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Abstract

We propose a variant of Korpelevich’s method for solving variational inequality problems
with operators in Banach spaces. A full convergence analysis of the method is presented under
reasonable assumptions on the problem data.
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1 Introduction

Assume that B is a reflexive Banach space with norm ‖·‖, B∗ is the topological dual of B with
norm ‖·‖∗, and the symbol 〈·, ·〉 indicates the duality coupling in B∗ ×B, defined by 〈φ, x〉 = φ(x)
for all x ∈ B and all φ ∈ B∗. The underlying problem, called variational inequality problem and
denoted by VIP(T,C) from now on, consists of finding an x∗ ∈ C such that

〈T (x∗), x− x∗〉 ≥ 0 ∀x ∈ C,

where C is a nonempty closed convex subset of B and T : B → B∗ is an operator. The set of
solutions of VIP(T,C) will be denoted by S(T,C).

Variational inequality problems arise in a wide variety of application areas (se. e.g. [18]). They
encompass as particular cases convex optimization problems, linear and monotone complementarity
problems, equilibrium problems, etc.
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In this paper, we will extend Korpelevich’s method to infinite dimensional Banach spaces, and
thus we start with an introduction to its well known finite dimensional formulation, i.e., we assume
that B = Rn. In this setting, there are several iterative methods for solving VIP(T,C). The
simplest one is the natural extension of the projected gradient method for optimization problems,
substituting the operator T for the gradient, so that we generate a sequenced {xk} ⊂ Rn through:

xk+1 = PC(xk − αkT (xk)), (1)

where αk is some positive real number and PC , is the orthogonal projection onto C. This method
converges under quite strong hypotheses. If T is Lipschitz continuous and strongly monotone, i.e.

‖T (x)− T (y)‖ ≤ L ‖x− y‖ ∀ x, y ∈ Rn,

and
〈T (x)− T (y), x− y〉 ≥ σ ‖x− y‖2 ∀ x, y ∈ Rn,

where L > 0 and σ > 0 are the Lipschitz and strong monotonicity constants respectively, then the
sequence generated by (1) converges to a solution of VIP(T,C) (provided that the problem has
solutions) if the stepsizes αk are taken as αk = α ∈ (0, 2σ/L2) for all k (see e.g., [6], [10]). If we
relax the strong monotonicity assumption to plain monotonicity, i.,e.

〈T (x)− T (y), x− y〉 ≥ 0 ∀ x, y ∈ Rn,

then the situation becomes more complicated, and we may get a divergent sequence independently
of the choice of the stepsizes αk. The typical example consists of taking B = C = R2 and T
a rotation with a π/2 angle, which is certainly monotone and Lipschitz continuous. The unique
solution of VIP(T,C) is the origin, but (1) gives rise to a sequence satisfying

∥∥xk+1
∥∥ > ∥∥xk∥∥ for

all k. In order to deal with this situation, Korpelevich suggested in [19] an algorithm of the form:

yk = PC(xk − αkT (xk)), (2)

xk+1 = PC(xk − αkT (yk)). (3)

In order to clarify the geometric motivation behind this procedure, consider VIP(T,C) with a
monotone T . Let Hk = {x ∈ Rn : 〈T (yk), x − yk〉 = 0}. If x∗ ∈ S(T,C), then the monotonicity
of T guarantees that (3) is a step from xk in the direction of its orthogonal projection onto the
hyperplane Hk separating xk from any solution of VIP(T,C), so that for αk small enough, xk+1 will
be closer than xk to any solution of VIP(T,C). This property, called Fejér monotonicity of {xk}
with respect to the solution set of VIP(T,C), is the basis of the convergence analysis. In fact, if T
is Lipschitz continuous with constant L and VIP(T,C) has solutions, then the sequence generated
by (2)–(3) converges to a solution of VIP(T,C) provided that αk = α ∈ (0, 1/L) (see, [19]).
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In the absence of Lipschitz continuity of T , it is natural to emulate once again the projected
gradient method for optimization, and search for an appropriate stepsize in an inner loop. This
is achieved by taking first an arbitrary stepsize βk, compute zk = PC(xk − βkT (xk)) and then try
vectors of the form y(α) = αvk + (1 − α)xk with α ∈ (0, 1], until a value of α is found such that
yk = y(α) satisfies

