)
Sαα(α, θ) = α(1− α2θ)σ20

m2(1 + α2θ)3 + θ(1− 3α2θ)σ20
= α(1− α2θ)(1− α)
θ(1− α2θ(3− 4α)) .

where the parameters m and σ20 were eliminated in the second equality by the use of the
first-order condition. Using the expression above and Proposition 1, we find that

sign
{dσ2
dα

}
= sign{(1− α2θ)(2α− 1)} .

The factor (1−α2θ) comes from vαθ, that is, 1−α2θ = 0 defines the border between regions
where vαθ > 0 and vαθ < 0. The meaning of factor (2α−1) is that optimal contract curves
are tangent to a constant-risk curve at α = 1/2.

Figure 3 shows the relevant regions, together with five instances of optimal contracts.
Let s2 = σ20/m2. In Region A, vαθ > 0, incentive is increasing and variance is decreasing

2The uniqueness may be established analyzing the properties of the second-order condition, Sαα < 0,
which gives

m2(1 + α2θ)3 + θ(1 − 3α2θ)σ2
0 > 0.

And using the first-order condition to eliminate m and σ2
0,

1− α2θ(3 − 4α) > 0.

For α ∈ [ 34 , 1] this condition is always satisfied, and for α ∈ [0, 3
4 ), the condition is satisfied if θ < 4.

Therefore, if θ < 4, we have Sαα < 0 and Sα = 0 has a unique solution.
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Figure 3: Optimal contracts. s2 = σ20/m2

in θ. In Region B, vαθ < 0, both incentive and variance are decreasing in θ. And, in
Region C, vαθ < 0, incentive is decreasing and variance is increasing in θ. Therefore, risk
and incentives are positively correlated in Region B and negatively correlated in Regions
A and C.

The contract for s2 = 1 is a watershed case, as for s2 ≥ 1 contracts are monotonically
decreasing with respect to risk aversion. For s2 < 1, incentives may be greater for more
risk-averse agents, if risk aversion is sufficiently high.

The relationship between incentives and risk for the contracts in Figure 3 may be
directly examined in Figure 4. Risk is normalized as a fraction of the exogenous risk.
Curves in Figure 3 are mapped in Figure 4 by σ2/σ20 = 1/(1 + α2θ)2. The vαθ = 0 curve
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Figure 4: Risk and incentives. s2 = σ20/m2.

corresponds to the vertical line at σ2/σ20 = 1/4. Variance below σ20/4, is only possible for
s2 < 1. That is, in Region A, low risk is induced by three factors: σ0 is low, risk aversion
is high and incentives are high. For s2 > 1 the variance reduction effort has an upper limit
at α = 1/2 and variance has a lower limit.

Figure 5 shows the combinations of parameters that results in increasing or decreasing
relationship between risk and incentives. The borders between the regions correspond
to α = 1/2 and α2θ = 1 mapped by equation (14). Risk and incentives are positively
correlated when risk aversion is low and is associated to high incentives. For agents with
high risk aversion, positive correlation is possible if σ20/m2 has intermediate values, but is
a less frequent situation, the higher is the risk aversion.
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Figure 5: Parameters and the risk-incentive trade-off. s2 = σ20/m2

Figure 3 suggests that the relationship between incentives and exogenous risk is nega-
tive. In fact, although the assumption of Corollary 1 does not hold, by Proposition 2, for
any θ, the relationship between exogenous risk and incentives is negative as in Holmstrom
and Milgrom (1987).

4. �����
� 
���
���� ��� ����� ������

We now extend the pure moral hazard model presented in Section 2. Assume now that
risk aversion is agent’s private information. Principal knows that θ is uniformly distributed
on Θ = [θa, θb]. So there is adverse selection before moral hazard and the principal must
design a menu of contracts taking into account the participation and incentive compatibility
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constraints. In this section we assume linear contracts.3

The timing of the problem is as follows: (1) the agent learns his type, then (2) the
principal offers a menu of contracts {α(θ), β(θ)}θ∈Θ, (3) the agent chooses a contract, and
(4) exerts effort accordingly, (5) the firm produces profit z, (6) the agent receives w = αz+β
and the principal earns the net profit, z −w.

