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Preface

The purpose of these notes is to give a brief introduction to nonlinear dispersive equa-
tions and the issues regarding solutions of these equations.

We have chosen the well know Boussinesq equation

utt − uxx + uxxxx + (u2)xx = 0 (0.1)

and one of its generalizations

utt − uxx + uxxxx + (ψ(u))xx = 0 (0.2)

as models to present the theory.
We will present techniques to deal with problems regarding properties of solutions

to the associated initial value problem (IVP). We will discuss the so-called smoothing
effect properties of solutions of the linear IVP. Then we will use them to obtain local
and global results for solutions of the nonlinear IVP. We next will study the regularity of
these solutions. We will also comment on results regarding decay and nonlinear scattering.
Finally we will discuss some blow-up results. The material presented here is an amplified
version of the contents of the articles [31], [32] and [2].

We have included an appendix containing basic facts from Fourier Analysis, such as,
Fourier transform, interpolation, Sobolev spaces and the fractional integral theorem. Most
of the content of the appendix was taken from the notes by F. Linares and G. Ponce [33].

These notes were prepared to give an introductory minicourse on topics related to
nonlinear dispersive equations in the Pontificia Universidad Catolica (PUC) de Lima,
Peru on June 2005.

I would like to thank Juan Montealegre Scott (PUC) for the invitation to teach this
course and Cesar Camacho (IMPA) to make possible this project. I am also grateful to
Jaime Angulo (UNICAMP) and Marcia Scialom (UNICAMP) to allow me to use the tex
file of their article [2].

v





CHAPTER 1

Introduction

We consider the initial value problem (IVP) for a Boussinesq-type equation




utt − uxx + uxxxx + (ψ(u))xx = 0 x ∈ R, t > 0
u(x, 0) = f(x)
ut(x, 0) = g(x).

(1.1)

This equation arises in the modeling of nonlinear strings which is a generalization of
the classical Boussinesq equation. Boussinesq ([7]) reduced into a nonlinear model the
equations governing a two-dimensional irrotational flows of an inviscid liquid in a uniform
rectangular channel. Note that the equation in (1.1) is a perturbation of the classical
linear wave equation which incorporates the basic idea of nonlinearity and dispersion.

The case ψ(u) = u2 in (1.1) is known as the “good” Boussinesq in comparison with
the “bad” Boussinesq equation defined as

utt = uxx + c1uxxxx + c2(u2)xx, c1, c2 > 0. (1.2)

This “bad” version arises in the study of water waves. Specifically, it is used to describe
a two-dimensional flow of a body of water over a flat bottom with air above the water,
assuming that the water waves have small amplitudes and the water is shallow. It also
appeared in a posterior study of Fermi-Pasta-Ulam (FPU) problem, which was performed
to show that the finiteness of thermal conductivity of an anharmonic lattice was related to
nonlinear forces in the springs but it was not the case. This result motivated N. Zabusky
and M. Kruskal [55] to approach the FPU problem from the continuum point of view.
They found that the equations governing the dynamics of the lattice in FPU problem are
given by equations of type (1.2).

For the “good” Boussinesq and its generalized form in (1.1) it is possible to study local
well-posedness for the initial value problem, which is not the case for the “bad” version
(1.2). For the model in (1.2) only solutions of soliton type are known. Furthermore, in
the side of the Fourier transform we can see that the solution of the linearized equation û
grows as exp(±ξ2t) with time. The same occurs for the nonlinear problem so in order to
study well-posedness the component proportional to exp(ξ2t) has to be vanished.

From the inverse scattering approach the following results have been obtained: V.
Zakharov in [56] showed that the scattering theory could be applied to solve the equation
(1.2). He found a Lax pair for it, namely

dL

dt
= i[Q,L] = i(QL− LQ)

1
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where

L = i
d3

dx3
+ i

(
u

d

dx
− d

dx
u

)
+ i

d

dx
− avx

Q =
(

b
d

dx2
+ au

)
, a, b constants

which is associated with the equivalent system form of (1.2).
At this point the problem was to construct the theory of the inverse scattering problem

for the operator L. This was made successfully by P. Deift, C. Tomei, and E. Trubowitz
in [15]. Having developed the theory for L they could construct solutions for the equation
(1.2), some global in time, others, blow-up in a finite time. They also showed, using the
fact that the equation in (1.1) with ψ(u) = u2 has Lax pair iLt = [Q, L], were L and Q
are essentially as above, that there exists a family of global solutions for that equation.
However, these solutions are not real. The difficulties in applying the inverse method to
the “good” Boussinesq equation seem to be related to the fact that the “vanishing lemma”
fails in this case (see [3]). Hence, from the inverse scattering method point of view, this
“bad-good” notation seems to reverse.

In spite of the equation in (1.1) to have Lax pair and be linear stable, V. Kalantarov
and O. Ladyzhenskaya proved in [21], that in the periodical case solutions may blow-up in
a finite time. They suggested that the same blow-up result holds for the Cauchy problem.
But an additional hypothesis was necessary to conclude that claim. This gap was filled by
R. Sachs [42]. He showed that under appropriate assumptions on the data the techniques
given by Levine in [29] were enough to prove the blow-up in the Cauchy problem case.
This latter result deserves a few comments. R. Sachs established that for some finite
T ∗ > 0

lim
t→T ∗

∞∫

−∞

|û(ξ, t)|2
|ξ|2 dξ = ∞. (1.3)

where u is a solution of the equation (1.1) with ψ(u) = u2. In the periodical case it is
clear how the solution blows-up, since in this case we have (see [21])

lim
t→T ∗

∑ |û(k, t)|2
|k|2 dξ = ∞

implies limt→T ∗ ‖u(·, t)‖2 = ∞, i.e. a loss of L2 regularity of u. Consequently, the solution
cannot be extended beyond the time T ∗ in the appropriate class.

But in case (1.3) it is not clear how the blow-up occurs. The integral in (1.3) could
diverge for |ξ| < 1 or for |ξ| ≥ 1. In the second case, we have limt→T ∗ ‖u(·, t)‖2 = ∞, i.e.
the solution blows-up and cannot be continued in the appropriate class beyond this time.
On the other hand, if the integral for |ξ| < 1 diverges, we cannot conclude a priori that
in a finite time the solution u loses regularity in L2. Observe that for appropriate data
û(0, t) = 0, then it may occur that û does not have finite derivative in zero, i.e. around
zero û behaves like c|ξ|θ where 0 < θ < 1/2. Thus although (1.3) occurs the solution may
be extended beyond the time T ∗ with the same Hs-regularity. In fact, the blow up in this
case would affect the decay of the solution instead of its regularity.
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We shall notice that the equation in (1.1) admits solitary-wave solutions. As it is known
the existence of solitary-wave solutions shows the perfect balance between the dispersion
and the nonlinearity of the equation in (1.1). In particular, for α integer, these solutions
are given explicitly by

Uc(ξ) = A sech2/α−1(Bξ), (1.4)
where

A =A(c, α)=
{

(α + 1)(1− c2)
2

}1/α−1

, B =B(c, α)=
(1− c2)1/2(α− 1)

2
,

ξ = x− ct, and c is the wave speed satisfying c2 < 1 (see [6]).
The IVP (1.1) can be written in the equivalent system form{

ut = vx x ∈ R, t > 0,

vt = (u− uxx − ψ(u))x,
(1.5)

with {
u(x, 0) = u0(x)
v(x, 0) = v0(x)

(1.6)

where ψ ∈ C∞(R), ψ(0) = 0.
Associated to the system (1.5)-(1.6) we have the Hamiltonian

E(u, v) =
1
2

∫ ∞

−∞

{
v2(x, t) + u2(x, t) + u2

x(x, t)− 2Ψ(u(x, t))
}

dx (1.7)

where Ψ′ = ψ and Ψ(0) = 0. Notice that E is finite at initial time if the velocity is
a x-derivative of a L2-function. This is the same restriction on the velocity that appears
when the IVP (1.1) is written in the system form (1.5)–(1.6).

In these notes, we will present the local existence theory for the IVP (1.1) for data
(f, g) = (f, h′) ∈ L2(R) × Ḣ−1(R) and (f, g) = (f, h′) ∈ H1(R) × L2(R), where Ḣ−1 =
(−∆)−1/2L2. Here h′ denotes the derivative of h with respect to the variable x. We
will also discuss the global theory established for data f ∈ H1(R) and g = h′ ∈ L2(R)
sufficiently small. In addition, we will consider some aspect regarding the asymptotic
behavior of solutions to IVP (1.1).

To prove the local results we follow the ideas developed in the study of the semilinear
Schrödinger equation. More precisely, consider the initial-value problem for the nonlinear
Schrödinger equation

{
ut = i∆u + λ|u|α−1u x ∈ Rn, t ∈ R
u(x, 0) = u0(x)

(1.8)

α > 1, λ ∈ R. This equation appears in different problems related to physics (see [17],
[57]). In [52], Y. Tsutsumi proved that the initial-value problem (1.8) is locally well posed
in L2(Rn) for any λ ∈ R and α satisfying 1 < α < 1+4/n, and due to the conservation law
(see below) these solutions can be extended globally. The critical case, i.e. α = 1 + 4/n
was studied by T. Cazenave and F. Weissler. In [11] they demonstrated the local well-
posedness for the IVP (1.8). It is known that for this case α = 1 + 4/n, the solution in L2

cannot be in general extended globally (see [38]).
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The theory in H1 has been studied and developed by several authors, (see for example
[23], [17], [12], [20] and for a complete set of references [9]). They showed that the initial-
value problem (1.8) in this space is locally well posed for λ ∈ R, and when α satisfies

{
1 < α < (n + 2)/(n− 2) n > 2
1 < α < ∞ n = 1, 2.

Combining these results with the following “conservation laws”

‖u(·, t)‖2 = ‖u0‖2∫ (
|∇u(x, t)|2 +

2λ

α + 1
|u(x, t)|α+1

)
dx = ‖∇u0‖2

2 +
2λ

α + 1
‖u0‖α+1

α+1

and suitable conditions on λ , α and the size of the data, they were able to extend the
local solutions in H1 to global ones.

The main tool in the proofs of the local results above, is the so called Lp−Lq smoothing
effect of Strichartz type [48] present in the Schrödinger equation.

It is known that for the linear Schrödinger equation
{

ut = i∆u x ∈ Rn, t ∈ R
u(x, 0) = u0(x)

the solutions are given by the unitary group
{
eit∆

}∞
−∞, i.e.

eit∆u0(x) =
(
e−4π2it|ξ|2 û0(ξ)

)∨

where ∧ and ∨ denote Fourier and inverse Fourier transforms, respectively. In [48], R.
Strichartz showed that

(∫ ∞

−∞

∫

Rn

|eit∆u0(x)|2(n+2)/n dx dt

)n/2(n+2)

≤ C‖u0‖2. (1.9)

In particular, this implies that if u0 ∈ L2(Rn) the solution u(x, t) = eit∆u0(x) belongs to
L2+4/n for a.e. t. The proof of (1.9) was based on previous works of P. Thomas [50] and
E. M. Stein [44] about restrictions of the Fourier transform.

This result has been generalized and its proof simplified in the works of B. Marshall
[37], H. Pecher [40] and J. Ginibre and G. Velo [18]. In fact, for the one-dimensional
Schrödinger equation one has that (see [18])

(∫ ∞

−∞
‖eit∆u0‖4

∞ dt

)1/4

≤ C‖u0‖2.

In [26], C. E. Kenig, G. Ponce and L. Vega considered the extension of this result to
higher order dispersive equation. In the particular case

{
∂tu = iDαu x ∈ R, t ∈ R and α > 0,

u(x, 0) = u0(x)
(1.10)
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where D = (−∂x)1/2, they showed that the solutions u(t) satisfy
(∫ ∞

−∞
‖D(α−2)/4

x u(·, t)‖4
∞ dxdt

)1/4

≤ C‖u0‖2. (1.11)

Note that for this case the “curvature” of the symbol P (ξ) = |ξ|α (for |ξ| > 1) is grows
for large α, which is reflected in the gain of derivatives. We will see that a similar result
can be obtained for the linearized equation associated to (1.1).

Returning to the IVP (1.1), we shall consider its integral formulation which for strong
solutions are basically equivalent. Our method of proof is based on linear estimates and a
contraction mapping argument.

We begin by stating the IVP



utt − uxx + uxxxx = 0 x ∈ R, t > 0
u(x, 0) = 0
ut(x, 0) = h′(x)

(1.12)

the velocity is a x-derivative function. Then, the formal solution of (1.12) is given by

u(x, t) = V (t)h′(x) =
(
A(ξ)e−it|ξ|(1+ξ2)1/2

+ B(ξ)eit|ξ|(1+ξ2)1/2)∨(x) (1.13)

with

A(ξ) =
sgn(ξ) ĥ(ξ)

2i(1 + ξ2)1/2
and B(ξ) = − sgn(ξ) ĥ(ξ)

2i(1 + ξ2)1/2
. (1.14)

Using Duhamel’s principle, the solution of the IVP (1.1) with corresponding data
(f, g) = (0, ∂xh) formally satisfies the integral equation

u(x, t) = V (t) h′(x)−
t∫

0

V (t− τ)(ψ(u))xx dτ. (1.15)

As was commented above to apply the contraction mapping argument we use the
estimates Lp([0, T ]; Lq(R)) for the inhomogeneous linear equation. More precisely, it will
be proved that (see Theorem 2.5)

( ∞∫

−∞
‖

∫ ∞

−∞
ei(tφ(ξ)+xξ)|φ′′(ξ)|1/2ŵ(ξ) dξ‖4

∞ dt
)1/4

≤ C‖w‖2 (1.16)

where φ(ξ) = |ξ|(1 + ξ2)1/2. This estimate is similar to that for general φ(·) obtained in
[26] (section 2).

The result above allows us to prove that

( T∫

0

‖V (t)h′‖4
∞ dt

)1/4
≤ c (1 + T 1/4)‖h‖−1,2

(see Lemma 2.8). In this estimate, the time dependence reflects the hyperbolic character
of the linear equation associated to that in (1.1). This appears in the side of the Fourier
transform when |ξ| ≤ 1. Notice that the one-dimensional wave equation does not satisfy
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Lp-Lq estimates of the type above described. When ĥ is supported away from zero we can
obtain the following estimate

( ∞∫

−∞
‖V (t)h′‖4

∞ dt

)1/4

≤ c ‖h‖−1,2

where the smoothing effect produces the gain of two derivatives.
In addition to the smoothing effects of Strichartz type (Lp–Lq estimates), it is possible

to show that solutions of the linear problem associated to (1.1) satisfy a smoothing effect
of Kato type. This smoothing effect was proved by T. Kato in [24] for the Korteweg–de
Vries (KdV) equation

{
∂tu + ∂3

xu + u∂xu = 0 x, t ∈ R,

u(x, 0) = u0(x).
(1.17)

He showed that the solution u of (1.17) satisfies
T∫

−T

R∫

−R

|∂xu(x, t)|2 dx dt ≤ C(T, R, ‖u0‖). (1.18)

This result was extended by P. Constantin and J. Saut [13], P. Sjolin [43] and L. Vega
[53] to linear general dispersive equations in Rn. In [26] C. Kenig, G. Ponce and L. Vega
obtained an improvement of this result in the one-dimensional case (see Theorem 4.1).
More precisely, for the IVP

{
∂tu− iP (D)u = 0 x, t ∈ R
u(x, 0) = u0(x)

(1.19)

a solution u satisfies

sup
x

∫ ∞

−∞
|u(x, t)|2 dt ≤ c

∫

Ω

|û0(ξ)|2
|φ′(ξ)| dξ (1.20)

with φ(ξ) the real symbol of P considered in a general class.
It is clear that from the group properties and the finite propagation speed a smoothing

effect as the one described above cannot be satisfied for solutions of hyperbolic equations.
We will see that solutions of the nonlinear IVP (1.1) also satisfy (locally in time) an

estimate similar to that in (1.20).
As was mentioned before, we shall use the contraction principle in the proofs of local

well-posedness. One of the advantages of this approach is that it does not require any
other theory (for example, Kato’s abstract theory of quasilinear evolution equation [22]).
In addition, in some cases it provides stronger results, for instance, it can be shown that
the dependence of the solutions u on the data (f, g) i.e. the application (f, g) 7→ u is
Lipschitz, instead of just continuous.

The plan of these notes is as follows. In Chapter 2, we will establish all the estimates
involving solutions of the linear problem. First, we prove the global smoothing effect
present in the Boussinesq equation which allows us to find some estimates for the linear
equation
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utt − uxx + uxxxx = 0 x ∈ R, t > 0
u(x, 0) = f(x)
ut(x, 0) = h′(x)

(1.21)

where h is a L2-function. As we can see in (1.14) this condition allows us to define A(ξ)
and B(ξ) in L2(R). These estimates are the main ingredients to prove the results in the
following sections. Here, we will also show that the solutions of the linear equation above
satisfy a smoothing effect of Kato type.

Chapter 3 will be dedicated to study the local well-posedness for the initial-value
problem (1.1). In the first section we will treat the IVP (1.1) with data (f, g) = (f, h′) ∈
L2(R) × Ḣ−1(R). For simplicity in the exposition we shall restrict ourselves to ψ(u) =
|u|αu, α ∈ R. It is clear that for α integer ψ(u) = uk, k = α + 1 the same method
applies. The argument of proof used a contraction mapping argument combined with the
estimates established in section 2. This allows us to conclude the local well-posedness
when 0 < α < 4 similar to the one-dimensional nonlinear Schrödinger equation. In
addition, further regularity of the solution of the IVP (1.1) will be established by using
the smoothing effect of Kato type commented above.