〈T (yk), xk − PC(zk)〉 ≥ δ

βk

∥∥∥xk − PC(zk)
∥∥∥2
, (4)

where δ ∈ (0, 1) is some constant. Then the orthogonal projection of xk onto the hyperplane
Hk = {x ∈ Rn : 〈T (yk), x − yk〉 = 0} is computed, and finally xk+1 is defined as orthogonal
projection of PHk

(xk) onto C. We remark that along the search for the proper α the right hand
side of (4) is kept constant, and that, through T is evaluated at several points in the segment
between zk and xk, no orthogonal projection onto C are required during the inner loop, and we
have only two projections onto C per iteration, in the computation of zk and xk+1, exactly as in
the original method (2)–(3).

The above backtracking procedure for determining th right α is sometimes called an Armijo-
type search (see [1]). It has been analyzed for VIP(T,C) in [16]. Other variants of Korpelevich
method can be found in [17], [21], and other methods for the problem appear in [5], [11], [13],
[23] and [24] for the case in which T is point-to-point, as in this paper. Extensions of Korpelevich
method to the of point-to-set case can be found in [15] and [4]. All these references deal with finite
dimensional spaces.

In this paper, we are interested in infinite dimensional Banach spaces, for which direct methods
for VIP(T,C) are much scarcer. A descent method was proposed in [27], and a projection method,
which works in reflexive Banach spaces, is analyzed in [2], [12]. We proceed to describe the latter.
Let J : B → B∗ be the normalized duality mapping (i.e., the subdifferential of g(x) = 1

2 ‖x‖
2; see

[9]), which can also be defined as

J(x) = {x∗ ∈ B∗ : 〈x∗, x〉 = ‖x∗‖∗ ‖x‖ , ‖x
∗‖∗ = ‖x‖}.

Given xk ∈ B, xk+1 is calculated as the Bregman projection with respect to g of the point
J−1

[
J
(
xk − λkT (xk)

)]
onto C, where {λk} ⊂ R++ is an exogenous bounded sequence (see Defi-

nition 2.6 below for the formal definition of Bregman projection). Formally, the method has the
form

xk+1 = Πg
C

{
J−1

[
J
(
xk − λkT (xk)

)]}
, (5)

where Πg
C is the Bregman projection onto C with respect to g. The convergence result for this

method is as follows.

Theorem 1.1. Suppose that B is uniformly convex and uniformly smooth and that

i) T is uniformly monotone, that is, 〈T (x)− T (y), x− y〉 ≥ ψ(‖T (x)− T (y)‖∗), where ψ(t) is a
continuous strictly increasing function for all t ≥ 0 with ψ(0) = 0,
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ii) T has φ-arbitrary growth, that is, ‖T (y)‖∗ ≤ φ(‖y − z‖) for all y ∈ C and {z} = S(T,C),
where φ is a continuous nondecreasing function with φ(0) ≥ 0,

iii) {λk} is a positive nonincreasing sequence that satisfies limk→∞ λk = 0 and
∑∞

k=0 λk =∞.

Then the sequence {xk} generated by (5) converges strongly to a unique point z ∈ S(T,C).

Proof. See [2].

Another result for this method, establishing weak convergence, rather than strong, can be found
in [12]. It reads as follows:

Theorem 1.2. Let B be a uniformly smooth Banach space, also 2-uniformly convex with constant
1/γ, whose duality mapping J is weakly sequentially continuous. Assume that VIP(T,C) satisfies:

i) there exists a real positive number α such that for all x, y ∈ C, it holds that

〈T (x)− T (y), x− y〉 ≥ α ‖T (x)− T (y)‖2∗ ,

ii) for all y ∈ C and all u ∈ S(T,C), it holds that

‖T (y)‖∗ ≤ ‖T (y)− T (u)‖∗ .

If S(T,C) 6= ∅, {λk} ⊂ [β̂, β̃], with 0 < β̂ < β̃ < (γ2α)/2, and x0 belongs to C, then the
sequence {xk} generated by (5) is weakly convergent to the point z ∈ S(T,C) characterized as
z = limk→+∞ΠS(T,C)(xk).