We can now divide the problem in two parts. First, for a given contract (α, β), the
agent chooses the effort levels e∗(α) and f∗(α, θ), and we find the indirect utility of the
agent. This part is exactly the same as the agent’s problem in pure moral hazard problem
examined in Section 2. The indirect utility is again V (α, β, θ) = β + v(α, θ), where v(α, θ)
is defined by (4). Second, given the indirect utility of the agent, the principal solves the
adverse section problem. The principal designs an incentive compatible menu of contracts
that maximizes her expected utility.

The adverse selection problem is to find the functions α(·) and β(·) such that
(α(·), β(·)) ∈ arg max

α̃(·),β̃(·)
E[U(α̃(θ), β̃(θ), θ)],(15)

subject to

V (α̃(θ), β̃(θ), θ) ≥ V (α̃(θ̂), β̃(θ̂), θ), for all θ, θ̂ ∈ Θ,(16)

V (α̃(θ), β̃(θ), θ) ≥ 0, for all θ ∈ Θ.(17)

The expectation in (15) is taken with respect to θ. The constraint (16) is the incentive
compatibility condition. A function α(·) is called implementable, if there is a function
β(·) so that (α(·), β(·)) is incentive compatible. The constraint (17) is the participation

3See Sung (2002) for a discussion on optimality of linear contracts in this setting.
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constraint where the reservation utility is normalized to be zero.
Guesnerie and Laffont (1984) fully characterize the optimal contract under the single-

crossing condition, that is, the cross-derivative vαθ has constant sign. The solution of the
model involves the virtual surplus

R(α, θ) = S(α, θ) + (θ − θa)vθ(α, θ),(18)

which is the social surplus plus the informational rent.4 The pointwise maximization of
R(α, θ), denoted αr(θ) = argmaxαR(α, θ), is the relaxed solution, and this function is
fundamental for the characterization of the optimal contract. If αr(θ) is an implementable
contract, then it is the optimal contract. Otherwise, the optimal contract is the best imple-
mentable combination of αr(θ) and intervals of bunching. When function αr(θ) coincides
with the optimal contract, types are separated, that is, distinct levels of incentives are
assigned to distinct types of agents.

In our model, the cross-derivative vαθ may have any sign. That is, the single-crossing
property may not hold. The characterization of the optimal contracts in adverse selection
problems without the single-crossing property is analyzed in Araujo and Moreira (2001a),
and the Appendix contains some results that are relevant for the solution of our model.
The distinctive feature of the optimal contract without the single-crossing property is that
a discrete set of agent’s types may choose the same contract. This situation is called
discrete pooling. We can now find a function αu(θ) that gives the optimal assignment of
incentives when exactly two types are pooled. If the relaxed solution is implementable,
then the optimal contract coincides with αr(θ). For the more complex situations, as in

4See the Appendix for the derivation of the virtual surplus.
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the framework examined in Araujo and Moreira (2001a), the optimal contract is the best
implementable combination of αr(θ), αu(θ) and intervals of bunching. Section 5 provides
some illustrative examples of optimal contract with the linear-quadratic specification.

4.1. Single-Task. Before we study the linear-quadratic specification for the full model,
we analyze a simpler specification in which the agent cannot control the variance of the
profits. The objective is to certify that the possibility of variance reduction is a necessary
element of the model to generate a positive relationship between incentives and risk. In
this simple specification, agent’s effort controls only the mean of the profits. Let e denote
the effort and assume the mean of the profits is linear in e, µ(e) = me, and the cost of
effort is quadratic, c(e) = e2/2. In order to fit this model to the previous framework, we
may assume σ2(f) = σ20, k(f) = f2/2 and k(0) = 0.

The first-order condition of the agent’s problem provides the optimal effort, e∗ = mα
and f∗ = 0. As expected, effort increases with the power of incentives. The non-linear
term of indirect utility is

v(α, θ) = α2
2

(m2 − θσ20) ,
and the marginal utility of incentives is vα = αm2 − αθσ20. An increase in incentives has
positive and negative effects on the agent’s utility. The positive effect is the increase of
the share of profits. The negative effect comes from the increase of risk in the wage. The
single-crossing property holds for this case, since vαθ = −ασ20 < 0. An agent with low risk
aversion has high marginal utility of incentive and may choose a high-powered incentive
contract.

23



The virtual surplus, as defined in (18), is a concave function and the solution of the
relaxed problem is given by the first-order condition Rα(αr(θ), θ) = 0. Thus,

αr(θ) = m2
m2 + (2θ − θa)σ20 .

