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Abstract. Most of the oil in the world is produced by injecting water in some wells and
recovering oil in other wells. In offshore fields sea water containing organic and mineral
inclusions is injected. This practice curtails the well’s injectivity because the particles
suspended in the fluid are trapped while passing through the porous rock.

In this work, we study the deep filtration during the injection of water containing
solid particles to predict the loss of injectivity in wells. The mathematical model for the
filtration process is characterized by the filtration and the permeability reduction func-
tions which describe properties of the porous medium where the flow occurs. We develop
a recovery method for determining the permeability reduction function indirectly from
the pressure drop along the core, assuming that the filtration function has been deter-
mined previously by a separate procedure. For this recovery of permeability, we derive
an integral equation of Volterra type for the rock formation damage functionk(σ) and
we discuss conditions for well-posedness of the operator equation. Finally, we describe
a numerical implementation to calculatek(σ) within an appropriate subset of feasible
solutions. The classical Tikhonov-Phillips regularization is used to reduce the ill-posed
Volterra equation of first kind to a well-posed problem.

Keywords:Formation Damage, Deep Bed Filtration, Inverse Problem, Tikhonov Regular-
ization

1. INTRODUCTION

The physical model used here for the flow of water with suspended particles suf-
fering retention in porous media was developed in Bedrikovetsky et al. (2001) based on
Herzig et al. (1970). During the flow, gradually the suspended particles are retained, re-
ducing the permeability of the medium. For constant flow rate, this phenomenon, called
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deep bed filtration with formation damage, is modelled by the system of non-dimensional
equations:

∂

∂T
(c + σ) +

∂c

∂X
= 0, (1)

∂σ

∂T
= λ(σ)c, (2)

1/k(σ) = − ∂p

∂X
. (3)

The first equation represents mass conservation of solid particles. The second equation
represents the rate at which suspended particles are retained. The concentrations of dis-
persed and deposited particles arec(X,T ) andσ(X, T ), which have values between 0 and
1. The dependence of the retention rate onσ is expressed byλ(σ), which is called the
filtration function. The physical domain is0 ≤ X ≤ 1 andT > 1.

We assume that permeability reduction is due to particle retention, and that it is a
decreasing function of the retained concentrationσ. Eq. (3) is a form of Darcy’s law,
wherek(σ) is the permeability reduction due to particle retentionσ; when expressed as a
function ofσ, it is called theformation damage function. It is normalized so thatk(0) = 1,
i.e., it is one for clean porous rock.

Methods for determining the permeability reduction functionk(σ) from the pressure
drop history∆p(T ) were presented in Pang and Sharma (1994), Wennberg (1997) and
Bedrikovetsky et al. (2003) for constant coefficient and a one parameter family of solu-
tions.

In this work, we present a more general method for determiningk(σ) indirectly from
∆p(T ), using Tikhonov regularization and assuming thatλ(σ) has been previously deter-
mined by a separate method, such as those found in Alvarez et al. (2005) and Marchesin
et al. (2004). We also present the regularization by parametrization method, which gener-
alizes the one developed in Al-Abduwani et al. (2004) for functions of two parameters.

1.1 Boundary and measured data

As initial data atT = 0, we assume that the rock is clean and contains water with no
particles, i.e.,σ(X, 0) = 0, andc(X, 0) = 0. We assume that the solid particle concentra-
tion entering the porous medium is given, i.e., atX = 0 : c(0, T ) = ci(T ) > 0, t > 0.
The pressure drop∆p = p(1, T ) − p(0, T ) is measured in laboratory experiments, while
the quantityσ(0, T ) needs to be determined by the model. Along the lineX = 0, it
follows from Eq. (2) that

dσ(0, T )

dT
= λ(σ(0, T ))ci(T ). (4)

Givenσ(0, 0) = 0, integrating Eq. (4) providesσ(0, T ), which is positive increasing.

