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Abstract

Incomplete �nancial markets without arbitrage opportunities are char-
acterized by the existence of multiple risk neutral probabilities. In this
context, a cost function describes the minimum amount necessary for su-
perhedging strategies and it can be recovered from the worst monetary
expectation among the whole set of risk neutral probabilities. This paper
characterizes the class of non-linear functions, called incomplete prices,
that can be viewed as a cost function of frictionless �nancial markets
without arbitrage opportunities in the two periods framework. First, we
obtain some criteria that allow to know if a given function is actually an
incomplete price. Interestingly, a new role for prices is given because we
can recover the market struture from any incomplete price, clarifying the
understanding about the interdependence between the market structure
and the functional form of incomplete prices. For instance, a �nancial
markets with a Riesz subspace of attanaible claims is in fact a "partition
market" of bets and such markets are revealed by an incomplete price
given by a Choquet integral with respect to a particular concave capacity.
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1 Introduction

Since the Arrow�s Role of Securities seminal paper the theory of equilibrium
for markets in which both spot commodities and securities are traded is the
fundamental scope for the study of basic problems of economic theory such as
equilibrium existence1 , asset pricing and so on. The general equilibrium model
assumes that the price of assets satis�es equilibrium conditions in a setting
where many agents demand assets pro�les in accordance with their preferences
and their endowments. It provides the main elements for the study of �nan-
cial market models given by the set of basic securities and the respective price
system. A fundamental result says that for an economy with �nancial mar-
kets satisfying mild conditions, at equilibrium, �nancial markets must not o¤er
arbitrage opportunities for any agent2 . For a two period economy it implies
the impossibility at equilibrium to realize positive net �nancial returns in the
second period without spending at the initial period some amount of money on
the asset market.
The principle of no-arbitrage can be viewed as the central principle of mod-

ern �nance because it is the key for the determination of the value of the assets.
As is well-known, no-arbitrage principle and the assumption of complete mar-
kets3 enforce linear pricing rule: the cost of replication of any asset is given
by the mathematical expectation of his payo¤s under the unique risk neutral
probability obtained by no-arbitrage principle. On the other hand, market in-
completeness says that not all securities can be replicated by feasible portfolios
on the market. Equivalently, while in a complete market every asset can be
hedged perfectly, in the incomplete market case it is possible to stay on the
safe side for many cases only by superhedging strategies, i.e., with a portfolio
strategy which generates payo¤s across the states that are at least as large
as the underlying contingent claim. A fundamental condition for incomplete
markets without arbitrage opportunities is the existence of multiple risk neutral
probabilities.
A cost function describes the minimum value necessary for the replication

or a superreplication of any contingent claim, and a corresponding strategy is
referred to as a minimum-cost superhedging strategy. An essential fact for the
determination of cost functions is that the standard linear approach fails for
any non attainable claim4 . In this sense, a very known result says that the

1Arrow (1953) proposed this approach for the presence of a complete securities markets and
used the results from Arrow and Debreu (1954) as well as McKenzie (1954) for the existence of
equilibrium. However, as is widely accepted, incomplete market is a more natural and intuitive
hypothesis ( Magill and Quinzii (1996) and Magill and Shafer (1991) are basics references for
general equilibrium analysis of incomplete markets, there it is possible to �nd the list of main
contributions for incomplete markets theory. Föllmer and Shied (2004) provided a treatment
of basics results in incomplete markets following the lines of �nance theory).

2See, for instance, Florenzano (1999), page 18.
3Recall that a �nancial market is complete if the trading of basic assets reproduce any

�nancial payo¤, otherwise the �nancial market is incomplete.
4Some results show that this medothological problem is typical for some importants classes

of assets, for example, a well known result from the work of Ross (1976) says that whenever the
payo¤ of every call or put option can be replicated, the securities market must be complete.
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set of risk-neutral probabilities plays an important role for the determination
of a cost function: in fact, in presence of a fair risk-free security the cost of
any contingent claim can be determinated by his maximum expected value with
respect to all risk neutral probabilities. Hence cost functions satisfy conditions
obtained by some characterizations existing in the literature (e.g., Huber (1981),
Gilboa and Schmeidler (1989), Chateauneuf (1991)). However, these properties
are not su¢ cient for the characterizations of cost functions, for instance, as we
will see in the Example 49 the epsilon-contaminated functions can never be a
cost function of some market.
This paper characterizes the class of non-linear functions, called incomplete

prices, that can be viewed as a cost functions of a frictionless �nancial market
without arbitrage opportunities in the two periods framework. First, we obtain
some criteria that allow to know if a given function is actually an incomplete
price. More precisely, we consider the class H0 of all non-linear functions on
the space of claims that is consistent with the characterization as commented
below. Such functions C induces two interesting class of assets, namely, the set
of unambiguous assets

FC := fY : C (Y ) + C (�Y ) = 0g ;

and the class of nonwasteful assets

LC := fY : X > Y ) C (X) > C (Y )g :

We show that a function C 2 H0 is an incomplete price if and only if FC = LC ,
so an incomplete price C must belong toH0 with the additional requirement that
FC = LC . In a sense, such price rules fails to provide a precise information about
the valuation of many claims. In fact, for any incomplete price the corresponding
underlying market is characterized by a set of attainable claims given by the set
of unambiguous assets which, by our characterization, is the same as the set of
nonwasteful assets.
Interestingly, a new role for prices is given because we can recover the mar-

ket struture from any incomplete price, clarifying the understanding about the
interdependence between the market structure and the functional form of incom-
plete prices. For instance, a �nancial market with a Riesz subspace of attanaible
claims is in fact a "partition market" of bets and such markets are revealed by
an incomplete price given by a Choquet integral with respect to a particular
concave capacity.

Also, Aliprantis and Tourky (2002) showed that if the number of securities is less than half the
number of states of the world, then generically we have the absence of perfect replication of
any option. Hence, the approach of �nding the value of an option by reference to the prices of
the primitive securities breaks down for any option. In another way, Baptista (2007) showed
that (generically) if every risk binary contingent claim is non attainable then every option is
non attainable.

3



2 Framework and Basic Results

Let S = fs1; :::; sng be a �nite set of states of nature. At date one, one and only
one state s will occur, and an asset X 2 RS bought at date t = 0 will deliver
payo¤X(s) at date 1 if s occurs.
We assume that at date 0 agents can trade a �nite number of assetsXj 2 RS ,

0 � j � m, with respective prices qj . Also, we suppose that5

X0 = S
� := (1; :::; 1) 2 RS

is the riskless bond and for sake of simplicity we suppose that q0 = 1. A
portfolio of an agent is identi�ed with a vector � = (�0; �1; :::�m) 2 Rm+1,
where �j denotes the quantities of asset Xj possessed by the agent.
We recall that an arbitrage opportunity is a portfolio strategy with no cost

that yields a strictly positive pro�t in some states and exposes no loss risk. The
existence of such an arbitrage opportunity may be viewed as a kind of market
ine¢ ciency. The following de�nition establishes the basic properties of prices
for e¢ cient �nancial markets6 :

De�nition 1 The market M = (Xj ; qj ; 0 � j � m) is assumed to o¤er no-
arbitrage opportunity (NAO) if for any portfolio � 2 Rm+1,

mX
j=0

�jXj > 0)
mX
j=0

�jqj > 0,

mX
j=0

�jXj = 0)
mX
j=0

�jqj = 0.

Denote by F := span (X0; X1; :::; Xm) the subspace of income transfers or
the set of attainable claims. Let 2S be the �eld of all subsets of S and � the
set of all probability measures on (S; 2S). A well known property says that7 :

Remark 2 The marketM = (Xj ; qj ; 0 � j � m) o¤ers no arbitrage opportu-
nity if and only if there exists a strictly positive probabilitity8 P0 2 � such that
EP0(Xj) = qj, 0 � j � m.

Since, in general, the probability measure P0 above is not uniquely deter-
mined an important de�nition follows as:

5For any A � S, we will denote by A� the characteristic function of the event A:

A� : S ! f0; 1g
s 2 A� (s) = 1 i¤ s 2 A.

6We use the following notation: For X 2 RS , X > 0 means that X � 0 (i.e., X (s) � 0 for
any s 2 S) and X 6= 0.