The function αr is decreasing in θ and vαθ is negative. In this case, the optimal contract of
the problem coincides with the relaxed solution. The variance σ20 has also a negative effect
on α, since it increases the marginal cost of incentives present in the risk premium and in
the informational rent.

The relationship between α and σ20 is negative, given θ. Therefore, adverse selection
before moral hazard is not sufficient to change the traditional risk-incentive trade-off. If
agent controls only the mean of the profits, risk does not affect the principal’s benefit,
because she is risk neutral, but increases the marginal cost, because she has to compensate
for the risk premium and has to pay the informational rent. Consequently, the incentives
are lower in riskier projects.

5. ������� 
�����
�
 �� ��� ������-�	������
 �����

In this section we return to the linear-quadratic specification in Section 3 and examine
the optimal contract and the relationship between incentives and risk, when the risk aver-
sion is a private information of the agent. As the characterization of the optimal contract
is complex, we are not able to provide a general analysis as the one developed for the
observable risk aversion case. Instead, we provide three illustrative examples that show
that positive and negative relationship between incentives and risk may be observed when
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there is adverse selection before moral hazard.
We now return to the specification in Assumption 2. The variance and the mean are

under control of the agent. The agent chooses effort levels in (12) and the non-linear term
of indirect utility is (4). The cross-derivative is again vαθ = −α(1 − θα2)σ20/(1 + θα2)3

and the function α0(θ) = 1/√θ defines a decreasing border between vαθ > 0 and vαθ < 0
regions, with vαθ > 0, for α > α0. For less risk-averse agents, the direct effect dominates
and the marginal utility of incentive decreases with risk aversion. For more risk-averse
agents, the effort produces a stronger effect, such that the second term dominates and
vαθ > 0. This changes the self-selection direction, that is, an agent with a higher degree
of risk aversion has a higher marginal utility of incentive, and chooses contracts with more
power.

The next step is to define the virtual surplus R(α, θ) and to find the solution of the
relaxed problem αr(θ) (see the Appendix). The incentive schedule of the optimal contract
is αr(θ), whenever it is implementable. As the single-crossing property does not hold, two
points have to be observed: first, the incentive compatibility cannot be trivially checked;
and, second, if αr(θ) is not implementable, the computation of optimal contract must
follow the procedure presented in the Appendix. The optimal incentive schedule may have
a complex form, resulting from a combination of αr(θ), discrete pooling and continuous
bunching.

The equations above were numerically implemented for three representative cases that
generate increasing, decreasing and mixed relationship between incentives and risk.5 The

5Computer code is provided upon request.
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parameter values, σ0 = 0.91 and m = 1, are the same for the three cases, and the values
of θa and θb change for each case. These values were chosen in order to generate functions
that are tractable by the procedure detailed in Araujo and Moreira (2001a). For each case,
we compute the optimal contract α∗(θ) and the endogenous risk σ2(e∗(α∗(θ), θ)), then we
plot the function α∗(θ), and the risk-incentive curve.

In Figure 6, for θ ∈ [2.5, 3.5], the dotted line α0(θ) is the border between the vαθ < 0
region to the left, and the vαθ > 0 region to the right. The relaxed solution αr(θ) is
increasing in Θ, and coincides with the optimal contract. Figure 7 is the corresponding
plot for risk and incentives. An agent with higher risk aversion exerts more effort in risk
reduction and this behavior reduces the marginal cost from risk premium. This effect
more than compensates the increase in marginal cost due to higher risk aversion. The net
effect is that more risk-averse agents choose higher-powered incentive contracts and the
relationship between risk and incentives is negative as in Holmstrom and Milgrom (1987).

The contract for a set of types with lower risk aversion, θ ∈ [0.5, 1.4], is shown in
Figure 8. The relaxed solution is implementable as vαθ(αr(θa), θb) < 0 (see the Appendix).
The optimal contract coincides with the relaxed solution, but this time the relationship is
reversed. More risk-averse agents have higher marginal cost of incentives, thus they prefer
lower-powered incentive contracts. At the same time, more risk-averse agents exert more
effort in risk reduction and the variance is lower. As is seen in Figure 9, the risk and
incentives are positively related.

For a broader interval of types, that encompasses vαθ of both signs, the discrete pooling
is possible and the optimal contract presents a U-shaped form. In Figure 10, the optimal
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Figure 6: Optimal contract. Θ = [2.5, 3.5].