Then the local well-posedness for the initial-value problem (1.1) with data (f, g) =
(f, h′) ∈ H1(R) × L2(R) will be established in the next section. Again the estimates in
section 2 combined with a contraction mapping argument permit us to achieve this result.
In this case we can prove local well-posedness for α > 0 this is the same result as for the
one-dimensional NLS. Also, we show that the smoothing effect of Kato type is satisfied by
the strong solutions constructed here.

We will finish this chapter showing the local well-posedness of the IVP (1.1) in L2

when α = 4. Here we will follow the ideas of T. Cazenave and F. Weissler [11].
In Chapter 4, a global existence result is established for small data (f, g) = (f, h′) ∈

H1(R)× L2(R). The main tool used to prove this theorem is the conservation law

‖(−∆)−1/2ut‖2
2 + ‖u‖2

2 + ‖ux‖2
2 −

2
α + 1

‖u‖α+1
α+1 = K0.

We also present some results related to persistence properties and decay of solutions
of the IVP (1.1).

The asymptotic behavior of solutions of the IVP (1.1) will be studied in Chapter 5.
We first show a result regarding the decay in time of solutions of (1.1). We consider the
operator

Wγ(t)f(x) =

∞∫

−∞
ei(tφ(ξ)+xξ)|φ′′(ξ)|γ/2f̂(ξ) dξ. (1.22)

and prove that
‖Wγ(t)f‖p ≤ c |t|−γ/2‖f‖p′ (1.23)

where γ ∈ [0, 1] with γ = 1
p′ − 1

p , p = 2
1−γ and p′ = 2

1+γ . Here φ(ξ) = |ξ|
√

1 + ξ2. This
estimate allows us to obtain similar estimates for solutions of the linear problem (1.21)
under some additional hypotheses on the data. Using these estimates we deduce that
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solutions of the nonlinear problem (1.1) satisfy

‖u(t)‖p ≤ C (1 + t)−γ/2, t > 0. (1.24)

Next we establish a nonlinear scattering result, that is, small solutions of the IVP (1.1)
behaves asymptotically like solutions of the associated linear problem.

The result establishes that under some suitable conditions on the data (f, g) and the
nonlinearity α, there exist unique solutions u± of the linear problem associated to (1.1)
such that

‖u(t)− u±(t)‖1,2 → 0 as t → ±∞. (1.25)
where u is the solution of the IVP (1.1) with data (f, g).

Similar results have been established for solutions of the nonlinear Schrödinger equa-
tion, nonlinear wave equation, Klein-Gordon equation and Korteweg-de Vries equation by
Strauss [47], Pecher [40] and Ponce and Vega [41], respectively.

The main ingredients to obtain this result are the decay estimates for solutions of the
linear problem and Lp–Lq estimates.

Affirmative results on scattering for small solutions are interpreted as the nonexistence
of solitary-wave solutions of arbitrary small amplitude. In this case, we notice that a simple
calculation shows that the solitary-wave solutions Uc(ξ) in (1.4) satisfy ‖Uc(·)‖2 > ε > 0
for α > 5. The result presented here is optimal in this sense.

Finally, we will describe a blow-up result regarding solutions to the IVP (1.1). As we
commented above some solutions of the IVP (1.1) might blow-up in finite time [21], [42].

The result we discuss in detail is due to Angulo and Scialom [2] were general conditions
are given to show blow-up in finite time for solutions to the IVP (1.1) (see also [35]). The
proof uses a result due to Levine [29] to deduce the blow-up. To prepare the setting to
apply this theorem one has to study the relationship between the solitary waves solutions
and the blow-up phenomena.

We consider the nonlinearity ϕ(u) = |u|α−1u and write the equation in (1.1) in its
equivalent system form (1.5). As we commented above, the flow of (1.5) leaves invariant
the “energy”,

E(u, v) =
1
2
‖u‖2

1,2 +
1
2
‖v‖2 − 1

α + 1
‖u‖α+1

α+1 (1.26)

and it is also true for the quantity

Q(u, v) =
∫

R

uv dx. (1.27)

These two quantities are essential for the analysis below.
The first step to put forward the blow-up theory is to determine the best constant Bc

α

for the Sobolev inequality
‖u‖Lα+1 ≤ Bc

α‖u‖1,c (1.28)
where ‖ · ‖1,c = (1− c2)‖ · ‖H1 . This constant is obtained as the minimum of a constrained
variational problem and it is given in terms of the corresponding solitary wave solution. To
find this minimum one can uses the concentration-compactness method (see Lions [34]).
We will apply a simplified version of this method due to Lopes [36]. Then we use that the
region

Kc
2 = {u ∈ H1(R) : Lc(u,−cu) < d(c), Rc(u) < 0} (1.29)
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is invariant for the flow (1.5) (see [35] and [39]), where Rc(u) = ‖u‖2
1,c−‖u‖α+1

α+1, Lc(u, v) =
E(u, v) + cQ(u, v) and d(c) = Lc(φc,−cφc). These are the main ingredients to establish
the blow-up result given in Theorem 5.6.





CHAPTER 2

Linear Problem

The first part of this chapter is concerned with the smoothing effects called Lp–Lq

estimates or Strichartz estimates of solutions of the linear equation associated to that in
(1.1). That is, 




utt − uxx + uxxxx = 0 x ∈ R, t > 0
u(x, 0) = f(x)
ut(x, 0) = g(x).

(2.1)

These estimates will be the main ingredient in the proof of local well-posedness of the IVP
(1.1).

In the second section, we will prove a smoothing effect (locally in time) of Kato type
for solutions the linear problem (2.1). This property for solutions of the linear equation
will be used to show the local existence of a stronger solution for the IVP (1.1).

Finally, in the last section we will establish a series of estimates for solutions of the
linear problem (2.1) that will allow us to obtain some decay properties and some stronger
solutions of the nonlinear problem.

2.1. Lp–Lq estimates

Let φ(ξ) = |ξ|(1 + ξ2)
1
2 , then φ(ξ) is an even C∞ function in R− {0} with

φ′(ξ) = sgn(ξ)
1 + 2ξ2

(1 + ξ2)1/2
and φ′′(ξ) = sgn(ξ)

ξ(3 + 2ξ2)
(1 + ξ2)3/2

. (2.2)

The function φ′′(ξ) has the following properties:
(i) for ξ 6= 0, φ′′(ξ) 6= 0.
(ii) for |ξ| < ε, 0 < ε ¿ 1,

|ξ| ≤ |φ′′(ξ)| ≤ 3|ξ|, (2.3)

(iii) for |ξ| > 1
ε

1 ≤ |φ′′(ξ)| ≤ 2, (2.4)

(iv) φ′′(ξ) has only one change of monotonocity.
For φ(ξ), define

I(x, t) =

∞∫

−∞
ei(tφ(ξ)+xξ)|φ′′(ξ)|1/2+iβ dξ, x, t ∈ R.

The following lemma is essential in the proof of the next theorems.

11
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Lemma 2.1. There exists C > 0 such that for any x, t ∈ R we have

|I(x, t)| ≤ C(1 + β)|t|−1/2, x, t ∈ R. (2.5)

Remark 2.2. The result for a general class of functions φ was proved by Kenig, Ponce
and Vega in [26] (see Lemma 2.7 in [26]).

To prove Lemma 2.1 we will use of the following result.

Lemma 2.3 (Van der Corput). Let ψ ∈ C∞
0 (R) and ϕ ∈ C2(R) satisfy that ϕ′′(ξ) >

λ > 0 on the support of ψ. Then
∣∣∣
∫

eiϕ(ξ)ψ(ξ) dξ
∣∣∣ ≤ 10λ−1/2{‖ψ‖L∞ + ‖ψ′‖L1}. (2.6)

Proof. See [44]. ¤

Proof of Lemma 2.1.

Case 1. We first consider the following situation:
0 < m ≤ |φ′′(ξ)| ≤ M and Ω bounded and

I(x, t) =
∫

Ω
ei(tφ(ξ)+xξ)|φ′′(ξ)|1/2+iβ dξ.

Lemma 2.3 implies then that

|I(x, t)| ≤ c (m|t|)−1/2
{

M +
∫

Ω
|1
2

+ iβ||φ′′(ξ)|−1/2|φ′′′(ξ)| dξ
}

≤ cφ(1 + |β|)|t|−1/2.

(2.7)

Case 2: 1 ≤ |φ′′(ξ)| ≤ 2, Ω = {ξ ∈ R : |ξ| > 1/ε}.
∣∣∣
∫

|ξ|>1/ε
eitφ(ξ)+ixξ|φ′′(ξ)|1/2+iβ dξ

∣∣∣

≤
∣∣∣ 1
i(tφ′(ξ) + x)

eitφ(ξ)+ixξ|φ′′(ξ)|1/2+iβ
∣∣∣
|ξ|>1/ε

+
∣∣∣
∫

|ξ|>1/ε
eitφ(ξ)+ixξ d

dξ

( |φ′′(ξ)|1/2+iβ

i(tφ′(ξ) + x)

)
dξ

∣∣∣

≤ c

∫

|ξ|>1/ε
|φ′′(ξ)|−1/2 |φ′′′(ξ)|

|tφ′(ξ) + x| +
t|φ′′(ξ)|3/2

|tφ′(ξ) + x|2 dξ

≤ c

∫

|ξ|>1/ε

{|ξ|−6 + |ξ|−2
}

dξ < ∞.

(2.8)

Here we have used that |φ′(ξ)| = ∞ as |ξ| → ∞. This shows that the integral
is convergent. Therefore we can write the set Ω as the union of bounded intervals
and apply the argument in Case 1.

Case 3: 0 ≤ |φ′′(ξ)| ≤ 2, Ω = {ξ ∈ R : |ξ| ≤ ε}.
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We consider

φ̃(ξ) =

{
φ(ξ)− ξ, ξ ≥ 0,

φ(ξ) + ξ, ξ < 0.

Thus φ̃(0) = 0 and φ̃′′(0) = φ′′(0) = 0. Then we have that there exist constants
c1, C1, c2, C2 such that

c1 |ξ|2 ≤ |φ̃′(ξ)| ≤ C1 |ξ|2

c2 |ξ| ≤ |φ̃′′(ξ)| ≤ C2 |ξ|
(2.9)

for |ξ| < ε.
To simplify we use again φ instead of φ̃ and consider

∫

|ξ|≤ε
eitφ(ξ)+ixξ|φ′′(ξ)|1/2+iβ dξ (2.10)

Define

Ω1 = {ξ ∈ Ω : |ξ| ≤ min(ε, |t|−1/3}
Ω2 = {ξ ∈ Ω : |ξ| ≤ ε and |φ′(ξ)− x

t
| ≤ 1

2

∣∣∣x
t

∣∣∣}
Ω3 = {ξ ∈ Ω− Ω1 ∩ Ω2 : |ξ| ≤ ε}

In Ω1 we have that
∫

Ω1

|φ′′(ξ)|1/2 dξ ≤ c |t|−1/2 (2.11)

If ξ ∈ Ω2, |ξ|2 ∼ |φ′(ξ)| ∼ |x/t|. Hence |ξ| ∼ |x/t|1/2. By Lemma (2.3) we obtain the
following chain of inequalities

∣∣∣
∫

Ω2

ei(tφ(ξ)+xξ)|φ′′(ξ)|1/2+iβ dξ
∣∣∣

≤ c (min
ξ∈Ω2

|φ′′(ξ)||t|)−1/2

× {
max
ξ∈Ω2

|φ′′(ξ)|1/2 + (1 + |β|)
∫

Ω2

|φ′′(ξ)|−1/2|φ′′′(ξ)| dξ
}

≤ c (1 + |β|)min |φ′′(ξ)|−1/2 max |φ′′(ξ)|1/2|t|−1/2.

(2.12)
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If ξ ∈ Ω3 then |φ′(ξ) − x/t| ≤ c|φ′(ξ)| ≥ c|ξ|2 and |ξ| > |t|−1/3. Integration by parts
yields the results. In fact,

∣∣∣
∫

Ω3

ei(tφ(ξ)+xξ)|φ′′(ξ)|1/2+iβ dξ
∣∣∣

≤ c

|t|
∫

Ω3

{
(
1
2

+ |β|) |φ
′′(ξ)|−1/2|φ′′′(ξ)|
|φ′(ξ)− x/t| +

|φ′′(ξ)|3/2

|φ′(ξ)− x/t|2
}

dξ

≤ c

|t|(1 + |β|)
∫

|ξ|>|t|−1/3

|φ′′′(ξ)|
|ξ|3/2

dξ +
c

|t|
∫

|ξ|>|t|−1/3

|ξ|−5/2 dξ

≤ c(1 + |β|)|t|−1/2.

(2.13)

This completes the proof of the lemma. ¤

For φ define

Wγ(t)f(x) =

∞∫

−∞
ei(tφ(ξ)+xξ)|φ′′(ξ)|γ/2f̂(ξ) dξ. (2.14)

Theorem 2.4. Let φ and Wγ be defined as before, we have

‖Wγ(t)f‖p ≤ c |t|−γ/2‖f‖p′ (2.15)

where γ ∈ [0, 1] with γ = 1
p′ − 1

p , p = 2
1−γ and p′ = 2

1+γ .

Proof. Consider the operator

Wγ+iβ(t)f(x) =

∞∫

−∞
ei(tφ(ξ)+xξ)|φ′′(ξ)|γ/2+iβ f̂(ξ) dξ.

Observe that W1+iβ(t)f(x) = I(·, t) ∗ f(x) and

T0+iβ(t)f(x) = (eitφ(ξ)|φ′′(ξ)|iβ f̂(ξ))∨.

Therefore the Young inequality and Lemma 2.1 imply that

‖W1+iβ(t)f‖L∞ ≤ c|t|−1/2‖f‖L1 .

On the other hand, Plancharel’s theorem (A.9) gives

‖Wiβ(t)f‖L2 = ‖f‖L2 .

Therefore the Stein interpolation theorem (see Appendix Theorem A.14) yields the result.
¤

Theorem 2.5. If Wγ(t) is defined as in (2.14) and γ ∈ [0, 1] then

( ∞∫

−∞
‖Wγ/2(t)f‖q

p dt
)1/q

≤ c ‖f‖2, (2.16)
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∥∥
t∫

0

Wγ(t− τ)g(·, τ) dτ
∥∥

Lq
t (R; Lp)

≤ c ‖g‖
Lq′

t (R; Lp′ )
, (2.17)

and

∥∥
∞∫

−∞
Wγ/2(−τ)g(·, τ) dτ

∥∥
L2

x
≤ c ‖g‖

Lq′
t (R; Lp′ )

, (2.18)

where q = 4/γ, p = 2/(1− γ), 1
p + 1

p′ = 1
q + 1

q′ = 1.

Proof. We first show that the inequalities (2.16), (2.17) and (2.18) are equivalent.
We will use a duality argument. We recall that

( ∞∫

−∞
‖h(·, t)‖q

Lp
x
dt

)1/q
= sup{

∫

R2

h(x, t)w(x, t) dxdt : ‖w‖
Lq′

t (R; Lp′
x )

= 1} (2.19)

Using the definition (2.14), Parseval’s identity and Fubini’s theorem we obtain

∞∫

−∞

∞∫

−∞
Wγ/2(t)f(x)g(x, t) dxdt =

∞∫

−∞
f(x)

( ∞∫

−∞
Wγ/2(t)g(x, t) dt

)
dx (2.20)

From (2.19), (2.20) and the Cauchy-Schwarz inequality we obtain

( ∞∫

−∞
‖Wγ/2(t)f‖q

p dt
)1/q

≤ c ‖f‖2

∥∥
∞∫

−∞
Wγ/2(t)g(·, t) dt

∥∥
2
. (2.21)

On the other hand, the argument of Stein-Tomas ([50]) and Hölder’s inequality give

∥∥∥
∞∫

−∞
Wγ/2(t)g(x, t) dt

∥∥∥
2

2
=

=

∞∫

−∞

( ∞∫

−∞
Wγ/2(t)g(x, t) dt

)( ∞∫

−∞
Wγ/2(t′)g(x, t′) dt′

)
dx

=

∞∫

−∞

∞∫

−∞

( ∞∫

−∞
Wγ(t− t′)g(x, t′) dt′

)
g(x, t) dxdt

≤
∥∥∥

∞∫

−∞
Wγ(· − t′)g(·, t′) dt′

∥∥∥
Lq

t (R; Lp)
‖g‖

Lq′
t (R; Lp′ )

.

(2.22)

The equivalence of the inequalities now follows from (2.21) and (2.22). Thus it is
enough to prove inequality (2.17) to prove the theorem.
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The Minkowskii inequality and Theorem 2.4 yield

∥∥∥
∞∫

−∞
Wγ(t− t′)g(·, t′) dt′

∥∥∥
Lp

x

≤
∞∫

−∞
‖Wγ(t− t′)g(·, t′)‖Lp

x
dt′

≤ c

∞∫

−∞

1
|t− t′|γ/2

‖g(·, t′)‖
Lp′

x
dt′.

(2.23)

The Hardy-Littlewood Sobolev theorem (see Appendix Theorem A.16) implies that

∥∥∥
∞∫

−∞
Wγ(· − t′)g(·, t′) dt′

∥∥∥
Lq

t (R; Lp
x)
≤ c ‖g‖

Lq′
t (R; Lp′

x )
. (2.24)

Hence the proof of the theorem now is complete. ¤
Remark 2.6. A more general result was established by Kenig, Ponce and Vega in [26].

See Theorem 2.1.

The following estimates are concerned with the linear equation associated with that
in (1.1). Here we shall deduce regularity results as a consequence of Theorem 2.5.

Lemma 2.7. Consider the following IVP



utt − uxx + uxxxx = 0 x ∈ R, t > 0
u(x, 0) = f(x)
ut(x, 0) = 0.

