A maximal curve which is not a Galois
subcover of the Hermitian curve
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1. INTRODUCTION

Let K = F,2 denote the finite field with ¢° elements. By a curve over
F,2 we will mean a projective nonsingular algebraic curve defined over K,
and irreducible over the algebraic closure Fq. A curve C over F is said to
be K-mazimal if the cardinality of the set C(F,2) of its [ 2-rational points

attains the Hasse-Weil upper bound; i.e.,
#C(Fg2) = ¢° + 1+ 2¢- g(C),

where ¢(C) denotes the genus of C.

Maximal curves are interesting in connection with Coding Theory, au-
tomorphism groups, finite geometries, Stohr-Voloch theory of Frobenius-
orders, etc. (see for example [14], [15], [16], [17]).

Thara [8] showed that if C is F2-maximal, then its genus satisfies:

9(C) <qlqg—1)/2.
The most interesting maximal curve over F 2 is the so-called Hermitian
curve H which can be given by the following affine equation:
79+ Z=X""" over K =Fpg.
The genus of H satisfies

9(H) = q(q - 1)/2,

and it is the unique maximal curve over F > with the genus given as above
(see [12]).

We say that a curve ) covers another curve x over Fp if we have a
surjective map

p: Y —x

where both curves and the map are all defined over F.. Serre (see [10])
showed that if ) is K-maximal, then the curve y is also K-maximal.
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Several classes of maximal curves have been investigated (see for example
1], 2], [5], [12]) and it turned out that they are all covered by the Hermitian
curve. Also, Korchméros and Torres (see [9]) showed that all maximal curves

lie on Hermitian varieties. So a basic question is the following:

Question. Is any maximal curve C over Fp2 a subcover of the Hermitian

curve H; i.e., is there always a surjective map ¢: H — C defined over K7

The aim here is to present a maximal curve C3 of genus 24 over F 2 (with
g = 27) which is not a Galois subcover of H; i.e., there is no surjective Galois
map ¢ defined over K (see Theorem 3)

w: H — Cs.
The curve Cg above is the curve given by the affine equation
(1.1) W’ —y=a" over Fyp.
This curve C3 is inside a family of Fj2-maximal curves, where ¢ = 0 is a
cubic power (see Theorem 1).
2. CERTAIN MAXIMAL CURVES

In his lecture at AGCT-10, J.-P. Serre has introduced the following affine

equation for a maximal curve Cy over F 2 with ¢ = 8:
(2.1) yt+y=2% over TFgy
The Hermitian curve H over Fgy is given by
78+ 7 =X",

and the substitutions z = Z2+ Z and = X? give us the following subcover
of the Hermitian curve:

(2.2) A4 2=a5

The curves in (2.1) and (2.2) are both of genus 3 and they are not isomorphic
to each other. This raises the question whether the Hermitian H covers the
curve Co? Surprisingly enough it is shown in [7] that there is a Galois
covering map H — Ca of degree 9 and moreover we have an intermediate
curve ) such that
"Ly 2,
with deg = 3 and deg ¢ = 3, and the map ¢ above is unramified.
First we generalize the curve Cz given by Equation (2.1) as follows:



Theorem 1. Consider the curve Cy over Fp with q = 03 given by

02 AN |
Yy —y=x .

Then the curve Cy is F2-mazimal with genus g(Cp) = (€2 — 1)(¢* — £)/2.
Proof. The assertion about the genus is trivial. We have only to show that
#Co(Fe) =1+ 60 + (2 = 1)(62 —0) - 03

We rewrite the equality above as follows:
H#C(Fpp) = (L + )+ 02 (2= 1)(1* =L+ 1) - (£ +1).

The number (1 + ¢?) above comes from the unique point at infinity and the
points on Cp with £ = 0. So we have to show that there are exactly

CoP D2 —+1)-(£+1)

rational points on C; with a nonzero first coordinate. Since Fp2 C Fp =F 2

q
we see that each such first coordinate gives rise to £2 rational points on Cp

(i.e., gives rise to £2 corresponding second coordinates). So we have to show
that

#{x €F | Ty € Fpo with (z,y) € Co} = (= 1)(* —£+1)- (£+1).
By Hilbert’s Satz 90 we are led to consider the trace of the extension Fg.
over Fp; i.e., we have to look for solutions x € IFZ2 of the trace

(:1:[2*“1)[4 + ($132—13+1)132 Lt g,

Since = # 0, we must have

($(2276+1)(Z271))€2+1 + $(132713+1)(13271) +1=0.
Let H denote the multiplicative subgroup of ]FZ2 with order

|H| =2+ 0+1.