Proof. See Theorem 3.1 of [12].

Related convergence results for Cesaro averages of sequences related to {xk} can be found in
Theorem 4.2 of [3]. We will see later on that the convergence properties of our algorithm hold
under assumptions quite weaker than those demanded by Theorems 1.1 and 1.2 (see Theorem 4.8
below).

The outline of this paper is as follows. In Section 2 we present some theoretical tools needed in
the sequel. In Section 3 we state our algorithm formally. In Section 4 we establish the convergence
properties of the algorithm.

2 Preliminaries

Definition 2.1. Consider an operator T : B → B∗.

i) T is said to be monotone if for all x, y ∈ B, it holds that

〈T (x)− T (y), x− y〉 ≥ 0.
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ii) T is said to be pseudomonotone if for all x, y ∈ B, it holds that

〈T (y), x− y〉 ≥ 0⇒ 〈T (x), x− y〉 ≥ 0.

iii) T is said to be hemicontinuous on a subset C of B if for all x, y ∈ C, the mapping h : [0, 1]→
B∗ defined as h(t) = T (tx+ (1− t)y) is continuous with respect to the weak∗ topology of B∗.

iv) T is said to be uniformly continuous on a subset E of B if for all ε > 0 there exists δ > 0
such that for all x, y ∈ E, it hold that

‖x− y‖ < δ ⇒ ‖T (x)− T (y)‖∗ < ε.

We will prove that the sequence generated by our algorithm is an asymptotically solving se-
quence (see Definition 4.4) for VIP(T,C) when T is uniformly continuous on bounded subsets of
C, S(T,C) 6= ∅, and VIP(T,C) satisfies property A, stated below.

A: For some x∗ ∈ S(T,C), it holds that

〈T (y), y − x∗〉 ≥ 0 ∀y ∈ C. (6)

It is worthwhile mentioning that the problem of finding an x∗ ∈ C such that (6) is satisfied, is
known as Minty variational inequality problem. Some existence results for this problem has been
presented in [20]. We also mention that assumption A has been already used for solving VIP(T,C)
in finite dimensional spaces (see, e.g., [23]). It is not difficult to prove that pseudomonotonicity
implies property A, while the converse is not true, as illustrated by the following example.

Example 2.2. Consider T : R→ R defined as T (x) = cos(x) with C = [0, π2 ].

We have that S(T,C) = {0, π2 }. VIP(T,C) satisfies the property A, because for x∗ = 0 the
statement in (6) holds. But if we take x = 0 and y = π

2 in Definition 2.1(ii), we conclude that T is
not pseudomonotone.

The next lemma will be useful for proving that all weak cluster points of the sequence generated
by our algorithm solves S(T,C).

Lemma 2.3. Consider VIP(T,C). If T : C → B∗ is monotone and hemicontinuous on C, then

S(T,C) = {x ∈ C : 〈T (y), y − x〉 ≥ 0 ∀y ∈ C}.

Proof. See [25].

Next we state some properties of Bregman projections which will be used in the remainder of
this paper, taken from [7]. We consider an auxiliary function g : B → R, which is strictly convex,
lower semicontinuous, and Gâteaux differentiable. We will denote the family of such functions as
F . The Gâteaaux derivative of g will be denoted by g′.
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Definition 2.4. Let g : B → R be a convex and Gâteaux differentiable function.

i) The Bregman distance with respect to g is the function Dg : B×B → R defined as Dg(x, y) =
g(x)− g(y)− 〈g′(y), x− y〉.

ii) The modulus of total convexity of g is the function νg : B × [0,+∞) → [0,+∞) defined as
νg(x, t) = inf{Dg(y, x) : y ∈ B, ‖y − x‖ = t}.

iii) g is said to be a totally convex function at x ∈ B if νg(x, t) > 0 for all t > 0.

iv) g is said to be a totally convex function if νg(x, t) > 0 for all t > 0 and all x ∈ B.

v) g is said to be a uniformly totally convex function on E ⊂ B if infx∈Ẽ νg(x, t) > 0 for all
t > 0 and all bounded subsets Ẽ ⊂ E.