(2.25)

If

V1(t)f(x) ≡
∞∫

−∞
ei(tφ(ξ)+xξ)f̂(ξ) dξ (2.26)

with φ(ξ) = |ξ|(1 + ξ2)1/2, then

‖V1(t)f‖2 ≤ C‖f‖2 (2.27)

and
( T∫

0

‖V1(t)f‖4
∞ dt

)1/4
≤ c (1 + T 1/4) ‖f‖2. (2.28)

Proof. The proof of (2.27) is immediate.
To show (2.28) we proceed in the following way:
Let χ ∈ C∞

0 (R), χ ≡ 1 on [−1, 1] and support of χ ⊂ [−2, 2]

V1(t)f(x) =

∞∫

−∞
ei(tφ(ξ)+xξ)f̂(ξ)χ(ξ) dξ +

∞∫

−∞
ei(tφ(ξ)+xξ)f̂(ξ)(1− χ(ξ)) dξ

= V 1
1 (t)f(x) + V 2

1 (t)f(x).

(2.29)
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We can write V 2
1 (t)f(x) as

∞∫

−∞
ei(tφ(ξ)+xξ)|φ′′(ξ)|1/2 f̂(ξ)(1− χ(ξ))

|φ′′(ξ)|1/2
dξ.

Now using (2.16) in Theorem 2.5 and (2.4) we have

( ∞∫

−∞
‖V 2

1 (t)f‖4
∞ dt

)1/4
≤ c

∥∥∥ f̂(ξ)(1− χ(ξ))
|φ′′(ξ)|1/2

∥∥∥
2
≤ c ‖f‖2. (2.30)

For V 1
1 (t)f(x) we have that

‖V 1
1 (t)f‖∞ =

∥∥∥
∞∫

−∞
ei(tφ(ξ)+xξ)f̂(ξ)χ(ξ) dξ

∥∥∥
∞

≤ c
∥∥∥

∞∫

−∞
ei(tφ(ξ)+xξ)f̂(ξ)χ(ξ) dξ

∥∥∥
1,2

≤ c ‖f̂χ‖1,2 ≤ c
(‖f ∗ χ̌‖2 + ‖∂x(f ∗ χ̌)‖2

)

≤ cχ‖f‖2

integrating from 0 to T it follows that

( T∫

0

‖V 1
1 (t)f‖4

∞ dt
)1/4

≤ cχT 1/4 ‖f‖2. (2.31)

A combination of (2.30) and (2.31) yields the result. ¤

Lemma 2.8. Consider the IVP (2.25) with data

u(x, 0) = 0, ut(x, 0) = h′(x).

If

V2(t)h′(x) ≡
∞∫

−∞
ei(tφ(ξ)+xξ) sgn(ξ) ĥ(ξ)

(1 + ξ2)1/2
dξ (2.32)

then
‖V2(t)h′‖2 ≤ c ‖h‖−1,2 (2.33)

and
( T∫

0

‖V2(t)h′‖4
∞ dt

)1/4
≤ c (1 + T 1/4)‖h‖−1,2. (2.34)
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Proof. The proof of (2.33) is immediate.
To prove (2.34), we follow a similar argument as in the previous lemma.
Let χ ∈ C∞

0 (R), χ ≡ 1 on [−1, 1] and support of χ ⊂ [−2, 2]

V2(t)h′(x) =
∫

R

ei(tφ(ξ)+xξ)χ(ξ)
sgn(ξ) ĥ(ξ)
(1 + ξ2)1/2

dξ

+
∫

R

ei(tφ(ξ)+xξ)(1− χ(ξ))
sgn(ξ)ĥ(ξ)
(1 + ξ2)1/2

dξ

= V 1
2 (t)h′(x) + V 2

2 (t)h′(x).

Now we can write V 2
2 (t)h′(x) as

∞∫

−∞
ei(tφ(ξ)+xξ)|φ′′(ξ)|1/2 sgn(ξ)ĥ(ξ)(1− χ(ξ))

|φ′′(ξ)|1/2(1 + ξ2)1/2
dξ

making use of (2.16) in Theorem 2.5 and (2.4), it follows

( ∞∫

−∞
‖V 2

2 (t)∂xh‖4
∞ dt

)1/4
≤ c

∥∥∥ ĥ(ξ)(1− χ(ξ))
|φ′′(ξ)|1/2(1 + ξ2)1/2

∥∥∥
2
≤ c ‖h‖−1,2. (2.35)

For V 1
2 (t)h′(x) we have that

‖V 1
2 (t)h′‖∞ =

∥∥∥
∞∫

−∞
ei(tφ(ξ)+xξ)χ(ξ)

sgn(ξ)ĥ(ξ)
(1 + ξ2)1/2

dξ
∥∥∥
∞

≤ c
∥∥∥

∞∫

−∞
ei(tφ(ξ)+xξ)χ(ξ)

ĥ(ξ)
(1 + ξ2)1/2

dξ
∥∥∥

1,2

≤ c
(∥∥∥

( ĥ(ξ)
(1 + ξ2)1/2

)∨
∗ ∨χ

∥∥∥
2
+

∥∥∥
( ĥ(ξ)

(1 + ξ2)1/2

)∨
∗ ∂x

∨
χ
∥∥∥

2

)

≤ cχ

∥∥∥
( ĥ(ξ)

(1 + ξ2)1/2

)∨∥∥∥
2

= cχ‖h‖−1,2.

Now integrating from 0 to T it follows that

( T∫

0

‖V 1
2 (t)h′‖4

∞ dt
)1/4

≤ CχT 1/4‖h‖−1,2 (2.36)

which combined with (2.35) yields the result. ¤

Lemma 2.9. Consider the IVP (2.25) now with data

u(x, 0) = 0, ut(x, 0) = p′′(x).
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If

V2(t)p′′(x) ≡
∞∫

−∞
ei(tφ(ξ)+xξ) sgn(ξ) ξ p̂(ξ)

(1 + ξ2)1/2
dξ

then
‖V2(t)p′′‖2 ≤ C‖p‖2 (2.37)

and
( ∞∫

−∞
‖V2(t)p′′‖4

∞ dt
)1/4

≤ c ‖p‖2. (2.38)

Proof. The estimate (2.37) follows directly. To obtain (2.38), we write V2(t) p′′(x) as
∞∫

−∞
ei(tφ(ξ)+xξ)|φ′′(ξ)|1/2 sgn(ξ)ξ p̂(ξ)

|φ′′(ξ)|1/2(1 + ξ2)1/2
dξ.

The estimate (2.16) in Theorem 2.5 and (2.4) give

( ∞∫

−∞
‖V2(t)p′′‖4

∞ dt
)1/4

≤ c
∥∥∥ sgn(ξ)ξ p̂(ξ)
|φ′′(ξ)|1/2(1 + ξ2)1/2

∥∥∥
2
≤ c ‖p‖2.

¤

2.2. Local Smoothing Effects

The following result will allow us to obtain smoothing effects of Kato type present in
solutions of the linear problem (A.12). This result is a particular case of the sharp smooth-
ing effect of Kato type proved in [26] for solutions to one–dimensional linear dispersive
equations (see Theorem 4.1 in [26]).

Theorem 2.10. Let φ(ξ) = |ξ|
√

1 + ξ2 and f ∈ S(Rn) define

W (t)f(x) =
∫

R

ei(tφ(ξ)+xξ) f̂(ξ) dξ. (2.39)

Then

sup
x

∫

R

|W (t)f(x)|2 dt ≤ C

∫

R

|f̂(ξ)|2
|φ′(ξ)| dξ. (2.40)

Proof. From (2.2) we have that φ′(ξ) 6= 0, for every x ∈ R. Then we write
∫

R

ei(tφ(ξ)+xξ) f̂(ξ) dξ =
∫

ξ<0

ei(tφ(ξ)+xξ) f̂(ξ) dξ +
∫

ξ≥0

ei(tφ(ξ)+xξ) f̂(ξ) dξ

= I1 + I2.

(2.41)
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Since φ′(ξ) 6= 0, there exists ψ such that φ(ψ(ξ)) = ξ, ξ ≥ 0. Then making the change
of variables η = φ(ξ) we have that

I1 =
∫

eitηeixψ(η) ˆ̃
f(ψ(η))

dη

φ′(ψ(η))
. (2.42)

where f̃(x) = f(x), for x < 0 and equals 0 otherwise.
Taking the L2–norm of I1 in t, using Plancherel’s identity and returning to the previous

variables we have that

‖I1‖2
L2

t
= c

∞∫

−∞

|eixψ(η) ˆ̃
f(ψ(η))|2

|φ′(ψ(η))|2 dη

= c

∞∫

−∞

| ˆ̃f(ψ(η))|2
|φ′(ψ(η))|2 dη

= c

∫ | ˆ̃f(ξ)|2
|φ′(ξ)| dξ.

(2.43)

A similar argument can be used to estimate I2. Hence the result follows. ¤

Proposition 2.11. Let V1(t) and V2(t) be defined as in the statements of Lemmas
2.4 and 2.5, then:

For f ∈ L2

sup
x

( T∫

0

|D1/2
x V1(t)f(x)|2 dt

)1/2
≤ c (1 + T 1/2)‖f‖2. (2.44)

If h′ ∈ Ḣ−1

sup
x

( T∫

0

|D1/2
x V2(t)h′(x)|2 dt

)1/2
≤ c (1 + T 1/2)‖h‖−1,2. (2.45)

And for p ∈ L2

sup
x

( T∫

0

|D1/2
x V2(t)p′′(x)|2 dt

)1/2
≤ c (1 + T 1/2)‖p‖2. (2.46)

Proof. To prove (2.44), (2.45) and (2.46) we shall use the same argument, so we only
will sketch the proof of (2.44).
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Let χ ∈ C∞
0 (R), χ ≡ 1 on [−1, 1] and support of χ ⊂ [−2, 2] then

sup
x

( T∫

0

|D1/2
x V1(t)f(x)|2 dt

)1/2

≤ c sup
x

( T∫

0

∣∣
∞∫

−∞
ei(tφ(ξ)+xξ) |ξ|1/2f̂(ξ)χ(ξ) dξ

∣∣2 dt
)1/2

+ c sup
x

( T∫

0

∣∣
∞∫

−∞
ei(tφ(ξ)+xξ) |ξ|1/2f̂(ξ)(1− χ(ξ)) dξ

∣∣2 dt
)1/2

.

(2.47)

Therefore a direct application of the Theorem 2.8 gives the estimate for the second
expression on the right hand side. For the first expression on the right hand side of the
inequality above, we use the smoothness of χ and f to make a crude estimate which we
have to pay with the dependence on T. ¤

2.3. Further Linear Estimates

We begin this section by establishing the needed estimates for the operator (−∆)−1/2∂t.
These estimates will be used to prove stronger solutions of the nonlinear problem (1.1)
and the global results in Chapter 5.

Proposition 2.12. If

(−∆)−1/2∂tV1(t)f(x) =

∞∫

−∞
i|ξ|−1φ(ξ)ei(tφ(ξ)+xξ) f̂(ξ) dξ,

(−∆)−1/2∂tV2(t)h′(x) =

∞∫

−∞
i|ξ|−1φ(ξ)ei(tφ(ξ)+xξ) sgn(ξ) ĥ(ξ)

(1 + ξ2)1/2
dξ

and

(−∆)−1/2∂tV2(t)p′′(x) =

∞∫

−∞
i|ξ|−1φ(ξ)ei(tφ(ξ)+xξ) ξ p̂(ξ)

(1 + ξ2)1/2
dξ.

Then
‖(−∆)−1/2∂tV1(t)f‖2 ≤ C‖f‖1,2, (2.48)

‖(−∆)−1/2∂tV2(t)h′‖2 ≤ C‖h‖2 (2.49)
and

‖(−∆)−1/2∂tV2(t)p′′‖2 ≤ C‖p‖1,2. (2.50)

Proof. Reminding that φ(ξ) = |ξ|(1 + ξ2)1/2, Plancherel’s theorem gives

‖(−∆)−1/2∂tV1(t)f‖2 ≤ c ‖|ξ|−1φ(ξ)f̂(ξ)‖2

≤ c ‖(1 + ξ2)1/2f̂‖2 = c ‖f‖1,2

(2.51)
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which is (2.48).
To prove (2.49), we use the same argument as before to obtain

‖(−∆)−1/2∂tV2(t)h′‖2 ≤ c
∥∥∥|ξ|−1φ(ξ)

sgn(ξ)ĥ(ξ)
(1 + ξ2)1/2

∥∥∥
2
≤ c ‖h‖2. (2.52)

In the same way we can show (2.50)

‖(−∆)−1/2∂tV2(t)p′′‖2 ≤ c
∥∥∥|ξ|−1φ(ξ)

sgn(ξ)ξ p̂(ξ)
(1 + ξ2)1/2

∥∥∥
2

= C‖p‖1,2. (2.53)

¤
Next we will prove linear estimates useful in the proofs of Theorems 5.1 and 5.4

regarding decay and nonlinear scattering for solutions of (1.1).

Proposition 2.13.
(i) Let g = h′ ∈ L2(R) ∩ Lq(R). Then

‖V2(t)g‖p ≤ c(1 + t)−γ/2 (‖h‖2 + ‖h‖q),

where p = 2
1−γ , q = 2

1+2γ and γ ∈ (0, 1/2).
(ii) Let f ∈ H1(R) ∩ Lq

γ
2
(R).

Then
‖V1(t)f‖p ≤ c(1 + t)−γ/2 (‖f‖1,2 + ‖f‖ γ

2
,q),

where p = 2
1−γ , q = 2

1+2γ and γ ∈ (0, 1/2).

Proof. To show (i) we use the Sobolev embedding theorem for t small to obtain

‖V2(t)g‖p ≤ ‖V2(t)g‖1,2 ≤ ‖h‖2, (2.54)

where p is as above.
For t > ε > 0, we write

V2(t)g(x) =
1
2π

∞∫

−∞
ei(tφ(ξ)+xξ) |φ′′(ξ)|γ/2 ĥ(ξ)

|φ′′(ξ)|γ/2(1 + ξ2)1/2
dξ,

where φ′′(ξ) = |ξ|(2ξ2+3)

(1+ξ2)3/2 .
Since φ(ξ) satisfies the conditions in Theorem 2.4 (see [31], [26]), we have that

‖V2(t)g‖p ≤ ct−γ/2 ‖G‖ 2
1+γ

,

here G(x) =
( ĥ(ξ)

|ξ|γ/2

)̌
(x).

Applying Hardy-Littlewood-Sobolev theorem (see appendix Theorem A.16) we find
that

‖G‖ 2
1+γ

≤ c‖h‖q,

for q = 2
1+2γ and γ ∈ (0, 1/2). Thus

‖V2(t)g‖p ≤ c t−γ/2‖h‖q. (2.55)

Therefore combining (2.3) and (2.4) we obtain the desired result.
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To prove (ii) we can use a similar argument, hence it will be omitted. ¤

Corollary 2.14. Under the assumptions on f and g in Proposition 2.13. The solution
u of the linear problem (2.1) satisfies

‖u‖p ≤ c(1 + t)−γ/2 (‖f‖1,2 + ‖f‖ γ
2
,q + ‖h‖2 + ‖h‖q),

where p = 2
1−γ , q = 2

1+2γ and γ ∈ (0, 1/2).

Proof. A combination of (i) and (ii) gives the result. ¤

Lemma 2.15. Let f ≡ 0 and g(x) = h′′(x), h ∈ L2(R)∩L
2

1+γ (R). Then the solution u
of the linear problem (2.1) satisfies

‖u‖p = ‖V2(t)g‖p ≤ c t−γ/2 ‖h‖p′ for t > 0,

where p = 2
1−γ , p′ = 2

1+γ and γ ∈ [0, 1].

Proof. We write V2(t)g(x) as

V2(t)g(x) =
1
2π

∞∫

−∞
ei(tφ(ξ)+xξ) |φ′′(ξ)|γ/2 |ξ| ĥ(ξ)

|φ′′(ξ)|γ/2(1 + ξ2)1/2
dξ

then applying Theorem 2.4 the result follows. ¤

Proposition 2.16.
(i) Let g = D1+γ/4h ∈ L2(R). Then

‖V2(t)g‖Lq(R :Lp(R)) ≤ c‖h‖−1+ γ
4
,2.

(ii) Let f = Dγ/4f1 ∈ H1(R). Then

‖V1(t)f‖Lq(R :Lp(R)) ≤ c ‖f1‖ γ
4
,2,

where p = 2
1−γ , q = 4

γ and γ ∈ [0, 1].

Proof. To prove (i) we write V2(t)g(x) as

V2(t)g(x) =
1
2π

∞∫

−∞
ei(tφ(ξ)+xξ) |φ′′(ξ)|γ/4 |ξ|γ/4ĥ(ξ)

|φ′′(ξ)|γ/4(1 + ξ2)1/2
dξ

Thus from Theorem 2.5 it follows that

‖V2(t)g‖Lq(R :Lp(R)) ≤ c‖( |ξ|γ/4ĥ(ξ)
|φ′′(ξ)|γ/4(1 + ξ2)1/2

)̌‖2

≤ c‖h‖−1+ γ
4
,2.

(2.56)

This shows (i). The proof of (ii) is similar, hence it will be omitted. ¤
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Corollary 2.17. Under the assumptions on f and g in Proposition 2.16. The solution
u of the linear problem (2.1) satisfies

‖u‖Lq(R :Lp
1(R)) ≤ c(‖f1‖1+ γ

4
,2 + ‖h‖ γ

4
,2),

where p = 2
1−γ , q = 4

γ and γ ∈ [0, 1].

Proof. The result follows as a consequence of (i) and (ii) in Proposition 2.16. ¤
From (2.27), (2.28) and Corollary 2.17 we can conclude that a solution u of the linear

problem (2.1) satisfies

u ∈ L∞(R : H1(R)) ∩ Lq(R : Lp
1(R)),

where p, q and the initial data satisfy the conditions in those results.