7A nice reference for the well know results used here is the chapter 1 of Föllmer and Schied
(2004).

8Note that P0 strictly positive means that P0 (fsg) > 0 for any s 2 S. We are denoting
EP (X) as the integral of the random variable X w.r.t. the probabilitiy P .
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De�nition 3 The set

Q = fP 2 � : EP (Xj) = qj ; 8j 2 f0; :::;mgg;

is called the set of risk-neutral probabilities (or martingal measures).

Note that the set Q of all risk-neutral probabilities describes the family of
all probability measures that agree about the value of all basic assets. Remark
2 is known as the fundamental theorem of asset pricing and it says that Q is
nonempty if and only if NAO is true.
As it is usual, the market M = (Xj ; qj ; 0 � j � m) is complete if every

claim Y 2 RS is attanaible, i.e., F = RS . Otherwise, we say that the market
M is incomplete. A basic fact says that, if the prices of basic securities satis�es
the NAO property then completeness of �nancial market is equivalent to the
equality Q = fP0g, where P0 turns out to be the unique probability measure
satisfying conditions of Remark 2.
Given a market M = (Xj ; qj ; 0 � j � m), a simple and important result

follows as:

Lemma 4 Consider a marketM = (Xj ; qj ; 0 � j � m) without arbitrage opor-
tunity, a claim X 2 F if and only if EP (X) = EQ(X) for any P;Q 2 Q.

Lemma 4 says that a claim is attanaible if and only if it satis�es the law of
one price, i.e., every risk neutral probability agrees about its monetary value.

3 Cost Functions of Incomplete Markets

Market incompleteness says that not all securities can be replicated by feasible
portfolios on the market, or equivalently, while in a complete market every
asset can be hedged perfectly, in the incomplete market case it is possible to
stay on the safe side for many cases only by superhedging strategies, i.e., with a
portfolio strategy which generates payo¤s across the states that are at least as
large as the underlying contingent claim: Consider a non attainable claim X, a
superhedging strategy or superreplication of X9 is any portfolio � 2 Rm+1 such
that

mX
j=0

�jXj � X:

So, it is natural to view the cost of a non attainable claim as the lowest possible
price of a superreplication ofX. Summing up, we obtain the following de�nition:

De�nition 5 For any claim X 2 RS, the cost of X is given by

C(X) = inf

8<:X
j

�jqj :
X
j

�jXj � X

9=; .
9For instance, the existence of superhedging strategies for any non attanaible claim follows

from the existence of the riskless bond.
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Moreover, C will be called the cost function of the marketM = (Xj ; qj ; 0 � j � m).

Remark 6 It is worth noticing that under NAO assumption the cost of any
attanaible claim X trivially writes:

C (X) =
mX
j=0

�jqj ;

for any portfolio � = (�0; �1; :::�m) such that X =
mX
j=0

�jXj. Moreover, the NAO

condition says that C is a strictly positive functional on F , in fact, following
the notation of Remark 2, note that

C (X) = EP0 (X) , for any X 2 F .

The set of risk-neutral probabilities Q plays an important role for the de-
termination of a cost function and it is a well-known property that can be
enunciated as:

Remark 7 For a marketM o¤ering no-arbitrage opportunity, the cost function
satis�es, for any X 2 RS:

C (X) = max
P2Q

EP (X) .

From Remark 7 a cost function is necessarily the maximum of expectations
with respect to a given family of probabilities for which characterizations ex-
ist in the literature (e.g., Huber (1981), Gilboa and Schmeidler (1989) and
Chateauneuf (1991)). Based on these characterizations, C must be10 :

1. subadditive, i.e.,

C(X + Y ) � C(X) + C(Y ); 8X;Y 2 RS ;

2. Positively a¢ nely homogeneous, i.e.,

C(�X + kS�) = �C(X) + k; 8X 2 RS ; 8k 2 R;8� � 0;

3. Monotone, i.e.,

X � Y ) C(X) � C(Y );8X;Y 2 RS :

Remark 8 As is well-known, any function with these three properties is Lip-
schitz continuous11 .
10The same characterization is the key for the representation of coherent risk measures as

introduced by Artzner et al. (1999).
11 In fact, we should to consider the supnorm X 7! kXk1 := maxs2S jX (s)j and we have

jC (X)� C (Y )j � kX � Y k1 , for all X;Y 2 RS .
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However, these conditions are not su¢ cient for the characterizations of cost
functions as will be clear in the next sections12 .
Building on the well-known properties discussed in Remarks 2 and 7, a

Lemma about cost functions is naturrally derived:

Lemma 9 The mapping C : X 2 RS ! C(X) 2 R is the cost function of a
frictionless �nancial market of securities without arbitrage opportunities if:
1) There exist X0; X1; :::; Xm 2 RS with X0 = S� and a strictly positive

probability P0 such that: EP0(Xj) = C(Xj), 0 � j � m;
2) Denoting, Q := fP 2 � : EP (Xj) = C(Xj); 0 � j � mg, then 8X 2 RS:

C(X) = max
P2Q

EP (X):

So, in this case C is the cost function of the market M = fXj ; qjgmj=0, where
qj := EP0(Xj).

4 Incomplete Markets from Incomplete Prices

4.1 Incomplete Prices: De�nition and an Auxiliary Result

We denote by H0 the family of all subadditive, positively a¢ nely homogeneus
and monotone functions C : RS ! R. Also, we denote by H the family of all
function in H0 that are strictly positive. The class H0 describes the natural
candidate to be a cost function of a frictionless market with securities without
arbitrage opportunity. So, next we introduce our terminology for functions that
in fact are cost functions of some incomplete market.

De�nition 10 We say that a function C : RS ! R is an incomplete price if C
is a cost function induced from some incomplete marketM = (Xj ; qj ; 0 � j � m).

Remark 11 We note that if C 2 H is linear then it is trivial that C is a cost
function of the complete marketM = (Xj ; qj ; 0 � j � m), where span fXjgmj=0 =
RS and qj = C (Xj).

Our main goal is to give a full characterization of incomplete prices and to
describe certain classes of incomplete prices related to some speci�c types of
incompleteness of �nancial markets. Some natural questions follows as:

� How to recognise that a particular function is an incomplete price?

� How to derive the underlying market from a given incomplete price?

� What special properties of incomplete prices could recover some particular
and important market strutures? (e.g., Arrow markets of securities with
the riskless bond).

12As we will see, by the no-arbitrage principle, a cost function must be strictly positive :
X > 0 ) C (X) > 0. However, adding this condition to the classical conditions mentioned
above we still have a set of necessary but not su¢ cient conditions.
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Remark 12 We know that C 2 H0 if and only if there exists a nonempty,
closed and convex set set K � � such that for any X 2 RS,

C (X) = max
P2K

EP (X) .

(See for instance Huber (1981)). Moreover, we note that C 2 H if and only if
there exists a strictly positive probability P0 2 K13 .

Given a function C 2 H0, we de�ne the set of unambiguous assets as,

FC :=
�
Y 2 RS : C(Y ) + C(�Y ) = 0

	
:

In fact, taking C as the rule for the determination of asset prices, the family
of claims FC describes the assets for which there is no pricing distinction between
a selling position or a buying position. The set of probabilities that agree about
the expected value of all unambiguous assets is given by,

QC := fP 2 � : EP (Y ) = C (Y ) , for any Y 2 FCg .

A �rst elementary fact says that:

Lemma 13 Given a function C 2 H0, the set of unambiguous assets FC is a
linear subspace.

Recall that by Lemma 4 in any market without arbitrage opportunities a
claim is attainable if and only if any risk neutral probability agrees about its
monetary value. So, it is intuitive that if C is an incomplete price then the
subspace of unambiguous assets is equal to the subspace of attanaible claims,
in fact:

Lemma 14 If C : RS ! R is an incomplete price then FC = F .

An auxiliary characterization of incomplete prices follows as:

Theorem 15 Let C : RS ! R be given, then (i) is equivalent to (ii):
(i) C is an incomplete price;
(ii) C is a strictly positive positive linear form on FC and

C(X) = max
P2QC

EP (X) .

Furthemore, under (i) and (ii) FC is the set of attanaible claims and QC is
the set of risk-neutral probabilities of the underlying market.