0 0.05 0.1 0.15 0.2 0.25
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(σ0−eσ)2

α

Figure 7: Risk × incentives. Θ = [2.5, 3.5].
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Figure 8: Optimal contract. Θ = [0.5, 1.4].
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Figure 9: Risk × incentives. Θ = [0.5, 1.4].
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Figure 10: Optimal contract. Θ = [0.7, 3.0].
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contract for θ ∈ [0.7, 3.0] is plotted.6 Computational procedures found the optimal contract
that combines relaxed solution, discrete pooling and continuous bunching. Incentives and
risk aversion are positively related for more risk-averse agents and negatively related for less
risk-averse agents. The U-shape of the optimal contract is also present in the risk-incentive
graph, as we can see in Figure 11.
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Figure 12: Exogenous risk × incentives. Θ = [0.7, 3.0].

The results above are concerned with the endogenous risk. We show in the Appendix
that the incentive in the relaxed solution is decreasing in σ0. Therefore, the relationship
between incentives and exogenous risk is negative when optimal contract coincides with
the relaxed solution, as in the first two cases. For the third case, the sensitivity dα/dσ0
was numerically calculated and plotted in Figure 12. Note that the sensitivity is negative,

6As prescribed in the Appendix, the validity of assumptions H2 and H3 were checked numerically.
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which suggests that incentives decrease with exogenous risk.

6. 
��
�	
���

The negative relationship between risk and incentives, found in standard models of
moral hazard, may be reversed if we allow the agent to control the variance. In the model
with moral hazard in which risk aversion is observable and where the agent may exert
costly efforts to increase the mean as well as to reduce variance, we find that effort in
variance reduction is an increasing function of both incentives and risk aversion.

The marginal utility of incentives may be decreasing or increasing in risk aversion. As
incentives increase the variance of the wage, the marginal utility of incentives tends to be
lower for higher risk aversion because the marginal cost from the risk premium is higher.
However, as the effort in variance reduction increases with incentives, when risk aversion is
sufficiently high, the marginal cost from the risk premium may decrease and the marginal
utility of incentives may increase with the risk aversion.

In the moral hazard model, when marginal utility of incentives is decreasing in risk
aversion, the principal maximizes the social surplus by giving fewer incentives to a more
risk-averse agent. Conversely, for increasing marginal utility, incentives and risk aversion is
positively related. In the model with adverse selection before moral hazard, the incentive
compatibility constraint leads to the same relationship between the marginal utility and
incentives that was found in the pure moral hazard model.

The relationship between risk and incentives is determined by the interaction of the
effects described in the previous paragraphs. Three cases may be identified. First, when
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marginal utility of incentives is increasing in risk aversion, incentives and risk aversion are
positively related. And as effort in variance reduction is increasing in both incentives and
risk aversion, the relationship between incentives and risk is negative. The other two cases
occur when marginal utility of incentives is decreasing in risk aversion. As incentives and
risk aversion are negatively related, the effect in the variance-reduction effort is ambiguous.
If the incentive effect dominates, the variance-reduction effort increases with incentives
and the relationship between incentives and risk is negative. If the risk-aversion effect
dominates, the variance-reduction effort decreases with incentives and the relationship
between incentives and risk is positive. We found that the positive relationship between
incentives and risk is more likely when risk aversion is low and incentives are high.

The analysis above refers to the endogenous risk, which is the empirically relevant
case, since endogenous risk is observable. The relationship between the exogenous risk and
incentives remains negative for the pure moral hazard model and the numerical calculations
suggest the same result for the model with adverse selection before moral hazard.

��������

A.1. Adverse Selection without the Single-Crossing Property. The general model
presented in Section 4 reduces to the maximization problem (15) subject to incentive
compatibility and participation constraints. It differs from the traditional adverse selection
model because the objective function does not have the single-crossing property. We present
below the main steps toward the solution, stressing the peculiarities that arise when single-
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crossing property is absent. Most of the results are developed in Araujo and Moreira
(2001a).

When α(·) and β(·) are differentiable, the incentive compatibility may be locally checked
by the first- and second-order conditions. These conditions are necessary but not sufficient
for incentive compatibility. The first-order condition gives

vα(α(θ), θ)α′(θ) + β′(θ) = 0,(19)

which states that indifference curves of type θ agent must be tangent to an implementable
contract on α× β plane, at point (α(θ), β(θ)).