2. Filtration function

In Alvarez (2005), two methods were developed to obtain the filtration function from
given injected and effluent concentrations. Once we have recovered it, the deposition
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of particlesσ can be determined by solving the system of equations (1)–(2). The well-
posedness of this boundary/initial-value problem was established in Alvarez (2005), as-
suming that the filtration functionλ(σ) is piecewiseC1, with λ(σ) > 0 for σ ∈ [0, 1], and
numerical methods were developed to solve this system of equations.

3. The integral equation for the permeability reduction

For one-dimensional flow in a rock core with non-dimensional length1, we integrate
Eq. (3) and obtain the following relationship between deposited particle distribution and
pressure drop history:

∫ 1

0

f(σ(X, T ))dX = g(T ), for all T ∈ [1, A], (5)

in the physical domainD = [0, 1] × [1, A], whereA is the last time value considered,
f(σ) = 1/k(σ) is an unknown continuous function andg(T ) = −∆p is a given non-
negative continuous function. A similar integral equation was obtained in Bedrikovetsky
(1993). We begin by describing the method for finding the general solution of Eq. (5)
in the continuous case, then we show how to solve the problem numerically for discrete
data.

In order to find a solution for Eq. (5), we analyze the inverse problem associated to
the integral operator

Kσ : D(Kσ) ⊂ L2[0,M ] → Y ⊂ L2[1, A], whereM = max
D

σ(X,T ) and

(Kσf)(T ) =
∫ 1

0
f(σ(X, T ))dX, for 1 ≤ T ≤ A.

We want to obtain a procedure to approximate the inverse operatorK−1
σ . For this purpose,

the issues of existence, uniqueness and stability of Eq. (5) must be studied. We know from
the physics that its solutionf must be a positive, non-decreasing continuous function:
Assumption 1 arises naturally from the physical model (Alvarez (2005)):

Assumption 1 The inequalities−ε1 < ∂σ(X,T )
∂X

< −ε2 < 0 hold uniformly on the char-
acteristic linesX − T = constant associated to(1)–(2) in the domainD.

This information is very useful for finding a class of functions where Eq. (5) is well-posed.
The recovery strategy requires additional information about the solution, such as

smoothness and its values at the boundaries, i.e.f(0) andf(M). Sincek(0) = 1, we
havef(0) = 1. On the other hand, the valuef(M) must either be obtained from labora-
tory measurements or be evaluated numerically.

From the fact that the functionσ(X,T ) is continuously differentiable in[0, 1], for
eachT fixed, Assumption 1 and the implicit function theorem, it follows that it is possible
to obtain the inverse functionX = σ−1(y, T ) = s(y, T ) of y = σ(X, T ) restricted toD.
Now, we reformulate the problem in Eq. (5) as a Fredholm integral equation of the first
kind. We change variablesy = σ(X,T ) in Eq. (5), and rewrite it compactly as a linear
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operator equation

(Kσf)(T ) =
∫ M

0
Kσ(y, T )f(y)dy = g(T ), with T ∈ [1, A] and

Kσ(y, T ) =





0 if σ(0, T ) < y ≤ M ;[− ∂σ
∂X

(s(y, T ), T )
]−1

if σ(1, T ) < y ≤ σ(0, T );
0 if 0 ≤ y ≤ σ(1, T ).

(6)

Notice that the functionKσ is bounded due to Assumption 1, so the kernelKσ(y, T )
belongs toL2([0,M ] × [1, A]). Thus,Kσ is a Hilbert-Schmidt operator, compact from
L2[0,M ] toL2[1, A]. The adjoint operatorK∗

σ of Kσ is given by(K∗
σg)(y) =

∫ A

1
Kσ(y, T )g(T ) dT,

whereK∗
σ is defined fromL2[1, A] to L2[0,M ].

4. Conditions for existence, uniqueness and stability

In this section we transform the ill-posed problem given by Eq. (6) into a well-posed
problem by means of regularization methods.