We will present next some additional conditions on g, which are needed in the convergence
analysis of our algorithm.

H1: The level sets of Dg(x, ·) are bounded for all x ∈ B.

H2: infx∈C νg(x, t) > 0 for all bounded set C ⊂ B and all t > 0.

H3: g′ is uniformly continuous on bounded subsets of B.

H4: g′ is onto, i.e., for all y ∈ B∗, there exists x ∈ B such that g′(x) = y.

H5: (g′)−1 is continuous.

H6: If {yk} and {zk} are sequences in C which converge weakly to y and z, respectively and y 6= z,
then

lim inf
j→∞

∣∣∣〈g′(yk)− g′(zk), y − z〉∣∣∣ > 0.

These properties were identified in [14]. We make a few remarks on them. H2 is known to hold
when g is lower semicontinuous and uniformly convex on bounded sets (see [8]). It has been proved
in page 75 of [7], that sequential weak-to-weak∗ continuity of g′ ensures H6. Existence of (g′)−1 will
be a consequence of H4 for any g ∈ F . We mention that for the case of strictly convex and smooth
B and g(x) = ‖x‖r, we have an explicit formula for (g′)−1, in terms of φ′, where φ(·) = 1

s ‖·‖
r
∗ with

1
s + 1

r = 1, namely (g′)−1 = r1−sφ′.
It is important to check that functions satisfying these properties are available in a wide class

of Banach spaces. The prototypical example is g(x) = 1
2 ‖x‖

2, in which case g′ is the duality
operator, and the identity operator in the case of Hilbert space. It is convenient to deal with a
general g rather than just the square of the norm because in Banach spaces this function lacks the
privileged status it enjoys in Hilbert spaces. In the spaces Lp and `p, for instance, the function
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g(x) = 1
p ‖x‖

p leads to simpler calculations than the square of the norm. It has been shown in
[14] that the function g(x) = r ‖x‖s, works satisfactorily in any reflexive, uniformly smooth and
uniformly convex Banach space, for any r > 0, s > 1. We have the following result.

Proposition 2.5.

i) If B is a uniformly smooth and uniformly convex Banach space, then g(x) = r ‖x‖s satisfies
H1–H4 for all r > 0 and all s > 1.

ii) If B is a Hilbert space, then g(x) = 1
2 ‖x‖

2 satisfies H6. The same holds for g(x) = 1
p ‖x‖

p

when B = `p (1 < p <∞).

Proof. See Proposition 2 of [14].

We remark that the only problematic property is H6, in the sense that the only example we have
of a nonhilbertian Banach space for which we know functions satisfying it is `p with 1 < p < ∞.
As we will see in Section 4, most of our convergence results demand only H1–H5.

Now we present some properties of Bregman projection in Banach spaces. A full discussion
about this issue can be found in [7].

Definition 2.6. Assume that B is a Banach space. Let g ∈ F be a totally convex function on B
satisfying H1. The Bregman projection of x ∈ B onto C, denoted by Πg

C(x), is defined as unique
solution of the following minimization problem.

Πg
C(x) = argmin

y∈C
Dg(y, x).

It is worthwhile mentioning that Dg(x, y) = 1
2 ‖x− y‖

2 whenever g(x) = 1
2 ‖x‖

2 and B is a
Hilbert space. The next proposition lists some properties of Bregman projections.

Proposition 2.7. Assume that B is a Banach space. Let g ∈ F be a totally convex function on B
satisfying H1. In this situation, the following two statements are true.

i) The operator Πg
C : B → C is well defined.

ii) x̄ = Πg
C(x) if and only if g′(x)− g′(x̄) ∈ NC(x̄), or equivalently, x̄ ∈ C and

〈g′(x)− g′(x̄), z − x̄〉 ≤ 0 ∀z ∈ C.

Proof. See page 70 of [7].

We will utilize the following properties in our convergence analysis.
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Proposition 2.8. Assume that g : B → R is convex and Gâteaux differentiable. For any x, y, z ∈
B, it holds that

Dg(y, z) +Dg(z, x)−Dg(y, x) = 〈g′(z)− g′(x), z − y〉. (7)

Proof. See 1.3.9 of [7].