The second-order condition gives

vαα(α(θ), θ)[α′(θ)]2 + vα(α(θ), θ)α′′(θ) + β′′(θ) ≤ 0,(20)

and, after differentiating (19) with respect to θ, the expression (20) simplifies to the con-
dition

vαθ(α(θ), θ)α′(θ) ≥ 0,(21)

which implies the monotonicity of α(θ), in the single-crossing context.
Given the menu of implementable contracts {α(θ), β(θ)}θ∈Θ, the level of utility achieved

by the agent with risk aversion θ is his informational rent and denoted r(θ), that is,
r(θ) = v(α(θ), θ) + β(θ). Using (19), we get

r′(θ) = vθ(α(θ), θ),(22)

and applying the envelope theorem on equation (4), we have vθ(α, θ) = −12α2σ2(e∗) < 0.
Consequently, the agent with the highest the risk aversion has the lowest informational
rent and the participation constraint is active for him, that is, r(θb) = 0.
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Thus, the fixed component of the wage can be isolated by integration of r′(θ),

β(θ) = −∫ θb

θ
vθ(α(θ̃), θ̃)dθ̃ − v(α(θ), θ),(23)

which allows us to eliminate β(·) from the problem and focus on the characterization of
α(·).

A.2. Implementability without the Single-Crossing Property. Since the single-crossing
property is not ensured, the first- and the second-order conditions are necessary but they
are not sufficient. The following points must be observed:

1. The function α(θ) may be non-monotone. The same contract may be chosen by a
discrete set of agents. We call this situation as discrete pooling. In this case, the
pooled types follow the conjugation rule

(24) vα(α(θ), θ) = vα(α(θ′), θ′),

whenever α(θ) = α(θ′), which states that the indifference curves of θ and θ′ are both
tangent at the same point to the menu of contracts on α× β plane.

2. The incentive compatibility must be globally checked. When the single-crossing prop-
erty holds, local incentive compatibility implies global incentive compatibility, that
is, if types in the neighborhood of θ is not better with the contract assigned to θ, no
other type will be better. This means that the first- and second-order conditions are
sufficient for incentive compatibility. On the other hand, when the single-crossing
property is violated, types out of the neighborhood of θ may prefer the contract as-
signed to θ. In this case, the first- and second-order conditions are not sufficient and
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further conditions must be imposed to obtain implementability.

3. The function α(θ) may be discontinuous. The possibility of discrete pooling creates
jumps in the optimal assignment of contracts, so we allow the contract to be piecewise
continuous. Where jump occurs, the agent must be indifferent between the start and
the end point of the jump. If, for example, the agent θ were strictly better with
the end point than the start point, then, for a small ε > 0, the agents with type in
[θ − ε, θ] would strictly prefer the end point, and no jump could exist in θ.

The following definition will be useful for global analysis of incentive compatibility. For
a given contract α(θ) define the integral Φ(θ, θ̂) as

Φ(θ, θ̂) =
∫ θ̂

θ

[∫ α(θ̂)

α(θ̃)
vαθ(α̃, θ̃)dα̃

]
dθ̃.(25)

It can be shown, using (22), that Φ(θ, θ̂) = V (α(θ), β(θ), θ)−V (α(θ̂), β(θ̂), θ), thus Φ(θ, θ̂)
is the difference for agent θ between the utility of the contract assigned to himself and the
one assigned to θ̂. The incentive compatibility constraint can be stated as

Φ(θ, θ̂) ≥ 0, for all θ, θ̂ ∈ Θ,

that is, the agent with risk aversion θ is not better by pretending to be an agent with risk
aversion θ̂. The function Φ(θ, θ̂) is appropriate for a graphical analysis, since the signal of
vαθ is known and the integration is performed in the region between the constant α(θ̂) and
the curve α(θ̃).

A.3. Virtual Surplus and the Principal’s Problem. The principal’s objective function
is in expression (15), where U(α,β) = (1− α)µ(e∗(α))− β. We can eliminante β(θ) using
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(23). As types are uniformly distributed, applying Fubini’s theorem,

E
[∫ θb

θ
vθ(α(θ̃), θ̃)dθ̃

]
= E [vθ(α(θ), θ)(θ − θa)] ,

and the principal’s objective function can be rewritten as E[R(α(θ), θ)], where

R(α, θ) = S(α, θ) + (θ − θa)vθ(α, θ).(26)

is the virtual surplus. After the optimal incentive α∗(θ) is found, the fixed part of optimal
contract, β∗(θ), can be calculated using (23). The virtual surplus is the social surplus plus
the informational rent term. This term is negative and represents a cost that takes into
account the rent that is paid to the agents with risk aversion in [θa, θ], in order to preserve
implementability when agent θ receives α(θ).