4.1 Ill-posedness of the inverse problem

It is known that the inverse of a compact operator with an infinite dimensional domain
is not continuous. Thus, the inverse problem given by Eq. (6) is not well-posed.

To find the solution, or at least an approximation, we need to find an appropriate
subset contained in a class of feasible solutions that includes additional information such
as smoothness and positivity. We choose our set of feasible solution as

F = {f ∈ L2[0,M ]; f is non-decreasing and0 ≤ f(x) ≤ B a.e. in [0,M ]}, (7)

whereB is a constant independent ofx andf ; here a.e. means “almost everywhere”.

Remark 2 Frequently, restrictions of the formφ1(x) ≤ f(x) ≤ φ2(x), whereφ1(x)
andφ2(x) are given functions, are imposed to define the set of feasible solutionsF that
we are seeking. For example, in our case the feasible solutions must be the set of non-
negative functions uniformly bounded by some constantB, soφ1(x) = 0 andφ2(x) = B.
According to Helly’s choice theorem (see Hildebrandt (1963), page45), this subsetF of
feasible solutions is compact (see Goncarskii and Jagola (1969)).

To obtain an approximate solution of Eq.(6) inF we should keep in mind that the solution
may not exist if the functiong behaves too roughly. Since the kernelKσ and the set of
feasible solutionsF are non-negative functions,g is necessarily a non-negative function.

To obtain an approximate solution to the inverse problem associated to Eq. (6), we

prove that it is well-posed in Tikhonov’s sense. LetN(Kσ)
def
= {h ∈ L2[0, M ] such that

Kσh = 0}. The existence and uniqueness are guaranteed by the following

Theorem 3 Let us takeD(Kσ) = N(Kσ)⊥ andY = Kσ(X). Then the integral equation
(6) has a solution and it is unique.

The proof of Theorem 3 can be found in Kirsch (1996). Stability is a consequence of the
lemma of Tikhonov (Tikhonov and Arsenin (1977)).
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Theorem 4 The inverse problem of Eq.(6) is well-posed inF in Tikhonov’s sense.

Proof: The existence and uniqueness are guaranteed by Theorem 3. On the other hand,
the subset of feasible solutionsF in Eq. (7) is contained in the domainX because if
f ∈ F andKσf = 0 thenf ≡ 0. SinceF is a compact subset, the lemma of Tikhonov
guarantees that the mappingKσ : F → Y is continuous and has continuous inverse.¤

4.2 Regularization method

Following the Tikhonov regularization method, we transform the integral equation of
the first kind (6) into a well-posed Volterra-type integral equation.

We wish to findf ∈ F that minimizes the deviation||Kσf−g|| in theL2[0,M ] norm.
We recall that the subsetF is infinite dimensional and the operatorKσ is compact, so this
minimization problem is ill-posed. Tikhonov regularization consists of penalizing the
deviation in the sense of optimization theory, that is, one obtains a solution by minimizing
Tikhonov’s functional

Φα(f) = ||Kσf − g||2 + α1||f ||2 + α2|| d

dx
f ||2, (8)

with α = (α1, α2), α1 ≥ 0, α2 ≥ 0. The terms||f ||2 and|| d
dx

f ||2 are used as a penaliza-
tion for the squares error||Kσf − g||2, to avoid large oscillations.

In previous sections we introduced integral equations of the first kind, which are
defined by the linear compact operatorKσ: X → Y , with X ⊂ L2[0,M ] andY ⊂
L2[1, A]. These subspaces are chosen to select an adequate metric for the error on the
RHS of Eq. (6) and to obtain an approximate solution in the subset of feasible solutions.