(=11 we must have that w € H. So we have

ForaUE]I'T‘:;2 and w = x
to show that

#lweH; v +w+1=0}=0+1.
Since w € H we have w! ™ = 1/w® and hence for w € H, we get that
wt )

Now one checks that w'*! + w’ 4+ 1 = 0 implies that w € H. O

w1 =
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Remark 1. The curves given by Egs. (1.1) and (2.1) are the particular
cases given by £ = 3 and £ = 2 in Theorem 1, respectively.
We show in the next section that the curve C3 with genus g = 24 given

7

by the affine equation y? —y = 7 is not a Galois subcover of the Hermitian

curve ‘H over Fp. with ¢ = 27. For the proof of this claim we will need the
following result:

Theorem 2. Let H denote the Hermitian curve over K = Fp and let
p = Char(K). Suppose that ¢: H — x is a Galois cover over K, denote by
H the corresponding Galois group and write

|H| = degp =m - p* with ged(m,p) = 1.
If there is a fully ramified point for the map ¢ and
¢*—q+1#0 (mod degyp),

then the genus of the quotient curve x is given by

q—p” v
= —(d—-1)-
2m.pu(q (d—1)-p"),

9(x)

where d = ged(m, q+ 1) and where v and w are natural numbers attached to
the group H and v+ w = u. Moreover if m = 1, then there is exactly one
fully ramified point for the morphism .

Proof. The case m = 1 follows from Proposition 2.2 and Section 3 of [6]
and the case m > 1 follows from Theorem 4.4 of [6]. O
3. MAXIMAL CURVES C WITH GENUS 24

The Hermitian curve H over Fp with ¢ = 27 has genus g(H) = 351 and
it can be given by the equation:

7T+ 7= X8,

Let C be any maximal curve of genus 24 over Fp2 with ¢ = 27. Suppose we
have a Galois covering map ¢ of degree d:

w: H < c.
We must have that d < 15 since
29(H) — 2 = d- (29(C) - 2).
We have also that d > 10, as follows from the bound

#H(For2) < d-#C(For2).



We are therefore left with the possibilities:

d=10,11,12,13, 14, 15.

Cases d = 11 or d = 13. These possibilities for the degree d of the Galois
covering ¢ are easily discarded. Since d is a prime number, we should have

from Hurwitz genus formula:
(3.1) 29(H)—2=d-(29(C) —2)+ N -(d - 1),

where N denotes the number of ramified points of the Galois covering. But
Equation (3.1) leads to a value of N which is not a natural number in both
cases d = 11 and d = 13.

Cases d = 10 or d = 15. These cases are also easily discarded, since
the prime number 5 does not divide the order of A, where A denotes the
automorphism group of the Hermitian. We have (see [6] and [15]):

Al = ¢*(¢* +1)(¢* = 1)  and hence |A| # 0 mod 5, for ¢ = 27.

Remark 2. Notice that d = 11 also does not divide | A| and this shows
again that we can discard the case d = 11. In case d = 13, we have that a
13-Sylow subgroup H of A has order equal to 13 and Equation (3.1) shows
in particular that the quotient curve H/H is not a curve with genus 24.
From Theorem 2 we have the genus formula g(H/H) = 27.

We are left with the two following possibilities for the degree d := deg ¢

Cased=14 and Case d = 12.

Case d = 14. We have a Galois covering map (with Galois group denoted
by G):

p:H—C over K=TFg; with ¢ =27,

where degp = |G| = 14 and C is a maximal curve over K of genus 24.
Let H denote the unique subgroup of G with order |H| = 7 and denote by
Y = H/H the corresponding quotient curve. We have the following picture:



\x
A

where x is the unique curve (up to isomorphisms) having index 2 in the

y/H
N,

Hermitian (see [4] and [5]). An equation and the genus of the curve x are
given by:

77+ Z=2" and g(x) = 169.
Notice that g(x) = 169 can also be obtained from Theorem 2. For that one
uses the fact that the automorphisms of order 2 of the Hermitian curve have
fixed points.

The degree 7 map x 7. € is not Galois. Otherwise we would have
336 =2g(x)—2="7-(29(C) —2) + 6N = 322 + 6N,

which is not possible.

