
LARGE VISCOUS SOLUTIONS FOR SMALL DATA IN
SYSTEMS OF CONSERVATION LAWS THAT CHANGE TYPE
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Abstract. We study a quadratic system of conservation laws with an elliptic region. The
second order terms in the fluxes correspond to type IV in Schaeffer and Shearer classification.
There exists a special singularity for the EDOs associated to traveling waves for shocks. In
our case, this singularity lies on the elliptic boundary. We prove that high amplitude Riemann
solutions arise from Riemann data with arbitrarily small amplitude in the hyperbolic region
near the special singularity. For such Riemann data there is no small amplitude solution.
This behavior is related to the bifurcation of one of the codimension-3 nilpotent singularities
of planar ODEs studied by Dumortier, Roussarie and Sotomaior.

1. Introduction

A famous theorem of Lax [8] states that systems of n conservation laws with small data have
Riemann solution consisting of n small waves, rarefactions or shocks, separated by constant
states, under certain hypotheses. What happens if the hypotheses are violated? T.P. Liu [9]
showed in 1974 that if the hypothesis of genuine nonlinearity fails, the rarefactions and shocks
can join. Still, they form n wave groups separated by n− 1 constant states.

In this work, we accept as physically admissible shocks that are the limits of traveling waves
and we find an example of a system of two equations for which the Riemann solution consists
of two shocks with O(1) amplitude no matter how small the data is, provided it is close to a
special point on the locus where the characteristic speeds coincide; this locus is the boundary of
the elliptic region. Of course, our data does not admit local solutions.

Though our example occurs in a system with quadratic flux functions, such a point exists
generically for systems that change from hyperbolic to elliptic type. This point is associated
to a local bifurcation of the traveling wave ODE for conservation laws, studied by Dumortier,
Roussarie and Sotomaior in [4]. At this point, which we call DRS point, three equilibria collapse
and one of the four equilibria of the quadratic ODE stays away. In the classification of DRS, this
is called an elliptic bifurcation. Thus the existence of large Riemann solutions for small data is
generic.

Dumortier, Roussarie and Sotomaior studied three types of codimension-three bifurcations
for planar vector fields: elliptic, saddle and focus. Azevedo, Marchesin, Plohr and Zumbrum
in [1] proved that saddle bifurcation are associated to the existence of local Riemann solutions
containing three waves for systems of two conservation laws. This solution has more waves
than dimensions, and one of these waves is not a Lax wave. In [1] it was also proved that foci
bifurcations do not occur for ODEs originating from systems of two quadratic conservation laws.
Therefore, we conjecture that for such systems the consequences of violations of the Lax theorem
hypotheses are understood now.

Section 2 is divided in two subsections; in the first one, we define rarefactions, shocks, the
Rankine-Hugoniot set and its classification, and we present a version of the famous Lax theorem;
Lax 1-shocks and 2-shocks are also defined. In the second subsection we define wave groups and
wave speed compatibility; then, we present two new theorems on wave speed compatibility. The
first one is on the composite locus defined by Liu [9] as the right states of rarefaction-shock
pairs with no intermediate states: the composite curve forms an envelope for these shocks. The
other result determines when a 1-shock can not be followed by a 2-shock. These results describe
possible structures for non-local solutions.
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In Section 3 we present our main result, the existence of large viscous solutions for small
data. We state this result in two theorems, the first for a left state at a special point on the
boundary of the elliptic region, the second for the left state in a open set in the hyperbolic
region; in both cases the right states lie in open sets in the hyperbolic region. Proofs are given
in Section 4, which is divided in three subsections. In the first two subsections we prove the
existence of Riemann problems with small data with shocks that are necessarily large. In the
third subsection we prove that the Riemann problems for small data do not admit solutions
with small rarefactions followed by shocks. In Section 4 we do not prove mathematically the
existence of viscous profiles for the shocks, rather the existence of the viscous profiles is based in
analytic and numerical considerations. An overview of the Riemann solution for any right state
is presented in Section 5. In the Section 6 we present some remarks about our results.

