STABILITY OF FOLIATIONS INDUCED BY RATIONAL MAPS

F. CUKIERMAN, J. V. PEREIRA, AND I. VAINSENCHER

ABSTRACT. We show that the singular holomorphic foliations induced by dom-
inant quasi-homogeneous rational maps fill out irreducible components of the
space Fq(r, d) of singular foliations of codimension ¢ and degree d on the com-
plex projective space P", when 1 < ¢ < r — 2. We study the geometry of
these irreducible components. In particular we prove that they are all rational
varieties and we compute their projective degrees in several cases.

1. INTRODUCTION

1.1. The space of codimension one holomorphic foliations on P". Let us
consider a differential 1-form in C"+!

.
w= E a;dx;
i=0

where the a; are homogeneous polynomials of degree d 4+ 1 in variables x, . .., Z,
with complex coefficients. Assume that Y ;_;a;z; = 0, so that w descends to the
complex projective space P and defines a global section of the twisted sheaf of
1-forms Q3. (d + 2).

The space of codimension one foliations of degree d on P" is the algebraic subset
of P (H(P", Q4. (d+2))) consisting of the 1-forms w that satisfy the Frobenius
integrability condition and has zero set of codimension at least two, i.e.,

F(r,d) = {w e P (H*(P", Q- (d +2))) |wAdw=0and codimsing(w) > 2} .

For the study of the irreducible components of F(r,d) we refer to e. g. [2] and
[10].

1.2. Stability of quasi-homogeneous pencils. One of the first results on the
subject is due to Gémez-Mont and Lins Neto [7] who proved that there are ir-
reducible components R(r,d,d) C F(r,2d — 2), r > 3, whose generic element is
a foliation tangent to a Lefschetz pencil of degree d hypersurfaces. Their proof
explores the topology of the underlying real foliation and relies on the stability
of the Kupka components of the singular set and on Reeb’s Leaf Stability Theo-
rem. Using similar methods they recognized for r > 4 other irreducible components
R(r,do,d1) C F(r,dg+d; —2) with generic member tangent to a quasi-homogeneous
pencil (A\FPo — uGP) with pg and p; relatively prime natural numbers satisfying
podo = p1di1, d; = degF;. Later Calvo-Andrade [I] extended Gémez-Mont-Lins
Neto result about quasi-homogeneous pencils to dimension three. His proof has an
extra dynamical ingredient —the stability of leaves carrying non-trivial holonomy.

The authors were partially supported by CAPES-SPU. The second author is supported by
Instituto Unibanco and CNPQ. .
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In fact in both of the above mentioned papers the authors do not restrict to P”
and prove their results for foliations on an arbitrary projective manifold M with
dim M > 3 and H'(M, C) = 0. An alternative proof of the above results based on
extension techniques of transversely euclidean structures has been carried out by
Scérdua in [I5].

1.3. Infinitesimal stability of quasi-homogeneous pencils. Although full of
geometric insights the above mentioned works do not seem to shed any light on the
scheme structure or the geometry of R(r, dy, d1). The present article stems from an
attempt to understand these problems.

Using infinitesimal techniques, as in [4], we describe the Zariski tangent space
of R(r,dp,dy) at a generic point and arrive at a proof that R(r,dp,d;) —with the
natural scheme structure given by the Frobenius integrability condition— is generi-
cally reduced. More precisely if R(r, do, d1) denotes the closure of the image of the
rational map

p: P (HY(P",0pr(do))) x P (H°(P",0pr(d1))) --» P(H(P",Q%(do + dv)))
(F07F1) = doFodFl —leldFQ.

then our first result reads as follows.

Theorem 1. If r > 3 then R(r,do,d1) is an irreducible and generically reduced
component of F(r,dg + dy — 2).

As explained above the only novelty in Theorem [I] besides the method of its
proof, is what concerns the scheme structure over a generic point. For a more
precise statement see Theorem [2:1] in §2]

The main content of this article is the generalization of Theorem [1] to foliations
of higher codimension.

1.4. Foliations on P" of higher codimension. Let w be a homogeneous g-form
on C™*! with coefficients of degree d + 1 that is annihilated by Euler’s vector field.
As before w can be interpreted as a section of the sheaf of twisted differential g-forms
Qi (d+q+1).

We recall from [13] (see also [4]) that w defines a degree d holomorphic foliation
of codimension ¢ on P" if it satisfies both Pliicker’s decomposability condition

qg—1
(1) (iyw) Aw =0 for every v € /\ crtt,
and the integrability condition

qg—1
(2) (iyw) Ndw =0 for every v € /\ crti.

It is therefore natural to set F,(r,d), the space of codimension ¢ holomorphic
foliations of degree d on P", as

{wePH' (P, QL (d+q+1))) |w satisfies , and codim sing(w) > 2} .
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1.5. Infinitesimal stability of quasi-homogeneous rational maps. If one in-
terprets the elements of R(r,dy,d;) as foliations tangent to the fibers of rational
maps

Pr - P!
x —  (FPo:GPY)

then a possible counterpart in the higher codimension case are the foliations tangent
to dominant rational maps P” --» P9,

When g = r — 1 there is no hope to establish a stability result even for a generic
rational map. Indeed, under this constraint both Pliicker’s condition and the in-
tegrability condition are vacuous. Thus JF,._1(r,d) can be identified with an open
subset of P (HO(P", Qp ' (d+7))) = P (H°(P",TP"(d — 1))). It is well known that
for d > 2 a generic element of this space has no algebraic leaves, see for instance
3.

For 1 < ¢ <r — 2 fix integers dy, ..., d, and consider homogeneous polynomials
F; of degree d; for i =0,...,q. Assume that the ¢-form
(3) w=1r(dFo A--- NdFy),

is non-zero. It is easy to check that w satisfies both (1)) and since i,w =
Y- aijir(dF; A dFj), where the a;; are homogeneous polynomials. Moreover, it
defines a foliation tangent to the fibers of the map

PT - P
r o= (R0 i By
with e; = lem(dy, ..., d,)/d;. We set

d=> di—q-1

R(r,do, ..., dg) C Fy(r,d)

the closure of the set of foliations that can be written in the form . It is the
closure of the image of the rational map

p:Hi]P’(HO((’)]pr(di))) - P(HO(PT,Ql(d—Fq—Fl)))

and denote by

Notice that for ¢ = 1 we recover the definition of R(r, dy, dy).

Theorem 2. Ifr >4 and 1 < ¢ <r —2 then R(r,do, ...,dq) is an irreducible and
generically reduced component of Fg (r,> d; —q—1) .

As far as we know there is no information in the literature concerning the geom-
etry of the irreducible components of F4(r, d) so far.

1.6. Geometry of the rational components. In Section[3|we initiate this study
through an investigation of the parameterization p. Besides computing the dimen-
sion of R(r,dy, ..., dq), we prove the following.

Theorem 3. The irreducible components R(r,dy, . ..,dq) are rational varieties.
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By its definition, R(r, do, ..., d,) is unirational. The proof of rationality relies on
the construction of a variety X that sits as an open set in the total space of a tower of
Grasmmann bundles, together with a birational morphism p : X — R(r, dy, ..., dy).

In general we do not know how to naturally compactify X to a projective variety
where p extends to a morphism. Albeit, in a number of cases we are able to do
that and obtain, with the aid of Schubert Calculus, formulas for the degree of the
projective subvarities

R(r,do,...,dg) CP(HY(P",Q4(d+q+1))).

For example the first few values for the degree of R(r,2,2,2) are listed below.

Degree

1324220

2860923458080

243661972980477736263
728440733705107831789517245858
704613096513585123585398408696231899176183

| O U | W 3

Several other cases are treated in Section
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2. INFINITESIMAL STABILITY OF QUASI-HOMOGENEOUS PENCILS

In this first section we present our proof of Theorem [I} All the arguments will
be reworked later in greater generality. We felt the exposition of this particular
case of Theorem [2| would improve the clarity of the paper.