This shows that G = Dy is the dihedral group of order 14 generated by
two elements o and 7 with order (o) = 2, order (7) = 7 and the relations
ort =7 % for i = 1,2,...,6. We have H = (7) and the elements of order
2 in GG are the elements in the set below

G\ H ={or’|ieNand 0 <i<6}.
We now consider two subcases:

Subcase 1. The map H N Y is ramified.
Since for ¢ = 27 we have

703 = ¢° — g+ 1 # 0(mod 7),

we get from Theorem 2 the following genus formula:
21 —1
2x 7

This is not possible since we would then have

g(Y) (27 — 6) = 39.

76 = 29(Y) —2 > 2 (29(C) — 2) = 92.



Subcase 2. The map H N Y is unramified.

In this case every point P € H that is ramified under the Galois morphism
¢: H — C must have ramification index e(P) = 2. Hurwitz genus formula
for the map ¢ gives that we have exactly 56 ramified points P as above.
Indeed

700 = 2g(H) — 2 = 14(29(C) — 2) + 56.

Each element o7 (for i = 0,1,...,6) of order 2 has exactly 28 fixed points
on the Hermitian curve H. This follows from Hurwitz formula applied to
the double covering H 2, x. But since H 7, Y is unramified we have that
the involutions o7 and 77 for 0 < ¢ < j <6, do not have a common fixed
point. Indeed suppose Q € H satisfies

or'(Q) = Q = a7’ (Q).
Then applying o, we get in particular
Q) =7(Q) and TT(Q)=Q.

This is impossible since 797% generates the same group H as the element 7
and hence it cannot have a fixed point () on H.
But then we would have:

7 x 28 ramified points for the map .

So we have also discarded the case d = 14.

Remark 3. For each odd divisor n of (¢ + 1) there exists a Galois and
unramified covering of degree n

H -y,

This covering is associated to a Hilbert class field of the curve ) (see [7],
[11] and [13]).
In our situation above (Subcase 2) we have

n=7 ¢=27 and g¢())=>5L

Suppose we have a double covering ) 2, V1 making H a Galois covering
of V1 with degree 14. From the arguments in Subcase 2 above we have

700 = 2g(H) — 2 > 14(2g(D) — 2) + 7 x 28

and hence we get g(Y1) < 19.
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Case d = 12. From [4] we have just two Galois subcovers of the Hermitian
H (up to isomorphisms) with index 3. They are:

e The curve Cy with ¢g(Cp) = 108 given by
(3.2) Y9 -Y3+Yy = X%
Here the automorphism of H of order 3 can be chosen as
o(X) =X and 0(Z) = Z + a with a*" + a = 0.
e The curve C; with ¢g(Cy) = 117 given by
(3.3) T4y = (2 +2* +2)%
Here the automorphism of H of order 3 can be chosen as
cX)=X+lando(Z)=2Z+X —1.

One can also derive the genus possibilities g = 108 (case v = 0 and
w = 1) and g = 117 (case v = 1 and w = 0) from Proposition 3.1 of
[6]. (See also Theorem 2 here with m = 1).

Let G denote the Galois group of the Galois covering ¢: H — C. So the
order of G satisfies |G| = 12 = 4 x 3. We consider two subcases:

Subcase 1. G has a normal subgroup H of order 3.
We have here two possibilities:

Subcase 1.1. The quotient curve H/H is isomorphic to the curve Cy above
(see Equation (3.2)) with genus 108.

Since H is normal in G, then the covering below of degree 4
Co—C
is a Galois covering. We can then go from Cy to the curve C by inserting an
intermediate curve Y:
Co >V 2.
The unique automorphism ¢ of order 2 on the curve Cy satisfies
o(X)==-X and oY)=Y.
Hence the inserted curve ) above is given by the equation below
V-V 4V =2t
Again the unique automorphism o7 of order 2 on the curve Y satisfies

o1(z)=—x and o1(Y)=Y.



Hence the curve C of genus 24 can be given by the equation
Y9 -v3+y = m{ over [Foro.

The assertions concerning the uniqueness of the automorphisms ¢ and o
above can be proved with arguments similar to the ones in the proof of
Theorem 3 at the end of this paper.

Subcase 1.2. The quotient curve H/H is isomorphic to the curve C; above
(see Equation (3.3)) with genus 117.

It is easily seen that the point at infinity of the Hermitian (see Section 3
of [6]) is the only ramified point of the cover H N

Since Cy L, C is a Galois covering we conclude that the degree 12 Galois
map ¢: H L2 Chasa fully ramified point. Now Theorem 2 with v = 1 and
w = 0 gives the genus formula:

27— 1 26 x 18
g(C) = 8X3(27—3><3):

which is not possible. So this Subcase 1.2 does not occur.