13 In fact, if C 2 H0 is strictly positive then C (fsig�) > 0; 8i 2 f1; :::; ng. Hence, for every
state si 2 S there exists a probability Pi 2 K such that EPi (fsig

�) > 0, since K is convex
we obtain that it is possible to �nd a strictly positive probability in K. For the converse, by
assumption there exists a strictly positive probability P0 2 K, hence if X > 0

C (X) � EP0 (X) � maxs2S
P0 (fsg)X (s) > 0.
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The examples below illustrate the usefulness of the criterion given by The-
orem 15 .

Example 16 Consider S = fs1; s2; s3g and

C : R3 ! R
X 7! C (X) = max fEP1 (X) ; EP2 (X)g ;

where P1 =
�
1
2 ;

1
4 ;

1
4

�
and P2 =

�
1
4 ;

1
2 ;

1
4

�
. Hence, denoting X (sk) = xk, k =

1; 2; 3 :

C (X) =

� 1
2x1 +

1
4x2 +

1
4x3; if x1 � x2

1
4x1 +

1
2x2 +

1
4x3, if x1 < x2

:

Note that: (a) C (S�) = 1; (b) C (X) = �C (�X) if and only if x1 = x2,
and then FC is a linear subspace; (c) on FC we have that C (X) = 3

4x1+
1
4x3 =

3
4x2 +

1
4x3, which implies that C is a strictly positive linear form on FC ; (d)

Note that we may take fX0; X1g � f(1; 1; 1) ; (0; 0; 1)g as a basis of FC , where
C (X0) = 1, C (X1) = 1

4 and

QC =
��
p1; p2;

1

4

�
: p1; p2 � 0 and p1 + p2 =

3

4

�
.

Now, note that if x1 < x2

max
P2QC

EP (X) =
3

4
x2 +

1

4
x3 <

1

4
x1 +

1

2
x2 +

1

4
x3 = C (X) ,

which allows us to conclude that C is not an incomplete price. An interesting
fact is that this kind of functional appears as a particular case of insurance
functionals in Castagnoli, Maccheroni and Marinacci (2002). So, in this case,
the insurance market admits some frictions (e.g., transactions costs).

Example 17 Again, consider a case with three states of nature and the function
C : R3 ! R that satis�es:

C (X) =

�
x3; if x1 + x2 � 2x3 < 0

1
2 (x1 + x2) , if x1 + x2 � 2x3 � 0

Note that: (a) C (S�) = 1; (b) C (X) = �C (�X) if and only if x1 + x2 �
2x3 = 0, hence FC is a linear subspace; (c) on FC we have that C (X) = x3 =
1
2 (x1 + x2), which implies that C is a strictly positive linear form on FC ; (d)
Note that we may take fX0; X1g � f(1; 1; 1) ; (2; 0; 1)g as a basis of FC , where
C (X0) = 1, C (X1) = 1 and

QC =
�
(p; p; 1� 2p) : 0 � p � 1

2

�
.

It turns out that:

max
0�p� 1

2

(px1 + px2 + (1� 2p)x3) = C (X) ;

hence C is an incomplete price, in fact, C is the cost function of the market
M = ((1; 1; 1) ; (2; 0; 1) ; 1; 1).
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4.2 Incomplete Prices and Nonwasteful Assets

Now, we introduce a fundamental notion for the characterization of incomplete
prices. For motivation, suppose that C is a potential incomplete price and
consider the case where there are two assets X and Y such that Y > X and
C (X) = C (Y ). If X and Y are available for an investor and he chooses X then
he incurs into a payo¤ wasteful because spending the same amount of money
the payo¤ stream promised by Y is at least equal to the payo¤ promised by
X and for some state Y delivers a strictly bigger payment. The behavior of a
reasonable investor would be to never choose claims that imply a payo¤wasteful
unless he believes that the event fs 2 S : Y (s) > X (s)g is a miracle14 .

De�nition 18 Let RS be the set of claims and C : RS ! R a function in H0.
We say that a contigent claim X is wasteful asset if there exists a contingent
claim Y > X such that C (Y ) = C (X).

A nonwasteful asset is a contingent claim with the property that if some
payo¤ assigned to a state by the claim is replaced by a better payo¤, then the
resulting contingent claim is strictly more expensive than the original one. So,
an investor behavior that seems reasonable is never consistence with a choice of
some wasteful asset.
Given a function C 2 H0, we denote by LC the set of all nonwasteful assets15 ,

i.e.,
LC :=

�
X 2 RS : Y > X ) C (Y ) > C (X)

	
.

Now we are able to derive an interesting result saying that a potential in-
complete price is actually an incomplete price if and only if the respective sets
of unambiguous assets and of nonwasteful assets coincides.

Theorem 19 C is an incomplete price if and only if C 2 H0 and LC = FC .

An immediate useful corollary follows as,

Corollary 20 C is an incomplete price if and only if C 2 H and LC � FC .

Remark 21 We note that for any C 2 H we have that FC � LC . In fact,
consider X s.t. C (X) = �C (�X), for any Y > X we obtain that C (Y ) �
C (X) = C (Y ) + C (�X) � C (Y �X) > 0.

Remark 22 The fact that in Example 16, C is not an incomplete price, al-
though it belongs to H, can be easily shown by exhibiting some X 2 LC , which
does not belong to FC , in fact X = (1; 0; 0) does the trick.

14But such beliefs are not consistent with the setting where every simple bet fsg� has
positive cost.
15 In the context of decision theory under ambiguity, Lehrer (2007) provided a representation

for preferences using a similar notion called fat-free acts.

10



4.3 Markets of f0; 1g-Securities
Arrow (1963) introduced the notion of contingent markets where agents can
trade promisses concerning the future uncertainty realizations. A wide class
of assets used is known as Arrow securities characterized by a promisse on a
particular state of nature s 2 S, i.e., in a �nancial market the set of possible
Arrow securities is given by A :=

�
fsg� : s 2 S

	
16 . Given an event A, the

f0; 1g-security A� is also often called a bet on the event A. For the classes of
markets with only f0; 1g-securities and the bond a natural characterization (see
De�nition 5 and Lemma 9) of cost functions follows as:

De�nition 23 We say that the mapping C : RS ! R is the cost function
of a frictionless market of f0; 1g-securities without arbitrage opportunities if C
satis�es the conditions of Lemma 9 under the additional condition saying that
there exists a collection of events S; B1; :::; Bm such that X0 = S� and Xj = B�j
for any j 2 f1; :::;mg.

De�nition 24 Given an incomplete price C, if its underlying market is a mar-
ket of f0; 1g-securities we say that C is a f0; 1g-incomplete price.

Following the notation used in the previous discussion about incomplete
prices, given a subadditive, positively a¢ nely homogeneous, monotone and nor-
malized function C : RS ! R we induced the set function

�C : 2S ! [0; 1]

A 7! �C (A) := C (A
�) .

Therefore, we de�ne the set of unambiguous events by

E�C =
�
B 2 2S : �C(A) + �C(Ac) = 1

	
,

which induces the following set of probabilities

Q
�C
=
�
P 2 � : P (B) = �C(B), 8B 2 E�C

	
and �nally the linear subspace generated by E�C :

FE�C := span
�
B� : B 2 E�C

	
.

Lemma 25 Let C be an incomplete price and let B � S, then the two following
assertions are equivalent:
(ii) B 2 E�C , i.e., B is an unambiguous event
(ii) B� 2 F , i.e., B� is an attainable claim.

The previous lemma says that a bet on the event A is attainable if and only if
the event A is an unambiguous event. It suggests that we may interpret the lack
of some bets on the �nancial market as a consequence of a vague information
concerning the likelihood of some events.
16Of course, markets with only Arrow securities is a very particular case of markets with

f0; 1g-securities.
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Remark 26 Given a subadditive, positively a¢ nely homogeneous, monotone
and normalized function C : RS ! R, we obtain that

�
B� : B 2 E�C

	
� FC : in

fact, if B is such that �C (B) + �C (B
c) = 1 then

C (B�) + C (�B�) = C (B�) + C
�
(Bc)

� � S�
�
=

max
P2Q

P (B) + max
P2Q

(P (Bc)� 1) = �C (B) + �C (B
c)� 1 = 0:

So, every porfolio with assets that are bets on unambiguous events are attainable.
Moreover, Q

C
� Q

�C
.