To find the solution in the Sobolev spaceH1[0,M ], Eq. (6) is interpreted as an in-
tegral operator with smooth kernel mappingH1[0,M ] on L2[1, A]. All regularization
theory, including convergence and regularity, remains applicable in this setting. Follow-
ing Kress (1989) and Tikhonov and Arsenin (1977), the unique solutionfα that minimizes
the functional in Eq. (8) satisfies the following integro-differential equation with boundary
conditionf

′
α(0) = f

′
α(M) = 0:

α(fα − f
′′
α) + K∗

σKσfα = K∗
σg, (9)

Finally, the problem of finding a regularized solutionfα of Eq. (8) reduces to finding a
solution of Eq. (9) satisfying the conditionsfα(0) = f1 andfα(M) = f2, wheref1 and
f2 are known values. We assume thatfα(0) = 1. In practice the values offα(M) can be
estimated by the method of regularization by parametrization.

4.3 Choice of regularization parameter value

To solve the optimization problem in the regularization method, it is necessary to
estimate the regularization parameterα in Eq. (8). There are many strategies that guaran-
tee optimal convergence of the regularized solution starting from data polluted by errors
(Kirsch (1996), Kress (1989), Plato (1990), Morozov (1984) and Tikhonov and Arsenin
(1977)).

In this work, we combine the discrepancy principle and the L-curve methods for
choosing the regularization parameter value. First, we obtain an approximate initial so-
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lution, fixing a prescribed analytical expression for the solution and estimating the de-
ficiency of the possible solution. Here we choose a regularization parameter using the
L-curve method. Second, we calculate a solution by Tikhonov regularization using the
discrepancy principle for estimating the regularization parameter with previously speci-
fied tolerance.

The L-curve method The L-curve method is broadly discussed in Hansen (2001), and
useful tools in the Matlab package are available, see Hansen (1994). Here we mention
some fundamental ideas in the L-curve method. The L-curve is parametrized by the reg-
ularization parameter, i.e.,

{log(||Axα − b||), log(||L(xα − x0)||); α ∈ R+},

where the matricesA andL represent a discretized version of Tikhonov’s functional and
x0 is a given reference value. In many application, such a curve takes a concave form, and
the optimal value of the regularization parameter corresponds to the point of maximum
curvature.

The discrepancy principle To make optimal a posteriori choices for the regularization
parametersα, we approximate the solution of Eq. (6) for a givengδ with a known error
level from the unknown exact functiong, i.e., satisfying||gδ−g|| ≤ δ, and use a perturbed
right hand side to construct a reasonable approximationfα(δ) to the exact solution.

We compute the valueα(δ) > 0 such that the corresponding Tikhonov solutionfα(δ)

of Eq.(6) (i.e., the minimum of the Tikhonov functional in Eq. (8)) satisfies the equality
||Kσfα(δ) − gδ|| = δ. The discrepancy principle guarantees thatα is not too small, and
that the error between the regularization solution and the known valuegδ is equal toδ
(Morozov (1984)).

5. Collocation method for the integral equation

In this section we describe a numerical algorithm for obtaining the approximate so-
lution of Eq. (9) in the spaceH1[0,M ]. We calculate a discrete approximation off in
Eq. (6) by means of a quadrature formula, for an appropriate non-uniform partition of
interval [0,M ]. Thus, the continuous linear problem is reduced to a linear system of
equations.

5.1 Numerical algorithm

Here the problem of obtaining an approximate solution of Eq. (6) is reduced to solv-
ing a linear system of equations, obtained by the collocation method. We discretize the
operatorKσ and its adjointK∗

σ, then we obtain a discretization ofK∗
σKσ and use it for

solving Eq. (9). Similar methods and examples can be found in Tikhonov and Arsenin
(1977), de Hoog (1980), Varah (1983) Trummer (1984), Richter (1978), Anderssen et al.
(1980) and Neubauer (1988).
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Discretization of the operatorKσ We partition the interval[1, A] into y1, y2, . . . , y2r+1.
Taking the kernelKσ in Eq. (6) and using an appropriate quadrature formula we obtain

∫ M

0

Kσ(s, yi)fα(s)ds ≈
ms∑
j=1

ωjKσ(sj, yi)fα(sj), (10)

whereωj, j = 1, . . . , ms are weights to be determined,(sj), is a partition of[0,M ], and
(yi), i = 1, . . . , 2r + 1 is a partition of[1, A]. In Alvarez (2005) a way to calculate the
weight vectorW = (ωj) and the valuesS = (sj) is presented.