Subcase 2. A subgroup H of order 3 is not normal in G.

It follows from Hilbert’s different formula (higher ramification groups)
that there is no fully ramified point for the Galois covering ¢: H NS
Indeed, if P is fully ramified then G1(P) < Go(P) = G and |G1(P)| = 3,
where G;(P) denotes the i-th ramification group.

The group G in this case is isomorphic to the alternating group A,. Con-
sider the following diagram (where x denotes the quotient curve by the Klein
subgroup of Ay):

H Py

% C, or C, 0. p
¢ 0

where Py is the only ramified point of H over C; (i = 0 or i = 1) and Quo, P

and () denote its images in y, C; and C. It follows that Qo is also the only
ramified point of y over C. Note that x — C is a Galois map since the Klein
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subgroup is normal in A4. One can now see that the only possibility for
the ramification structure over the point () on C is the one in the following
picture (see Abhyankar’s lemma; i.e., Proposition I11.8.9 in [14])

This picture above means that Q has two points P and P on the curve
Ci (i =0 or i = 1) above it and the ramification index of P is e(P|Q) = 3.
If d(R|S) denotes the different of the point R over the point S, we then get

d(Po|P) = d(Qoo|Q)-
We now consider again the two subcases:

Subcase 2.1. The index 3 curve is isomorphic to Cp (see Equation (3.2)).
In this case we have (Hurwitz formula for H — Cy)

A(Qoo|Q) = d(Poo|P) = 58.

It then follows that g(x) = 99 (Hurwitz formula for x — C).
Applying Hurwitz formula for the covering H — y we get

700 =2g(H) —2>4-(2x99 —2) =784,
which is impossible.

Subcase 2.2. The index 3 curve is isomorphic to C; (see Equation (3.3)).
In this case we have (as in Subcase 2.1)

d(Qoo|@) = d(Poo|P) =4 and  g(x) = 72.
Looking at the covering H N x of degree 4 and noticing that

#H(Fore) = 1+ 273 = 19.684 rational points,
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Hx(Fopz) = 1+ 272 4 2 x 72 x 27 = 4.618 rational points

and moreover that 4 x 4.618 = 18.472 < 19.684, we can also discard this
subcase.
We have then proved:

Proposition 2. Suppose that a mazimal curve C over F 2 with ¢ = 27, has
genus 24 and that it is a Galois subcover of the Hermitian curve H. Then

this curve C is isomorphic to the curve given by the equation
YP-V34+Y =X" over Fop.
Moreover the degree of the Galois covering
p:H—=C
satisfies deg p = 12.

Proof. The only possibility occurs in Subcase 1.1 of the Case d = 12
above. O

We can now state our main result:

Theorem 3. Let C3 denote the F 2 -mazimal curve where ¢ = 27, with genus
24, which is given by the equation

YP—Y =X" over Fyp.
Then the curve Cs is not a Galois subcover of the Hermitian curve H.

Proof. From Proposition 2 we just have to prove that the following curves
over K = F,» with ¢ = 27, which are given by the equations:
C=°-Y34+Yy=X") and C3:=(3) —y=2")

are not isomorphic to each other. Let P, be the point at infinity on the
first curve and Qs be the point at infinity on the second curve. If we have
an isomorphism o: C — C3 we must have that 0(Px) = Qo because these
points are the only ones with Weierstrass semigroup (7,9) generated by the
pole-orders 7 and 9 (see Satz 6 in [15]).

Since we have the following pole-divisors
diveo(X) = 9Py, dive(Y) = TPy

and
diveo(7) = 9Qs , diveo(y) = TQoo
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we must have nonzero constants a and ¢ such that
olyy=aY +b and o(z)=cX +dY +e.
Since y° —y — 27 = 0 we get
(aY +b)? — (@Y +b) — (X +dY +¢e)" =0,
The equation above should be a constant multiple of the equation
YP—-v34+yY - X" =0,

and this is impossible. O

Remark 4. Consider the maximal curves C;, over Fp with ¢ = ¢3 as in
Proposition 1. We know that:

For ¢ = 2, it is Galois covered by the Hermitian.
For ¢ = 3, it is not Galois covered by the Hermitian.

e What is the situation for other values of ¢ 7
e Is the curve C3 covered by the Hermitian ?
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