Proposition 2.9. Let g ∈ F be a totally convex function on B satisfying H1. Then for all 0 6= v ∈
B∗, ỹ ∈ B, x ∈ H+ and x̄ ∈ H−, it holds that Dg(x̄, x) ≥ Dg(x̄, z) +Dg(z, x) where z is the unique
minimizer of Dg(·, x) on H where H = {y ∈ B : 〈v, y − ỹ〉 = 0}, H+ = {y ∈ B : 〈v, y − ỹ〉 ≥ 0},
H− = {y ∈ B : 〈v, y − ỹ〉 ≤ 0}.

Proof. See Lemma 1 of [14].

Proposition 2.10. Assume that g ∈ F satisfies H2. Let {xk}, {yk} ⊂ B be two sequences such
that at least one of them is bounded. If limk→∞Dg(yk, xk) = 0, then limk→∞

∥∥xk − yk∥∥ = 0.

Proof. See Proposition 5 of [14].

Proposition 2.11. Let g : B → R be totally convex and Fréchet differentiable on B. If H1 holds,
then Πg

C : B → C, the Bregman projection operator, is norm-to-norm continuous on B.

Proof. See Proposition 4.3 of [22], where this result is proved under weaker assumptions.

3 Statement of the algorithm

Now we present the formal statement of the algorithm. It requires three exogenous parameters:
δ ∈ (0, 1), β̂ and β̃ with 0 < β̂ ≤ β̃, and an exogenous sequence {βk} ⊂ [β̂, β̃].

Korpelevich’s method for VIP(T,C):

1. Initialization:

x0 ∈ C. (8)

2. Iterative step: Given xk, define

zk = (g′)−1[g′(xk)− βkT (xk)]. (9)

If xk = Πg
C(zk) stop. Otherwise, let

`(k) = min{` ≥ 0 : 〈T (y`(k)), xk −Πg
C(zk)〉 ≥ δ

βk
Dg(Π

g
C(zk), xk), (10)
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where
y`(k) = 2−`Πg

C(zk) + (1− 2−`)xk. (11)

We put
αk = 2−`(k), (12)

yk = αkΠ
g
C(zk) + (1− αk)xk, (13)

wk = Πg
Hk

(xk), (14)

where
Hk = {y ∈ B : 〈T (yk), y − yk〉 = 0}.

xk+1 = Πg
C(wk). (15)

4 Convergence analysis

We start by establishing that Korpelevich’s method for VIP(T,C) is well defined, and proving some
elementary properties.

Proposition 4.1. Suppose that Algorithm (8)–(15) stops after j steps. If g ∈ F is totally convex
on B and satisfies H1 and H4, then xk generated by the algorithm is a solution of VIP(T,C).

Proof. Assume that xk = Πg
C(zk). Using (9), we have g′(zk) = g′(xk) − βkT (xk). Proposition

2.7(ii) entails that

〈g′(zk)− g′(xk), z − xk〉 = 〈g′(zk)− g′(Πg
C(zk)), z −Πg

C(zk)〉 ≤ 0 ∀z ∈ C,

which in turns implies
βk〈T (xk), z − xk〉 ≥ 0 ∀z ∈ C.

Since βk > 0, we conclude that xk ∈ S(T,C).

Proposition 4.2. Assume that T is continuous on C. If g ∈ F is totally convex and it satisfies
H1, then the following statements hold for Algorithm (8)–(15).

i) xk ∈ C ∀k ≥ 0.

ii) If H4 is satisfied, then `(k) is well defined (i.e. the Armijo-type search for αk is finite).

iii) If the Algorithm does not stop at iteration k, then 〈T (yk), xk − yk〉 > 0.
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Proof. i) It follows from (8) and (15).
ii) Assume by contradiction that

〈T (y`(k)), xk −Πg
C(zk)〉 < δ

βk
Dg(Π

g
C(zk), xk) ∀` ≥ 0. (16)

Since T is continuous and y`(k) → xk as `→∞, we get, multiplying both sides of (16) by βk,

βk〈T (xk), xk −Πg
C(zk)〉 ≤ δDg(Π

g
C(zk), xk),

or equivalently,
〈g′(xk)− g′(zk), xk −Πg

C(zk)〉 ≤ δDg(Π
g
C(zk), xk), (17)

using H4 and (9). Applying (7) to the left side of (17), we obtain

Dg(Π
g
C(zk), xk) +Dg(xk, zk)−Dg(Π

g
C(zk), zk) ≤ δDg(Π

g
C(zk), xk). (18)

Since g is strictly convex, Definition 2.4(i) and the stopping criterion imply that

Dg(Π
g
C(zk), xk) > 0.