2. Background

In this section we review some results for systems of two conservation laws in one space
dimension and present two new results, Theorems 2.16 and 2.22, which provide us with typical
parts of the global solutions of the Riemann problem (RP). These systems are partial differential
equations of the form:

Ut + F (U)x = 0, (2.1)
where U(x, t) = (u, v)T ∈ R2 for x ∈ R and t ≥ 0, F ∈ C2(R2,R2). Smooth solutions of (2.1)
satisfy Ut + DF (U)Ux = 0.

Definition 2.1. The set of U in R2 where DF (U) has:
i) two distinct real eigenvalues is called the strictly hyperbolic region;
ii) two distinct complex conjugate eigenvalues is called the elliptic region;
iii) one double real eigenvalue is called the coincidence locus.

In the strictly hyperbolic region the characteristic speeds of DF (U) are ordered so that the
lowest is called 1-speed, λ1(U), and the highest is called 2-speed, λ2(U). The corresponding
eigenvectors are ~r1(U) and ~r2(U).

Definition 2.2. The set of U in R2 in the strictly hyperbolic region where ∇λi · ~ri 6= 0, for
i = 1, 2, is classically called strictly hyperbolic genuinely nonlinear region [8]. In this work we
utilize the acronym shgnr.

A RP is an initial value problem with constant data on the left and right hand sides of the
origin, called UL and UR, that is

U(x, 0) = UL if x < 0 and U(x, 0) = UR if x > 0. (2.2)

2.1. Centered Waves. The solutions of (2.1) and (2.2) are centered, i.e., for t > 0 they depend
only on the speed ξ = x/t. So, smooth solutions, for t > 0, satisfy (DF (U)− ξ)Uξ = 0.

Definition 2.3. The centered smooth solutions on the hyperbolic region are:
i) 1-rarefactions if Uξ = ~r1(U) and ξ = λ1(U);
ii) 2-rarefactions if Uξ = ~r2(U) and ξ = λ2(U).

We say that an i -rarefaction curve from U0 is the set of U states on an i -rarefaction solution
in Definition 2.3 satisfying λi(U0) ≤ λi(U). Rarefaction curves parametrize rarefaction waves.

It is well known that nonlinear conservation laws lead to discontinuous solutions. Following
Gel’fand [6] and Courant-Friedrichs [3], we require that the shocks are limits as ε ↘ 0 of traveling
waves U(x, t) = Ū(η), η = (x− st)/ε, of the equation

Ut + F (U)x = εUxx (2.3)

with limη→±∞ U(η) = U± , i.e., we impose that the associated ordinary differential equation

U̇ = F (U)− F (U−)− s(U − U−) (2.4)

has an orbit “connecting” the equilibria U− to U+. In this case we say that the discontinuity
is admissible, or that it has a viscous profile or that it forms a shock. So, if there is no orbit
starting at U− and finishing at U+ we say that the discontinuity is inadmissible or that it has
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no viscous profile, and we do not call it shock. In particular, each discontinuity must satisfy the
following two Rankine-Hugoniot (RH) conditions

F (U+)− F (U−)− s(U+ − U−) = 0, (2.5)

where U− and U+ are, respectively, the left and right states of the discontinuity and s is its speed.
We denote the shock by (U−, U+, s) or (U−, U+) and the discontinuity speed by s(U−, U+) or
just s.

Definition 2.4. The RH set for a fixed U− is a one-dimensional set in U -space:

H(U−) =
{
U+ ∈ R2 : ∃s ∈ R such that equation (2.5) holds

}
. (2.6)

The RH set of U− is typically formed by (possibly disconnected) curves with self-intersections
at some points.