For simplicity, let us denote by
(4) S, = H(P", Op- (c))
the vector space of homogeneous polynomials of degree e in r 4+ 1 variables, and
F=3(r,d)
so that our rational map p is
(5) p:P(Sq,) X P(Sq,) --» F CP(H'(P", Q" (d+2))) .

If pg and p; denote the unique coprime natural numbers such that pody = p1d;
then
p(Fo, 1) = doFodFy — dy F1dFy = p1 FodFy — poF1dFy
where the last equality of differential forms is up to multiplicative constant.
We remark that

F(Z)Do Fgofl
d <Ffl> = W (plFOdFl —poF1dF0).
1

Therefore, the closure of the leaves of the singular foliation defined by the inte-
grable 1-form p(Fpy, Fy) are irreducible components of the members of the pencil of
hypersurfaces of degree popdy = p1d; generated by F}° and FI*.

2.1. The Zariski tangent space of F. For a scheme X and a point x € X we
denote by T, X the Zariski tangent space of X at z. If P (V) is the projective space
associated to a C-vector space V and denoting 7 : V — {0} — P (V) the canonical
projection, for each v € V' we have a natural identification

Tew)P (V) = V/(v)

where (v) denotes de one-dimensional subspace generated by v. With slight abuse
of notations, the Zariski tangent space T,F of F at a point w is represented by the
forms n € HO(P", Q! (d + 2))/(w) such that

(w+en) A (dw + edn) =0 mod €
that is, such that
wAdn+nAdw=0 or, equivalently dw Adn =20,

where the equivalence is implied by the following variant of Euler’s formula for
homogeneous polynomials.

Lemma 2.1. Ifn is a homogeneous q-form with degree d coefficients then
irdn +d(irn) = (¢ +d)n

where R is the radial or FEuler vector field and ir denotes the interior product or
contraction with R.

Proof. See [10, Lemme 1.2, pp. 3. O
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Therefore to determine T,,J is equivalent to solve dw A dn = 0. Notice that in
the situation under scrutiny dw = (do + d1)dFy A dFy. The first step towards the
general 7 satisfying dw A dn = 0 is given by Saito’s generalization of DeRham’s
division Lemma. In Lemma 2.2] we state variants of both DeRham’s and Saito’s
Lemmas fine tuned up for our purposes.

Lemma 2.2 ([14]). Let Fy,...,F, be homogeneous polynomial functions on C"*
and let © € QITH(C+L) be the (q + 1)-form given by

©=dFyA...\NdF,.

(a) Suppose that ¢ < r and codimsing(©) > 2. Ifn € QY(C™1) is a homoge-
neous polynomial 1—form such that © An = 0 then there exist homogeneous
polynomials ag, ..., aq such that

q
=0

(b) Suppose that ¢ < r—1 and codimsing(0) > 3. Ifn € Q*(C™1) is a homoge-
neous polynomial 2—form such that © Am = 0 then there exist homogeneous
polynomial 1-forms ay, ..., aq such that

q
n= Zai N dF;.
i=0

Remark 2.1. The hypothesis ¢ < r in (a) and ¢ < r — 1 in (b) are not really
necessary. For instance in item (b) the singular set sing(©) equals the locus where
the (¢ + 1) x (r + 1) Jacobian matrix (0F;/0x;) has rank < ¢. Hence sing(©)
is empty or has codimension at most 7 + 1 — q. When g > r — 1 it follows that
codimsing(©) > 3 implies that © has no singularities. We conclude that Fy, ..., F,
are linearly independent linear forms and the conclusion trivially holds true in this
case.

In face of Lemma [2.2]it is natural to define the open subset
(6) U={weR(r,dy,dy) | codim sing(dw) > 3 and codim sing(w) > 2}.

The next result will imply the infinitesimal stability of quasi-homogeneous pencils
corresponding to points of . It is a simple particular case of Proposition [3.1
The iteration argument in the proof is generalized in Lemma [£2 We feel it is
worthwhile to write it here for the sake of clarity.

Proposition 2.1. Let (Fy, F1) € P(S4,) X P(Sq,) be such that p(Fo, F1) =w € U.
Then the derivative

dp(Fo, F1) : T(py, ) (P (Sa,) X P(Sq,)) — TLTF
is surjective. In other words, p is a submersion over U.
Proof. 1t is convenient to write
p(Fy, Fy) = doFodFy — diF1dFy = ig(dFy A dFYy).
Then, the derivative of p at the point (Fy, F1)
dp(Fo, F1) : 8,/ (Fo) x Sa,/(F1) — TF
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is calculated as
dp(Fo, F1)(Fy, F)) = ig(dFy A dFy + dFy A dFY).

Let n € HO(P",Q!(d + 2)) represent an element of T,,F, that is, dw A dn = 0. We
shall prove that 7 belongs to the image of dp(Fy, F1), i.e.,

n= ’LR(dFé ANdF + dFy A dFll)

for some F§ € Sy, and F| € Sy,.
Since dw = dFy A dFy, applying the division Lemma [2.2] to dn it follows that
there exist homogeneous 1-forms « and 8 such that

dn:a/\dFo—i—ﬁ/\dFl.

Notice that dn is a 2-form with coefficients homogeneous polynomials of degree
d = do + dy — 2. Hence the coefficients of « (resp. ) are homogeneous of degree
dy — 1 (resp. dop — 1). Applying exterior derivative we find

da A dFy +dB A dFy = 0.

Multiplying by dFy we get da A dFy A dFy = 0. From lemma [2.2) applied to do we
deduce

do =o' NdFy + o’ ANdFy

where o’ and o are 1-forms with coefficients homogeneous polynomials of respec-
tive degrees dy —2 — (dp — 1) =d; —dp — 1 and dy — 2 — (dy — 1) = —1. Hence
o = 0. Similarly,

dB =B NdFy+ 3" AN dFy

where 3’ and 3" are 1-forms with coefficients homogeneous polynomials of respec-
tive degrees dg —2 — (dp — 1) = =1l and dg — 2 — (dy — 1) = dy — d; — 1. Hence
B =0.

Suppose that dy = d;. By the considerations above regarding degrees, o =
3" = 0. Thus a and § are closed 1-forms. Therefore « = —dFy] and 8 = dF]
where F! is some homogeneous polynomial of degree d;. It follows that dn =
dF{ N dFy + dFy A dF] and since ig(dn) = (d + 1)n we obtain that n is a scalar
multiple of ir(dFj A dFy + dFy A dFY). Therefore the Proposition is proved in the
case dg = dj.

Now suppose dg # di, say dy > di. Then dy —dy — 1 < 0. Hence da = 0 and
dp = 3" N dF;. Repeating the argument of the previous case we obtain a sequence
of 1-forms f;, © € N, such that

dB; = Bit1 NdFy

Comparing degrees it follows that, for £ > 0, B = 0. Thus dfBx—1 = 0 and
there exists a homogeneous polynomial bi_1 such that By = dby_;. Then
dBr_o = dbr_1 A dFy; and hence Br_s = bp_1dF; + dbi_o for a suitable homo-
geneous polynomial bg_os. Then dfi_3 = Bx—2 A dFy = dbx_o N\ dF;. Hence there
exists byp_3 such that Bp_3 = by_odF) + dbg_3. Iterating this, we conclude that
B = Po = b1dF 4 dby and therefore

dn = dF! A dFy + dF} A dFy
where dF] = o and dF}j = dby, as wanted. O
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2.2. Proof of Theorem As a matter of fact we prove the following slightly
more precise statement.

Theorem 2.1. If r > 3 then R(r,do,d1) is an irreducible component of F(r,d).
Moreover, F(r,d) is smooth and reduced at the points of U.

Proof. Write as before p: P --» F, where P = P (Sg4,) X P(Sq,), F = F(r,d) and
R = R(r,dy, dy) is the closure of the image of p. Put F' = (Fp, Fy) € P. Proposition
implies that for w = p(F'), the derivative

dp(F) : TP — TF.,

is surjective and also factors through T,,R C T,,F. Then T,R = T,,F. It follows
that R is an irreducible component of F and ¥F is reduced at the generic point of
R. O

3. STABILITY OF QUASI-HOMOGENEOUS RATIONAL MAPS

In this section we exhibit some previously unknown irreducible components
R(r,do,...,dy) of Fy(r,d), generalizing the case ¢ = 1 of the previous section.