The maximization of the virtual surplus without the constraints is called relaxed prob-
lem. Its solution, denoted αr(θ), satisfies

Rα(αr(θ), θ) = 0 and Rαα(αr(θ), θ) < 0.

Since Rα(αr(θ), θ) = Sα(αr(θ), θ) + (θ − θa)vαθ(αr(θ), θ), the relaxed solution provides
less incentive than the first best when vαθ < 0, and more incentive when vαθ > 0. This
distortion occurs because the cross derivative is associated with the marginal cost of in-
formational rent. For example, when vαθ < 0, the cost of informational rent is increasing
with respect to α, therefore the principal pays less incentive.

A.4. Optimality without the Single-Crossing Property. In the standard adverse se-
lection model, the single-crossing property ensures that αr(θ) is the optimal contract if
(21) is satisfied, that is, αr(θ) is non-increasing when vαθ < 0, or non-decreasing when
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vαθ > 0. When αr(θ) is non-monotone, the optimal contract is the best combination of
αr(θ) and intervals of bunching so that (21) is satisfied. Such procedure is not suitable in
the absence of the single-crossing property. As before, αr(θ) is the optimal contract if it is
implementable. However, monotonicity condition (21) is not sufficient for implementability
and global incentive condition must be checked.

When vαθ changes its sign, the discrete pooling is possible and αr(θ) is not the optimal
contract for the pooled types. The assignment of contracts to the discretely pooled types
must take into account the conjugation of types according to the constraint (24). Let
αu(θ) denote the optimum assignment of contracts with discrete pooling. Then the joint
maximization of pooled types results in the condition

Rα(αu(θ), θ)
vαθ(αu(θ), θ) = Rα(αu(θ′), θ′)

vαθ(αu(θ′), θ′) .(27)

where θ′ is given by vα(αu(θ), θ) = vα(αu(θ′), θ′) and αu(θ) = αu(θ′). The optimal contract
will be a combination of αr(θ), bunching and αu(θ).

We follow Araujo and Moreira (2001a) and restrict the solution α∗(θ) to the closure of
the continuous functions. It means that when there is a jump in α(θ) all the intermediate
contracts in the jump is offered to the agent. The optimal contract with discrete pooling
can be characterized under the following assumptions:

H1. vαθ(α, θ) = 0 defines a decreasing function α0(θ), vαθ is positive above and negative
below α0(θ), for all θ ∈ Θ.

H2. αr is U-shaped, crosses α0 in an increasing way, αr(θa) ≤ αr(θb), Rα(α, θ) is negative
above and positive below αr(θ), for all θ ∈ Θ.
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H3. For each θ̂, the equations vα(αr(·), ·) = vα(αr(·), θ̂) have at most one solution in the
decreasing part of αr, on vαθ < 0 region.

Under these assumptions, the optimal contract, α∗(θ), will have one of the following
forms:

α∗(θ) =






αu(θ), if θ < θ1,

αr(θ), if θ ≥ θ1,
(28)

where θ1 is defined by αu(θ1) = αu(θa), 7 or

α∗(θ) =






αr(θ), if θ < θ2,

min{ᾱ, αu(θ)}, if θ ≥ θ2,
(29)

where ᾱ is the incentive of the continuous bunching and θ2 is defined by αr(θ2) = ᾱ. The
set of bunched types, J = {θ ∈ Θ : α(θ) = ᾱ}, satisfies

∫

J
Rα(ᾱ, θ)p(θ)dθ = 0.