Remark 5 Notice thatKσ(s, T ) is discontinuous on the curvess = σ(0, T ) and s =
σ(1, T ). A non-uniform partition of[0,M ] is required to guarantee that the quadrature of
Eq. (6) takes into account all possible discontinuities. If a uniform partition were used,
its accuracy would be reduced to first order at the discontinuities.

Discretizing the adjoint operator K∗
σ with the operator Kσ The product of the op-

eratorsK∗
σKσ is approximated as the product of two matrices by using an appropriate

integration formula: the second term on the left hand side of Eq. (9) can be approximated
as follows

∫ A

1

Kσ(ti, y)

[∫ M

0

Kσ(s, y)fα(s)ds

]
dy ≈

2r+1∑

k=1

AkKσ(ti, yk)
ms∑
j=1

ωjKσ(sj, yk)fα(sj),

(11)

where (ti), i = 1, . . . , ms is a partition of [0, M ] and Ak are Simpson’s integration
weights. Then, settingbik = AkKσ(ti, yk) andckj = ωjKσ(sj, yk), i.e., B = (bik) an
ms by 2r + 1 matrix andC = (ckj) an2r + 1 by ms matrix, Eq. (11) can be rewritten as

∫ A

1

Kσ(ti, y)

[∫ M

0

Kσ(s, y)fα(s)ds

]
dy ≈

ms∑
j=1

(
2r+1∑

k=1

bikckj

)
fα(sj) = BCfα. (12)

Notice that matricesC andB are discrete versions of the operatorsKσ andK∗
σ: since the

inverse problem in Eq. (6) is ill-posed, these matrices are ill-conditioned, and Tikhonov
regularization for matrices is required to solve a discretization of Eq. (9) (Hansen (1994)).

Solution of the integro-differential equation Using the same notation as in Eq. (10), we
set the valuess0 = 0 andsms+1 = sms + dms+1, wheredms+1 = sms − sms−1, and obtain
dk = sk+1 − sk, wheredk 6= dk+1, for k = 0, . . . , ms. Thus, Eq. (9) is approximated by a
system of linear equations for the unknownsfi of the form:

− α
didi−1

fi+1 − α
d2

i−1
fi−1 +

(
α

didi−1
+ α

d2
i−1

+ α
)

fi +
ms∑
j=1

(
2r+1∑

k=1

bikckj

)
fj = yi, (13)

whereyi =
∑2r+1

k=1 bikhk, i = 1, . . . , ms (see Tikhonov and Arsenin (1977), pag 78), and
f0 = f(0) andfms+1 = f(M) are given. Denotinḡf = (f(s1), . . . , f(sms)), we rewrite
the system (13) as

(αV + BC)f̄ = ȳ,
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with B andC from Eq. (12), and the non-zero elements of the matrixV = (Vij) given by
the formulae:

Vii = 1
didi−1

+ 1
d2

i−1
+ 1, for i = 1, . . . , ms,

Vi,i−1 = − 1
d2

i−1
, Vi,i+1 = − 1

didi−1
, for i = 2, . . . , ms − 1,

V1,2 = − 1
d2d1

, Vms,ms−1 = − 1
dms

.

The values of the vector̄y = (ȳ1, . . . , ȳms)
T are given by:

ȳi = yi, for i = 2, . . . ,ms − 1,

ȳ1 = y1 + α
d2
0
f0, ȳms = yms + α

dmsdms−1
fms+1.

6. Regularization by parametrization

In the previous section we solved Eq. (5) under the assumption thatf(σ) belongs to
a compact subset. No assumption was made about the analytical structure of the solution.
This led to an ill-posed problem solved by the Tikhonov regularization method.