CHAPTER 3

Nonlinear Problem. Local Theory

In this chapter we establish the local theory for the IVP in the spaces L2(R) and
H1(R).

3.1. Local Existence Theory in L2

This section is devoted to prove local well-posedness of the IVP (1.1) for data (f, g) =
(f, h′) ∈ L2(R)×Ḣ−1(R). We remind that Ḣ−1(R) denotes the space of functions which are
x-derivative of L2-functions. As we mentioned in the introduction this restriction allows
to settle the problem in L2. Here, we succeed showing that the IVP (1.1) is locally well
posed when 0 < α < 4. Note that this is the same result obtained for the one-dimensional
nonlinear Schrödinger equation (1.8) in the L2 case. To accomplish this result we consider
the integral equation

u(t) = V1(t)f(x) + V2(t)h′(x)−
t∫

0

V2(t− τ)(|u|αu)xx(τ) dτ (3.1)

where V1(t)f(·) and V2(t)h′(·) are defined as in Lemma 2.7 and Lemma 2.8 respectively.
Then combining the estimates established in the previous chapter (smoothing effects) with
a contraction mapping argument we conclude that the integral equation (3.1) has a unique
solution. This solution is a strong solution of the IVP (1.1).

Also we will see below that the same techniques used to show that Φ (see (3.3) be-
low) is a contraction allows us conclude that the solution not only depends on the data
continuously, but also that this application is Lipschitz. Finally, we will show that these
solutions satisfy the smoothing effect of Kato type previously discussed.

Now consider the following complete metric space:

Xa
T =

{
u ∈ C([0, T ] : L2(R)) ∩ L4([0, T ] : L∞(R)

)
:

sup
[0,T ]

‖u(t)‖2 ≤ a , ‖u‖L4
T L∞x :=

( T∫

0

‖u(t)‖4
L∞x dt

)1/4 ≤ a
}
.

(3.2)

If 0 < α < 4 define for f ∈ L2(R) and g = h′ ∈ Ḣ−1(R)

Φ(f,g)(u)(t)=Φ(u)(t)=V1(t)f(x)+V2(t)h′(x)−
t∫

0

V2(t− τ)(|u|αu)xx(τ)dτ (3.3)

where V1(t)f(·) and V2(t)h′(·) are as above.

25
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Proposition 3.1.
Φ(u(t)) : Xa

T 7→ Xa
T

for some T and a depending on δ and α, where δ = max(δ1, δ2), and ‖f‖2 ≤ δ1, ‖h‖−1,2 ≤
δ2.

Proof. Using the estimates (2.27), (2.33), (2.37) and Holder’s inequality we have the
following chain of inequalities

sup
[0,T ]

‖Φ(u)(t)‖2 ≤ C
(‖f‖2 + ‖h‖−1,2

)
+ c

T∫

0

‖u(τ)‖2‖|u|α‖∞ dτ

≤ c
(‖f‖2 + ‖h‖−1,2

)
+ C sup

[0,T ]
‖u(t)‖2

T∫

0

‖|u|α‖∞ dτ

≤ c
(‖f‖2 + ‖h‖−1,2

)
+ C sup

[0,T ]
‖u(t)‖2T

(4−α)/4‖u‖α
L4

T L∞x

≤ 2c δ + c aα+1T (4−α)/4

(3.4)

choosing a = 4c δ the last term above is bounded by the expression

2c δ
(
1 + 22α+1 cαδαT (4−α)/4

)
.

Now fixing T such that

22α+1 cαδαT (4−α)/4 < 1 (3.5)

then
sup
[0,T ]

‖Φ(u)(t)‖2 ≤ 4c δ.

Denote by T1 the T chosen in (3.5).
On the other hand, the estimates (2.28), (2.34), (2.38) and Holder’s inequality give

‖Φ(u)(t)‖L4
T L∞x ≤ c (1 + T 1/4)

(‖f‖2 + ‖h‖−1,2

)
+ c

T∫

0

‖u‖2‖|u|α‖∞ dτ

≤ c (1 + T 1/4)
(‖f‖2 + ‖h‖−1,2

)
+ c sup

[0,T ]
‖u(t)‖2T

(4−α)/4‖u‖α
L4

T L∞x

≤ c (1 + T 1/4)
(‖f‖2 + ‖h‖−1,2

)
+ c aα+1T (4−α)/4

(3.6)

choosing a as before, we find that the above term is bounded by

2c δ(1 + T 1/4 + T (4−α)/422α+1cα+1δα).

Now fixing T such that

T 1/4 + 22α+1cα+1δα T (4−α)/4 < 1 (3.7)

we have
‖Φ(u)‖L4

T L∞x ≤ 4c δ.

Denote by T2 the T in (3.7).
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Thus if we take T = min(T1, T2) the proof is completed. ¤

Theorem 3.2. If 0 < α < 4 then for all f ∈ L2(R) and g = h′ ∈ Ḣ−1(R) there exist
T = T (δ, α) > 0 and a unique solution u of the integral equation (3.1) in [0, T ] with

u ∈ C
(
[0, T ] : L2(R)

) ∩ L4
(
[0, T ] : L∞(R)

)
.

Moreover, for any T0 < T there exists a neighborhood Y of (f, g) ∈ L2(R)× Ḣ−1(R),
where the map (f, h′) → u is Lipschitz from Y to C

(
[0, T0] : L2(R)

)∩L4
(
[0, T0] : L∞(R)

)
.

Proof. To prove the first part of this theorem we are going to use a contraction
mapping argument. According with Proposition 3.1 we only need to prove that Φ(u)(t) is
a contraction map. Let u and v be in Xa

T , with data f and h′. By the definition of Φ(u)(t)

(
Φ(u)− Φ(v)

)
(t) = −

t∫

0

V2(t− τ)
(|u|αu− |v|αv

)
xx

(τ) dτ

Thus using the the estimate (2.37) and Holder’s inequality we get

sup
[0,T ]

∥∥∥
(
Φ(u)−Φ(v)

)
(t)

∥∥∥
2
≤ c

T∫

0

‖|u|αu− |v|αv‖2 dτ

≤ c

T∫

0

‖(|u|α + |v|α)
(u− v)‖2 dτ

≤ c sup
[0,T ]

‖(u− v)(t)‖2(

T∫

0

‖u‖α
∞ dτ +

T∫

0

‖v‖α
∞ dτ)

≤ c T (4−α)/4 sup
[0,T ]

‖(u− v)(t)‖2

(‖u‖α
L4

T L∞x
+ ‖v‖α

L4
T L∞x

)

≤ 2(4cδ)αT (4−α)/4 sup
[0,T ]

‖(u− v)(t)‖2.

(3.8)

Now, the use of the estimate (2.38) and Holder’s inequality as in (3.5) give

‖(Φ(u)− Φ(v)
)‖L4

T L∞x ≤ c

T∫

0

‖|u|αu− |v|αv‖2 dτ

≤ 2(4cδ)αT (4−α)/4 sup
[0,T ]

‖(u− v)(t)‖2.

(3.9)

From (3.8), (3.9), and the choice of T and a in (3.7) we have that,

2(4c δ)αT (4−α)/4 < 1.

Thus Φ is a contraction map. Hence using the contraction mapping principle we establish
existence and uniqueness of solutions to (3.1) in Xa

T . However, the uniqueness holds in a
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large class
X = C

(
[0, T ] : L2(R)

) ∩ L4
(
[0, T ] : L∞(R)

)
.

In fact, suppose ũ ∈ X satisfying the initial data, then it is easy to see that for T ′ < T
sufficiently small ũ ∈ Xa

T ′ . Therefore u = ũ in R × [0, T ′]. Reapplying this argument we
obtain the desired result.

To prove that for any T0 < T the map from Y 7→ C
(
[0, T0] : L2(R)

) ∩ L4
(
[0, T0] :

L∞(R)
)

is continuous, let us take u and v solutions of (3.1) with data (f0, h
′
0) and (f1, h

′
1),

respectively then

u(t)− v(t) = V1(t)(f0 − f1) + V2(t)(h′0 − h′1)

−
T0∫

0

V2(t− τ)∂2
x

(|u|αu− |v|αv
)
(τ) dτ.

(3.10)

Using the same argument as in (3.4) and (3.8) we have

sup
[0,T ]

‖(u− v)(t)‖2 ≤ c
(‖f0 − f1‖2 + ‖h0 − h1‖−1,2

)

+ c T
(4−α)/4
0 (‖u‖α

L4
T L∞x

+ ‖v‖α
L4

T L∞x
) sup

[0,T ]
‖(u− v)(t)‖2

≤ c
(‖f0 − f1‖2 + ‖h0 − h1‖−1,2

)

+ 2c T
(4−α)/4
0 (4cδ)α sup

[0,T ]
‖(u− v)(t)‖2.

(3.11)

On the other hand, the arguments used (3.6) and (3.9) imply that

‖u− v‖L4
T0

L∞x ≤ c (1 + T
1/4
0 )

(‖f0 − f1‖2 + ‖h0 − h1‖−1,2

)

+ T
(4−α)/4
0 (‖u‖α

L4
T L∞x

+ ‖v‖α
L4

T L∞x
) sup

[0,T ]
‖(u− v)(t)‖2

≤ c (1 + T
1/4
0 )

(‖f0 − f1‖2 + ‖h0 − h1‖−1,2

)

+ 2T
(4−α)/4
0 (4cδ)α sup

[0,T0]
‖(u− v)(t)‖2.

(3.12)

Now using (3.7) we obtain

sup
{

sup
[0,T0]

‖(u− v)(t)‖2, ‖u− v‖L4
T0

L∞x

}

≤ cα(T0)
(‖f0 − f1‖2 + ‖h0 − h1‖−1,2

)

which yields the result. ¤

Corollary 3.3. If 0 < α < 4 then for all f ∈ L2(R) and g = h′ ∈ Ḣ−1(R) there
exist T = T (δ, α) > 0 and a unique solution u of the integral equation (3.1) in [0, T ] with

u ∈ C([0, T ] : L2(R)) ∩ L4([0, T ] : L∞(R))

and
D1/2

x u ∈ L∞(R : L2([0, T ])).
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Moreover, for any T0 < T there exists a neighborhood U of (f, h′) ∈ L2(R) × Ḣ−1(R),
where the map

(f, h′) 7→ u

is Lipschitz from U to

XT =
{
u ∈C([0, T0] : L2(R)) ∩ L4([0, T0] : L∞(R))

/

D1/2
x u ∈ L∞(R : L2([0, T0]))

}
.

Proof. We will only show that Φ(u)(t) ∈ XT , the remaining part of the proof follows
from the arguments in the proof of Theorem 3.2 and the estimates in Proposition 2.11.

By Proposition 3.1, we only need to prove that

sup
x

( T∫

0

|D1/2
x Φ(u)(t)|2 dt

)1/2

≤ a, with a = 4cδ.

So using Proposition 2.11 and Holder’s inequality we obtain

sup
x

( T∫

0

|D1/2
x Φ(u)(t)|2 dt

)1/2

≤ c(1 + T 1/2)
{‖f‖2 + ‖h‖−1,2

}

+ c(1 + T 1/2)

T∫

0

‖|u|αu‖2 dτ

≤ c(1 + T 1/2)
{‖f‖2 + ‖h‖−1,2

}

+ c(1 + T 1/2)T (4−α)/4 sup
[0,T ]

‖u(t)‖2‖u‖α
L4

T L∞x
.

Taking a = 4cδ and T such that

T 1/2 + (1 + T 1/2)T (4−α)/422α+1δαcα < 1

the result follows. ¤
Remark 3.4. It is easy to see that ut ∈ C([0, T ] : H−2(R)).

Remark 3.5. Note that when α = 4 we cannot control the sizes of the terms involving
the ||| · |||-norm and sup

[0,T ]
‖·‖2-norm, therefore the contraction principle is not applicable with

the same arguments used in Theorem 3.2. However, we will see in section 3.3 that with
an additional hypothesis, the local well-posedness can be proved when α = 4.

3.2. Local Existence Theory in H1

Here we study the local well-posedness of the IVP (1.1) with data (f, g) = (f, h′) ∈
H1(R) × L2(R). To do this, we follow the ideas used in [11], [23], and [18] to develop
the theory in H1 for the nonlinear Schrödinger equation (1.8). We want to point out that
our result in this case is similar to the one-dimensional case for the NLS. More precisely,
we show that the IVP (1.1) is locally well posed when α > 0. As we noticed in the
introduction H1 × L2 is the appropriate space to solve the IVP (1.1).
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To prove the local existence we will make use of the estimates obtained in Chapter 2
and a contraction mapping argument.

In this section it will be used the following notation.

|||u|||1 =
( T∫

0

‖u(t)‖4
∞ dt

)1/4
+

( T∫

0

‖ux(t)‖4
∞ dt

)1/4
.

Consider the following complete metric space

Y a
T =

{
u ∈C([0, T ] : H1(R)) ∩ L4([0, T ] : L∞1 (R)

)
/

(−∆)−1/2∂tu ∈ C([0, T ] : L2(R)),

sup
[0,T ]

‖u(t)‖1,2 ≤ a, |||u(t)|||1 ≤ a, sup
[0,T ]

‖(−∆)−1/2∂tu(t)‖2 ≤ a
}

Proposition 3.6. For 0 < α, f ∈ H1(R) and g = h′ ∈ L2(R) define Φ(u)(t) as in
(3.3). Then

Φ(u)(t) : Y a
T → Y a

T

for some T and a depending on δ and α, where δ = max(δ1, δ2), and ‖f‖1,2 ≤ δ1, ‖h‖2 ≤ δ2

.

Proof. Using (2.28), (2.34), (2.38) in conjunction with Sobolev’s embedding theorem
we obtain

‖Φ(u)‖L4
T L∞x ≤ c(1 + T 1/4)‖f‖2 + ‖h‖−1,2 + c

T∫

0

‖u‖α
∞‖u‖2 dτ

≤ c (1 + T 1/4)‖f‖1,2 + ‖h‖2 + c T sup
[0,T ]

‖u(t)‖α+1
1,2 .

(3.13)

The same argument as in (3.13) gives us the following

‖∂xΦ(u)‖L4
T L∞x ≤ c (1 + T 1/4)(‖f‖1,2 + ‖h‖2) + c T sup

[0,T ]
‖u(t)‖α+1

1,2 . (3.14)

Then from (3.13) and (3.14) it follows that

|||Φ(u)|||1 ≤ 2c (1 + T 1/4)
(‖f‖1,2 + ‖h‖2

)
+ 2c T sup

[0,T ]
‖u(t)‖α+1

1,2

≤ 2c (1 + T 1/4)(2δ) + 2cTaα+1
(3.15)

choosing a = 8cδ and T such that

(T 1/4 + T23α+2 cα+1δα) < 1 (3.16)

it follows that

|||Φ(u)|||1 ≤ 8cδ.
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Now, if we use (2.27), (2.33), (2.37) and the Sobolev embedding we get

sup
[0,T ]

‖Φ(u)(t)‖2 ≤ c (‖f‖2 + ‖h‖−1,2) + c

T∫

0

‖u‖α
∞‖u‖2 dτ

≤ c (‖f‖1,2 + ‖h‖2) + c T sup
[0,T ]

‖u(t)‖α+1
1,2 .

(3.17)

Similarly, we obtain

sup
[0,T ]

‖∂xΦ(u)(t)‖2 ≤ c (‖f‖1,2 + ‖h‖2) + c T sup
[0,T ]

‖u(t)‖α+1
1,2 . (3.18)

From (3.17) and (3.18) it follows that

sup
[0,T ]

‖Φ(u)(t)‖1,2 ≤ sup
[0,T ]

‖Φ(u)(t)‖2 + sup
[0,T ]

‖∂xΦ(u)(t)‖2

≤ 2 c
(‖f‖1,2 + ‖h‖2

)
+ 2c T sup

[0,T ]
‖u(t)‖α+1

1,2

≤ 2c (2δ) + 2c T aα+1.

Choosing a = 8cδ and T such that

(23α+2cα+1δαT ) < 1 (3.19)

we have that
sup
[0,T ]

‖u(t)‖1,2 ≤ 8cδ.

Finally, to estimate ‖(−∆)−1/2∂tΦ(u)‖2 we use the Proposition 2.12, that combined
with the Sobolev embedding yield

sup
[0,T ]

‖(−∆)−1/2∂tΦu(t)‖2 ≤ c (‖f‖1,2 + ‖h‖2) + c

T∫

0

|||u|αu||1,2 dτ

≤ c (‖f‖1,2 + ‖h‖2) + c T sup
[0,T ]

‖u‖α+1
1,2 .

(3.20)

Therefore,
sup
[0,T ]

‖(−∆)−1/2∂tΦ(u)‖2 ≤ 2cδ + cTaα+1.

So, taking a and T as in (3.19) it follows that

sup
[0,T ]

‖(−∆)−1/2∂tΦ(u)‖2 ≤ 4cδ

Hence, we have proved that Φ(u) ∈ Y a
T . ¤ ¤

Theorem 3.7. If 0 < α then for all f ∈ H1(R) and g = h′ ∈ L2(R) there exist
T = T (δ, α) > 0 and a unique solution u of the integral equation (3.1) in [0, T ] with

u ∈ C([0, T ] : H1) ∩ L4([0, T ] : L∞1 )

and
(−∆)−1/2∂tu ∈ C([0, T ] : L2).
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Moreover, for any T0 < T there exists a neighborhood W of (f, ∂xh) ∈ H1(R) × L2(R),
where the map

(f, h′) 7→ u

is Lipschitz from W to
{
u ∈ C([0, T0] : H1) ∩ L4([0, T0] : L∞1 ) / (−∆)−1/2∂tu ∈ C([0, T0] : L2)

}
.