A point of R(r,dy, ..., d,) will be a twisted g-form w € H*(P",Q4(d + ¢ + 1)) of
type
(1) w=ir(dFy A AdF) = Y (=1)Vd;Fy dFg A+~ NdF; A+~ AdF,

0<j<q

where F; € Sy, is a homogeneous polynomial of degree d; in 7 + 1 variables, and
(8) do+--+dy=d+q+1

We call w a rational g-form in P” of type (do, ..., dq).
More precisely, R(r,do, ..., dq) is defined as the closure of the image of the ra-
tional map

(9) piP(Sq) %+ xP(Sq,) --> P (H(P",Q(d+q+1)))
induced by the multilinear map
I Sdo X X qu _>H0(]}D7"Q‘1(d+q_|_1))

such that p(Fy,...,Fy) =ir(dFy A --- A dFy). The base locus of p is described in
below.

As in the previous section, we define the open subset
(10) U ={w € R(r,dy,...,dq)]|codim sing(dw) > 3 and codim sing(w) > 2}.

With notation as above, our main purpose in this section is to prove the following
Theorem which is a more precise version of Theorem [2] of the Introduction.

Theorem 3.1. Suppose v > 3 and 1 < q¢ < r — 2. Then R(r,dg,...,d,) is an
irreducible component of Fq(r,d). Moreover, F4(r,d) is smooth and reduced at the
points of U.

The strategy is the same as the one used to prove Theorem Let us denote
by & = F,(r,d). The scheme F is defined by the quadratic equations

(11) i(vy))wAw=0 and i(vy)wAdw=0
for all J C {0,...,r} of cardinality ¢ — 1.
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The tangent space T,F of F at a point w is represented by the forms w’ €
HO(P",Q%(d + q + 1))/(w) such that w, = w + ew’ satisfies the conditions
modulo €2, that is

i(vy)we Awe =0 and i(vy)we A dwe =0
modulo €2, for all J C {0,...,r} of cardinality ¢ — 1. Expanding, one obtains
(12) i(vy)w Aw+i(v))wAw =0 and i(vy)w Adw+i(vy)wAdw' = 0.

In order to work out w’ from we will need a pair of technical results.

3.1. Lemmata. The first technical Lemma is a generalization of Lemma that
will be a central tool in the rest of this article.

Lemma 3.1. [ Let Fy, ..., F, be homogeneous polynomial functions on C™*1 and
let © € QITL(C™HL) be the (q + 1)-form given by

©=dFyA...\NdF,.

Suppose that codimsing(©) > 3. If n € QI (C™) is such that n A dF; A dF; = 0
for every 0 < i < j < q then there exist holomorphic 1-forms ag, . ..,a, € Q(CTT1)
such that

q
n=>Y aiNdFy A...dF;... NdF,.
1=0

Proof. For the second item let U be an open covering of C"*! \ sing(©). Since
codim sing(©) > 3 we can assume that over each open set U € U our set of functions
is part of a coordinate system on U. It is then clear that

no =Y ey AdFy A...dF;... \dF,

for suitable 1-forms ag v, ..., aqu € QH(U).
A simple computation shows that over U NV
(ozi’U — ai,V) AO=0.
It follows from Saito’s Lemma [14] that there exists a unique (¢+1) x (¢4 1) matrix
Ayny with entries in O(U N V) such that
Qo,u — 0,V dFy

= Aunv -
Qq,Uu — Qq,Vv dFy
Of course the collection of matrices Ayny with (U, V) ranging in U? defines an
element of H!(C"™*! \ sing(0),M® 0) = H}(C" ! \ sing(0), O) ® M, with M being
the vector space of (¢ + 1) x (¢ + 1) matrices.

The hypothesis codim sing(©) > 3 implies that this cohomology group is trivial,
see for instance [6l pg. 133]. Therefore we may write Ayny = Ay — Ay where
Ay, Ay are matrices of holomorphic functions in U resp. V. We can thus set

(%)) Qo,U dFO Qo v dFo

oy QqU dF, g v dF,
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as the sought global 1-forms at least over C"! \ sing(©). To conclude one has
just to invoke Hartog’s extension Theorem to ensure that these 1-forms extend to
(CT+1. 0

By expanding in its homogeneous components both sides of the equality

—

q
=Y aiANdFyA...dF;...NdF,.
i=0

it can be easily seen that if 7 is a homogeneous polynomial g-form then the 1-forms
g, ..., 0q can be assumed homogeneous polynomial 1-forms.

The second technical Lemma in this subsection replaces the iteration argument
in the proof of Theorem [2.]]

Lemma 3.2. For j=0,...,q let F; € Sy, be a homogeneous polynomial of degree
d;. Suppose w = ig(dFy A --- A dF,) satisfies codim sing (dw) > 3. Then, for
a € HY(P™,Q(e)) the following conditions are equivalent:

(a) da =3 ocp<y Ak N dEg for some Ay € HO(P", Ql (e — di)).
(b) a =dG+ Zogkgq Hy, dFy, for some G € S, and Hy, € Se_g, -

Proof. Tt is clear that (b) implies (a). Let us prove the converse, by induction on
e € N. If (a) holds, applying exterior derivative we get

O=d’a= Y dAxAdFy = dAx NdFy A+~ NdF, =0.
0<k<q

By the hypothesis on the F; and Lemma [2.2}

dAy = Z Agn NdFy

0<h<q

for some Ay, € HO(P", Q! (e — dy — dp,)). Since e —dy < e, the inductive hypothesis
applies to Ay and yields

Ap = dGr+ Y Hyp dFy,
0<h<gq

for some Gy, € S¢—_q, and Hy € S._4, 4, . Replacing in (a) we find

do = Zde AN dF, + ZHML dFy, N dFy.
k h.k
Since ira = 0, we have e-a = igda. Applying ig we obtain, after a little calculation
e-a=dG + Z H;. dF}
0<k<gq

where

G == dFyGy, Hy=(dp+e)Gr+ Y dpFn(Hpn — Hpr)
k n

as claimed. O
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3.2. Surjectivity of the derivative and proof of Theorem Now we are
ready to complete the proof of Theorem and hence of Theorem [2| of the Intro-
duction. The proof follows from Proposition below combined with the same
argument used in the proof of Theorem [2.1

Proposition 3.1. Suppose r > 3 and 1 < ¢ < r —1. If F = (Fp,..., F,) €
[[,P(Sa,) is such that p(F) = w € U then the derivative

dp(E) : TE(P (Sdo) X x P (qu)) — LI
18 surjective.
Proof. At a point F' = (Fy, ..., F,) belonging to the domain of p the derivative
(13) dp(E) : Sdo/(FO) X X qu/(Fq) —>ng
is calculated by multilinearity as
dp(E)(Fy, ..., Fy) =Y in(dFy A--- NAF] A+ AdFy).
0<j<q
Let w = p(F) € Y and v’ € T,F. From we have
i(vy)w Adw = —i(vy)w A dw'.
Since dw is a constant multiple of dFy A --- A dF, (see Lemma ), by exterior
multiplication with dF; we obtain
dF; Ni(vy)w Adw' =0
for all 3, J.
Let Y;,(0 < j < g), be rational vector fields such that dF;(Y;) = 6;;. For
J=A0,...,q¢}\ {4,5} we have i(vy)w = N(F;dF; — F;dF;). Then,
0= dFj A\ ’i(’l)])w Adw' = )\dF‘j A\ FdeZ‘ A\ dwﬂ
which implies that
dFZ /\dFJ /\dw/ =0
forall 0 <i,5 <gq.
Lemma [3.3] implies that
(14) dw' = > a; AdFo A NdFj A+ AdF,
0<j<q
for some a; € HY(P",Q!(d;)). Applying exterior derivative we find
0=d%' = Y dajAdFo A~ ANdEj A~ NdE,.
0<j<q
Taking wedge product with dF; we get
daj N (dFg N---NdFy) =0
for all j. Therefore, thanks to Lemma [2:2]
daj = Z Ajk A dFy,
0<k<q
for suitable A, € HO(P", QY (d; — dy)). Lemma implies that
Q; = de + Z ij dFk