Motivated by Lax [8] and Conley-Smoller [2], we classify shocks with viscous profiles based
on the type of the equilibria U− and U+. Important equilibria in our work are: (i) repellers,
with two positive eigenvalues (or positive real part); (ii) saddles, with one positive and one
negative eigenvalue; (iii) attractors, with two negative eigenvalues (or negative real part); (iv)
repeller-saddles, with one positive eigenvalue and one zero eigenvalue; (v) saddle-attractors,
with one negative eigenvalue and one zero eigenvalue. (In this work, unless specified otherwise,
repeller-saddles and saddle-attractors are always non degenerate, see [12].)

Some shocks appearing in Riemann solutions are:

Definition 2.5. (i) 1-shocks: U− is a repeller and U+ is a saddle (1S in the figures); (ii) 2-shocks:
U− is a saddle and U+ is an attractor (2S in the figures).

Remark 2.6. Lax’s famous shock inequalities arise from the observation that in the hyperbolic
region the eigenvalues of the linearization of the ODE (2.4) at the equilibria U± are λ1(U±)− s
and λ2(U±)− s.

There are other discontinuities that typically have viscous profile, as it happens in our work.
These shocks are:

Definition 2.7. i) over-compressive shocks (O-shocks): U− is a repeller and U+ is an attractor;
ii) left-characteristic 1-shocks (L1-shocks): U− is a repeller-saddle and U+ is a saddle;
iii) right-characteristic 2-shocks (R2-shocks): U− is a saddle and U+ is a saddle-attractor;
iv) left-characteristic over-compressive shocks (LO-shocks): U− is a repeller-saddle and U+ is

an attractor;
v) right-characteristic over-compressive shocks (RO-shocks): U− is a repeller and U+ is a

saddle-attractor.

We say that 1-rarefactions, 1-shocks and L1-shocks are 1-waves (or waves of the 1-family) while
2-rarefactions, 2-shocks and R2-shocks are 2-waves (or waves of the 2-family). We say also that a
shock is left-characteristic if s equals an eigenvalue of DF (U−) and that it is right-characteristic
if s equals an eigenvalue of DF (U+).

The following type of discontinuity helps us in locating L1 and R2-shocks:

Definition 2.8. Crossing discontinuities (X-disc.): U− and U+ are saddles.

Remark 2.9. In bifurcation theorems for ODEs, generically, there are no connections between
saddles and this is the case in our work (see [1]). (When there exists a connection between the
left and right saddles the X-disc. is known as transitional or under-compressive shock.)

Each point of the RH set H is classified according to the Definitions 2.5, 2.7 and 2.8. Typi-
cally, there are connected parts in H consisting of 1-shocks, 2-shocks, O-shocks and inadmissible
discontinuities (such as X-disc.). Similarly, there are isolated points in H representing charac-
teristic shocks. The characteristic shocks in the Definition 2.7 separate parts of H with distinct
types defined by Table 1. For left-characteristic shocks the speed increases from type I to type
II; note that s < λ1(UL) in type I and s > λ1(UL) in type II. At right-characteristic shocks the
speed s is critical (see Bethe-Wendroff [15]).
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Type I Characteristic shock Type II
1-shock L1-shock X-disc.
O-shock LO-shock 2-shock
1-shock RO-shock O-shock
X-disc. R2-shock 2-shock

Table 1. A characteristic shock appears separating type I and II parts of H.

We now state a consequence of Lax’s classical theorem for systems of two equations with
smooth fluxes in a sufficiently small neighborhood N with closure N̄ ⊂ B, an open region in the
shgnr. For the complete statement of Lax’s Theorem see [8] or [13]; for admissibility see [2].

Theorem 2.10. Given any UL and UR in N , there exist two arcs, tangent to ~r1 at UL and to ~r2

at UR, which intersect transversally at UM in B. These arcs parameterize shock or rarefaction
waves, see Fig. 1. The 1-wave curve segment from UL to UM followed by the 2-wave curve
segment from UM to UR parameterize the unique solution of the RP with data UL, UR.