Proof. Following the ideas in the proof of the L2×Ḣ−1 case, we will use a contraction
mapping argument and the estimates in section 2 to prove the first part of this theorem.
The proposition 3.6 assures that Φ(u)(t) : Y a

T → Y a
T , so we only need to show that Φ is a

contraction.
Let u and v in Y a

T , with data f and g = ∂xh, by the definition of Φ it follows that

(
Φ(u)− Φ(v)

)
(t) = −

t∫

0

V2(t− τ)
(|u|αu− |v|αv

)
xx

(τ) dτ. (3.21)

Using a similar argument as in (3.8), and (3.13) we obtain

‖Φ(u)− Φ(v)‖L4
T L∞x ≤ CT sup

[0,T ]
‖(u− v)(t)‖1,2

(
sup
[0,T ]

‖u‖α
1,2 + sup

[0,T ]
‖v‖α

1,2

)
(3.22)

To estimate ∂xΦ(u)− ∂xΦ(v) in L4
T L∞x -norm we will use the following inequality

||u|αux − |v|αvx| ≤ c
{(|u|α−1 + |v|α−1

)|u− v||ux|+ |v|α|ux − vx|
}
. (3.23)

Then combining the estimate (2.38), the inequality (3.23), Sobolev embedding and
Young’s inequality we obtain

‖∂xΦ(u)− ∂xΦ(v)‖L4
T L∞x ≤ c

T∫

0

‖|u|αux − |v|αvx‖2 dτ

≤ c

T∫

0

‖|u|α−1 + |v|α−1‖∞‖u− v‖∞‖ux‖2 dτ + c

T∫

0

‖|v|α‖∞‖ux − vx‖2 dτ

≤ c T
(

sup
[0,T ]

‖u(t)‖α
1,2 + sup

[0,T ]
‖v(t)‖α

1,2

)
sup
[0,T ]

‖(u− v)(t)‖1,2.

(3.24)

Combining (3.22) and (3.24) we have

|||Φ(u)− Φ(v)|||1
≤ c T sup

[0,T ]
‖(u− v)(t)‖1,2

{
2 sup

[0,T ]
‖u(t)‖α

1,2 + 2 sup
[0,T ]

‖v(t)‖α
1,2

}

≤ c T (4aα) sup
[0,T ]

‖(u− v)(t)‖1,2.

(3.25)

Following the arguments in (3.13) and (3.18) it is obtained

sup
[0,T ]

‖(u− v)(t)‖2 ≤ c T sup
[0,T ]

‖(u− v)(t)‖1,2

{
sup
[0,T ]

‖u(t)‖α
1,2 + sup

[0,T ]
‖v(t)‖α

1,2

}
. (3.26)

The estimate (2.37), inequality (3.23), Sobolev embedding and Young’s inequality give
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sup
[0,T ]

‖(∂xΦ(u)− ∂xΦ(v)
)
(t)‖2

≤ cT sup
[0,T ]

‖(u− v)(t)‖1,2

{
sup
[0,T ]

‖u(t)‖α
1,2 + sup

[0,T ]
‖v(t)‖α

1,2

}
.

(3.27)

Combining (3.26) and (3.27)

sup
[0,T ]

‖(Φ(u)− Φ(v)
)
(t)‖1,2

≤ 2c T sup
[0,T ]

‖(u− v)(t)‖1,2

{
sup
[0,T ]

‖u(t)‖α
1,2 + sup

[0,T ]
‖v(t)‖α

1,2

}

≤ cT (4aα) sup
[0,T ]

‖(u− v)(t)‖1,2.

(3.28)

Finally, using the same arguments as in (3.20) and (3.24) we obtain

sup
[0,T ]

‖(−∆)−1/2∂tΦ(u)− (−∆)−1/2∂tΦ(v)‖2

≤ c

T∫

0

‖(|u|α + |v|α)|u− v|‖1,2 dτ

≤ c

T∫

0

‖(|u|α + |v|α)‖∞‖u− v||2 dτ + c

T∫

0

‖(|u|αux − |v|αvx

)‖2 dτ

≤ c T sup
[0,T ]

‖(u− v)(t)‖1,2

{
2 sup

[0,T ]
‖u(t)‖α

1,2 + 2 sup
[0,T ]

‖v(t)‖α
1,2

}

≤ cT (4aα) sup
[0,T ]

‖(u− v)(t)‖1,2.

(3.29)

Combining (3.25), (3.28), (3.29) and the choice of T and a in (3.19) it follows that
4cTaα < 1, therefore Φ is a contraction mapping. The proof of the first part of the theorem
can be completed by using the argument given in the previous section.

To show that for any T0 < T , the map (f, h′) 7→ u is Lipschitz from W to

{
u ∈ C([0, T0] : H1) ∩ L4([0, T0] : L∞1 ) / (−∆)−1/2∂tu ∈ C([0, T0] : L2)

}

let us take u and v solutions of (3.1) with data (f0, h
′
0) and (f1, h

′
1) in W respectively, then

u(t)− v(t) = V1(t)(f0 − f1) + V2(t)(h′0 − h′1)

−
T0∫

0

V2(t− τ)
(|u|αu− |v|αv

)
xx

(τ) dτ.
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From (3.17) and (3.25)

sup
[0,T ]

‖(u− v)(t)‖1,2 ≤ c (‖f0 − f1‖1,2 + ‖h0 − h1‖2)

+ 2c T0 sup
[0,T ]

‖(u− v)(t)‖1,2

{
sup
[0,T ]

‖u(t)‖α
1,2 + sup

[0,T ]
‖v(t)‖α

1,2

}

≤ c (‖f0 − f1‖1,2 + ‖h0 − h1‖2) + 4c T0a
α sup

[0,T ]
‖(u− v)(t)‖1,2.

(3.30)

Similarly, from (3.13) and (3.24) it follows that

|||u− v|||1 ≤ c (1 + T
1/4
0 )(‖f0 − f1‖1,2 + ‖h0 − h1‖2)

+ 4c T0a
α sup

[0,T ]
‖(u− v)(t)‖1,2.

(3.31)

Finally, making use of (3.20) and (3.28) we get

sup
[0,T ]

‖(−∆)−1/2∂tu(t)− (−∆)−1/2∂tv(t)‖2

≤ c (‖f0 − f1‖1,2 + ‖h0 − h1‖2) + c T0(4aα) sup
[0,T ]

‖(u− v)(t)‖1,2.
(3.32)

Now, by (3.19) it has that 4cTaα < 1, therefore

sup
{
sup
[0,T ]

‖(u− v)(t)‖1,2, |||u− v|||1, sup
[0,T ]

‖(−∆)−1/2∂tu− (−∆)−1/2∂tv‖2

}

≤ cT (‖f0 − f1‖1,2 + ‖h0 − h1‖2)

Thus, if ‖f0 − f1‖1,2 and ‖h0 − h1‖2 are sufficiently small, the result follows. ¤

The following result shows that the above solution satisfies the Kato smoothing effect
commented in the introduction.

Corollary 3.8. If 0 < α then for all f ∈ H1(R) and g = h′ ∈ L2(R) there exist
T = T (δ, α) > 0 and a unique solution u of the integral equation (3.1) in [0, T ] with

u ∈ C([0, T ] : H1) ∩ L4([0, T ] : L∞1 )

and
D3/2

x u ∈ L∞(R : L2([0, T ]))

Moreover, for any T0 < T there exists a neighborhood W of (f, h′) ∈ H1(R) × L2(R),
where the map

(f, h′) 7→ u

is Lipschitz from W to
{
u ∈ C([0, T0] : H1(R))∩ L4([0, T0] : L∞1 (R)) /D3/2

x u ∈ L∞(R : L2([0, T0]))
}
.

Proof. Using similar arguments as in Proposition 3.6, Theorem 3.7, and Proposition
2.11 the result follows. ¤
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3.3. Critical case in L2

In this section we prove a theorem that assures the local existence, uniqueness, and
continuous dependence for IVP (1.1) in L2(R)× Ḣ−1(R) when α = 4. Here, we follow the
ideas in [11]. Note that the proof of well-posedness in this case is basically the same as
in the 0 < α < 4 case. More precisely, a contraction mapping argument combined with
estimates of type Lp([0, T ];Lq) will be used in the proof.

To solve the problem we consider the following complete metric space

Za
T =

{
u ∈ C([0, T ] : L2) ∩ L4([0, T ] : L∞) /

‖u‖L4
T L∞x ≤ a, sup

[0,T ]
‖(u− u0)(t)‖2 ≤ a

}
,

where u0(t) = V1(t)f(x) + V2(t)h′(x), and the data satisfy

‖V1(t)f‖L4
T L∞x , ‖V2(t)h′‖L4

T L∞x ≤ δ

for some a and δ to be chosen below and (f, g) = (f, h′) ∈ L2(R)× Ḣ−1(R).
Observe that for fixed data (f, h′) ∈ L2 × Ḣ−1 given δ > 0 there exists t0 > 0 such

that

‖V1(t0)f‖L4
T L∞x ≤ δ

‖V2(t0)h′‖L4
T L∞x ≤ δ

and that the same estimates hold in a neighborhood of (f, h′) ∈ L2 × Ḣ−1.
Define for f ∈ L2(R) and g = h′ ∈ Ḣ−1(R)

Φ(f,g)(u)(t) = Φ(u)(t) = V1(t)f(x) + V2(t)h′(x)−
t∫

0

V2(t− τ)∂2
x(u5)(τ) dτ. (3.33)

Our main result in this section is the following

Theorem 3.9. For α = 4, f ∈ L2(R) and g = h′ ∈ Ḣ−1(R) as above, there exist
T > 0 and a unique solution u in Za

T of the integral equation (3.1).
Moreover, for T0 < T there exists a neighborhood Y of (f, g) = (f, h′) ∈ L2(R) ×

Ḣ−1(R) where the map (f, h′) 7→ u is Lipschitz from Y to
{
u ∈ C([0, T ] : L2(R)) ∩ L4([0, T ] : L∞(R))

}
.

Before proving the theorem, we shall show the following.

Proposition 3.10. For a f ∈ L2(R) and g = h′ ∈ Ḣ−1(R) as above

Φ(u(t)) : Za
T 7→ Za

T

where a depends on δ.
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Proof. From the definition of Φ and estimate (2.38)

‖Φ(u)‖L4
T L∞x ≤ ‖V1(t)f‖L4

T L∞x + ‖V2(t)h′‖L4
T L∞x

+ c(sup
[0,T ]

‖(u− u0)(t)‖2 + sup
[0,T ]

‖u0(t)‖2)‖u‖4
L4

T L∞x

≤ 2δ + c sup
[0,T ]

‖(u− u0)(t)‖2‖u‖4
L4

T L∞x
+ c sup

[0,T ]
‖u0(t)‖2‖u‖4

L4
T L∞x

≤ 2δ + ca4(a + M)

(3.34)

where M = sup
[0,T ]

‖u0(t)‖2.

Choosing a = 4δ and then δ such that

27δ3c(4δ + M) < 1 (3.35)

we have that
‖Φ(u)‖L4

T L∞x ≤ 4δ.

On the other hand, the estimate (2.37) gives

sup
[0,T ]

‖(Φ(u)− u0)(t)‖2 ≤ c sup
[0,T ]

‖u(t)‖2‖u‖4
L4

T L∞x

≤ c sup
[0,T ]

‖(u− u0)(t)‖2‖u‖4
L4

T L∞x
+ c sup

[0,T ]
‖u0(t)‖2‖u‖4

L4
T L∞x

≤ a4c (a + M).

(3.36)

Taking a = 4δ with δ such that

26δ3c (4δ + M) < 1 (3.37)

it follows that
sup
[0,T ]

‖(Φ(u)− u0)(t)‖2 ≤ 4δ

This shows that Φ(u(t)) : Za
T 7→ Za

T . ¤

Now we will prove the theorem

Proof of Theorem 3.9. Applying estimate (2.38), mean value theorem, we obtain
the following chain of inequalities.

‖Φ(u)− Φ(v)‖L4
T L∞x ≤

T∫

0

‖u5 − v5‖2 dτ

≤ c

T∫

0

‖u4 + v4‖∞‖u− v‖2 dτ

≤ c sup
[0,T ]

‖(u− v)(t)‖2

(‖u‖4
L4

T L∞x
+ ‖v‖4

L4
T L∞x

)

≤ 2a4c sup
[0,T ]

‖(u− v)(t)‖2.

(3.38)
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On the other hand, the estimate (2.37) applied to Φ(u)−Φ(v) and the same argument
above exposed give

sup
[0,T ]

‖Φ(u)− Φ(v)‖2 ≤ c sup
[0,T ]

‖u− v‖2

(‖u‖4
L4

T L∞x
+ ‖v‖4

L4
T L∞x

)

≤ 2a4c sup
[0,T ]

‖u− v‖2.
(3.39)

Noticing that by (3.35), 2a4c < 1 we can conclude that Φ is a contraction.
The remaining part of the proof uses a previous argument. Therefore it will be omitted.

¤





CHAPTER 4

Global Theory. Persistence

4.1. Global Theory in H1

In this section our aim is to prove that for small data the solution of the IVP (1.1)
in H1 × L2 can be extended globally (t > 0). To show this, we combine the conservation
law (4.2) (see below) and one of the results obtained by J. Bona and R. Sachs in [6]. As
we pointed out in the introduction, Kato’s theory [22] allowed them to show the local
well-posedness of the system (1.5)-(1.6) for smooth data, as we will see below.

We begin by stating the following result of Bona and Sachs in [6].
Denote by

Ys(T ) = C
(
[0, T ] : Hs+2(R)

) ∩ C1
(
[0, T ] : Hs(R)

) ∩ C2([0, T ] : Hs−2(R)).

Theorem 4.1. Let u0 ∈ Hs+2(R) and v0 ∈ Hs+1(R) for some s > 1/2. Then there
exists a T > 0, depending only upon of (u0, v0) ∈ Hs+2(R) × Hs+1(R), and a unique
function u ∈ Ys(T ) which is solution of the equation in (1.1) in the distributional sense on
R× [0, T ], and for which u(·, 0) = u0 and ut(·, 0) = v′0. The solution depends continuously
upon the data (u0, v0) in the sense that the mapping that associates to (u0, v0) the solution
u is continuous from Hs+2(R)×Hs+1(R) into Ys(T ). If s > 5/2 the solution is classical.

Proof. See Corollary 2 in [6]. ¤

Now, consider the equation

utt − uxx + uxxxx + (|u|α−1u)xx = 0. (4.1)

Suppose that u is a solution of the initial-value problem (1.1) given by Theorem 4.1
for s sufficiently large, thus we can proceed as follows.

Apply the operarator (−∆)−1 to the equation (4.1) and multiply by ut, then integrating
respect to x, we obtain the following

1
2

d

dt

{‖(−∆)−1/2ut‖2
2 + ‖u‖2

2 + ‖ux‖2
2 −

2
α + 1

‖u‖α+1
α+1

}
= 0

or

‖(−∆)−1/2ut‖2
2 + ‖u‖2

2 + ‖ux‖2
2 −

2
α + 1

‖u‖α+1
α+1 = K0 (4.2)

where K0 = K0(f0, g0).
The relation (4.2) is the main tool to show that ‖u(t)‖1,2 remains bounded on the in-

terval [0, T ′) for small data, and so ‖(−∆)−1/2ut‖2 does. Hence we can apply the Theorem
4.2 again to continue the solution. So we have the following

39
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Theorem 4.2. Suppose that ‖f‖1,2 and ‖g‖2 = ‖∂xh‖2 are sufficiently small, then for
0 < α, the solution of the integral equation (3.1) given in Theorem 4.2 extends to any time
interval in the same class.

Proof. From (4.2) we have

‖u‖2
1,2 − c ‖u‖α+1

α+1 ≤ K0.

Sobolev embedding gives
‖u‖2

1,2 − c ‖u‖α+1
1,2 ≤ K0.

Set X(t) = ‖u(t)‖2
1,2, then let f0, g0 be initial data with ‖f0‖1,2, ‖g‖2 ¿ 1 such that

K0 satisfies
0 < X(0)− cX(0)(α+1)/2 ≤ K0. (4.3)

The inequality
X(t) ≤ K0 + cX(t)1+ε, ε > 0

is satisfied if X(t) ∈ [0, β1] ∪ [β2,∞) with 0 < β1 < β2 < ∞, since K0 is small.
Now, condition (4.3) ensures that X(0)(= ‖u(·, 0)‖2

1,2) ∈ [0, β1] then the continuity of
X(t) allows to conclude that X(t) remains in that interval for t < T ′ which means that
sup
[0,T ′]

‖u(t)‖1,2 will be bounded.

To complete the proof we need to see that ‖(−∆)−1/2ut‖2 is bounded, but this follows
from the identity (4.2) and the fact that sup

[0,T ′]
‖u(t)‖1,2 is bounded.

Applying Theorem 3.7 we can continue the solution, thus the result follows. ¤
In the proof of the theorem we made use of the identity (4.2), so we shall justify this

to complete the vality of Theorem 4.2. To do that we shall use Kato’s techniques in [24].
Let u be the solution of (3.1) given in Theorem 3.7 with data φ = (f, g) = (f, h′) ∈

H1(R)×L2(R), then we approximate φ by a sequence φj = (fj , gj) = (fj , h
′
j) ∈ Hs+1(R)×

Hs(R), such that
‖φj − φ‖ = ‖fj − f‖1,2 + ‖h′j − h′‖2 → 0.

Now, let uj be the solution to (1.1) with data

uj(·, 0) = fj(·), ∂tuj(·, 0) = h′j(·).
By Theorem 4.1 uj exists on [0, T ] for sufficiently large j and uj → u in C([0, T ] :

H1(R)). The identity (4.2) is formally justified for uj(t) ∈ Hs(R) if s is sufficiently large,
letting j → ∞ and noting that uj(t) → u(t) in H1 and (−∆)−1/2∂tuj → (−∆)−1/2∂tu in
L2, we obtain (4.2) for u.