0<k<q
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for some G; € Sy, and Hjp € Sy, g, (we use the convention S, = 0 for e < 0).
Replacing in above we have

(15)  dw'= > dG;NdFy A+ AdF; A+ NdFy +c dFg A+ A dF,

0<j<q
for some ¢ € C. Since igw’ = 0, Lemma yields (3, d;) w' = igdw’. Applying
ir to and taking into account, we obtain
W' =dp(F)(Fy, ..., F,)

where F} = ((i‘l;) G;. Therefore dp(F') is surjective, as claimed. O

4. GEOMETRY OF THE PARAMETRIZATION

In this section we analyze the parametrization
p:P(Sq,) X+ X P(Sq,) --> Ry(r,d) C P (H(P",QUd +q+1))) ,
where Sy, = HO(P", Op-(d;)), d =Y. d; and d = (dp, .. .,d,).

4.1. Base locus. Let us start by describing the base locus B(p) of p.

If ig(dFy A --- A dF,) = 0, applying exterior differentiation and Lemmam we
obtain that dFy A---ANdF, = 0. This means that the Jacobian matrix of Fp,..., Fy
has rank < g + 1 everywhere, that is, the derivative of the map

F.Crt — cott

defined by F(z) = (Fo(z),..., Fy(z)) has rank < ¢+ 1 at every z € C"*1. This is
equivalent to the fact that F' is not dominant, that is, f(Fy,...,F,) = 0 for some
non-zero polynomial f € Clyo,...,yq] (i.e., the F; are algebraically dependent).
We thus obtain

(16)  B(p) ={(Fo,..., Fy) € [[P(Sa,) | E: C' — C*™ is not dominant}.

7

For ¢ = 1 the set theoretical description of p is rather simple:
(17) B(p) = {(Fo, F1) € P(Sa,) x P(Sa,) | Fg" = F{"}.
For general ¢ we have a stratification

B(p)1 CB(p)2 C -+- C B(p)g = B(p)

where B(p)r, = {(Fo,...,F,)|dimimage(F') < k}. The first stratum B(p); is set-
theoretically equal to

{(Fo,....Fy) € [[P(Sa) | Ffe = ... = Fin}

where ch =11 oy d;. For k > 1 the same set theoretical description is considerably
more complex and we will carry it out only in very particular cases in

Beware that the scheme structure of B(p) is often non-reduced, see

At any rate, we register the following easy consequence of Lemma[2.1]
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Proposition 4.1. Let

~ q+1
p:IL,P(Sq,) - P (Sd_1® A SI)
(Fo,...,Fq) = dFQ/\"'/\Fq.

Then the base loci of p and p are one and the same as schemes.

Proof. Let V. C S.® /q\ S} be the subspace of closed ¢—forms with coefficients of

-1
degree e. Put W = ig(V) C Scpi® A St. Then ig : V — W is a linear
isomorphism. We still denote by ig : P (V) — P (W) the projectivization. Since
the image of p lies in P (V') and p = iR o p, the assertion follows. O

4.2. Weighted homogeneous polynomials. Fix d = (do,...,d,) € N9*! and
e € N. A polynomial f in Clyo,...,y,| is said to be weighted homogeneous of type
d and degree e if

f(AdOy(), ey )‘dqu) = Aef(y()v cee 7yq)
for any A € C. Equivalently, f is a linear combination of monomials

H y}lj such that d- o := Z djoj =e.
0<j<q 0<j<q
This is tantamount to declaring each variable y; to be of degree d;.
We denote by
S
the C-vector space of all such polynomials and write its dimension as N(g, d,e).
Notice that N(gq,d,e) = dim'S can be expressed by the Hilbert series
- 1
— e __
H(t)—ZN(q,d,e)t = — )
e i=1
Throughout we will assume that the vector of natural numbers d € NI*+! is
non—decreasing;lxordered7 e, do <dy <---<dy.
Define € = e(d) = (ex, . .., ex) such that e; < e;41 and Up<;<4{d;} = Ulﬁigk{ei}.
If n; stands for the number of times the natural number e; appears in d then the
pair (€,7), where 7 = (ng,...,ng), determines d.
Set ¢j = 1+, ;c;ni,and for I =1,....k

q,d.e

q,de

dl = (61,...,61,62,...,62,...,61,...,61).
—— —— ——
n1 times no times n; times

Clearly, for each f € S no variable y; with weight d; > e; occurs in f; thus

q,d,e;’
[a¥)

Sqdie; = Sq;.d;e;
Denote by E¢*! = End(C?t!) the set of all polynomial maps f : C4Tt — Ca+1,
It is a ring under sum and composition of maps. If f = (fo,..., fy) € Eat! we say
that f is of type d if f; is weighted homogeneous of type d and degree d;, for all
1=0,...,q.

Lemma 4.1. Maps of type Jformfz subring of ETtY. More precisely, if f, g € E1t!
are of type d then f o g is of type d. Moreover, the set
GL(q,d) = {f € BT |f is of type d and df(0) is invertible}

1S a group.
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Proof. (fiog)(t%yo, ... t%yq) = fi(go(t™yo, - -, t%1yqg)), .., gq(tPyo, ...t qu)) =
fi(tdogo(yo? s ayq)v s 7tdng(y0’ s 7yq)) = tdifi(go(ym s 7yq)a cee 79q(y0> s ))
th(fio ) (o ¥q)s

We have G = GL(g,d) is closed under compositions. It remains to show that
every element is invertible in G. Let us denote the block of variables of weight e;
by

y1:y07"'7yq17 y2:yq1+17"'7yq27 ey yk:qu_u"'aqu'
~—_———— —_———— —_———
(weight e1) (weight e2) (weight ey)

The main point is that each f € G has the following triangular shape,
(3@ Loy 0)s o [ Wy 9,)-

Here
L(gl,...,gi) = (f“(gl, .. ,gz), .. .,fgm(gl,...,gi)),
with
fis(yys - 9) = 905y, y, ) +hij(y,) €S, 4, e,
where h;;(y ) is in fact linear in the block of variables y. of weight e;. Indeed, since
€it1 > €j, MO Y, occurs in f Thus f can be written as

(hy () ho(yy) + 9,y le(y,) + 9, (YY)
Now we see that df(0) is made up of blocks of the linear maps h; = dh; : C" —
C™i. Hence invertibility of the former is equivalent to dh; € GL,, Vi. Thus, given
(21,...,2¢) = (f(y)), one can solve successively
gl = hlil(él% then
Yy = ho (22— 9,(y,)),

Yo = b 2z =9,y y, )

The group GL(q,d) naturally acts on the domain of y (cf.[9)):
GL(q,d) x ] s¢, — ] Sq
0<j<q 0<j<q
(f,(F()v"'an)) i (fO(E)v,fq(E))
In other words, considering F as a polynomial map F : C"t! — C9*!, the action

is just composition with a polynomial map f : C?t! — C%*! which belongs to
GL(q,d).

4.3. The fibers of p. The key tool for the description of the fiber of p and the
proof of Theorem [3]is the following Proposition.

Proposition 4.2. Let F = (Fy,..., F,;),G = (Go,...,Gy) € Sg, x---xSq, Suppose
that both dFy A --- A dFy and dGo A --- A dG,4 are non-zero (g + 1)-forms. If
codimsing(dFy A --- A dFy) > 2 then the following conditions are equivalent:

(a) iR(dFO < ANdFy) =ig(dGo A --- AdGg) up to a constant multiple.
(b) dFo “NdFy =dGo N --- NdGg up to a constant multiple.

(c) d Z()<k<q Ajy, dFy for some Ajy, € Sq;_a,,, for all j.