Therefore, using (18) and the fact that δ ∈ (0, 1), we get

Dg(xk, zk) < Dg(Π
g
C(zk), zk),

which contradicts Definition 2.6, because xk ∈ C.
iii) Combining statements (10)–(13), we get

〈T (yk), xk − yk〉 = αk〈T (yk), xk −Πg
C(zk)〉 ≥ δαk

βk
Dg(Π

g
C(zk), xk) > 0,

in view of the stopping criterion.

The next proposition establishes the Fejér monotonicity property of the sequence {xk} generated
by the algorithm with respect to S(T,C).

Proposition 4.3. Assume that T is continuous on C, that VIP(T,C) satisfies property A, and
that g satisfies H1–H5. Let {xk}, {yk}, {zk} be the sequences generated by Algorithm (8)–(15). If
the algorithm does not have finite termination, then

i) the sequence {Dg(x∗, xk)} is nonincreasing (and henceforth convergent) for any x∗ ∈ S(T,C)
satisfying (6).

ii) The sequence {xk} is bounded, therefore it has weak cluster points.

iii) limk→∞
∥∥wk − xk∥∥ = 0.

10



iv) The sequence {zk} is bounded.

v) limk→∞〈T (yk), xk − yk〉 = 0.

Proof. i) For each k, define H−k = {x ∈ B : 〈T (yk), x−yk〉 ≤ 0}, Hk = {x ∈ B : 〈T (yk), x−yk〉 = 0},
and H+

k = {x ∈ B : 〈T (yk), x − yk〉 ≥ 0} where {yk} is the sequence generated by (13). Take
x∗ ∈ S(T,C) satisfying (6), so that x∗ ∈ H−k for all k. On the other hand, by Proposition 4.2(iii),
xk ∈ H+

k and xk /∈ H−k . Therefore, Proposition 2.9 implies that

Dg(x∗, xk) ≥ Dg(x∗, wk) +Dg(wk, xk). (19)

By (7), Proposition 2.7(ii), and the fact that xk+1 = Πg
C(wk), we have that

Dg(x∗, xk+1) +Dg(xk+1, wk)−Dg(x∗, wk) = 〈g′(xk+1)− g′(wk), xk+1 − x∗〉 ≤ 0,

which implies
Dg(x∗, wk) ≥ Dg(x∗, xk+1) +Dg(xk+1, wk). (20)

By combining (19) and (20), we get

Dg(x∗, xk) ≥ Dg(x∗, xk+1) +Dg(xk+1, wk) +Dg(wk, xk). (21)

Since Dg(xk+1, wk), Dg(wk, xk) ≥ 0, we get the result from (21).
ii) Take any x∗ ∈ S(T,C) satisfying (6). Then the result follows from H1 and the reflexivity of

B.
iii) Taking limits in (21) and using (i), we obtain limj→∞Dg(wk, xk) = 0, which in turns implies,

using Proposition 2.10 and (ii), limj→∞
∥∥wk − xk∥∥ = 0.

iv) Note that T , g′, and (g′)−1 are continuous functions by our assumptions. On the other
hand, {xk} is bounded by (ii). Henceforth {zk} is bounded, because {βk} is bounded.

v) We have that

0 = 〈T (yk), wk − yk〉 = 〈T (yk), wk − xk〉+ 〈T (yk), xk − yk〉 ∀k,

since wk = Πg
Hk

(xk) belongs to Hk, by (14) and the definition of Bregman projection. Hence,∣∣∣〈T (yk), xk − yk〉
∣∣∣ =

∣∣∣〈T (yk), xk − wk〉
∣∣∣ ≤ ∥∥∥T (yk)

∥∥∥
∗

∥∥∥xk − wk∥∥∥ ∀k. (22)

We remind that assumption H3 implies Fréchet differentiability of g (see Proposition 4.8 of [26]). So
using Proposition 2.11, boundedness of the sequence {xk} and {zk} established in (ii) and (iv), and
the fact that {αk} ⊂ [0, 1], we conclude that {yk} is bounded, which in turns implies boundedness
of the sequence {

∥∥T (yk)
∥∥
∗}. Now, taking limits in (22) and invoking (iii), we complete the proof

of (v).