4.2. Persistence

In this section we present some results concerning the persistence properties in Hs

and the decay for solutions of the IVP (1.1). Since the case of interest for the scattering
theory is when ψ(u) = u2 in (1.1) we will restrict to consider the problem




utt − uxx + uxxxx + (u2)xx = 0 x ∈ R, t > 0
u(x, 0) = f(x)
ut(x, 0) = h′(x).

(4.4)
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We begin by stating the following theorem that deals with the persistence properties
in Hs for solutions of the IVP (4.4). In this section we use g to denote g = h′.

Theorem 4.3. Let (f, g) ∈ Hs+1(R)×Hs(R), s ≥ 1, with ‖f‖1,2 and ‖g‖2 small, then
there exists a unique solution u ∈ C(R+ : H1(R)) of the IVP (4.4) such that

u ∈ Cb(R+ : H1(R)) ∩ C(R+ : Hs+1(R)).

Proof. Applying ∂α
x to the equation in (4.4), multiplying by ∂α

x ut, and integrating
with respect to x, and then integrating by parts we have

1
2

d

dt

∫ {
|∂α

x ut|2 + |∂α
x ux|2 + |∂α

x uxx|2
}

dx =
∫

∂α
x (u2)xx∂α

x ut dx.

Now, using the Cauchy-Schwarz and Gagliardo-Nirenberg inequalities we have

d

dt

{
‖∂α

x ut‖2
2 + ‖∂α

x ux‖2
2 + ‖∂α

x uxx‖2
2

}
≤ c ‖u‖∞‖∂α

x uxx‖2‖∂α
x ut‖2.

Gronwall’s inequality gives

sup
[0,T ]

(‖∂α
x ut‖2 + ‖∂α

x ux‖2 + ‖∂α
x uxx‖2

)

≤
{
‖∂α

x g‖2 + ‖∂α
x fx‖2 + ‖∂α

x fxx‖2

}
exp

(
C

T∫

0

‖u(t)‖∞ dt
)
.

As usual the above formal computation can be justified by using the continuous de-
pendence on the data.

Now, using Theorem 4.2 the result follows. ¤

Theorem 4.4. Consider the IVP (4.4) with f ∈ H3(R), g ∈ H2(R). If xfxx, xfx and
xg ∈ L2(R), then there exists T > 0 such that

xu ∈ C([0, T ] : H2(R)).

Moreover, if ‖f‖1,2, ‖g‖2 ¿ 1, the result is global, i.e.

xu ∈ C(R+ : H2(R)).

Proof. From (4.4) we have

(xu)tt = (xu)xx − (xu)xxxx − 2(xu)xux − 2(xu)xxu− 2ux + 4uxxx + 6uux

multiplying by (xu)t and integrating with respect to x, we find

1
2

d

dt

{∫
[(xu)t]2 dx +

∫
[(xu)x]2 dx +

∫
[(xu)xx]2 dx

}

= −2
∫

ux(xu)x(xu)t dx− 2
∫

u(xu)xx(xu)t dx.

+ 4
∫

uxxx(xu)t dx− 2
∫

ux(xu)t dx + 6
∫

uux(xu)t
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The Cauchy-Schwarz and Young inequalities yield
d

dt

{‖(xu)t‖2
2 + ‖(xu)x‖2

2 + ‖(xu)xx‖2
2

}

≤ c
(‖uxxx‖2

2 + ‖ux‖2
2 + ‖u‖2

L∞‖ux‖2
2

)

+ c
(
1 + ‖u‖L∞ + ‖ux‖L∞

){‖(xu)xx‖2
2 + ‖(xu)x‖2

2 + ‖(xu)t‖2
2

}

≤ c
(‖u‖2

3,2 + ‖u‖4
1,2

)
+ c

(
1 + ‖u‖2,2)

{‖(xu)xx‖2
2 + ‖(xu)x‖2

2 + ‖(xu)t‖2
2

}

Gronwall’s inequality and Theorem 4.3 give the desire result. ¤
Corollary 4.5. Consider the IVP (4.4), with f ∈ H4(R), g ∈ H3(R). If xfxxx, xfxx,

and xgx ∈ L2(R) then
(xux)xx ∈ C([0, T ] : L2(R)).

Moreover, if ‖f‖1,2, ‖g‖2 ¿ 1, the result is global.

Proof. It is an immediate application of Theorem 4.4. ¤
Corollary 4.6. Same hypotheses of Corollary 4.5 and x2fxx, x2fx, x2g ∈ L2(R),

then
x2u ∈ C([0, T ] : H2(R)).

Moreover, if ‖f‖1,2, ‖g‖2 ¿ 1 the result is global i.e.

x2u ∈ C(R+ : H2(R)).

Proof. The proof is similar to the proof of Theorem 4.4. ¤
As a consequence of the Theorem 4.3 and Theorem 4.4, we have the following result

for functions in the Schwartz class S. i.e.

S(R) =
{

h ∈ C∞(R) / sup
x∈R

|xγDβh(x)| < ∞, γ, β ∈ Z+
}

with the topology defined by the family of seminorms ργβ

ργβ(h) = sup
x∈R

|xγDβh(x)|.

Corollary 4.7. Let (f, g) ∈ S(R)× S(R) with ‖f‖1,2, ‖g‖2 ¿ 1, then there exists a
unique solution u ∈ C(R : H1(R)) of the IVP (4.4) such that

u ∈ C(R+ : H1(R)) ∩ C(R : S(R)).



CHAPTER 5

Asymptotic Behavior of Solutions

In this chapter we study some aspects related to the asymptotic behavior of solutions
to the IVP (1.1). In particular, we study the decay of solutions with time. We will show
that the decay of solutions of the nonlinear problem is the same inherited from the linear
problem. The decay result will allow us to show the existence of solutions to the linear
problem that approximate to solutions of the nonlinear problem. This is called nonlinear
scattering. In the last section of this chapter we present a blow-up result for solutions of
the IVP (1.1)

5.1. Decay

One interesting question concerning solutions of evolution equations is the behavior of
these regarding the time. In this direction we have the following result.

Theorem 5.1. Let f ∈ H1(R)∩Lq
γ
2
(R), g = h′, h ∈ L2(R)∩Lq(R), and α > 4−3γ−γ2

γ .
If |||f |||+ |||g||| ≡ ‖f‖1,2 + ‖f‖ γ

2
,q + ‖h‖2 + ‖h‖q < δ small. Then there exists c > 0 such that

the solution u of the IVP (1.1) satisfies

‖u‖p ≤ c (1 + t)−γ/2, t > 0,

where p = 2
1−γ , q = 2

1+2γ and γ ∈ (0, 1/2).

Proof. The solution of the IVP (1.1) is written as

u(t) = V1(t)f(x) + V2(t)g(x)−
t∫

0

V2(t− τ)(|u|α−1u)xx(τ) dτ, (5.1)

V1(t)· and V2(t)· are defined as in (2.26) and (2.32), respectively.
From (5.1) it follows that

‖u(t)‖p ≤ ‖V1(t)f‖p + ‖V2(t)g‖p +

t∫

0

‖V2(t− τ)(|u|α−1u)xx(τ)‖p dτ,

then use of Proposition 2.13 and Lemma 2.15 leads to

‖u(t)‖p ≤ c(1 + t)−γ/2(|||f |||+ |||g|||) + c

t∫

0

(t− τ)−γ/2 ‖|u|α−1u(τ)‖ 2
1+γ

dτ. (5.2)

43
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On the other hand, Gagliardo-Nirenberg interpolation (see appendix inequality (A.19))
yields the inequality

‖u‖α
2α

1+γ
≤ c‖ux‖

α(1−γ)−(1+γ)
2−γ

2 ‖u‖
α+1+γ

2−γ
p .

Hence the integral in (5.2) can be bounded as follows
t∫

0

(t− τ)−γ/2 ‖|u|α−1u(τ)‖ 2
1+γ

dτ ≤ c (sup
[0,T ]

‖u(t)‖1,2)a

×
t∫

0

(t− τ)−γ/2 ‖u(τ)‖α+1+γ
2−γ

p
dτ

(5.3)

where a = α(1−γ)−(1+γ)
2−γ .

Next we define
M(T ) = sup

[0,T ]
(1 + t)γ/2‖u(t)‖p.

Therefore combining (5.2) and (5.3), and the definition of M(T ) we obtain

M(T ) ≤ c(‖f‖+ ‖g‖)

+c(sup
[0,T ]

‖u(t)‖1,2)a (1 + t)γ/2 M(T )
α+1+γ

2−γ

t∫

0

(t− τ)−γ/2(1 + τ)−
γ
2
(α+1+γ

2−γ
)
dτ

Now using the hypothesis α > 4−3γ−γ2

γ we have that

M(T ) ≤ c(‖f‖+ ‖g‖) + c′(sup
[0,T ]

‖u(t)‖1,2)a M(T )
α+(1+γ)

2−γ

or
M(T ) ≤ cδ + c′δa M(T )

α+(1+γ)
2−γ .

Therefore for δ sufficiently small we will have

M(T ) ≤ c

for any T > 0, where c is the smallest positive zero of the function f(x) = cδ+c′δx
α+1+γ

2−γ −x.
Thus we obtain the desired result. ¤

Some remarks are listed.

Remark 5.2. If we assume in Theorem 5.1 f = Dγ/2f1 ∈ H1(R), f1 ∈ H1+γ/2(R) ∩
Lq

γ
2
(R), and g = D1+γ/2h ∈ L2(R), h ∈ Hγ/2(R) ∩ Lq(R), we obtain

‖u(t)‖p ≤ c(1 + t)−γ/2, t > 0,

where p = 2
1−γ , q = 2

1+γ , and α > max {1+γ
1−γ , 4−3γ−γ2

γ }, for γ ∈ (0, 1). See [51] for related
results.
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Remark 5.3. Moreover, if we assume f = D1/2f1 ∈ H1(R) and g = D3/2h ∈ L2(R),
where f1 ∈ H3/2(R)∩L1

1
2

(R) and h ∈ H1/2(R)∩L1(R), it can be proven that the solutions

of the IVP (1.1) satisfy for any x ∈ R, t > 0 and α > 4

|u(x, t)| ≤ c(1 + t)−1/2.

The proof of this follows an argument similar to the proof of Theorem 5.1 but easier.

5.2. Nonlinear Scattering

In this section we establish a result concerning nonlinear scattering for small data for
solutions of the initial value problem (1.1). More precisely, under some suitable condi-
tions on the initial data and the nonlinearity we obtain a result which ensures that small
solutions of the IVP (1.1) behave asymptotically like solutions of the associated linear
problem.

Theorem 5.4. Let (f, g) = (Dγ/4f1, D
1+γ/4h) ∈ H1(R)×L2(R) with ‖f‖1,2+‖g‖2 < δ

small, α = 4
γ , γ ∈ (0, 4/5) and u be the solution of the IVP (1.1). Then there exist unique

solutions u± of the linear problem associated to (1.1) such that

‖u(t)− u±(t)‖1,2 → 0 as t → ±∞. (5.4)

In the proof of this theorem we follow ideas used by Strauss [47], Pecher [40] and Ponce
and Vega [41] to establish similar results for the nonlinear Schrödinger equation, nonlinear
wave equation, Klein-Gordon equation and Korteweg-de Vries equation, respectively.

Affirmative results on scattering for small solutions are interpreted as the nonexistence
of solitary-wave solutions of arbitrary small amplitude. In this case, we notice that a simple
calculation shows that the solitary-wave solutions Uc(ξ) in (1.4) satisfy ‖Uc(·)‖2 > ε > 0
for α > 5. So according to the statement above we should expect to have scattering as
in (5.4) when the nonlinearity power α satisfies the previous constrain. The results in
Theorem 5.4 show that scattering for small solutions of (1.1) occurs when the restriction
on α above mentioned is satisfied. In this sense we could say that the scattering results
presented here are optimal.

To prove Theorem 5.4 we first need to establish an existence result for the IVP (1.1)
under some additional conditions on the initial data. In the proof of this result we will
use the integral equation form of the IVP (1.1) (see (5.5) below).

Theorem 5.5. Let (f, g) = (Dγ/4f1, D
1+γ/4h) ∈ H1(R)×L2(R) with ‖f‖1,2+‖g‖2 < δ

sufficiently small and α = 4
γ , γ ∈ (0, 4/5). Let ψ denote the solution in H1(R) of the linear

problem (2.1). Then the integral equation

u(t) = ψ(t)−
t∫

0

V2(t− τ)(|u|α−1u)xx(τ) dτ (5.5)

has a unique solution in X = Lα(R : Lp
1(R)) ∩ L∞(R : H1(R)), where p = 2

1−γ .

Proof. To establish this result we will use the contraction mapping principle.
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Define

Φ(f,g)(u)(t) = Φ(u)(t) = ψ(t)−
t∫

0

V2(t− τ)(|u|α−1u)xx(τ), dτ (5.6)

and
Ya = {v ∈ Lα(R : Lp

1(R)) ∩ L∞(R : H1(R)) : Λ(v) ≤ a}
where Λ(v) = max{sup

t
‖v(t)‖1,2, ‖v‖Lq(R :Lp

1(R))}.
We first shall show that Φ : Ya → Ya and next that Φ is a contraction in Ya.

Φ : Ya 7→ Ya.

Notice that the hypothesis α = 4
γ with γ ∈ (0, 4/5) implies α > 1

1−γ . With this
observation we can begin the proof of the previous statement.

Use of the definition (5.6), (2.27), (2.33), Hölder’s inequality in the x-variable and the

fact that Lp
1(R) /⊆ L

2(α−1)
γ (R) for α > 1

1−γ , γ ∈ (0, 4/5), lead to

‖Φ(u)(t)‖1,2 ≤ ‖ψ(t)‖1,2 + c

t∫

0

(‖ |u|α−1u(τ)‖2 + ‖u|u|α−2ux(τ)‖2) dτ

≤ ‖ψ(t)‖1,2 + c

t∫

0

(‖u(τ)‖α−1
2(α−1)

γ

‖u(τ)‖p + ‖u(τ)‖α−1
2(α−1)

γ

‖ux(τ)‖p) dτ

≤ ‖ψ(t)‖1,2 + c

∞∫

−∞
‖u(τ)‖α

1,p dt.

(5.7)

On the other hand, definition (5.6), Lemma 2.15, Hölder’s inequality in the x-variable

and the embedding Lp
1(R) ⊂ L

2(α−1)
γ (R) for α > 1

1−γ , γ ∈ (0, 4/5), yield

‖Φ(u)(t)‖p ≤ c‖ψ(t)‖p + c

t∫

0

(t− τ)−γ/2‖ |u|α−1u(τ)‖q dτ

≤ c‖ψ(t)‖p + c

t∫

0

(t− τ)−γ/2‖u(τ)‖α−1
2(α−1)

γ

‖u(τ)‖2 dτ

≤ c‖ψ(t)‖p + c

t∫

0

(t− τ)−γ/2‖u(τ)‖α−1
1,p ‖u(τ)‖2 dτ

setting γ
2 = 2

α and applying Hardy-Littlewood-Sobolev theorem (see Theorem A.16 in the
Appendix) we obtain

‖Φ(u)‖Lα(R :Lp(R)) ≤ c‖ψ(t)‖Lα(R :Lp(R)) + c sup
t
‖u(t)‖1,2 ‖u‖α−1

Lα(R :Lp
1(R))

. (5.8)
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A similar argument leads to

‖(Φ(u))x‖Lα(R :Lp(R)) ≤ c‖ψx(t)‖Lα(R :Lp(R)) + c sup
t
‖u(t)‖1,2 ‖u‖α−1

Lα(R :Lp
1(R))

. (5.9)

Therefore a combination of (5.7), (5.8) and (5.9) gives

Λ(Φ(u)) ≤ cΛ(ψ) + 2c(Λ(u))α.

So if ‖f‖1,2 + ‖g‖2 is sufficiently small such that cΛ(ψ) ≤ a
2 with 2caα−1 < 1

4 , we obtain
that

Λ(Φ(u)) ≤ a,

this shows that Φ : Ya → Ya.
Next step is to prove that Φ is in fact a contraction. We consider u and v in Ya, thus

(Φ(u)− Φ(v))(t) = −
t∫

0

V2(t− τ)(|u|α−1u− |v|α−1v)xx(τ) dτ.

To estimate sup
t
‖(Φ(u)− Φ(v))(t)‖1,2 we use (2.27), (2.33) to have

‖(Φ(u)− Φ(v))(t)‖1,2 ≤ c

t∫

0

‖(|u|α−1 + |v|α−1)(u− v)(τ)‖2 dτ

+

t∫

0

‖(|u|α−1u− |v|α−1v)x(τ)‖2 dτ

= I1 + I2.

Using a similar argument as in (5.7) it follows that

I1 ≤ c

t∫

0

(‖u(τ)‖α−1
1,p + ‖v(τ)‖α−1

1,p )‖(u− v)(τ)‖p dτ

≤ c(‖u‖α−1
Lα(R :Lp

1(R))
+ ‖v‖α−1

Lα(R :Lp
1(R))

)‖u− v‖Lα(R :Lp
1(R)).

(5.10)

The last inequality follows from Hölder’s inequality in t.
On the other hand, we have that

I2 ≤ c

t∫

0

‖(|u|α−2 + |v|α−2)(u− v)ux(τ)‖2 dτ

+ c

t∫

0

‖v|v|α−2(ux − vx)(τ)‖2 dτ

= I1
2 + I2

2 .