Theorem 27 Let C : RS ! R be given, then (i) is equivalent to (ii):
(i) C is a f0; 1g-incomplete price;
(ii) There exists a strictly positive probability P0 belonging to Q�C

and for
any contingent claim X,

C(X) = max
P2Q�C

EP (X) .

Furthemore, under (i) and (ii) FE�C is the set of attanaible claims and Q�C

is the set of risk-neutral probabilities of the underlying market.

Example 28 Consider the case with four states of nature and the function
C : R4 ! R that satis�es:

C (X) =

� 3
8x1 +

3
8x2 +

3
8x3; if x2 + x4 � x1 + x3

3
8x1 +

5
8x3, if x2 + x4 < x1 + x3

Note that computing �C , we have

�C (;) = 0; �C (fs1g) =
3

8
; �C (fs2g) =

3

8
;

�C (fs3g) =
5

8
; �C (fs4g) =

3

8
; �C (fs1; s2g) =

3

8
;

�C (fs1; s3g) = 1; �C (fs1; s4g) =
3

8
; �C (fs2; s3g) =

5

8
;

�C (fs2; s4g) =
6

8
; �C (fs3; s4g) =

5

8
; �C (fs1; s2; s3g) = 1;

�C (fs1; s3; s4g) = 1; �C (fs1; s2; s4g) =
6

8
;

�C (fs2; s3; s4g) = 1; �C (S) = 1:

which entails that

E�C = f;; S; fs1; s2g ; fs1; s4g ; fs2; s3g ; fs3; s4gg ;

and

Q�C
=

��
3

8
� p; p; 5

8
� p; p

�
: 0 � p � 3

8

�
3
�
2

8
;
1

8
;
4

8
;
1

8

�
> 0;

Also, since C (X) = maxP2Q�C
EP (X), C is a f0; 1g-incomplete price, more-

over, C is the cost function ofM =
�
S�; fs1; s2g� ; fs2; s3g� ; 1; 38 ;

5
8

�
.

12



A direct consequence of Theorem 27 is the characterization of markets of
f0; 1g-securities through the notion of nonwasteful assets and span of the bets
on the unambiguous events, as in the following corollary:

Corollary 29 C is a f0; 1g-incomplete price if and only if C 2 H0 and LC =
FE�C

In order to obtain an alternative characterization of f0; 1g- incomplete prices,
now we introduce some useful notation and de�nitions:

De�nition 30 � : 2S ! [0; 1] is a capacity if,
(i) � (;) = 0 and �(S) = 1;
(ii) A � B ) �(A) � �(B);
Moreover, � is concave if for any A;B 2 2S

�(A [B) + �(A \B) � �(A) + �(B).

Remark 31 Consider a subadditive, positively a¢ nely homogeneous, monotone
and normalized function C : RS ! R and the induced set-function �C on 2S as
we made previously. It is simple to see that �C is a capacity.

De�nition 32 The anticore of a capacity � is de�ned by

acore(�) :=
�
P 2 � : P (A) � �(A); 8A 2 2S

	
:

Remark 33 It is well known that any concave capacity � on 2S has the follow-
ing representation:

�(E) = max
P2K

P (E);

for some nonempty, convex and closed set of probabilities K (actually, K =
acore (�)). See, for example, Chateauneuf and Ja¤ray (1989). But the converse
is not true (examples can be found in Schmeidler (1972) or Huber and Strassen
(1973)).

In a complete market setting a bet on the event A can be priced by the
unique risk neutral probability, denoted by P0, and in this case the price of the
bet on the event A is given by P0 (A), i.e., there is no ambiguity concerning the
price of the bet on the event A. On the other hand, if there exists ambiguity
concerning the price of some event A we have implicitly assumed an incomplete
market struture with respective set of multiple risk neutral probabilities Q; and
in this case

�(A) := max
P2Q

P (A);

is the lowest cost associated to a superhedging strategy against the bet on the
eventA. Note that � (A)+� (Ac) > 1, i.e., due to the pricing rule incompleteness
the sum of the cost of the bets on the events A and Ac is more expensive than
the cost of the riskless bond.

13



De�nition 34 The outer capacity of �, denoted by ��, is de�ned by:

A 2 2S 7! �� (A) = min f� (B) : B 2 E� and A � Bg ;

where E� =
�
B 2 2S : � (B) + � (Bc) = 1

	
.

Remark 35 Given a capacity � on 2S, since �� � � clearly acore (�C) �
acore (��C).

Theorem 36 Let C : RS ! R be given, then (i) is equivalent to (ii):
(i) C is a f0; 1g-incomplete price;
(ii) C satis�es,
(a) acore (�C) contains a strictly positive probability P0,
(b) acore (�C) = acore (�

�
C),

(c) For any contingent claim X,

C(X) = max
P2acore(�C)

EP (X) .

Furthemore, under (i) and (ii) FE�C is the set of attanaible claims and
acore (�C) is the set Q of risk-neutral probabilities of the underlying market

Example 37 Consider the same function as in Example 17 given by

C (X) =

�
x3; if x1 + x2 � 2x3 < 0

1
2 (x1 + x2) , if x1 + x2 � 2x3 � 0

:

We already proved that C is an incomplete price. Note that for any A 6= ;,

�C (A) 2
�
1

2
; 1

�
with �C (A) =

1

2
i¤ A 2 ffs1g ; fs2gg ;

which implies that E�C = f;; Sg, hence for any A 6= ;,we have that ��C (A) = 1
and acore (��C) = �. Since �fs1g =2 acore (�C) we obtain that

acore (�C) 6= acore (��C) :

Hence, C is not a f0; 1g-incomplete price.

Now, we study the possibility of incomplete prices to be a Choquet integral,
which is the natural extention of the usual integral for capacities.

De�nition 38 Let C : RS ! R be given, then C is a Choquet integral if
(a) �C de�ned by �C (A) = C (A

�) for any A 2 2S is a capacity,
(b) For any X 2 RS, C (X) =

Z
Xd�C where,

Z
Xd�C :=

0Z
�1

[�C (fX � tg)� 1] dt+
1Z
0

�C (fX � tg) dt

14



We will see that the possibility of incomplete prices as Choquet integral is
related to some strong condition on the set of attainable claims, so we present
the following well known de�nition,

De�nition 39 A Riesz subspace of RS is a linear subspace F of RS such that
X;Y 2 F implies that X _ Y 2 F and X ^ Y 2 F .

Lemma 40 If an incomplete price C is a Choquet integral then the induced
capacity �C is concave and the subspace F of attainable claims is a Riesz-space.

De�nition 41 A "partition market" is a market without arbitrage opportunities
with only f0; 1g-securities Xj := B�j where fBjg

m
j=1 is a partition of the state

space S.

So, it is natural to say that the corresponding cost function is a cost func-
tion of a "partition market", and by Lemma 9 the mapping C : RS ! R is
the cost function of a "partition market" if and only if there exist a list of
events B1; :::; Bm 2 2S forming a partition of S, and there exists a striclty
positive probability P0 on 2S such that P0 (Bj) = C(B�j ); for any j 2 f1; :::;mg,
and 8 X 2 RS

C(X) = max fEP (X) : P (Bj) = �C(Bj), 8j 2 f1; :::;mgg .

De�nition 42 A f0; 1g-incomplete price is a "partition incomplete price" if its
underlying market is a "partition market".

So, we obtain the following characterization,

Theorem 43 Let C : RS ! R be given, then the following assertions are equiv-
alent:
(i) C is an incomplete price which is a Choquet integral;
(ii) C is a "partition incomplete price";
(iii) There exists a strictly positive probability P0 and a partition B1; :::; Bj ; :::; Bm

of S such that 8X 2 RS

C(X) =
mX
j=1

P (Bj)max
s2Bj

X(s);

(iv) �C is concave, �C = �
�
C , there exists at least a strictly positive probability

P0 2 acore (�C), and 8 X 2 RS

C(X) = max
P2acore(�C)

EP (X),

(v) C satis�es,
(a) E�C is a Boolean algebra17 ,

17A family E of subsets of S is called a Boolean algebra if E contains S, it is closed for
(�nite) intersection and complement.
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(b) There exists a strictly positive probability P0 belonging to Q�C
,

(c) For any contingent claim X,

C(X) = max
P2Q�C

EP (X) .