A.5. Optimal Contract in the Linear-Quadratic Specification. The following expression
is the virtual surplus of the problem,

R(α, θ) = α(2− α)
2 m2 − α2(α2θ2 + 2θ − θa)

2(1 + α2θ)2 σ20.
7To be rigorous, we should consider the case in which the jump transition from αu-segment to αr-

segment takes place in θj < θ1. In this case, the contracts for [θa, θ̂j ], where θ̂j is the conjugate of θj , are
the conjugates of the contracts in the vertical line, at the jump. For the examples developed in this paper,
the characterization above suffices. For further details see Araujo and Moreira (2001a)
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The derivative with respect to α is

Rα(α, θ) = (1− α)m2 − α[θ(1 + α2θa) + (θ − θa)]
(1 + α2θ)3 σ20,(30)

and the relaxed solution αr(θ) is given by Rα(αr(θ), θ) = 0 and Rαα(αr(θ), θ) < 0. Note
that Rα(0, θ) > 0 and Rα(1, θ) < 0, so the relaxed problem has an interior solution and
Rα(·, θ) has at least one root in the interval [0, 1]. If R(·, θ) is not concave in α, the incentive
that maximizes the virtual surplus must be correctly chosen among the solutions of the
first-order condition.

Writing Rα as a function of σ0, we can see that ∂Rα/∂σ0 < 0, and, as Rαα(αr(θ), θ) < 0,
the application of the implicit function theorem to Rα(αr(θ), θ) = 0 gives dαr/dσ0 < 0.
That is, for a given θ, an increase in exogenous risk reduces incentives in the relaxed
solution.

When vαθ(αr(θ), θ) has ambiguous sign, the optimal contract must consider the possibil-
ity of discrete pooling. When θ and θ̂ are discretely pooled at incentive α, the conjugation
rule (24) relates the pooled types by θ̂(α, θ) = 1/θα4. Then, working on condition (27), we
obtain the discrete pooling segment αu(θ) as the solution of the equation

(1− α)(1 + θα2)2(1 + θ2α4) = 2θ2α3 σ20m2 .

The numerical examples presented in Section 5 correspond to three cases for which we
can characterize the optimal contract.

(a) αr(θ) is increasing and vαθ(αr(θ), θ) > 0.

Since α0(θ) is decreasing, the integral in Φ(θ, θ̂) takes values in vαθ > 0 region.
Therefore, Φ(θ, θ̂) > 0 and αr(θ) is the optimal contract.
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(b) αr(θ) is decreasing and vαθ(αr(θ), θ) < 0.

A sufficient condition for implementability is vαθ(αr(θa), θb) < 0. As α0(θ) is a
decreasing function, the integral in Φ(θ, θ̂) takes values in vαθ < 0 region. Then
Φ(θ, θ̂) > 0 and αr(θ) is the optimal contract.

(c) vαθ(αr(θ), θ) changes sign only once.

In this case, the optimal contract can be computed, if assumptions H1, H2 and H3
hold. Assumption H1 holds since, from equation (13), the function α0(θ) = 1/√θ
defines a decreasing border between vαθ > 0 and vαθ < 0 regions, with vαθ > 0, for
α > α0. The following lemma shows that the first part of assumption H2 holds.

L���	 1 Let θx be defined by αr(θx) = α0(θx). If θx exists, α′r(θx) > 0.

P����. By definition, αr(θ) satisfies Rα(αr(θ), θ) = 0. Using the implicit function
theorem,

α′r(θ) = −Rαθ(αr(θ), θ)
Rαα(αr(θ), θ) ,

and, as second-order condition states that Rαα(αr(θ), θ) < 0, α′r(θ) has the same sign
as Rαθ(αr(θ), θ). Differentiating Rα with respect to θ,

Rαθ(α, θ) = −2α[1− 2α2(θ − θa)− α4θθa]
(1 + α2θ)4

and manipulating this expression, we conclude that α′r(θ) has the same sign as

h(α, θ) = θ − 1 + 2α2θa
α2(2 + α2θa) .
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On α0(θ), α = 1/√θ. Then h(α0(θx), θx) = θx(1−θa/θx)(2+θa/θx), which is positive
for θx > θa. Therefore, α′r(θx) > 0. �

However, the second part of H2 and H3 are not valid for every value of parameters
and must be checked numerically.

The following lemma proves that the relaxed solution is a decreasing function of
exogenous variance.

L���	 2 For a given θ, dαr/dσ20 < 0.

P����. Redefine Rα in (30) as a function of α and σ20. Thus

dαr
dσ20 = −Rασ2

0
(α, σ20)

Rαα(α, σ20) ,

and the theorem is proved as Rασ2
0
(α,σ20) = −α[θ(1+α2θa)+(θ−θa)]/(1+α2θ)3 < 0.

�
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