In this section we prescribe a parametric expression for the functionf(σ), i.e., we
project the functionf(σ) on a finite dimensional subspaceVn. Even in this formulation,
the problem remains ill-posed, but the procedure reduces to estimating a finite number of
parameter values. This method is useful because we do not need a priori information on
the deficiency of the solutionδ to obtain the regularization parameter.

We assume that the solution of Eq. (5) is given by the polynomial expressionf(σ) =
1+β1σ+ . . .+βnσn, whereβ1, . . . , βn are parameters to be determined. Then Eq. (5) can
be rewritten as1 + β1S1(T ) + . . . + βnSn(T ) = g(T ) whereSk(T ) =

∫ 1

0
(σ(X, T ))kdX

are the moments ofσ, for all T ∈ [1, A]. Since the values ofS1(T ), . . . , Sn(T ) andg(T )
for T equal toT1, . . . , Tm ∈ [1, A] are known, solving Eq. (5) reduces to estimating the
parametersβ1, β2, ..., βn by finding the “best” solution of the linear system of equations
Cβ̄ = ḡ whereC = (cij) is am× n matrix given bycij = Sj(Ti), ḡ = (ḡi is am vector
given byḡi = g(Ti) − 1 andβ̄ = (βj) is then vector of unknowns, which can be found
using the Tikhonov regularization method (Hansen (2001)), i.e.,

β̄α = argmin{||Cβ̄ − ḡ||2 + α||L(β̄ − β̄0)||2}, (14)

where the matrixL represents a discretization of the derivative operator,α > 0 is the
regularization parameter and̄β0 is a prescribed reference value. In this case, the L-curve
method is used to estimate a value of the regularization parameter.

7. Applications of the algorithm to synthetic data

In this section we test the regularization methods with synthetic data. We discuss
the method of regularization by parametrization and the collocation method applied to
Eq. (5).

7.1 Synthetic data

To create the synthetic data, we use the analytical solution obtained in Alvarez (2005).
First, we fix the number of parameters and their values: in the following experiments, we
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usek(σ) = (1 + 30σ + 20σ2 + 10σ3)−1. Then we calculate the right hand side of Eq. (5),
and add random perturbations to simulate experimental error (Sun et al. (2001)). Thus,
we obtain:

gδ(Tj) =

∫ 1

0

(k(σ(X,Tj)))
−1dX ± δν, for j = 1, . . . , m andTj ∈ [1, A].

whereν represents the standard Gaussian random variable with zero mean and unit stan-
dard deviation. In this study, we use the relative errorτ to define the standard deviation,
i.e.,δ = τg(Tj). We present two numerical experiments to recoverk(σ), takingτ as0.01
and0.05.

7.2 Numerical results and discussion

The regularized solution obtained with the regularization parameterα, using either
the discrepancy principle or L-curve methods, is relatively stable with respect to data
perturbations. Both methods are reasonable computational procedures, but ther sensi-
tivity to perturbations are quite different. We start by examining the numerical solution
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Figure 1: Solid line: exact solution. Solid line with circles: regularized solution by
collocation method (α1 6= 0, α2 = 0). Squares: solution by parametrization. (α1 = α2 =
0).

obtained by the collocation method minimizing the penalized functional without deriva-
tives (α2 = 0, in Eq. (8)) and the solution using parametrization without regularization
(α1 = α2 = 0). In the first experiment we take a smaller relative errorτ = 0.01: Figure
1a shows the results. Notice that when only the norm of the function is used as penal-
ization, the regularized solution has large oscillations around the exact solution. This
suggests using the derivative to smooth the regularized solution (i.e. settingα2 6= 0) so it
becomes more accurate. On the other hand, the method of regularization by parametriza-
tion apparently gives an accurate solution. However, since no regularization is being used
(α1 = α2 = 0 in Eq. (8)), this solution is more sensitive to experimental error. To illus-
trate this, Figure 1b shows the solutions of the same problem withτ = 0.05. Notice that