We need now to the following concept.
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Definition 4.4. We say that {xk} is an asymptotically solving sequence for VIP(T,C) if 0 ≤
lim infk→∞〈T (xk), z − xk〉 for each z ∈ C.

Proposition 4.5. Assume that T is continuous on C, that VIP(T,C) satisfies the property A
and that g satisfies H1–H5. Let {xk} and {zk} be the sequences generated by Algorithm (8)–(15).
Suppose that {xik} is a subsequence of {xk} satisfying limk→∞Dg(Π

g
C(zik), xik) = 0. Then {xik}

is an asymptotically solving sequence for VIP(T,C).

Proof. Note that {xk} is bounded by Proposition 4.3(ii), and H2 is satisfied by assumption. Thus,
Proposition 2.10 implies that

lim
k→∞

∥∥xik −Πg
C(zik)

∥∥ = 0. (23)

Now we apply Proposition 2.7(ii) to obtain

〈g′(zik)− g′(Πg
C(zik)), z −Πg

C(zik)〉 ≤ 0 ∀z ∈ C,

or equivalently, in view of (9),

1
βik
〈g′(xik)− g′(Πg

C(zik)), z −Πg
C(zik)〉 ≤ 〈T (xik), z −Πg

C(zik)〉 ∀z ∈ C,

which is equivalent to

1
βik
〈g′(xik)− g′(Πg

C(zik)), z−Πg
C(zik)〉+ 〈T (xik),Πg

C(zik)−xik〉 ≤ 〈T (xik), z−xik〉 ∀z ∈ C. (24)

Now fix z ∈ C, and let k →∞ in (24). Using H3, (23), continuity of T , the fact that {βk} ⊂ [β̂, β̃],
and the boundedness of the sequences {T (xik)}, {Πg

C(zik)} (which follow from Propositions 2.11,
4.3(iv)), we obtain

0 ≤ lim inf
k→∞

〈T (xik), z − xik〉.

Proposition 4.6. Assume that T is uniformly continuous on bounded subsets of C, that VIP(T,C)
satisfies property A, and that g satisfies H1–H5. If a subsequence {αik} of the sequence {αk} defined
in (12) converges to 0 then {xik} is an asymptotically solving sequence for VIP(T,C).

Proof. To prove this assertion, we use Proposition 4.5. Thus, we must show that

lim
k→∞

Dg(Π
g
C(zik), xik) = 0.

By contradiction, and without loss of generality, let us assume that limk→∞Dg(Π
g
C(zik), xik) = η >

0 . Define
ȳk = 2αikΠg

C(zik) + (1− 2αik)xik

12



or equivalently
ȳk − xik = 2αik [Πg

C(zik)− xik ]. (25)

Since {Πg
C(zik)− xik} is bounded and limk→∞ αik = 0, it follows from (25) that

lim
k→0

∥∥∥ȳk − xik∥∥∥ = 0. (26)

From (10) and definition of ȳk we get

〈T (ȳk), xik −Πg
C(zik)〉 < δ

βik
Dg(Π

g
C(zik), xik)

for all k. Since T is uniformly continuous on bounded subsets of C and δ ∈ (0, 1), using (26) we
can find N ∈ N such that

〈βikT (xik), xik −Πg
C(zik)〉 < Dg(Π

g
C(zik), xik) ∀ k ≥ N,

which implies, using (9),

〈g′(xik)− g′(zik), xik −Πg
C(zik)〉 < Dg(Π

g
C(zik), xik) ∀ k ≥ N.

Proposition 2.8 implies that

Dg(Π
g
C(zik), xik) +Dg(xik , zik)−Dg(Π

g
C(zik), zik) < Dg(Π

g
C(zik), xik) ∀ k ≥ N,

which is equivalent to Dg(xik , zik) < Dg(Π
g
C(zik), zik), contradicting Definition 2.6 and the fact

that xk ∈ C.