(d) G = fi(Fo,..., Fy) for some f; € Clyo,...,yql, for all j.
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(e) Gj = fi(Fo,..., Fy), for all j for a unique f; € S, g4, Moreover, (fo,..., fq)

belongs to GL(g, d).

Proof. (a) < (b): Use the identity d(ig(dFoA---ANdFy)) = (g+d)(dFo A+ - - NdFy)
from Lemmal2.1l

(b) = (c): Multiplying by dG,; we obtain dG; A dFy A --- AdF, = 0. Since F is
generic, it follows by the division lemma that the dG; are linear combinations of
the dF}). The coefficients may be chosen as homogeneous polynomials, necessarily
of the stated degree.

(¢) = (b): Using the hypothesis and calculating wedges we have

dGo A -+ AdGy = det(A) dFy A--- A dF,.

Now det(A) is a non-zero homogeneous polynomial, and its degree is zero, so it is
a constant, thereby proving the claim.

(d) = (e): Let f; = Y cay®, where a € N and ¢, € C, so that G; =
YouCaF®. Write f; = g;j + h; where g; is the sum over the exponents a such
that d - a = dj. We have h;(F) = 0 by the homogeneity of G; and of the Fj.
Therefore we may take f; = g;, the weighted homogeneous polynomial that we
needed. Uniqueness is clear since the Fj are algebraically independent. Finally,
setting f = (fo,..., fy), since

dGo A -+~ NdGq = det(df)dFo A --- NdF,

it follows that det(df) = det(df(0)) is a nonzero constant.

(e) = (d): obvious.

(d) = (c): If G; =, caF'*, taking exterior derivative we immediately get dG;
as a linear combination of the dFj.

(c) = (d): It suffices to use Lemma [4.2] below. O

Lemma 4.2. Let F = (Fy,...,F;) € Sg, x --- x Sg, be generic. Let G be a
homogeneous polynomial of degree e such that dG = Zogkgq Ay, dFy, for some Ay, €
Se—da,- Then G = f(Fo,...,Fy) for a unique polynomial f €S, 4.

Proof. We proceed by induction on e. The assertion is clear for e = 0. Taking
exterior derivative we have d*G = > p dARNAF), = 0. Thus dAgAdFyA---NdFy =0
for all k. Since F is generic, we get dAy = >, Byy dF}y, for some By, € Se_g,—d, -
By the inductive hypothesis, Ay = fix(Fo,...,F,) for some polynomial fz. On
the other hand, applying ir to dG = ), Ay dF} we obtain eG = ), Ay dyF}.
Replacing here Ay by fi(Fv, ..., Fy) we obtain the claim. Uniqueness and weighted
homogeneity were argued before. (I

Proposition 4.3. For general F = (Fy,...,F,) € Hogqu Sq, we have a bijective
map

GL(¢,d)  —— p u(E)
(f0a~-~7fq) S (fO(E)vqu(E))

with p the multilinear map inducing p as in @
Proof. The assertion follows from the equivalence (a) <= (e) in O

Corollary 4.1. We have the formula for the fiber dimension,
dimp~'p(E) = Y (N(g,d,d;) - 1).

0<j<gq
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4.4. A natural factorization and proof of Theorem We will now proceed

to describe a tower of open subsets of Grassmann bundles birational to R(r,d). We
preserve the notation of Subsectiond.2

Start with Yy = G(n1,Se, ), the grassmannian of ny-planes in S.,. Let X; C Y}
be the open subset defined as

X1 ={FiA---ANF,, €G(ny,Se,)|codimsing(dFy A--- ANdF,,) > 2}.

Now let Ay — X be the vector subbundle of the trivial bundle S, x X; with fiber
over i = A--- ANF,, € X; given by

As(Fy) ={G € S., |dF\ A+ NdF,, AdG = 0}.

Recalling Lemmaa), and the above considerations on weighted homogeneity,
we have in fact

AQ(El) = {G € SBZ ‘G = f(E1)7f € Sql,gl,eg} = Sql,Jl,EQ'

Let Yo = G(na,S.,/A2) be the Grassmann bundle over X;. Notice that, for
an element Gy = [G1] A --- A [Gy,] € G(n2,8c,/S, 4.,(p)) over a point F; =
Fy A+ ANF,, € Xy, the (n1 4 ng)-form

ﬂ(QQ):dFl/\anl/\dGl/\/\dGnQ

is well-defined up to a non zero multiplicative constant. Therefore we can set
X5 C Y; as the open subset defined by

Xy = {G, € Y5 | codim singn(G,) > 2}
Continuing, we have a vector subbundle A3 of S., x Xo with fiber
A3(F,,Gy) ={H € Se, |dFy A -+~ NdF,; NdGy A -+ NdGp, AdH = 0}.

As before, this is isomorphic to S, 7, .. . Proceeding this way, we arrive at an open
subset X = X, C Y}, where Y, — Xj_1 is the Grassmann bundle G(ng, S, /Ak—1).
Clearly X is a rational variety just like all Grassmann bundles over rational varieties.
Using Proposition we arrive at a birrational map from X to R(r,d). It follows
that R(r, d) is rational and this concludes the proof of Theorem O

5. DEGREE CALCULATIONS

Let d = (do,...,dq), € @, ...be as in the previous section. Here we proceed to
find the degree of the projective variety

R(r,d) C P (H(P",Q%(d + g+ 1)))

in some cases. We shall time and again profit from the following consequence of
Proposition[f.1] We consider

p: HP(Sdi) - f]i(r, d) = (ig)"'R(r,d) C P <Sd_1® qxl S{) .

Thus we see that all degree calculations can be lifted from P (W) C
P (H°(P",Q%(d + g+ 1))) to P (V).
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5.1. Linear projections of grassmannians. When ¢; = ¢, i.e. all the degrees
d; are equal to e;, the variety X constructed in is an open subset of the

grassmannian G(q, S.,). It follows that the morphism p: X — R(r,d) gives rise to
a rational map

~ _ +1
p:Gg+1,S;,) --» R(r,d) C P (Sd1® A S{) .
Notice that p is the composition of Pliicker’s embedding with a central projection

+1
]P’(/\q“ sel) ]P’<Sd1®q/\ s;)
FoA--AF, +—  dFyA---AdF,.

It is a simple exercise to show that G(g+1,S,, ) is disjoint from the center of this
projection if, and only if, ¢ =1 or dy = --- = d; = 1. In both cases the degree of
these components is equal to the degree of the corresponding grassmannians under
Pliicker’s embedding (see e. g. [12]). More precisely, setting N = (¢ + 1)(r — q) =
dimG(qg + 1,7 + 1), we have

(18) deg(R(1,d, d)) = degG(2,84,) = (PN,
where Ny (T‘:d) —1.

Remark 5.1. The scheme-theoretic structure of the base locus of a rational map
¢ :Y --» P(CY) is defined as follows (cf. [9, 7.17.3,p. 168]). We are given a line
bundle (=invertible sheaf) £ over Y together with a homomorphism OF — L,
surjective over the open dense subset U C Y where ¢ is a morphism. The image,
J, of the induced homomorphism

oY@ LY —= Oy

N

J

is the sheaf of ideals defining the base locus. If D denotes an effective Cartier divisor
such that J = Oy (=D) - J’ for some ideal sheaf [J', then the set of zeros, V(J')
is contained in V(7). Clearly ¢ extends to the complement U' =Y \ V(J') D U
in such a way that the pullback of the hyperplane bundle is

(ZSTUOIP((CN)(D =L O(-D).

5.2. (2,2,2). When ¢ = 2 and dy = d; = dy = 2 the situation is still manageable.
It turns out that the indeterminacy locus of the rational map

~ - 3
5:X =G(3,8) - R(r,d)CP(S;® ASY)
FoNFL N Fy — dFo NdFy N\ dFy

is schematically equal to the image of the Veronese-like embedding

v

Y =G2,81) s  X=G3S,)
(Lo, L1) s (L2,LoLy, L?).
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Thus a single blowup 7 : X > X along Y resolves the indeterminacy .e., the in-

duced map p : X — ﬁ(r, d) is a morphism. Indeed, write the tautological sequence
of G(3,8S2)

(19) Ry So Q2
and likewise for G(2,S1),
(20) Ry S1 Q1.