CILAMCE 2005 – ABMEC & AMC, Guarapari, Espı́rito Santo, Brazil, 19th – 21st October 2005

the parametrized solution changes with respect to the exact solution whenτ increases, be-
cause the norm of the difference between the parametrized solution and the “true” solution
is proportional toτ (Kress (1989)). Now we examine the results of minimizing Eq. (8)
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Figure 2: Solid line: exact solution. Squares: regularized solution from collo-
cation method with discrepancy principle. Triangles: solution from regularization
by parametrization method with L-curve. Circles: solution from regularization by
parametrization with discrepancy principle.

with bothα1 6= 0 andα2 6= 0, shown in Figure 2. For the regularization by parametriza-
tion method, we estimateα = α1 = α2 by both the L-curve method and the discrepancy
principle. In the solution obtained by the collocation method, we useα estimated by the
discrepancy principle. Figure 2a shows that all three solutions are reasonable approxima-
tions of the exact solution. In Figure 2b, the results of recovering the same solution with
relative errorτ = 0.05 are shown. As in the first experiment, the regularized solution
changes significantly relative to the exact solution when the value ofτ is increased. We
can conclude that the approximate solution is sensitive to the relative errorτ .

In the numerical experiments with the method of regularization by parametrization,
the matricesL1 = diag(1, −1) andL2 = diag(1, −2, 1) are used in the regularization
term (see Eq. (14)). These matrices represent discretized versions of the derivative oper-
ator of first and second order respectively, and we use them to stabilize the least squares
solution. The choice of order of the derivative depends on the degree of the ill-posed
problem (Hansen (2001)): to obtain singular values with higher decrease rate, higher or-
der derivative operators are required. More accurate and stable solutions were obtained
as expected using higher order operators.

8. Convergence results

The numerical examples in the previous section suggest that it is possible to stabilize
the integral equation of the first kind using only first derivative penalizing functionals
(see Section 5.). In this section, we show that this is an intrinsic property of the operator
kernel. First we present preliminary concepts and lemmas, then we prove stability results
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for the general linear equation (6).

8.1 Preliminaries

We use Tikhonov regularization for solving Eq. (6), that is, we minimize the func-
tional:

Φα(f) = ||Kf − g||2 + α||Lf ||2, (15)

whereL is an unbounded, self-adjoint linear operator. In the numerical experiment in
the previous section we tookLf = df

dx
, and obtained good numerical results. We now

prove that taking one derivative in the penalizing functional||Lf || guarantees that the
regularized solutionfα of Eq. (15) converges inL2-sense to the “true” solutionK†g, i.e.,
to least square solutions of smallest norm. We assume that we have a Fredholm integral
equation of the first kind on[0, 1] with q ∈ L2([0, 1]2) andf ∈ L2[0, 1]:

∫ 1

0

q(x, t)f(x) dx = g(t), (16)

Remark 6 Equation (6) can be reduced to an equation of the form(16) by a trivial
change of variables.

We regularize Eq. (16) by using the Hilbert scale (Krein and Petunin (1966))(Xs)s∈<,
which is induced by the operatorL : D(L) ⊂ L2[0, 1] −→ L2[0, 1] defined by

Lf =
∞∑

n=1

n(f, vn)vn, with D(L) = {f ∈ H1[0, 1] : f(0) = f(1) = 0}, (17)

wherevn(s) =
√

2 sin(nπs) and(·, ·) is the inner product inL2[0, 1]. Notice that Eq. (17)
is the spectral representation of the operatorL with D(L) defined in (17). Moreover, the
operatorL defined in this way is injective.

One can show (Neubauer (1988)) that fors > 0 there is a Hilbert scale defined as:

Xs = D(Ls) =
{
f ∈ Hs[0, 1] : f 2e(0) = f 2e(1) = 0, e = 0, 1, . . . , [s/2− 1/4]

}
,

with inner product inXs given by

(f, g)k = (Lkf, Lkg) = π−2k

(
dkf

dxk
,
dkg

dxk

)
.