Corollary 2.11. Let UM be the middle state of the RP with data UL, UR in Theorem 2.10.
Then |UM − UL| ↘ 0 (and |UM − UR| ↘ 0) as |UR − UL| ↘ 0.

Remark 2.12. The neighborhood N must be small enough to ensure that the curves from any
UL, UR emanating from N also lie in the shgnr, including their intersections UM .

2.2. Wave Groups and Compatibility. A global solution of a RP may contain several cen-
tered waves, i.e., rarefactions and shocks. We use the convention of describing the solution from
the left to the right, i.e., with increasing speed. A sequence of two waves, wa followed by wb, is
compatible if the speed of wa is less than or equal to the speed of wb. A compatible sequence of
i -waves is an i -wave group or an i -group. The speed of an i -rarefaction at U (in the hyperbolic
region) is greater than the speed of an i -shock with U− = U and is smaller than the speed of
an i -shock with U+ = U ; so, only characteristic i -shocks can join the i -rarefactions in order to
form i -groups. We present two such wave groups, which are important for this paper:

Definition 2.13. (i) 1-RS: 1-rarefaction from UL to UM followed by a L1-shock from UM to
UR;

(ii) 2-SR: R2-shock from UL to UM followed by a 2-rarefaction from UM to UR.

Remark 2.14. The wave groups 1-SR and 2-RS are defined similarly. There exist groups with
more than two i -waves, see [9]. However, they do not appear in this paper.

The next lemma establishes which compatible shocks can follow a 1-rarefaction.

Lemma 2.15. Let UL be in the shgnr. Let U∗
M be the family of states that lie on the 1-rarefaction

from UL. If U∗
R ∈ H(U∗

M ), the sequence of a 1-rarefaction from UL to U∗
M followed by a shock

(U∗
M , U∗

R, s) is:
i) compatible if (U∗

M , U∗
R, s) is a 2-shock, a L1-shock or a LO-shock;

ii) incompatible if (U∗
M , U∗

R, s) is a 1-shock or a O-shock.

Proof. The speed of the 1-rarefaction at U∗
M is λ1(U∗

M ) and:
A) for 2-shocks λ1(U∗

M ) < s, for L1-shocks and LO-shocks λ1(U∗
M ) = s, so (i) holds;

B) for O-shocks and 1-shocks s < λ1(U∗
M ), so (ii) holds. ¤

The locus of right states for a rarefaction from UL followed by a shock with no intermediate
state forms the composite wave and was already studied in [9] and [5]. The following new result
shows that the composite curve is the envelope of RH loci.

Theorem 2.16. Let UL and U∗
M be defined as in the Lemma 2.15. Assume that there exists

a L1 (or LC) shock (UL, UR, λ1(UL)); this shock joins two distinct parts of H(UL) of types I
and II as described in Table 1. Then, by continuity, for each U∗

M close to UL, there also exists
a left-characteristic L1 (or LC) shock (U∗

M , U∗
R, λ1(U∗

M )) that joins two parts of H(U∗
M ) of the

same types I and II.
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Figure 1. The transverse set of
curves near UL and the middle
point UM of the Riemann prob-
lem solution with data UL, UR.

Figure 2. The Type I
part of H(UL) and the
envelope join differen-
tiably.

We have:
i) The family of states U∗

R forms a curve that is the envelope of the family of curves H(U∗
M );

ii) The envelope starts at UR and is tangent to H(UL) at UR. The type I part of H(UL) and
the envelope join differentiably at UR; the type II part of H(UL) and the envelope form a cusp
at UR, see Fig. 2.

Proof. Differentiating (2.5) with U− = UL, U+ = UR we obtain
(
DF (UR)− sI

)
dUR − (UR − UL)ds = 0. (2.7)

For L1 and LO-shocks s(UL, UR) is not an eigenvalue of DF (UR), so the implicit function theorem
establishes that H(UL) is a curve near UR. By continuity, for U∗

M close to UL, H(U∗
M ) is also a

curve near U∗
R.