The fiber of Ry over F € X is the space (Fy, F1, F3) spanned by three independent
quadratic forms. In order to find the pullback of the hyperplane class via the
resolved map

we have at first

F*O(—1) =ARy — = AS, > Fo AFy AF;
Ss® ASt 5 dFy AdF, NdFy.

The 1ndeterm1nacy locus, Z CX,ofp: X --» R(T d) is the scheme of zeros of the

slant arrow, /\Rg — S3® /\S1 Dualizing, we find /\R2 (S3® /\S*)*, whence
the ideal sheaf of Z appears as the image

(21) (Ss® AS)*® AR, —= [(2) C Ox.

We claim that Z is equal to the image of v : G(2,S;) = G(3,S2). Indeed,
first note that Z is invariant under linear change of coordinates in P". Since it is
closed, it must contain a closed orbit of G(3,S2). There are just two closed orbits,
to wit those given by the representatives: (22, xox1,zox2) and (3, xoz1, 23). Only
the latter one lies in Z. The calculation of the tangent space to Z at the point
(23, 291, 23) performed below shows that Z is of dimension at most 2(r —1). Since
Z contains the image of G(2,S1), it is in fact smooth and equal to that image. The
tangent space is given by the equation

d(x3 + eFo) Ad(zoxy + eFy) Ad(2F + eFy) =
2€d$0 Adxq /\(ZL’%dFQ — 21’01’1dF1 + x%dFO) = 0’

where the F; € Sy /(x3, zoz1, 23).

Equivalently:
OF: OF OF 0
2 2 1 2 0 2
—= -2 —_— —_— F,—2 F; Fy)=0
’JJO (9.T2 ror 8332 * :El 81‘2 (9.T2 (iL’O 27 srotin * :L'l 0) ’
OF, OF,  ,OF, 0
Ty, ~ M0 g, G, = gy (W0F = 2womi Py 4 a{Fp) = 0.

We’d like to deduce that the subspace consisting of triples
3
(Fo, F1, F») € (32/@(2)7%0581793%)@
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defined by the system just above must be of dimension
dim G(2,S;1) =2(r — 1).

‘We see that x%FQ —2xor1 Y —l—az%Fo is independent of xs, ..., x,. Thus, no monomial
TimTn, 2 < m,n < r appears in the F;. It follows that the F; are of the form

F; = ajpro + anx
with the a;; € Clzs,. .., z,] homogeneous of degree one. We have then

23 (a0 + a2121) — 2021 (a1020 + a11271) + 23 (acozo + ap171) =
3 2 2 3
a20%q + ((121 — 2&10)1‘0131 + (aoo — 2(111)£E0131 + ap1y S (C[CEQ,$1].
This implies
a0 = az1 — 2a19 = ago — 2a11 = ag1 = 0.
Hence the F; depend exactly on 2(r — 1) parameters. This achieves the verification
that Z = v(G(2, S1)).

Pulling back the surjection to the blowup 7 : X — X, we find the surjections
(Ss® AST)® ARy —> T 1(Z) —= Ox(=E) = I(E),
with F = 7' Z, the exceptional divisor. This yields the formula
~ 3
pOF(l) =" AR} ® OX(—E)
It follows that the pullback of the hyperplane class is given by
Fh = ﬂ—*ql - E7

where q; = ¢1Q2 (see. Since p is generically injective, the degree of the image
can be calculated as

deg R(r,2,2,2) = /~ prhdim X,
X

Setting N = dim X = dim G(3,S2) = 3(("3?) — 3), we see that the degree is given

by
/ ShN _/ - N (N) i - (—E)N.

Using projection formula, we are reduced to the calculation of

e the Pliicker’s degree of G(3,S3) for the term with i = N,
and

e the contribution of 7, (E)7 = (—=1)77 v,s;_sN,
where N stands for the normal bundle of the embedding v and

§ =rank N = dim G(3,S2) — dim G(2,Sy).
The minus signs come from the formula
Oz (E) = On(-1).

The Segre classes of the normal bundle are obtained from the usual exact sequence

TY - > TXy — N

(22) | ]
Hom(Rz, Q2) v*Hom(R3, Q3)

By definition of v, we have v*R3 = Sym, Ry. Using SCHUBERT [I1], we find,
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deg

1324220

2860923458080

243661972980477736263
728440733705107831789517245858
704613096513585123585398408696231899176183

(do=dy =dy =2

| O U = W 3

A maple script is available at [16].

5.3. Bundles of projective spaces. When & = 2 and ny = 1, the variety X
constructed in §4.4]is an open subset of a projective bundle over an open subset of
a grassmannian. In general we do not know a manageable compactification. Even
when we can compactify X as above, the scheme structure of the base locus of p
can be non reduced and is far form being understood in general.
Nevertheless in the following three cases we are able to handle the degree:

e ¢ =1 and dy divides d;.

e arbitrary ¢ but k=2 and d, =1, i.e., d = (1,...,1,e).

e g=1,dy=2and d; = 3.

5.3.1. First Case: ¢ =1 and dy divides dy. This is in fact the only case for which
we got a closed formula. Now the natural parameter space is the projective bundle

X — P(Sq,)

described in the sequel.
Write the tautologic line subbbundle over P (Sy, ),

Osdo (—1)>—> Sdo-
Set k = dy/dy. Taking symmetric power, we have the exact sequence
Os,, (—r) Sa, S4,,

which defines the vector bundle Sy, . The fiber of Sy, over each Fy € P(Sy,) is the
quotient vector space Sq, /(F§). Thus we have

— ~ 2
ﬁ: X=P (Sdl) I :R(T, do,dl) Q P (Sd1+d0_2® /\SJ{) .
(F(),Fl) [— dFO /\dFl

The pullback of the hyperplane class via the map p is obtained as follows. Form
the diagram

(23) Os,, (—1) ® Sq, >— Sy, ® Sy,

T

Sy rdy_2® NS
where the vertical map is defined by
Fo ® Fy — dFy NdF.
Composing the slant arrow « with the natural homomorphism

Osdo (_1) ® Osdo (_’%)>—> Osd,o (_1) ® Sa,
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we get zero since dFy Ad(F§) = 0. Hence a passes to the quotient,

(e

Os,,(~1)©Ss, = Os, (-1)®50, — =g, ., o isr
Composing & with
Os,,(-1) ® Og, (=1)>—= Os,, (-1) ®8Sq,
we finally find the line subbundle,

2

Os,, (1) ® Og, (=1)>— Sa,d,-2® AS].
The last map is injective at the point (x‘fo,x‘flflxg), which is a representative of
the unique closed orbit of PP (Sg, ). Hence it is injective everywhere. Alternatively,
since F{¥, I} are linearly independent, the rational map P" --» P! they define is
non-constant, hence dFy A dF; # 0. Thus, the pullback to X of the hyperplane

2
class of the projective space P(Sg,4a,—2® ASY) is
H=h-+h

where h = ¢;0s, (1), which comes from the base P (Sq,), and h’ = ¢10g, (1),
1
the relative hyperplane class. With the notation as in ([18)), we have

rank§d1 —1=Ng4, —2

for the fiber dimension of P (Sq,) — P (S4,). The sought for degree is
(24)

degR(rydoydy) = [ NN 37 (Nt ) iy, (83
P(Sdl) i

B <Nd1 + Ng, — 1> dy <Nd1 + Ng, — 1>
B Ndo do Ndo -1 ’
The last equality follows from the calculation of the Segre class s(S4,) = 1 — xh,
50 8;(Sq,) is zero in degrees i > 2.

If r =3, dy =2, do =1, one finds (*°}®) — 2(})) = 55. By constrast, the degree
of the Segre variety P? x P9 € P? of which the image of p is a rational projection,
is equal to (132).