The argument in (5.7) leads to

I2
2 ≤ c‖v‖α−1

Lα(R :Lp
1(R))

‖u− v‖Lα(R :Lp
1(R)). (5.11)
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To bound I1
2 , we first apply the generalized Hölder’s inequality to obtain

‖(|u|α−2 + |v|α−2)(u− v)ux(τ)‖2 ≤ (‖u‖α−2
p′ + ‖v‖α−2

p′ )‖u− v‖p′‖ux‖p (5.12)

where p′ = 2p(α−1)
p−2 , p = 2

1−γ . Then using the fact that Lp
1 ⊂ Lp′ for α > 1

1−γ , γ ∈ (0, 4/5),
and Hölder’s inequality in t it follows that

I1
2 ≤ c

t∫

0

(‖u(τ)‖α−1
1,p + ‖v(τ)‖α−2

1,p ‖u(τ)‖1,p)‖(u− v)(τ)‖1,p dτ

≤ c(‖u‖α−1
Lα(R :Lp

1(R))
+ ‖v‖α−2

Lα(R :Lp
1(R))

‖u‖Lα(R :Lp
1(R)))‖u− v‖Lα(R :Lp

1(R)).

(5.13)

Gathering (5.10), (5.11) and (5.13) up, we find that

sup
t
‖(Φ(u)− Φ(v))(t)‖1,2 ≤ c (2‖u‖α−1

Lα(R :Lp
1(R))

+ 2‖v‖α−1
Lα(R :Lp

1(R))

+ ‖v‖α−2
Lα(R :Lp

1(R))
‖u‖Lα(R :Lp

1(R)))‖u− v‖Lα(R :Lp
1(R)).

(5.14)

Next we shall estimate ‖Φ(u)− Φ(v)‖Lα(R :Lp
1(R)), so we begin by estimating

‖Φ(u) − Φ(v)‖Lα(R :Lp(R)), it can be done using a similar argument as in (5.8), thus we
obtain

‖Φ(u)− Φ(v)‖Lα(R :Lp(R)) ≤ c(‖u‖α−1
Lα(R :Lp

1(R))
+ ‖v‖α−1

Lα(R :Lp
1(R))

)

× sup
t
‖(u− v)(t)‖1,2.

(5.15)

It remains to estimate ‖(Φ(u)− Φ(v))x‖Lα(R :Lp(R)). Lemma 2.15 leads to

‖(Φ(u)− Φ(v))x(t)‖p ≤ c

t∫

0

(t− τ)−γ/2‖(|u|α−2+|v|α−2)(u− v)ux(τ)‖qdτ

+ c

t∫

0

(t− τ)−γ/2‖|v|v|α−2(ux − vx)(τ)‖q dτ

= I1 + I2 here q =
2

1 + γ
.

To bound I2 we use a similar argument as in (5.8) to obtain

I2 ≤ c

t∫

0

(t− τ)−γ/2‖v(τ)‖α−1
1,p ‖(u− v)(τ)‖1,2 dτ. (5.16)

Now to estimate I1 we follow the argument in (5.12) to have

I1 ≤ c

t∫

0

(t− τ)−γ/2(‖u(τ)‖α−2
1,p + ‖v(τ)‖α−2

1,p )‖(u− v)(τ)‖1,p‖ux(τ)‖1,2 dτ.
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Setting γ
2 = 2

α and using Hardy-Littlewood-Sobolev theorem it follows that

‖(Φ(u)− Φ(v))x‖Lα(R :Lp(R)) ≤ c‖v‖α−1
Lα(R :Lp

1(R))
sup

t
‖(u− v)(t)‖1,2

+ (‖u‖α−2
Lα(R :Lp

1(R))
+ ‖v‖α−2

Lα(R :Lp
1(R))

) sup
t
‖u(t)‖1,2‖u− v‖Lα(R :Lp

1(R)).
(5.17)

Therefore a combination of (5.15), (5.16) and (5.17) leads to

‖Φ(u)− Φ(v)‖Lα(R :Lp
1(R))

≤ c(‖u‖α−1
Lα(R :Lp

1(R))
+ 2‖v‖α−1

Lα(R :Lp
1(R))

) sup
t
‖(u− v)(t)‖1,2

+ (‖u‖α−2
Lα(R :Lp

1(R))
+ ‖v‖α−2

Lα(R :Lp
1(R))

) sup
t
‖u(t)‖1,2‖u− v‖Lα(R :Lp

1(R)).

(5.18)

Thus from (5.14) and (5.18) it follows that

Λ(Φ(u)− Φ(v)) ≤ c{2(Λ(u))α−1 + 2(Λ(v))α−1 + (Λ(v))α−2Λ(u)}Λ(u− v)

≤ Λ(u− v), by the choice of a.

This shows that Φ is a contraction. Therefore the contraction mapping principle gives
the existence and uniqueness in Ya. It is not difficult to prove the uniqueness in X, this
completes the proof. ¤

Now we are in position to prove Theorem 5.4

Proof of Theorem 5.4. We define

u±(t) = u(t) +

t∫

±∞
V2(t− τ)(|u|α−1u)xx(τ) dτ,

where u(t) is given by Theorem (5.5).
From (2.27), (2.33) and Hölder’s inequality it follows that

‖u(t)− u±(t)‖1,2 ≤ c

t∫

±∞
‖|u|α−1u(τ)‖1,2 dτ

≤ c

t∫

±∞
‖u(τ)‖α

2α dτ + c

t∫

±∞
‖u(τ)‖α−1

2(α−1)
γ

‖ux(τ)‖p dτ.

But Lp
1(R) ⊂ L2α(R) and Lp

1(R) ⊂ L
2(α−1)

γ (R) for α > 1
1−γ and γ ∈ (0, 4/5). Therefore

‖u(t)− u±(t)‖1,2 ≤ 2c

t∫

±∞
‖u(τ)‖α

1,p dτ.

By Theorem 5.5, the integral on the right hand side approaches to zero as t → ±∞. This
gives the desired result. ¤
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5.3. Blow-up

As we commented in the introduction the Boussinesq equation

utt − uxx + uxxxx + (u2)xx = 0,

has a large set of initial data for which there are no global (in time) smooth solutions.
In this section we present a result obtained by Angulo and Scialom [2] showing the

finite time blow-up of solutions to (1.1). This is an extension of a previous result obtained
by Liu [35]. The main tool used in [35] was the application of general methods introduced
by Payne and Sattinger in [39].

We will consider ψ(u) = u|u|α−1, α > 1, and we write (1.1) as the first-order system
given in (1.5), (1.6), that is, 




ut = vx, x ∈ R, t ≥ 0
vt = (u− uxx − ψ(u))x,

(u(x, 0), v(x, 0)) = (u0, v0).
(5.19)

One of the main idea is to find regions invariant for the flow and such that for initial
data in these sets, it is possible either to find global bounded solutions or solutions blowing-
up in finite time. Here, we mean by blow-up of solutions the existence of t∗ < ∞ such
that

lim
t→t∗−

‖u(t)‖1 = +∞.

We recall the time invariant quantities for the flow of (5.19),




E(u, v) =
∫

R

1
2
u2 +

1
2
u2

x +
1
2
v2 − 1

α + 1
|u|α+1 dx

≡ 1
2
‖u‖2

1,2 +
1
2
‖v‖2

2 −
1

α + 1
‖u‖α+1

α+1

Q(u, v) =
∫

R
uv dx.

Define the set Kc
2 as:

Kc
2 = {u ∈ H1(R) : Lc(u,−cu) < d(c), Rc(u) < 0},

where Rc(u) = ‖u‖2
1,c − ‖u‖α+1

α+1, Lc(u, v) = E(u, v) + c Q(u, v) and d(c) = Lc(φc,−cφc).
The ‖ · ‖2

1,c-norm is defined by ‖u‖2
1,c ≡ (1− c2)‖u‖2

2 + ‖ux‖2
2, |c| < 1 and φc is the solution

(up translation) of the nonlinear equation,

−φ′′c + (1− c2)φc − φc|φc|α−1 = 0, |c| < 1. (5.20)

As it was noted in Bona and Sachs [6] the function φc can be found explicitly as

φc(ξ) =
[(α + 1)(1− c2)

2

] 1
α−1 sech

2
α−1

((α− 1)
√

1− c2

2
ξ
)
.

The main result regarding blow-up in finite time of solutions of (5.19) is next.

Theorem 5.6. Let α > 1 and |c| < 1. Suppose,
(a) (u0, v0) ∈ H1(R)× L2(R), and ξ−1û0(ξ) ∈ L2(R).
(b) u0 ∈ Kc

2, E(u0, v0) < d(c) and Lc(u0, v0) < d(c).
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Let ~u = (u, v) be the solution of (5.19) with ~u0 = (u0, v0) such that ~u ∈ C([0, Tmax);
H1(R) × L2(R)), where Tmax is the maximum time of existence of the solution. Then,
Tmax < +∞ and

lim
t→T−max

‖u(t)‖1 = lim
t→T−max

‖u(t)‖α+1 = +∞.

Remark 5.7. The above theorem considered in the special case of c = 0 recovers Liu’s
result (see Theorem 4.2 in [35]).

The first step in the proof of Theorem 5.6 is to characterize the best constant for the
inequality

‖f‖α+1 5 Bc
α‖f‖1,c , (5.21)

with |c| < 1, 1 < α < ∞. The value of the best constant Bc
α is obtained as the minimum

of a constrained variational problem naturally associated with (5.21). This is made by
using the method of concentration-compactness introduced by Lions in [34] ( see also [1],
[10] and Lopes in [36]). Once this characterization is obtained we use some of the ideas
in ([39], [35]) to establish the theorem.

5.3.1. Variational Problem and the Best Constant. In this section we show
that the best constant for the inequality (5.21) is Bc

α = ‖φc‖
−α−1

α+1

1,c , where φc is the solution
of (5.20) (see Theorem 5.10 below). This value can be obtained for instance using the
concentration-compactness method [34]. Here we will use the next result due to Lopes
[36].

Let

V (u) =
1
2

∫

Rn

|∇u(x)|2 dx +
∫

Rn

F (u(x)) dx (5.22)

and

I(u) =
∫

Rn

G(u(x)) dx = λ 6= 0. (5.23)

For n ≥ 2 let `(n) = 2n
n−2 . Denote by M = {u ∈ H1(Rn) : I(u) = λ} the admissible

set. Denote by f(u) and g(u) the derivatives of F (u) and G(u), respectively. Set F (u) =
mu2 + F1(u) and G(u) = m0u

2 + G1(u).
The following assumptions are made:
(H1) F1(u) and G1(u) are C2 functions with F1(0) = G1(0) = 0 = F ′

1(0) = G′
1(0) and

for some constant k and 2 < q ≤ p < `(N) we have

|F ′′
1 (u)|, |G′′

1(u)| ≤ k(|u|q−2 + |u|p−2).

(H2) V is bounded below on M and any minimizing sequence is bounded in H1(Rn).
(H3) If u ∈ H1(Rn) and u /≡ 0, then g(u(·)) /≡ 0

Theorem 5.8. Assume (H1), (H2) and (H3). If uj is a minimizing sequence and
uj converges weakly in H1(Rn) to u /≡ 0, then uj converges to u strongly in Lr(Rn),
2 < r < `(n) (for n = 1 this interval becomes 2 < r ≤ ∞). Moreover, if m0 = 0 and
m > 0. Then modulo translation in the x variable any minimizing sequence is precompact
in H1(Rn).
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First we will see that the inequality (5.21) is satisfied for |c| < 1, indeed, considering
the classical Sobolev embedding theorem, we obtain

‖f‖α+1 ≤ Cα‖f‖1,2 ≤ Bc
α‖f‖1,c, (5.24)

where Bc
α = Cα√

1−c2
.

Next we state the variational problem which leads to the best constant.

Theorem 5.9. If α > 1 and |c| < 1, then for J(f) =
‖f‖2

1,c

‖f‖2
α+1

we obtain

min{J(f) : f ∈ H1(R), f 6= 0} = J(φc),

where φc is the solution of (5.20).

Proof. Observe that since for f ∈ H1(R), f 6= 0, J( f
‖f‖α+1

) = J(f), then

min {J(f) : f ∈ H1(R), f 6= 0} = min {J(f) : f ∈ H1(R), ‖f‖α+1 = 1}.
Therefore to find the minimum in Theorem 5.9, it is sufficient to minimize the functional

V (f) ≡ 1
2

∫

R
[f ′(x)]2 dx +

1
2

∫

R
(1− c2)f2(x) dx (5.25)

subject to the constraint,

I(f) ≡
∫

R
|f(x)|α+1 dx = 1, (5.26)

in the space H1(R). The proof of existence of this minimum is a straightforward applica-
tion of Theorem 5.8.

Therefore, let ϕ ∈ H1(R) be such that ‖ϕ‖α+1 = 1 and V (ϕ) = Inf
f∈M

V (f). Then ϕ

satisfies the Euler-Lagrange equation

V ′(ϕ) = λI ′(ϕ),

for some λ ∈ R (λ > 0). This implies that ϕ satisfies the equation

−ϕ′′ + (1− c2)ϕ = λ(α + 1)ϕ|ϕ|α−1,

in the distributions sense on R. Taking φ̃c(ξ) = [λ(α+1)]
1

α−1 ϕ(ξ), we obtain a distribution
solution of (5.20), which, after a bootstrapping argument, is in fact a C∞-function and
satisfies (5.20) pointwise. Then by the uniqueness (up translations) of solution for (5.20)
(see [4], Theorem 5) we must have that φ̃c(·) = φc(·+ r). Thus

J(φc) = J([λ(α + 1)]
1

α−1 ϕ) = J(ϕ) = 2V (ϕ)

= 2 min{V (f) : f ∈ H1(R), ‖f‖α+1 = 1}
= min{J(f) : f ∈ H1(R), f 6= 0}.

This completes the proof of Theorem 5.24. ¤
As a consequence of this result we obtain the value of the best constant stated above.

Theorem 5.10. Let α > 1. The smallest constant for which inequality (5.24) holds is

given by Bc
α = ‖φc‖

−α−1
α+1

1,c , where φc is the solution of (5.20).
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Proof. Since φc satisfies (5.20) we obtain that ‖φc‖2
1,c = ‖φc‖α+1

α+1. Moreover, by

Theorem 5.9 J(φc) = ‖φc‖
2(α−1)

α+1

1,c , thus Bc
α = ‖φc‖

−α−1
α+1

1,c . ¤

5.3.2. Finite Blow-up Time. In this section we use the best constant result to
obtain the prove Theorem 5.9.

The next lemma is concerned with the invariance of the region Kc
2 for the flow governed

by (5.19).

Lemma 5.11 (Invariant sets). Suppose f(s) = s|s|α−1 with α > 1. Let |c| < 1,
(u0, v0) ∈ Kc

2 × L2(R) and Lc(u0, v0) < d(c). Let ~u = (u, v) be the solution of (5.19)
with ~u(0) = (u0, v0) such that ~u ∈ C([0, T );H1(R)× L2(R)) for T > 0. Then

u(t) ∈ Kc
2

and
Rc(u(t)) < 2Lc(u0, v0)− 2d(c) for t ∈ [0, T ).

Proof. See Lemma 5.3 in [35]. ¤
The next differential inequality will play a crucial role in the proof of finite blow-up

in time for (5.19).

Lemma 5.12. Suppose that a twice-differentiable function Ψ(t) is positive and satisfies
for t ∈ [0, T ) the inequality

Ψ(t)Ψ′′(t)− (1 + β)(Ψ′(t))2 ≥ 0

where β > 0. If Ψ(0) > 0 and Ψ′(0) > 0, then

lim
t↑t∗1

Ψ(t) = +∞,

where t∗1 ≤ Ψ(0)
βΨ′(0) .

Proof. See Sachs ([31]) or Levine ([29]). ¤
We are ready to establish Theorem 5.6.

Proof of Theorem 5.6. Suppose that Tmax = +∞. A contradiction will be ob-
tained from Lemma 5.12, choosing Ψ(t) = ‖ξ−1û(t)‖2. In fact, as ξ−1ût ∈ L2(R), we
obtain

Ψ′(t) = 2Re < ξ−1 û, ξ−1ût > .

From (1.1) and (5.19) it follows that Ψ′′(t) = 2‖v(t)‖2 − 2‖u(t)‖2
1 + 2‖u(t)‖α+1

α+1. We
now see that, Ψ′′(t) > (α + 3)‖v(t)‖2. In fact,

Ψ′′(t) = (α + 3)‖v(t)‖2 + (α− 1)‖u(t)‖2
1,2 − 2(α + 1)E(u0, v0)

= (α + 3)‖v‖2 + (α− 1)‖u‖2
1,c + (α− 1)c2‖u‖2 − 2(α + 1)E(u0, v0)

> (α + 3)‖v‖2 + (α− 1)‖u‖2
1,c − 2(α + 1)d(c) + (α− 1)c2‖u‖2.

Now, from assumption (b) and the result concerning the best constant (Theorem 5.10),
we obtain

‖u‖2
1,c < ‖u(t)‖α+1

α+1 ≤ ‖φc‖−(α−1)
1,c ‖u‖α+1

1,c .
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Thus,

Ψ′′(t) > (α + 3)‖v‖2 + (α− 1)‖φc‖2
1,c − 2(α + 1)d(c) + (α− 1)c2‖u‖2

= (α + 3)‖v‖2 + (α− 1)‖φc‖2
1,c − 2(α + 1)[

α− 1
2(α + 1)

‖φc‖2
1,c]

+ (α− 1)c2‖u‖2

= (α + 3)‖v‖2 + (α− 1)c2‖u‖2

(5.27)

where we used that d(c) = Lc(φc,−cφc) = α−1
2(α+1)‖φc‖2

1,c.
Thus, the Cauchy-Schwarz inequality implies that

Ψ(t)Ψ′′(t)− α + 3
4

(Ψ′(t))2 > (α + 3)‖ξ−1û‖2‖v‖2

− α + 3
4

(2Re < ξ−1û, ξ−1ût >)2

≥ (α + 3)‖ξ−1û‖2‖v‖2 − (α + 3)‖ξ−1û‖2‖v‖2 = 0.