In any case, the set of attainable claims is generated by the P0-atoms18 of
the Boolean algebra E�C and the set of all risk neutral probabilities is given by
acore (�C).

An immediate corollary follow as:

Corollary 44 An incomplete price C is a Choquet integral if and only if its
underlying set of attanaible claims is a Riesz space.

We note that the class of incomplete prices that can be written as a Choquet
integral is linked to �nancial markets where derivative markets (in the sense of
Aliprantis, Brown and Werner (2000)) are complete. A derivative contingent
claim is any contingent claim that has the same payo¤ in states in which the
payo¤s of all securities are the same. A restatement of the result due to Ross
(1976) provided by Aliprantis, Brown and Werner (2000) says that derivative
markets are complete if and only if the vector space of attanaible claims is a
Riesz subspace. Hence, by the previous proposition we have that Choquet in-
complete prices describe the minimum-cost of superreplication in markets where
derivative markets are complete.

Example 45 The most two simple examples of cost functions follows from the
complete market case and the "most incomplete" market case under the exis-
tence of the bond. The �rst case is the market characterized by a probability
measure P 2 � such that

CP (X) := EP (X) for any claim X;

and in this case we have in fact a standard price rule or a "complete price",
i.e., any linear function C 2 H induces a complete markets without arbitrage
opportunities.
The second case, on the other hand, presents as available trade only the

riskless asset 1S. Of course, for any claim X

Cmax(X) = max
s2S

X(s)

which is a very special case of incomplete price.
Moreover, we have the following market space

FCP = RS and FCmax = fk1S : k 2 Rg :
18Let E a Boolean algebra of subsets of S and P a probability measure over E, we say that

an event E 2 E is a P -atom if P (E) > 0 and for any F 2 E such that F � E, P (F ) = P (E)
or P (F ) = 0. If P is strictly positive on the �nite Boolean algebra E , E is a P -atom i¤
P (E) > 0 and if F � E and F 6= ; then F =2 E .
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One of the most well studied class of markets are the Arrow securities mar-
kets. For these markets strutures the following de�nition is very natural for our
analysis:

De�nition 46 Given a market M = fXj ; qj ; 0 � j � mg without arbitrage
oportunities, we say that a state s� 2 S is a Arrow state if fs�g is an unam-
biguous set. We denote by E0 the union of all Arrow state,

E0 =
[

fs�g2E

fs�g :

Example 47 Consider the following incomplete price

CA(X) =
X
s2E0

X (s)Q (fsg) +Q(Eco)max
s2Ec

o

X(s);

where Q (E) 2 (0; 1). Note that the cost of betting on the event E is given by
the following capacity,

�CA (E) =

�
Q(E); E � E0

Q(E \ E0) +Q(Ec0); otherwise.

One possible underlying market of securities for this incomplete price is the
market of Arrow securities and one bond given by:

M =
n
1S ;

�
1fskg

�
k=1;:::;K

; 1; (qk)k=1;::;K

o
,

were E0 is the set of all Arrow states and qk = Q (fskg). We dub CA as an
"Arrow incomplete price".

Example 48 Now, we give an example of a market of f0; 1g-securities for
which the corresponding cost function is not a Choquet integral

M =
�
1S ; 1fs1;s2g; 1fs2;s3g; 1; q1; q2

	
; where q1; q2 > 0 and q1 + q2 < 1g.

For the incomplete price C related to this market we obtain a capacity �C
where

�C (fs1; s2; s3g) + �C (fs2g) = (q1 + q2) + (q1 ^ q2) ;

and
�C (fs1; s2g) + �C (fs2; s3g) = q1 + q2;

i.e., �C is not concave. Moreover, the set of unambiguous events

E�C = f;; S; fs1; s2g ; fs3; s4g ; fs2; s3g ; fs1; s4gg ;

is not a Boolean algebra because the event fs2g = fs1; s2g \ fs2; s3g does not
belong to E�C .
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Example 49 An example of Choquet integral that is not an incomplete price
is the Choquet integral w.r.t. an epsilon-contaminated concave capacity. For
instance, consider a strictly positive probability Q 2 �, a level " 2 (0; 1), and
the following capacity:

� (A) =

�
(1� ")Q (A) + ", A 6= ;

0; A = ;: :

Note that acore (�) = f(1� ")Q (A) + "P : P 2 �g. Consider the function C :
RS 3 X ! C (X) =

Z
Xd�. In fact, for any contingent claim X it is true that

C (X) = (1� ")EQ (X) + "maxX (S) .

The set of unambiguous events if given by E� = f;; Sg and by Theorem 43,

C (X) = maxX (S) ;

and, of course, it is possible if and only if " = 1. Also, note that LC = RS
and FC = f�1S : � 2 Rg. Hence, for any Q 2 � and " 2 (0; 1) the set
f(1� ")Q (A) + "P : P 2 �g can not be a set of all risk neutral probabilites
of some frictionless market.

5 Appendix

Proof of Lemma 419 :
That X 2 F implies that all risk measures agree is obvious. In order to

prove the reverse implication, assume that X =2 F and P (X) = Q(X) for any
P;Q 2 Q, i.e., the law of one price is true for some non-attanaible claim.
First, we note that:

C (X) = min fC (Y ) : Y � X and Y 2 Fg :

In fact, by the NAO assumption there exists a strictly positive probabililty P0
such that such that C(Y ) = EP0(Y ) for any Y 2 F . For any n 2 f1; 2; :::g
consider the attanaible claim Y n such that EP0 (Y

n) � C (X) + n�1. Hence,
for any s 2 S

Y n (s) � P0 (fsg)�1
�
C (X) + n�1

�
� (C (X) + 1)max

s2S
P0 (fsg)�1 =: k

therefore Y n � kS� for any n � 1. Clearly,

C (X) = inf fC (Y ) : X � Y � kS�and Y 2 Fg ;

and since fY 2 F : X � Y � kS�g is compact and C is continuous (by Remark
8) we obtain that the min can be substituted to inf in the de�nition of C.

19For sake of completeness we give a proof of this result. For the case of a general state
space see, for instance, Föllmer and Shied (2004), chapter 1.
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Hence, given X 2 RSnF there exists Y0 2 F such that Y0 > X and C(X) =
EP0 (Y0). So, we have that EP0 (Y0) > EP0 (X). Now, as it is true that

C (X) = sup
P2Q

EP (X) ;

and we suppose that EP (X) = EQ(X) for any P;Q 2 Q, it turns out that
EP0 (X) = C (X), hence

C (X) = EP0 (Y0) > EP0 (X) = C (X) ,

a contradiction. �
Proof of Lemma 13:
First, consider Y 2 FC and � 2 R+, since C is positively homogeneous

we have that C(�Y ) = �C(Y ) and C(� (�Y )) = �C(�Y ), then C (�Y ) +
C (��Y ) = 0, i.e., �Y 2 FC . If � < 0; by the de�nition �Y 2 FC and then
(��) (�Y ) 2 FC , i.e., �Y 2 FC .
Now, if Y; Z 2 FC , since C is subadditive

C (Y + Z) � C(Y ) + C(Z); and

C (� (Y + Z)) � C(�Y ) + C(�Z);

hence, adding these two inequalities

0 = C(0) � C (Y + Z) + C (� (Y + Z)) � 0;

i.e., Y + Z 2 FC . �
Proof of Lemma 14:
Since EP (X) = C (X) for any X 2 F and for any P 2 Q clearly F � FC .
Conversely, let X 2 FC , since for any P 2 Q,

EP (X) � C (X) and EP (�X) � C (�X) ;

and
EP (X) + EP (�X) = 0 = C (X) + C (�X) ;

we obtain that EP (X) < C (X) is impossible for any P 2 Q, i.e., for all X 2 FC
the mapping P 7! �X (P ) := EP (X) is constant over Q, and by Lemma 4,
X 2 F . �
Proof of Theorem 15:
(i)) (ii)
By our assumption, there exists X0; X1; :::; Xm 2 RS with X0 = S� and a

strictly positive probability P0 on 2Ssuch that EP0(Xj) = C(Xj), 0 � j � m:
Moreover, 8X 2 RS