5.3.2. Second case: k = 2 and dy = 1. We are now looking at foliations defined
by w = ig(dFy A--- NdF,) where deg Fy = --- = deg Fy_1 = 1;degF; = d > 2.
A natural parameter space is the projective bundle over the grassmannian G =
G(q,S1) defined as follows. Write the tautological sequence

R, S: Q.

The fiber of R, over F € G is the space (Fp,...,F;_1) spanned by linear
forms. Now the last polynomial F, is taken as a class in the projective space
P (Sq/(F, Fo- F{71, .., Fd 1)). The natural homomorphism Sym, R, — Sgq is
injective; it corresponds to an instance of the vector bundle Ay described in [4:4]
Form the projective bundle

m: X =P(Sq/Symy Rq) — G.
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Note that the rational map
X - P(Sq_1® AST)
(Fo,...,Fy-1),Fy) +——> dFyA---ANdF,_1 NdF,

is in fact regular everywhere. Indeed, regularity is an open condition; the map is
invariant under the natural action of GL,;; and is regular at the representative

(g, - -, Tq-1), 4 x0) of the unique closed orbit. Thus the sought for degree can
be computed by Schubert calculus in the following manner. Set
g=q(r+1—¢q)=dimG
(25) _(r+d —14d
N=(7) =009 -1

T q—1
so that presently the dimension of the component is § = N + g. The pullback of
the hyperplane class from P(S;_1® A S7) is equal to h + g1, where h stands for
the relative hyperplane class of the projective bundle X — G and q; = ¢1Q. By
general principles, the degree is given by

/X(h+<n)5 = zz: (f) /Gm(h‘s‘i)q’i = zg: (f) /ngfrqi-

0
Here s; = ¢;(Sym, R). For ¢ =2, r = 3 we find
d*(d—1)(d + 3)(d? +2)(d* + 4d + 6)(d +2)*(d + 1)*/(2° - 3%),

a polynomial of degree 12 in d. For ¢ = 2;r = 4,5,6,7,8 we find polynomial
formulas of respective degrees 24, 40, 60,84, 112. This suggests a polynomial degree
like 2r(r — 1). Now for ¢ = 3,r = 4,5,6,7,8 we get polynomial formulae of
degrees 3r(r—2) with respect to d. Further experiments (cf. [16]) suggest polynomial
formulas of degrees gr(r — g + 1). Here is a sample for small values of 7, ¢, d.

(T’ Q) = (53 2)
d 2 3 4 5
deg | 2390850 | 10457430102 | 9654013512864 | 3099059696318355

(r,q) = (6,2)

d 2 3 4 5

deg | 1139133688 | 91451421683006 | 1118409272891730904 | 3524857658574891999976

(r,q) = (6,3)

2 3 4 5

8983484048 | 9350781792221835 | 1060759743612735149417 | 22044166363067583367287424

5.4. (2,2m+1). Assume ¢ = 1, dy = 2 and d; = 3. Set for short X = P(Sy) x
P (S3). Put as before Ny = (Tzd) — 1. We have

dlmX = N2 —|— N3.
We look closer at the indeterminacy locus of
2
p:X --» P <Sg® /\S”{)
(F,G) +~— dF NdG.

It is, set-theoretically,
B(p) = {(L* L?)| L € P(S1)}.
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Lemma 5.1. The tangent space to the scheme of indeterminacy B = B(p) is the
subspace

3
{(F',G') € T{12,1:X = S2/(L*) & S3/(L*) |G’ = 5F'}.
Proof. The tangent space to the scheme of indeterminacy is the set of pairs (F', G’)
such that d(L? + eF’") A d(L? + eG’) = 0. Expanding we get
(26) 2dL AN dG' + 3LdF' ANdL = dL A (2dG’ — 3LdF’) = 0.

By division, we must have 2dG’ — 3LdF’ = F"dL for some F” € S,. This implies
dF" NdL = 3dF' A dL. Hence again by division, dF"” — 3dF’ = AdL for some
A € S;. This implies A = aL for some constant c. Thus d(F” — 3F' — aL?) =0
so that in fact F” = 3F’ + 2aL?. Plugging back in a previous relation, we find
2dG" — 3LdF' = (3F’ + {aL?)dL whence 2dG’ — tadL?® = 3d(LF’). This yields
2G’ — taL® = 3LF’, hence G’ = 3LF’ in S3/(L?). Conversely, it is easy to see that
for such G’ = 3LF", the differential form 2dG’ — 3LdF" is a multiple of dL, hence
holds. 0

Set V.= B,eq = P(S;). Thus B is a multiple structure or thickenning of V.
The tangent sheaf to B is in fact a vector bundle of rank dim P (S5). We have the
exact sequence of vector bundles over V,

IV>——s TBjy — NV/B
where Ny /g stands for the normal bundle of V. C B. We register the formula

2 1
rank Ny /g = (r—;— )—r: (r—;— )—i—l.

We look at the blowup X’ — X along V. Denote by E C X’ the exceptional
divisor. Recall we have E/ = P (./\/V /X), the projectivization of the normal bundle
of VX

Lemma 5.2. We assumer <5. Let p : X' --» P | S3® /2\Sf> be the rational map
induced by p and denote by B’ C X’ the indeterminacy scheme of p'. Then we have
B' =P (My;s) CP(My,x) =F,

the projectivization of the normal bundle of V in its thickenning B.

Proof. We look at the diagram of tangent/normal bundles over V,
(27) TV

TV

TB|V>—> TX‘V  —— NB/X|V

N

NV/B>—>NV/X 4>>NB/X|V

which tells us that P (My,g) embeds naturally into E' = P (MVyx). Let 2’ € E.
Thus we may represent it as 2’ = lim._.o(L? + eF’, L3 + ¢G’) for some (F',G') €
T(12,1,3)X with nonzero image in Ny x. Here we think of (L? + eF', L3 4+ £G') as
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a small arc in X\ V for € # 0. Hence it lifts to an arc in X'\ E’ which hits 2’ € E
fore = 0. Asinweﬁndfors#O7

p(L2 + eF', I3 + eG') =cLdL A (2dG' — 3LAF") + e2dF' A dG'

(28) = LdL A (2dG' — 3LAF") + =dF' A dG.

Now if 2’ is not in the indeterminacy locus, B’, then we must have
o) = lim p(L? +eF' L 4 £G").
E—

This limit is p'(2’) = LdL A (2dG" — 3LdF") provided the expression is #0. It is
zero if and only if G’ = %LF’, i.e., 2’ is in P (Nyg). In this case, recalling (28),

2
p(a') = dF' N dG' = JF'dF’ A dL.

Since the right hand side must be (projectively) independent of representatives of
F' € Sy/(L?), we must have dL A dF’ = 0, a contradiction. Thus LdL A (2dG’ —
3LAF") must be #£0, i.e., ' is not in P (NV/B). This yields P (J\/V/B) CPB.

The dimension is given by

dimB’' = dimV +rank Ny g —1=7r+ ("}?) = 1—-r—1=N — 1= ("}?) - 2.

Thus we also have codim B’ = rank N/ /x» = N3 + 1.

Unfortunately, for the other inclusion we don’t know how to proceed coordinate-
freewise. Using coordinates, with the help of computer algebra (SINGULAR), it can
be checked (see [16]) that B’ is smooth and of the right dimension dimP (NVvy,g).
This requires fixing r to low values, e.g., r < 5. Here is an outline of the calculation
for r = 2. We take affine coordinates ay,...,as,by,...,bg for P(Sy)xP(S3). Set

F = x% + a129x1 + a2x9x2 + agx% + aqx122 + a5m§,
G = a3 + bixdzy + bowdae + - - + by 23 + by,

We compute dF' A dG expanding the 2x2 minors of the 2x3 matrix with rows the
gradients of F, G. We find three cubics as coefficients of dzg A dx1, dxg A dzo, dxy A
dxo. The indeterminacy locus, B, is given by the ideal spanned by those thirty
coefficients. Its jet of order one is spanned by nine independent linear equations,
in agreement with the expected tangent space dimension, to wit, 5, the freedom
of the quadric F'. Continuing, we find next the local equations of the bi-Veronese,
eliminating ci, co from the 54+9 equations obtained from the conditions

F = (20 + c121 + c212)?, G = (x + 121 + coxa)?.
We find that the ideal of the bi-Veronese is spanned by the 12 polynomials

2b1 - 3&1, 463 - 3@%, 8b6 - a:f, 2b2 - 3(12, 2b4 - 30/10,27 8b7 - 3&%&2,
4b5 — 3a§, 8bg — 30L1a§7 8bg — ag, a% —4ag, a1as — 2ay, a% — 4as.