Now, we suppose that Ψ′(t1) > 0 for some t1 > 0 (this will imply that Ψ(t1) > 0).
Then from Lemma 5.12 we obtain that

lim
t→t−2

‖ξ−1û(t)‖2 = lim
t→t−2

Ψ(t) = +∞

for t1 < t2 5 t∗ = Ψ(t1)
βΨ′(t1) +t1, where β = α−1

4 . Hence there exists a sequence {tn}n=1, tn →
t−2 such that lim

tn→t−2
‖v(tn)‖ = +∞. This contradicts the fact that v ∈ C([0, +∞);L2(R)).

Thus Tmax < +∞ and from the local existence theory (see [31]), we have that

lim
t→T−max

‖u(t)‖1 + ‖v(t)‖ = +∞.

Finally, since E(u, v) = E(u0, v0) we obtain

lim
t→T−max

‖u(t)‖1 = lim
t→T−max

‖u(t)‖α+1 = +∞.

Next we prove that Ψ′(t1) > 0 for some t1 > 0. Suppose not, then, Ψ′(t) 5 0 for all
t = 0. Since Ψ′′(t) > 0 and Ψ′ is continuous, the limit lim

t→+∞Ψ′(t) exists. Then,

lim
t→+∞Ψ′(t) = Ψ′(0) +

∫ +∞

0
Ψ′′(s) ds < +∞.

Hence, we obtain a sequence {tn}n=1 such that lim
tn→+∞Ψ′′(tn) = 0. Then it follows from

(5.27) that lim
tn→+∞‖v(tn)‖ = lim

tn→+∞‖u(tn)‖ = 0. Moreover,

0 = lim
tn→+∞Ψ′′(tn)

= lim
tn→+∞[(α + 3)‖v(tn)‖2 + (α− 1)‖u(tn)‖2

1,c + (α− 1)c2‖u(tn)‖2]

− 2(α + 1)E(u0, v0)

=(α− 1) lim
tn→+∞‖u(tn)‖2

1,c − 2(α + 1)E(u0, v0).
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Thus,

lim
tn→+∞‖u(tn)‖2

1,c =
2(α + 1)
α− 1

E(u0, v0).

Now, since Lc(u0, v0) < d(c), Lemma 5.11 implies that

Rc(u) = ‖u‖2
1,c − |u|α+1

α+1 < 2Lc(u0, v0)− 2d(c)

≤ 2E(u0, v0) + 2|c|‖u‖‖v‖ − 2d(c),
(5.28)

and the result concerning the best constant yields

lim sup |u(tn)|α+1
α+1 5 ‖φc‖−(α−1)

1,c lim sup ‖u(tn)‖α+1
1,c

= ‖φc‖−(α−1)
1,c (lim sup ‖u(tn)‖2

1,c)
α+1

2

≤ ‖φc‖−(α−1)
1,c

[2(α + 1)
α− 1

]α+1
2 [E(u0, v0)]

α+1
2 .

(5.29)

Therefore, from (5.28) and the relation lim sup(an−bn) = lim sup an−lim sup bn we deduce
that

2(α + 1)
α− 1

E(u0, v0)− ‖φc‖−(α−1)
1,c

[2(α + 1)
α− 1

]α+1
2 [E(u0, v0)]

α+1
2

5 lim sup ‖u(tn)‖2
1,c − lim sup |u(tn)|α+1

α+1

5 2E(u0, v0)− 2d(c).

(5.30)

Since d(c) = α−1
2(α+1)‖φc‖2

1,c and E(u0, v0) < d(c) the left hand side of (3.4) is positive,
therefore E(u0, v0) > d(c). This contradiction completes the proof of Theorem 5.6. ¤





APPENDIX A

A.1. Fourier Transform

Definition A.1. The Fourier transform of a function f ∈ L1(Rn), denoted by f̂ , is
defined as

f̂(ξ) =
∫

Rn

f(x)e2πix·ξdx, for ξ ∈ Rn, (A.1)

where x · ξ = x1ξ1 + · · ·+ xnξn.

We list some basic properties of the Fourier transform in L1(Rn).

Theorem A.2. Let f ∈ L1(Rn). Then

(1) f 7→ f̂ defines a linear transformation from L1(Rn) into L∞(Rn) with

‖f̂ ‖∞ ≤ ‖f‖1. (A.2)

(2) f̂ is continuous.
(3) f̂(ξ) → 0 as |ξ| → ∞ (Riemann–Lebesgue).
(4) If τhf(x) = f(x− h) denotes the translation by h ∈ Rn, then

(̂τhf)(ξ) = e−2πi(h·ξ)f̂(ξ), (A.3)

and
̂(e−2πi(x·h)f)(ξ) = (τ−hf̂ )(ξ). (A.4)

(5) If δaf(x) = f(ax) denotes a dilation by a > 0, then

(̂δaf)(ξ) = a−nf̂(a−1ξ). (A.5)

(6) Let g ∈ L1(Rn) and f ∗ g be the convolution of f and g. Then

(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ). (A.6)

(7) If xk f ∈ L1(Rn), then

∂f̂

∂ξk
(ξ) = ̂(−2πixkf(x))(ξ). (A.7)

(8) If ∂f
∂xk

∈ L1(Rn), then

∂̂f

∂xk
(ξ) = 2πiξkf̂(ξ). (A.8)

57
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Theorem A.3 (Plancherel). Let f ∈ L1(Rn) ∩ L2(Rn). Then f̂ ∈ L2 and

‖f̂ ‖2 = ‖f‖2. (A.9)

Theorem A.3 shows that the Fourier transform defines a linear bounded operator from
L1(Rn) ∩ L2(Rn) into L2(Rn). Indeed, this operator is an isometry. Thus, there is a
unique bounded extension F defined in all L2(Rn). F is called the Fourier transform in
L2(Rn). We shall use the notation f̂ = F(f) for f ∈ L2(Rn). In general, this definition
f̂ is realized as a limit in L2 of the sequence {ĥj}, where {hj} denotes any sequence
in L1(Rn) ∩ L2(Rn) which converges to f in the L2-norm. It is convenient to take hj

equals to f for |x| ≤ j and vanishing for |x| > j. Then,

ĥj(ξ) =
∫

|x|<j

f(x) e2πix·ξ dx =
∫

Rn

hj(x) e2πix·ξ dx

and so
ĥj(ξ) → f̂(ξ) in L2 as j →∞.

An isometry which is also onto defines a unitary operator. Theorem A.3 affirms that
F is an isometry and if fact F is also onto.

Theorem A.4. The Fourier transform defines an unitary operator in L2(Rn).

Theorem A.5. The inverse of the Fourier transform F−1 can be expressed as

(FFf)(x) = f(−x), for any f ∈ L2(Rn). (A.10)

From the definitions of the Fourier transform on L1(Rn) and on L2(Rn) there is a
natural extension to L1 + L2. It is not hard to see that L1 + L2 contains the spaces
Lp(Rn) for 1 ≤ p ≤ 2. On the other hand, as we shall prove, any function in Lp(Rn)
for p > 2 has a Fourier transform in the distribution sense. However, they may not be
functions, they are tempered distributions.

For each (ν, β) ∈ (Z+)2n we denote the semi-norm ||| · |||(ν,β) defined as

|||f |||(ν,β) = ‖xν∂β
xf‖∞.

Now we define the Schwartz space S(Rn), the space of the C∞-functions decaying at
infinity, i.e.,

S(Rn) = {ϕ ∈ C∞(Rn) : |||ϕ|||(ν,β) < ∞ for any ν, β ∈ (Z+)n}.
Observe that S(Rn) is dense in Lp(Rn) for 1 ≤ p < ∞. The topology in S(Rn) is given

by the family of semi-norms ||| · |||(ν,β), (ν, β) ∈ (Z+)2n.

Definition A.6. Let {ϕj} ⊂ S(Rn). Then ϕj → 0 as j → ∞ if for any (ν, β) ∈
(Z+)2n one has that

|||ϕj |||(ν,β) −→ 0 as j →∞.

The relationship between the Fourier transform and the function space S(Rn) is
described in the formulae (A.7), (A.8). More precisely, we have the following result:

Theorem A.7. The map ϕ 7→ ϕ̂ is an isomorphism from S(Rn) into itself.
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The space S(Rn) appears naturally associated to the Fourier transform. By duality we
can define the tempered distributions S′(Rn).

Definition A.8. We say that Ψ : S(Rn) 7→ C defines a tempered distribution if
(1) Ψ is linear,
(2) Ψ is continuous, i.e. if ϕj → 0 as j →∞ then the numerical sequence Ψ(ϕj) → 0

as j →∞.

Now given a Ψ ∈ S′(Rn) its Fourier transform can be defined in the following natural
form.

Definition A.9. Given Ψ ∈ S′(Rn) its Fourier transform Ψ̂ ∈ S′(Rn) is defined
as

Ψ̂(ϕ) = Ψ(ϕ̂), for any ϕ ∈ S(Rn). (A.11)

Definition A.10. Let {Ψj} ⊂ S′(Rn). Then Ψj → 0 as n → ∞ in S′(Rn), if for
any ϕ ∈ S(Rn) it follows that Ψj(ϕ) −→ 0 as j →∞.

As a consequence of the definitions A.8, A.10 we get the following extension of Theorem
A.7.

Theorem A.11. The map F : Ψ 7→ Ψ̂ is an isomorphism from S′(Rn) into itself.

A.2. Interpolation of Operators

Let (X, A, µ) be a measurable space ( i.e. X is a set, A denotes a σ−algebra
of measurable sub-sets of X and µ is a measure defined on A). Lp = Lp(X, A, µ),
1 ≤ p < ∞ denotes the space of complex valued functions f that are σ-measurable such
that

‖f‖p =
( ∫

X

|f(x)|p dµ
)1/p

< ∞.

Functions in Lp(X, A, µ) are defined almost everywhere with respect to µ. Similarly, we
have L∞(X, A, µ) the space of functions f that are µ−measurable complex valued and
essentially µ–bounded, with ‖f‖∞ the essential supremum of f .

Let T be a linear operator from Lp(X) to Lq(Y ). If T is continuous or bounded,
i.e.,

M = sup
f 6=0

‖Tf‖q

‖f‖p
< ∞.

we call the number M the norm of the operator T .

Theorem A.12 (Riesz-Thorin). Let p0 6= p1, q0 6= q1. Let T be a bounded linear
operator from Lp0(X, A, µ) to Lq0(Y,B, ν) with norm M0 and from Lp1(X, A, µ) to
Lq1(Y, B, ν) with norm M1. Then T is bounded from Lpθ(X, A, µ) in Lqθ(Y, B, ν) with
norm Mθ such that

Mθ ≤ M1−θ
0 Mθ

1 ,

with
1
pθ

=
1− θ

p0
+

θ

p1
,

1
qθ

=
1− θ

q0
+

θ

q1
, θ ∈ (0, 1). (A.12)
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An extension of this result to a family of linear operators is given next.
Let S be the strip defined by

S = {z = x + iy : 0 ≤ x ≤ 1}
and z = x + iy ∈ S. Suppose that for each z ∈ S corresponds a linear operator Tz defined
on the space of simple functions in L1(X, A, µ) into measurable functions on Y in such a
way (Tzf)g is integrable on Y provided f is a simple function in L1(X,A, µ) and g is a
simple function in L1(Y, B, ν).

Definition A.13. The family of operators {Tz} is called admissible if the mapping

z 7→
∫

Y
(Tzf)g dν

is analytic in the interior of S, continuous on S and there exists a constant a < π such
that

e−a|y| log
∣∣
∫

Y
(Tzf)g dν

∣∣

is uniformly bounded above in the strip S.

Theorem A.14 (Stein). Suppose {Tz}, z ∈ S, is an admissible family of linear opera-
tors satisfying

‖Tiyf‖q0 ≤ M0(y) ‖f‖p0 and ‖T1+iyf‖q1 ≤ M1(y) ‖f‖p1

for all simple functions f in L1(X, A, µ), where 1 ≤ pj , qj ≤ ∞, Mj(y), j = 0, 1, are
independent of f and satisfy

sup
−∞<y<∞

eb|y| log Mj(y) < ∞

for some b < π. Then, if 0 ≤ t ≤ 1, there exists a constant Mt such that

‖Ttf‖qt ≤ Mt ‖f‖pt

for all simple functions f provided

1
pt

=
(1− t)

p0
+

t

p1
and

1
qt

=
(1− t)

q0
+

t

q1
.

Proof. For the proof of this theorem we refer the reader to [46]. ¤

A.3. Fractional Integral Theorem

Next we describe some continuity properties of the Riesz potentials. We recall that
the fundamental solution of the laplacian ∆ is given by the following formula describing
the newtonian potential

Uf(x) = cn

∫

Rn

f(y)
|x− y|n−2

dy, for n ≥ 3.

The Riesz potentials generalize this expression.



A.4. SOBOLEV SPACES 61

Definition A.15. Let 0 < α < n. The Riesz potential of order α, denoted by Iα

is defined as

Iαf(x) = cα

∫

Rn

f(y)
|x− y|n−α

dy = cαkα ∗ f(x) (A.13)

where cα = πn/22α Γ(α/2)/Γ(n/2− α/2).

Since the Riesz potentials are defined as integral operators it is natural to study their
continuity properties in Lp(Rn).

Theorem A.16 (Hardy-Littlewood-Sobolev). Let 0 < α < n, 1 ≤ p < q < ∞, with
1
q

=
1
p
− α

n
.

(1) If f ∈ Lp(Rn), then the integral (A.13) is absolutely convergent for almost every
x ∈ Rn.

(2) If p > 1, then Iα is of type (p,q), i.e.,

‖Iα(f)‖q ≤ cp,α,n‖f‖p. (A.14)

A proof of this result can be seen in [45].

A.4. Sobolev Spaces

Definition A.17. Let s ∈ R, we define Sobolev space of order s, denoted by Hs(Rn),
as

Hs(Rn) =
{

f ∈ S′(Rn) : Λsf(ξ) = (1 + |ξ|2)s/2f̂(ξ) ∈ L2(Rn)
}

, (A.15)

with norm ‖ · ‖s,2 defined as
‖f‖s,2 = ‖Λsf‖2. (A.16)

From the definition of Sobolev spaces we deduce the following properties.

Proposition A.18.
(1) If s < s′, then Hs′(Rn) /⊆ Hs(Rn).
(2) Hs(Rn) is a Hilbert space with respect to the inner product 〈·, ·〉s defined as

follows:

If f, g ∈ Hs(Rn), then 〈f , g〉s =
∫

Rn

Λsf(ξ) Λsg(ξ) dξ.

We can see, via the Fourier transform, that Hs(Rn) is equal to L2(Rn; (1 +
|ξ|2)s dξ).

(3) For any s ∈ R, the Schwartz space, S(Rn), is dense in Hs(Rn).
(4) If s1 ≤ s ≤ s2, with s = θs1 + (1− θ)s2, 0 ≤ θ ≤ 1, then

‖f‖s,2 ≤ ‖f‖θ
s1,2‖f‖1−θ

s2,2.

The relationship between the spaces Hs(Rn) and the differentiability of functions in
L2(Rn), is given in the next result.



62 A

Theorem A.19. If k is a positive integer, then Hk(Rn) coincides with the space
of functions f ∈ L2(Rn) whose derivatives (in the distribution sense) ∂α

x f belong to
L2(Rn) for every α ∈ (Z+)n with |α| = α1 + · · ·+ αn ≤ k.

In this case the norms ‖f‖k,2 and
∑
|α|≤k ‖∂α

x f‖2 are equivalent.

Theorem A.20 (Embedding). If s > n/2+k, then Hs(Rn) is continuously embedded
in Ck∞(Rn) the space of functions with k continuous derivatives vanishing at infinity. In
other words, if f ∈ Hs(Rn), s > n/2 + k, then (after a possible modification of f in a
set of measure zero) f ∈ Ck∞(Rn) and

‖f‖Ck ≤ cs ‖f‖s,2. (A.17)

From the point of view of non linear analysis the next property is essential.

Theorem A.21. If s > n/2, then Hs(Rn) is an algebra with respect to the product
of functions. That is, if f, g ∈ Hs(Rn), then fg ∈ Hs(Rn) with

‖fg‖s,2 ≤ cs‖f‖s,2‖g‖s,2. (A.18)

Next we list some useful inequalities. We begin with the so called the Gagliardo-
Nirenberg inequality, that is,

‖∂α
x f‖p ≤ c

∑

|β|≤m

‖∂β
xf‖θ

q ‖f‖1−θ
r , (A.19)

with |α| = j, c = c(j,m, p, q, r), 1
p − j

n = θ( 1
q − m

n ) + (1− θ)1
r , θ ∈ [ j

m , 1]. For the proof
of this inequality we address the reader to the reference [16].

For the general case s > 0 where the usual pointwise Leibniz rule is not available, the
inequality

‖fg‖s,2 ≤ cs(‖f‖s,2 ‖g‖∞ + ‖f‖∞ ‖g‖s,2). (A.20)
holds (see [25]).

In many applications the following commutator estimates are often used.∑

|α|=s

‖[∂α
x ; g] f‖2 =

∑

|α|=s

‖∂α
x (gf)− g∂α

x f‖2

≤ cn,s

( ‖∇g‖∞
∑

|β|=s−1

‖∂β
x f‖2 + ‖f‖∞

∑

|β|=s

‖∂α
x g‖2

)
,

(A.21)

(see [25], [28]). Similarly, for s ≥ 1 one has

‖[Λs; g] f‖2 ≤ c (‖∇g‖∞‖Λs−1f‖2 + ‖f‖∞ ‖Λsg‖2), (A.22)

(see [25]).
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Matemáticas, IMPA, 2004.

[34] P. L. Lions, The concentration-compactness principle in the calculus of variations, Ann. Inst.
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