C(X) = max
P2Q

EP (X);

where Q = fP 2 � : EP (Xj) = C(Xj); 0 � j � mg.
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Now, note that no-arbitrage principle implies that C is a strictly positive
linear form on F ; actually, by Remark 2 there exists a strictly positive proba-
bility P0 such that 8Y 2 F , C (Y ) = EP0 (Y ). By Lemma 14 we know that
F = FC , hence C is a strictly positive linear form on FC .
Since QC and Q are nonempty, closed and convex set of probabilities, re-

mains to show that QC = Q. If P 2 Q we know that C (Y ) = EP (Y ) for
any Y 2 F , since F = FC we obtain that P 2 QC . Now, P 2 QC says that
C (Y ) = EP (Y ) for any Y 2 FC . Again, since F = FC entails that

FC = span (X0; :::; Xm) ;

in particular, C (Xj) = EP (Xj) for any j 2 f0; 1; :::;mg, i.e., P 2 Q.
(ii)) (i)
Since S� 2 FC , let us consider X0; X1; :::; Xm, with X0 = S�, a basis of the

linear subspace FC . We intend to show that C is a cost function with respect
to this family of securities X0; X1; :::; Xm.
By our assumption the restriction C jFC of C on the linear subspace FC

of the Euclidian space RS is a strictly positive linear form, hence it admits a
strictly positive linear extension C jFC on RS (see, for instance, Gale (1960)).
Clearly, it is true that C jFC (S�) = 1, therefore there exists a striclty positive
probability P0 on

�
S; 2S

�
such that EP0 (X) = C jFC (X) , for any X 2 RS ; in

particular, EP0 (Xj) = C jFC (Xj) = C (Xj), 0 � j � m. So, the condition 1) of
Lemma 9 is satis�ed. Recalling that F = span (X0; :::; Xm), by our construction
FC is the set of attanaible claims. The proof of (ii) implies (i) will be completed
if we prove that C satis�es condition 2) of Lemma 9, or equally, that QC = Q,
where Q is the set of risk neutral probabilities. By de�nition,

QC := fP 2 � : EP (Y ) = C (Y ) , for any Y 2 FCg ,

wich is nonempty because we saw that there exists a strictly positive probability
P0 2 QC .
Since for any j 2 f0; 1; :::;mg the security Xj is unambiguous, we obtain

that every probability P 2 QC is a risk-neutral probability for the market
M = (Xj ; qj := C (Xj) ; 0 � j � m)20 . Remains to prove that every risk-neutral
probability belongs to QC . In fact, let P 2 Q and Y 2 FC , i.e.,

EP (Xj) = C (Xj) ; 0 � j � m;

and there exists �0; �1; :::; �m 2 R such that

Y =
mX
j=0

�jXj .

20By the existence of the strictly positive probability P0, the �nancial marketM is a market
of securities with no-arbitrage opportunity.
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Since the restriction C jFCof C on the linear subspace FC is a linear mapping,

EP (Y ) = EP

0@ mX
j=0

�jXj

1A =
mX
j=0

�jEP (Xj) =

mX
j=0

�jEP (Xj) =
mX
j=0

�jC (Xj) = C

0@ mX
j=0

�jXj

1A = C (Y ) :

henceforth,
EP (Y ) = C (Y ) ; for any Y 2 FC ,

this entails that P 2 QC , which completes the proof. �
Proof of Theorem 19:
()) The fact that C 2 H0 is immediate.
It remains to show that LC = FC . Suppose that X 2 FC , since C is a cost

function we know that there exists a strictly positive probability P0 such that
C (X) � EP0 (X), 8X 2 RS and C (X) = EP0 (X) ;8X 2 FC . Hence, if Y > X
it comes that C (Y ) � EP0 (Y ) > EP0 (X) = C (X).
Now, suppose that X 2 LC then by de�nition Y > X ) C (Y ) > C (X).

Suppose that X =2 FC = F (Lemma 14), since

C (X) = min fC (Y ) : Y � X and Y 2 FCg
(X=2FC)
= min fC (Y ) : Y > X and Y 2 FCg

there exists Z 2 FC such Z > X and C (Z) = C (X), a contradiction.
(() Since C 2 H we know that there exists a nonempty, closed and convex

set K � � such that for any X 2 RS ,

C (X) = max
P2K

EP (X) .

By Theorem 15 and Remark 12 it is enough to show that C is strictly positive
and K = QC .
Consider X > 0, since 0 2 FC and FC = LC we obtain that C (X) >

C (0) = 0, therefore C is strictly positive, so C 2 H. The inclusion K � QC
is simple: Consider P 2 K, if P =2 QC then there exists X 2 FC such that
EP (X) < C (X) = �C (�X), hence EP (�X) > C (�X) = maxP2KEP (�X),
a contradiction.
So we need to show that QC � K, or equally that K  QC is impossible.

Assume that there exists P1 2 QF such that P1 =2 K. Then through the classical
strict separation theorem (see, for instance, Dunford and Schwartz (1958)) there
exists a contingent claim X0 such that

EP1 (X0) > max
P2K

EP (X0) = C (X0) .

If we prove that there exists Y 2 FC ; Y � X0 such that C (X0) = C (Y ),
this will entail a contradiction, since

EP1 (X0) > C (X0) = C (Y ) = EP1 (Y ) � EP1 (X0) .
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So it is enough to show that for any contingent claim X, setting

EX :=
�
Y 2 RS : Y � X and C (Y ) = C (X)

	
;

there exists Y 2 FC \ EX .
This result is obvious if X 2 FC , so let us assume that X =2 FC . First,

since C 2 H by Remark 12 we know that K contains at least a strictly positive
probability P0.
Let us now prove that EX is bounded from above, otherwise there would exist

a sequence fYkgk�1, Yk 2 EX , 8k � 1 and s0 2 S such that limk Yk (s0) = +1.
But

lim
k
C (Yk) � lim

k
EP0 (Yk) = lim

k

X
s2S

P0 (s)Yk (s)

�
X
s 6=s0

P0 (s)X (s) + lim
k
P0 (s0)Yk (s0) =1,

contradicting C (Yk) = C (X), 8k � 1.
Let us now show that EX has a maximal element for the partial preorder

� on RS . Thanks to Zorn´s lemma we just need to prove that every chain
(Y�)�2� in EX has an upper bound. De�ne Y by

Y (s) := sup
�2�

Y� (s) , 8s 2 S;

EX bounded from above implies that Y 2 RS . It remains to check that C (Y ) =
C (X), let " > 0 be given, and let si 2 S, hence there exists �i 2 � such that
Y (si) � Y�i (si) + ", since (Y�)�2� is a chain there exists n � 1 and e� 2
f�1; :::; �ng such that Ye� � Y � Ye�+ ", therefore C �Ye�� � C (Y ) � C �Ye��+ ",
since C

�
Ye�� = C (X) it turns out that C (Y ) = C (X). Let now Y0 be a

maximal element of EX , the proof will be completed if we show that Y0 2 FC .
From the hypothesis FC = LC , it is enough to show that Y0 2 LC . Let Y1 be an
arbitrary contingent claim such that Y1 > Y0, since Y0 is a maximal element in
EX , it comes that Y1 =2 EX , but Y1 > X, therefore C (Y1) > C (X) = C (Y0),
so Y0 2 LC which completes the proof. �
Proof of Corollary 20:
In fact, it is enough to show that for any C 2 H0, LC = FC i¤ C is strictly

positive and LC � FC . Note that, as in the previous proof FC � LC implies that
C is strictly positive. For the converse, by Remark 12 we know that there exists
a strictly positive probability P0 such that C (X) � EP0 (X) for any contingent
claim X and C (Y ) = EP0 (Y ) for any unambiguous asset Y . Let X 2 FC and
consider a contigent claim Y > X. Hence,

C (Y ) � EP0 (Y ) > EP0 (X) = C (X) ,

i.e., C (Y ) > C (X), so FC � LC . �
Proof of Lemma 25:
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We recall that from Lemma 4,X 2 F i¤EP (X) = EQ (X), for any P;Q 2 Q.
(i) ) (ii) Let B 2 E�C , we need to show that P (B) = Q (B), for any