Accordingly, the blowup is covered by 12 affine patches, one for each choice of
the principal generator for the exceptional ideal. The 9 generators involving a
b—coefficient belong to the ideal of B. It follows that the indeterminacy locus
B’ is disjoint from these nine neighborhoods. We are left with the 3 equations
daz—a?,2a,—ayjaz, 4as —a3; these define the Veronese in P?. Choosing € = a? —4as
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as the exceptional generator, the blowup is written as
_1 3 _1 3
by = 5ec1 + 5a1, ba = 5ec2 + 3as,
1 3,2 1 3
bs = zecs + qay, by = zeca + Saraz,
_1 3.2 _ 1 1.3
bs = zecs + 7a3, bg = 5€C6 + 5ay,
1 3,2 1 3,2
by = gecr + gajag, bg = gecs + faras,

_ 1 1.3 _ 1 1
by = geco + a3, ay = —5€c1g + 50102,

as = —%6011 + ia%.
Substituting into the ideal of the indeterminacy locus, the original 30 generators
become divisible by the local equation, €, of the exceptional ideal. Dividing, we

obtain the ideal of the indeterminacy locus upstairs, that is, of the induced rational
map p’ (cf. Lemma. We find the ideal of B’ is presently generated by

€1, 2, 2¢4 + 3c10, 2¢7 + 6¢10a1 — 3az, 2¢5 + 311,
2cg 4 6c1pas + 3c11a1,2¢c9 + 3ci1a9, 2¢3 — 3, 2¢c6 — 3aq, (1% —4as.
——

€

Thus we see that the indeterminacy locus is contained in the exceptional divisor
and we also learn that it is in fact a projective subbundle of the exceptional divisor
E’, in agreement with O

Remark 5.2. Lemmal[5.2)is valid only for small values of 7, as stated and explained
in the proof. But we conjecture that it is true for all . It seems that a more
conceptual proof is needed and probably it would involve some new idea.

At any rate, for each value of r, the validity of Lemma [5.2]is all we need to find
the degree: We consider the following diagram displaying the resolution of the map

p:X--»>P <S3® /Q\S’f)

E// C X//
/ :
B’ C E/ - X'

2
A2 c X—£>]P’<Sg®/\S’{)

The pullback of the hyperplane class via p” can be written as
p/l_lh = m1h1 + m2h2 + mge’ + m4e”

for suitable integers m;, where we’ve denote the cycles € = [E’],e” = [E”] and h;
the hyperplane class of each factor in X = P (S3) x P(S3). The coefficients m,; will
be determined using the Remark[5.1]and excision (cf. [5, 1.8, p.21]). Over U = X\V
only hy, hy survive and we have p”h = 5'h = h; + hy since py is defined by a
bihomogeneous expression of bidegree 1,1. Put U’ = X'\ B’ = X"\ E”. The local

2
calculations show that the image of (S3® AST)* ® Op(s,)(—1) ® Op(s,)(—1) — Ox
is equal to Ox/(—E’) - Z(B’). Blowing-up B’, we find the surjection

2
(S3® AST)* ® Op(s,)(—1) ® Ops,)(—1) @ Oxrr (E') = Oxn(—=E") =Z(B")Ox.
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Thus, we have
(ﬁ)_lh = h1 + h2 - e' — e”.
The degree is computed as

/ (hy + hy — e’ — &")N2tNs,

Apart from the term fx/,(hl + hy) N2t Ns = (NQJ;EN'“”), all others lie over V. Since

h; NV =2h,hyN'V = 3h and h™+! = 0, we see that terms like hih/(e’)*(e”)! give
zero whenever ¢ 4+ j > 7. Thus the relevant part of the integrand is

Z (NQ + N3> (5h)i(7e/ . e//)N2+N377;.
5 i
First we collect coefficients of e”, then take the pushforward to X’ using our knowl-
edge of the normal bundle of B’ € X’ and so on till X. Thus

(€)' = (") e ~ (=1)"'si (Npryx) N [B],

with i =7 — codimB’ =i — N3 — 1. The sum above pushes forward to

T

Z(N2—:N3)(5h)i(_l)N2+N3—i (_(e/)N2+N3—i+

0
No+N3—1i

Z (N2+§V3—i) (e/)N2+N3—i—j(_1)j—1Sj,)7
j=dim B’

setting for short s;; = s;(Ng//x/) N [B'], with j* = j — codimB’ = j — N3 — 1.
(Thus s/ is a cycle of dimension Ny — 1 — j' = Ny + N3 — j.) These Segre classes
can be derived from as follows. We have the exact sequence

(29) Np g Np/x —> O/ (E)p.
We also recall that, for any exact sequence of vector bundles
Elo—n & —= &
we have the formula for the normal bundle of P (') C P (€)
Neenpe) = E" @ Og(1).
In view of (27), this yields
Ne/er = NB/xiv ® Ony 5 (1)

The actual calculation is best performed using computer algebra. A script using
SINGULAR [§] is available at [I6]. A sample of the first few values is listed below.

deg

770

6254612

481152797320

803161672838504856

36968358460592709286459400
53639021695280557844870264612516640
2759237622445467221610266591396121818496881016

(2,3)

O | | O =W D] 3
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As a final remark we mention that there is compelling computer algebra evidence
indicating that the case of bidegree (2,3) carries over to the case (2,2m + 1) with
slight modifications. The indeterminacy locus of the rational map X = P (Ss) x

2
P (Sam+1) -+ P(S2m+1® ASY) given by (F,G) — dF AdG is again a thickening of
the biveronese {(L?, L?"*1)|L € P(S;)}. Blowing up the reduced structure, the

indeterminacy locus, B’, of the induced rational map X’ --» P(Sg,,4+1® /Q\Sf) is
no longer reduced for m > 1. Nevertheless, it still is a rather manageable complete
intersection. In fact, we find local equations of B’ of the form e™, f1, ..., f., with
e denoting the equation of the exceptional divisor, and the f;’s define a projective
subbundle of the exceptional divisor just as in the case (2,3).

|deg R(r,do = 2,d1 = 2m + 1)

dy | deg (P?) dy | deg (P*)

5 | 27500627268 5 | 5858652068789831804

7 | 19062120397608 7 | 2734930355086609774678630

9 | 3910289698588916 9 | 118796991387599661786404269060

11 | 341013122932980120 11 | 955667356931740162987705236374200

Interpolating the first few values of odd d;, we find for P? the polynomial

(t — 1) (%5 + 55t + 1450t + 24616t>® + 305020t + 2961172t + 23561656t%° +
1583929609 4918866662t '8 4- 4670514826117 4-21033417148t16 + 84615935632t 1° 4
305921226844t'* + 9983185768362 + 2949392111320¢2 + 7903552056256t +
19229223618721t10 + 41774679574903t° + 72390849730794t% + 1594532491034417 —
541088235621216t5  —  2539188961011216t> —  315410776482528t%  +
14933666207688192t3 4+ 85822791395378688t%2 —  247712474710388736t +
162893498195312640) /3656994324480.

It fits all values of degR(3,2,t),t = 2m + 1, up to m = 35,d; = 71,
presently the physical limit of our computer’s memory. It should be noted
that degR(3,2,2t) = (Nzﬁvjzrl) - %(N%\ijzfl) is a polynomial in ¢ of the same
degree 27 as above.
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