8.2 Auxiliary lemmas

Lemma 7 There existb ≥ 0 andd > 0 such that

||Lf || ≥ d||f ||b. (18)

Lemma 8 LetK : L2[0, 1] → L2[0, 1] be a linear operator defined as

Kf :=

∫ 1

0

q(x, ·)f(x)dx.
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Lets1(t) ands2(t) be monotone increasing continuous functions such that

0 ≤ s1(t) ≤ s2(t) < 1 on [0, 1].

LetS(x, t) be a positive continuous function positive ons1(t) ≤ x ≤ s2(t) with t ∈ [0, 1].

Assume that the kernel is given byq(x, t) =





0 s2(t) ≤ x ≤ 1
S(x, t) s1(t) < x < s2(t)

0 0 ≤ x ≤ s1(t).
Then there exists a constantv > 0 such that||Kf || ≥ v||f ||−1, where

||f ||2−1 =
∞∑

j=1

|(f, ej)|2/j2.

The proofs of the previous Lemmas can be found in Alvarez (2005).

8.3 Convergence of the regularized solution

We show that Eq. (6) is a particular case of the family of operators treated in Lemma
8, and that its regularized solution converges to the least square solutionK†g penalized
with a first derivative term. Choosing the regularization parameterα by the discrepancy
principle, the following theorem is valid

Theorem 9 Let K : X → Y be a compact linear operator, satisfying the assumptions
in Lemma8. Let x̂ be the generalized solution belonging to the setMρ = {x ∈ D(L) :
||Lx|| < ρ}. Then the regularized solutioñxα satisfies

||x̂− x̃α|| ≤ 2ρ1/2(δ/v)1/2.

Proof: It follows from the application of the fundamental theorem in Nair (1999) and
Lemmas 7 and 8.¤

Remark 10 If δ → 0 whenα → 0 thenx̃α → x̂.

Now it is easy to see that the operator defined in Eq. (6) is a particular case of the class
defined in Lemma 8: it is enough to use the change of variablest = T/A andx = y/M
in the integral equation (6) and to chooses1(t) = σ(1, t)/M , s2(t) = σ(0, t)/M and
S(x, t) =

(
∂σ
∂x

(s(x, t), t)
)−1

. With these new variables, the operatorKσ in Eq. (6) satisfies
the assumptions of Lemma 8, and the convergence result obtained here is valid.

9. Experimental data

Soma and Papadopoulos (1995) performed experiments injecting oil-in-water emul-
sions into quartz sand. They performed four similar experiments varying the ionic strength
of the emulsion, and measured the effluent concentration and permeability reduction. We
apply the recovery procedure developed in this work to one of their experiments.

The permeability reduction function is recovered from experimental pressure drop
data using the regularization by parametrization method. We use the method described
in Alvarez (2005) to recover the filtration function and to obtain the deposited particle
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Figure 3: Predicted and experimental pressure drop histories

Table 1: Values obtained forα and associated errors for various the number of parameters.

n α relative error
2 1.01× 10−2 0.240
3 2.80× 10−3 0.120
4 8.76× 10−4 0.071
5 2.77× 10−4 0.044
6 8.34× 10−5 0.026
7 2.28× 10−5 0.014

concentrationσ(X, T ). Figure 3 shows the experimental and predicted pressure drop
histories. We can see in Fig. 3a that predicted values for three parameters is not a good
approximation of the experimental data. Better results are obtained when the number of
parameters is increased (see Fig. 3b). As can be seen in Table 1 both the regularization
parameter and the relative error decrease, as expected from the convergence results.

10. Conclusion

The method described here is a viable procedure estimating the parameters of the
empirical formation damage function from pressure drop history. The model is concise
and yields good match between forward and inverse problems for experimental data.
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