P;Q 2 Q. Assume that there exists P1 ; P2 2 Q such that P1 (B) > P2 (B).
Hence,

1 = C (B) + C (Bc) = max
P2Q

P (B) + max
P2Q

P (Bc) > P2 (B) + max
P2Q

P (Bc) ;

that is, P2 (Bc) > maxP2Q P (Bc), but P2 2 Q hence the contradiction P2 (Bc) >
P2 (B

c). Therefore, B� 2 F .
(ii)) (i) Let B� 2 F , hence P (B) = Q (B), for any P;Q 2 Q and therefore

�C(B
c) = P0 (B), but S� 2 F implies also S� � B� 2 F and then �C(B

c) =
P0 (B

c), and clearly �C(B) + �C(B
c) = 1, i.e, B 2 E�C . �

Proof of Theorem 27:
(i) ) (ii) Our assumption says that there exist B0; B1; :::; Bm 2 2S with

B0 = S and a striclty positive probability P0 on 2S such thatP0 (Bj) = C
�
B�j
�
;

for any j 2 f0; 1; :::;mg and 8 X 2 RS ,

C(X) = max
P2Q

EP (X),

where Q = fP 2 � : P (Bj) = C
�
B�j
�
; 0 � j � mg:

Let us to now prove that there exists a strictly positive probability P0 be-
longing Q

�C
. From Lemma 4 we know that if B� 2 F then P (B) = P0 (B) for

any P 2 Q, hence �C (B) = P0 (B). Since by Lemma 25 B 2 E�C if and only if
B� 2 F , it turns out that P0 (B) = �C (B), 8B 2 E�C .
Now we need to show that Q = Q�C

. Note that by Theorem 15 and Remark
26 we have that Q = Q

C
� Q�C

. For the other inclusion, taking P 2 Q�C
and

Bj let us show that P (Bj) = C
�
B�j
�
. Since B�j is an attainable claim (in fact,

it is a basic asset) by Lemma 25 we know that Bj 2 E�C , hence P 2 Q
�C
so

Q
�C
� Q.
So Q�C

is actually the set of risk-neutral probabilities of the initial market.
Remains to prove that FE�C = F . In fact, Lemma 25 says that B 2 E�C ,
B� 2 F , hence FE�C = span

�
B� : B 2 E�C

	
= span fB� : B� 2 Fg = F .

(ii)) (i) Since B0 = S�, let us consider the �nite family of all unambiguous
events B0; B1; :::; Bm. By assumption there exists a strictly positive probability
P0 such that P (Bj) = C

�
B�j
�
; 0 � j � m. The proof will be completed if we

show that Q = Q�C
and FE�C = F , where Q and F refer to the previous de�ned

market of f0; 1g-securities M = (B�0 ; B
�
1 ; :::; B

�
m; 1; �C (B

�
1) ; :::; �C (B

�
m)). But

this is straightforward by the equality E�C = fB0; B1; :::; Bmg. �
Proof of Theorem 36:
(i)) (ii) From the De�nition 9 we have that for any A � S;

�C (A) = C (A
�) = max

P2Q
P (A) ;

hence �C is an anti-exact capacity and the acore (�C) contains at least one
strictly positive probability, namely P0.

23



Let us now show that

C(X) = max
P2acore(�C)

EP (X) ; 8X 2 RS :

Note that it is enough to show that Q = acore (�C):
Consider P 2 acore (�C), hence P (Bj) � �C (Bj) ; 0 � j � m. But, in fact,

Bj is unambiguous (Lemma 25) which entails �C (Bj) + �C
�
Bcj
�
= 1. Also,

P
�
Bcj
�
� �C

�
Bcj
�
; 0 � j � m and then

P (Bj) + P
�
Bcj
�
= 1 = �C (Bj) + �C

�
Bcj
�
= 1;

allows us to obtain P (Bj) = �C (Bj) ; 0 � j � m, i.e., P 2 Q.
Now, setting P 2 Q and A � S, since our assumption says that

�C (A) = max
P2Q

P (A) ;

clearly P (A) � �C (A), i.e., P 2 acore (�C).
For (b) it is enough to show that acore (��C) � acore (�C), or else from the

previous idendity Q = acore (�C) that acore (�
�
C) � Q. So let P 2 acore (�C)

and let Bj be chosen. By de�nition of ��C , one has �
�
C (Bj) = �C (Bj) therefore

P (Bj) � ��C (Bj) implies P (Bj) � �C (Bj); as we notice before Bj 2 E�C ,
hence ��C (Bj) = �C (Bj) and P

�
Bcj
�
� ��C

�
Bcj
�
implies P

�
Bcj
�
� �C

�
Bcj
�

from P (Bj) + P
�
Bcj
�
= 1 = �C (Bj) + �C

�
Bcj
�
, it turns out that P (Bj) �

�C (Bj).
(ii) ) (i) We need to prove that there exist B0; B1; :::; Bm 2 2S with

B0 = S and a striclty positive probability P0 on 2S such that P0 (Bj) = C
�
B�j
�
;

for any j 2 f0; 1; :::;mg and 8 X 2 RS ,

C(X) = max
P2Q

EP (X),

where Q = fP 2 � : P (Bj) = C
�
B�j
�
; 0 � j � mg:

Note that C is well de�ned since acore (�C) 6= ; (by assumption (a)) and
compact, moreover for any A � S

�C (A) = C (A
�) = max

P2acore(�C)
P (A) .

Clearly B0 := S 2 E�C , and E�C is formed with a �nite number of events
B0; B1; :::; Bm. Note that for any B 2 E�C and for any P 2 acore (�C) it is
true that P (B) = �C (B): actually P 2 acore (C) implies that P (B) � �C (B),
P (Bc) � �C (Bc) and P (B)+P (Bc) = 1 = �C (Bj)+�C

�
Bcj
�
, gives the desired

equality (note that its implies that Q � acore (�C)). Since, by hypothesis there
exists a strictly positive probability P0 2 acore (�C), it turns out that the �rst
requirement is satis�ed. So the formula

C(X) = max
P2Q

EP (X),
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holds for any X 2 RS if and only if Q = acore (�C). Just above we proved
that Q � acore (�C). By our assumption (b) we only have to show that Q �
acore (��C). Let P 2 Q and A � S, from the de�nition of ��C we have that there
exists B 2 E�C such that A � B and ��C (A) = �C (B), hence

P (A) � P (B) = C (B) = ��C (A) ;

i.e., P 2 acore (��C).
Futhermore, under (i) and (ii) acore (�C) is the set of risk-neutral probabil-

ities and by Theorem 27 FE�C is the set of attanaible claims. �
Proof of Lemma 40:
First, we note that from Proposition 3 given by Schmeidler (1986) we have

that if C is a subadditive Choquet integral with respect to the capacity �C then
�C is a concave capacity.
Let now prove that F is a Riesz space:
Let X;Y 2 F , then by Lemma 4 we have that for any P 2 Q, EP (X) +

EP (Y ) = C(X) + C (Y ). Since C is a Choquet Integral with respect to a
concave capacity, it turns out that21

C (X) + C (Y ) � C (X _ Y ) + C (X ^ Y ) .

Therefore, using the previous equality

EP (X _ Y ) + EP (X ^ Y ) = EP (X) + EP (Y ) � C (X _ Y ) + C (X ^ Y ) :

But EP (X _ Y ) � C (X _ Y ) and EP (X ^ Y ) � C (X ^ Y ) for any P 2 Q.
Hence, EP (X _ Y ) = C (X _ Y ) and EP (X ^ Y ) = C (X ^ Y ) for any P 2 Q
which implies by Lemma 4 that X _ Y and X ^ Y belongs to F . �
Proof of Theorem 43:
Before the proof of Theorem 43 we need one important lemma:

Lemma 50 22Let F be a Riesz subspace of Rn containing the unit vector 1Rn =
(1; :::; 1) 2 Rn then F is a "partition" linear subspace of Rn, i.e., up to a per-
mutation:

x 2 F i¤ x = (x1; :::x1; :::; xj ; :::; xj ; :::; xm; ::::; xm) .