Corollary 4.7. Assume that T is uniformly continuous on bounded subsets of C, that VIP(T,C)
satisfies property A and that g satisfies H1–H5. Then the sequence {xk} generated by Algorithm
(8)–(15) is an asymptotically solving sequence for VIP(T,C).

Proof. First assume that there exists a subsequence {αik} of {αk} which converges to 0. In this
case, we obtain 0 ≤ lim infk→∞〈T (xik), z − xik〉 from Proposition 4.6. Now assume that {αik} is
any subsequence of {αk} bounded away from zero (say αik ≥ ᾱ > 0. It follows from (10) and (13)
that

〈T (yik), xik − yik〉 ≥ δαik
βik

Dg(Π
g
C(zik), xik). (27)

Taking limits in (27) as k →∞, and taking into account Proposition 4.3(v), we get

lim
k→∞

Dg(Π
g
C(zik), xik) = 0,

which in turns implies 0 ≤ lim infk→∞〈T (xik), z − xik〉, using Proposition 4.5.
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Now we can state and prove our main convergence result.

Theorem 4.8. Assume that T is monotone and uniformly continuous on bounded subsets of C
and that g satisfies H1–H5. Let {xk} be the sequence generated by (8)–(15).Then

i) lim infk→∞〈T (z), z − xk〉 ≥ 0 for all z ∈ C.

ii) {xk} has weak cluster points and all of them solve VIP(T,C).

iii) If VIP(T,C) has a unique solution or H6 is satisfied, then the whole sequence {xk} is weakly
convergent to some solution of VIP(T,C).

Proof. i) Note that monotonicity of T implies property A. Take an arbitrary z ∈ C. By mono-
tonicity of T we have that

〈T (z), z − xk〉 ≥ 〈T (xk), z − xk〉 ∀k. (28)

Taking lim inf on both sides of statement (28) as k →∞, we get

lim inf
k→∞

〈T (z), z − xk〉 ≥ lim inf
k→∞

〈T (xk), z − xk〉 ≥ 0,

where the rightmost inequality follows from Definition 4.4 and Corollary 4.7.
(ii) Note that {xk} has at least one weak cluster point by reflexivity of B and Proposition 4.3(ii).

Thus, let x̄ be any cluster point of {xk} and {xik} a subsequence of {xk} such that limk→∞ x
ik = x̄.

In view of (i),
〈T (z), z − x̄〉 = lim

k→∞
〈T (z), z − xik〉 ≥ 0,

for each z ∈ C. On the other hand, norm-to-norm continuity of T on C gives norm-to-weak∗

continuity of T on C, and hence T is hemicontinuous on C. We conclude that (ii) holds using
Lemma 2.3.

(iii) If VIP(T,C) has a unique solution, then the result follows from (ii). Otherwise, assume
that x̂ ∈ C is another weak cluster point of {xk} solving VIP(T,C), and let {x`k} be a subsequence
of {xk} such that limk→∞ x

`k = x̂. By (ii), both x̄ and x̂ solve VIP(T,C). By Proposition 4.3(i),
both Dg(x̄, xk) and Dg(x̂, xk) converge, say to η ≥ 0 and µ ≥ 0, respectively. Using the definition
of Dg, we have that

〈g′(x`k)− g′(xik), x̄− x̂〉 = Dg(x̄, xik)−Dg(x̄, x`k) +Dg(x̂, x`k)−Dg(x̂, xik).

Therefore∣∣∣〈g′(x`k)− g′(xik), x̄− x̂〉
∣∣∣ ≤ ∣∣∣Dg(x̄, xik)−Dg(x̄, x`k)

∣∣∣+
∣∣∣Dg(x̂, x`k)−Dg(x̂, xik)

∣∣∣ . (29)

Taking limits in (29) with k →∞, we get

lim inf
k→∞

∣∣∣〈g′(x`k)− g′(xik), x̄− x̂〉
∣∣∣ ≤ |η − η|+ |µ− µ| = 0,

which contradicts H6. As a result, x̃ = x̂.
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