Proof: The proof is by induction on the cardinality #S of S � 1. Clearly
the result is true if #S = 1, now assume that the result is true for #S = k and
let us show that it remains true for #S = k + 1.
So let F be a subspace of Rk+1 contaning 1Rk+1 , and let G be de�ned by23 :

G :=
�
y = (x1; :::; xk) 2 Rk : 9xk+1 s.t. (y; xk+1) 2 F

	
.

21See, for instance, Huber (1981) pages 260 and 261.
22For sake of completeness we give a direct proof of this result, which in fact has been

obtained independently by Polyrakis (1996, 1999).
23For y = (x1; :::; xk) 2 Rk and xk+1 2 R we use the following notation:

(y; xk+1) := (x1; :::; xk; xk+1) 2 Rk+1:

25



It is straighforward to check that G is a Riesz-subspace of Rk containing 1Rk ,
therefore by the induction hypothesis and up to a permutation y 2 G is equiv-
alent to y = (x1; :::; x1; :::xj ; :::; xj ; :::; xm; :::; xm) where xj 2 R, 1 � j � m.
Clearly, if x 2 F then x 2 eG� eH the direct sum of the linear subspaces of Rk+1
given by

eG =
�
(y; 0) 2 Rk+1 : y 2 G

	
eH =

�
(0; :::; 0; xk+1) 2 Rk+1 : xk+1 2 R

	
:

Therefore, dimF � dim eG � eH = m + 1. It is also immediate to see that
dimF � m: in fact, y 2 G is equivalent to

y =
mX
j=1

xjV
�
j ;

where each V �j 2 Rk, i:e:, Vj � f1; :::; kg, and fV �1 ; :::; V �mg is a basis of G.
Let zj 2 R be such that

�
V �j ; zj

�
2 F , 1 � j � m; it is immediate to see that

ffV �1 g ; :::; fV �mgg linearly independent in G implies ffV �1 ; z1g ; :::; fV �m; zmgg lin-
early independent in F , hence dimF � m.
Two cases have to be examined:
1) dimF = m + 1: Clearly since F � eG � eH, this implies that F = eG � eH

and F is a "partition" space.
2) dimF = m: In such a case since

�
W �
j :=

�
V �j ; zj

	
; 1 � j � m

	
is linearly

independent in F ,
�
W �
j :; 1 � j � m

	
is a basis of F . Hence, we obtain that

x 2 F if and only if there exists xj , 1 � j � m such that x =
mX
j=1

xjW
�
j , in

particular,

xk+1 =
mX
j=1

xjzj ; (�) :

So, it remains to show that there exists j0 2 f1; :::;mg such that for any x 2 F

it is possible to write x =
mX
j=1

xjV
�
j + xj0 . Note that is enough to show that all

the zj�s are equal to zero except zj0 = 1. Since 1Rk+1 2 F by the above property

(�), we obtain that
mX
j=1

zj = 1.

Now take j 6= i; j; i 2 f1; :::;mg. Since F is a Riesz space, W �
j ;W

�
i 2 F

implies thatW �
j ^W �

i 2 F , butW �
j ^W �

i =
�
(Vj \ Vi)� ; zj ^ zi

�
and Vj\Vi = ;,

hence by property (�) we obtain that 0 =
mX
j=1

xjzj = zj ^ zi, therefore zj � 0.

On the other hand, the Riesz space struture implies also thatW �
j _W �

i 2 F , but
W �
j _W �

i = (1Rk+1 ; zj _ zi), hence by property (�) we obtain that zj_zi = zj+zi.
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Summing up, we have

mX
j=1

zj = 1, therefore for any j 6= i; j; i 2 f1; :::;mg :

zj ^ zi = 0 and zj _ zi = zj + zi;

this implies that there exists a unique j0 2 f1; :::;mg such that zj0 = 1 and for
any j 2 f1; :::;mg n fj0g it is true that j = 0, the desired result. �
Now we can start the proof of Theorem 43:
(i)) (ii) By Lemma 40 we know that the set of attanaible claims F is a Riesz

subspace of RS containing the riskless bond S�. Therefore, by Lemma 50 we
obtain that F is a "partition" linear subspace of RS , hence C is the cost function
of a "partition" market of f0; 1g-securities without arbitrage opportunities.
(ii) ) (iii) By assumption we have a partition fB1; :::; Bmg of the state

space S and a strictly positive probability P0 such that P0 (Bj) = C
�
B�j
�
for

any j 2 f1; :::;mg. Recall that,

Q = fP 2 � : P (Bj) = P0 (Bj) ; 1 � j � mg

and
C (X) = max

P2Q
EP (X) ;

hence since EP (X) =
mX
j=1

X
s2Bj

P (fsg)X (s). Now, denote by Q the risk neutral

probability such that for any j 2 f1; :::;mg,

Q (Bj) = Q (fbs 2 Bj : X (bs) = maxX (Bj)g) :
Hence,

C (X) = max
P2Q

8<:
mX
j=1

X
s2Bj

P (fsg)X (s)

9=; =

=
mX
j=1

max
P2Q

8<:X
s2Bj

P (fsg)X (s)

9=; =
mX
j=1

Q (Bj)maxX (Bj) .

Which allows us to write,

C (X) =
mX
j=1

P0 (Bj)max
s2Bj

X (s) .

(iii) ) (i) By our assumption we have that there exists a strictly positive
probability P0 and a partition B1; :::; Bj ; :::; Bm of S and such that 8X 2 RS

C(X) =
mX
j=1

P (Bj)max
s2Bj

X(s):
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Hence,
�C (A) =

X
k2fj:Bj\A 6=;g

P0 (Bj) ;

and it is well know that

C (X) =

Z
Xd�C ;

which completes this part of the proof.
Note that we proved that (i), (ii), (iii).
(ii) ) (iv) From Theorem 36, it remains to prove that C is concave and

that �C = �
�
C . Take A � S, since (ii), (iii) , it comes from (iii) that

�C (A) =
X

k2fj:Bj\A 6=;g

P0 (Bj) ;

since P0 (Bj) > 0 and
X

P0 (Bj) = 1, as it is well-known �C is a plausibility
function (i.e., the dual of a belief function), hence �C is concave.
Remains to show that ��C � �C . From Nehring (1999), we know that �C

is concave implies that E�C is a Boolean algebra; let us show that it entails
that ��C is concave: Let A1; A2 be subsets of S, by de�nition of �

�
C there exist

B1 � A1 and B2 � A2, Bi 2 E�C such that ��C (Ai) = �C (Bi), i = 1; 2. Hence,
��C (A1) + �

�
C (A2) = �C (B1) + �C (B2) � �C (B1 [B2) + �C (B1 \B2). Since

B1 [ B2; B1 \ B2 2 E�C , B1 [ B2 � A1 [ A2 and B1 \ B2 � A1 \ A2, it turns
out that ��C (A1) + �

�
C (A2) � ��C (A1 [A2) + ��C (A1 \A2). Let A � S, ��C

concave implies that there exists a probability P 2 acore (��C), but Theorem 36
guarantees that acore (�C) = acore (�

�
C) hence P 2 acore (�C), therefore:

��C (A) = P (A) � �C (A) ,

which completes this part of the proof.
(iv)) (v) Note that (a) comes from �C concave and the previously quoted

result of Nehring (1999):
(v) ) (ii) By hyphotesis, there exists a strictly positive probability P0 2

Q�C
and E�C is a Boolean algebra. Let fB1; :::; Bmg be the collection of P0-atoms

of the Boolean algebra E�C , hence fB1; :::; Bmg is a partition of S. Of course,
P0 (Bj) = C

�
B�j
�
; for any j 2 f1; :::;mg andQ � Q

�C
. ForQ � Q

�C
, note that

if P 2 � is such that P (Bj) = �C (Bj) for any j 2 f1; :::;mg then if B 2 E�C
and B =2 fB1; :::; Bmg hence there exists � � f1; :::;m g such that B = [j2�Bj ,
therefore P (B) =

X
j2�

P (Bj) =
X
j2�

�C (Bj) = �C ([j2�Bj) = �C (B). Hence,

C is a cost function of a "partition market". �
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