The states U∗
R are solutions of F (U∗

R)− F (U∗
M )− λ1(U∗

M )(U∗
R − U∗

M ) = 0, so
(
DF (U∗

R)− λ1(U∗
M )I

)
dU∗

R −
(
DF (U∗

M )− λ1(U∗
M )I + (U∗

R − U∗
M )∇λ1(U∗

M ) · )dU∗
M = 0

is obtained by differentiation. Taking dU∗
M equal to the eigenvector ~r1(U∗

M ) normalized so that
∇λ1(U∗

M )·~r1(U∗
M ) = 1 in order to follow the direction of increasing speed along the 1-rarefaction,

this equation becomes
(
DF (U∗

R)− λ1(U∗
M )I

)
dU∗

R − (U∗
R − U∗

M ) = 0. (2.8)

So, as U∗
M moves along the 1-rarefaction with velocity ~r1(U∗

M ) the corresponding U∗
R moves with

velocity ~e∗ = dU∗
R that satisfies Equation (2.8) and U∗

R form the composite wave. Since the
tangent vector to the curve H(U∗

M ) at U∗
R satisfies Equation (2.8), the curve H(U∗

M ) is tangent
to the composite curve at each corresponding U∗

R, so the composite curve is the envelope of the
family of curves H(U∗

M ), i.e., (i) holds.
Taking U∗

M = UL, U∗
R = UR and dU∗

R = ~e Equation (2.8) becomes

(DF (UR)− λ1(UL)I)~e− (UR − UL) = 0. (2.9)

For s = λ1(UL), dUR = ~e and ds = 1, equation (2.7) becomes (2.9). So, the vector ~e points in
the direction of increasing speed along H(UL). The shock speed increases from the type I to the
type II shocks, so that (ii) holds. ¤

The Theorem 2.16 describes two possible structures for nonlocal solutions.

Corollary 2.17. After the 1-rarefaction the only compatible shocks of the 1-family are left-
characteristic 1-shocks (L1-shocks) which lie exactly on the envelope and form the so called
1-composite wave (see Fig. 3.a).

Corollary 2.18. After the 1-rarefaction the compatible LO-shocks form an envelope that is a
boundary for Riemann solutions. This envelope separates a region that is reached by a sequence
of a 1-rarefaction followed by a 2-shocks from another region that is not reached by such kind
of sequence (see Fig. 3.b).

Remark 2.19. Note that after a 1-wave a small 2-wave is always compatible, so the envelope
mentioned in Corollary 2.17 (the 1-composite wave) does not form a boundary for Riemann
solutions.
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Figure 3. The envelope of H(U∗
M ). After an 1-rarefaction a) L1-shocks

are compatible while 1-shocks are incompatible; b) 2-shocks and LO-shocks
are compatible while O-shocks are incompatible.

Remark 2.20. A left-characteristic 2-shock, or L2-shock, is a shock such that U− is a saddle-
attractor and U+ is an attractor. If H(UL) contains a L2-shock and U∗

M denote the states on the
2-rarefaction from UL then an envelope is also formed by the H(U∗

M ) representing 2-composite
waves. This result holds by an argument similar to that in Theorem 2.16.

Generally, a 1-shock can be followed by a 2-shock without violating the speed compatibility
condition. However, this is not always true.

Lemma 2.21. Let UM be in the shgnr. There exists a 2-shock part of H(UM ) having UM as
beginning point; this 2-shock part is called S2. If UR ∈ S2 then (see Figure 4): (i) S2 is divided
in two pieces by UR, one adjacent to UM , Sad

2 , and other away from UM , Saw
2 ; (ii) the shocks

with end state in the Sad
2 piece are faster than the shock (UM , UR); (iii) the shocks with end state

in the Saw
2 piece are slower than the shock (UM , UR).

Proof. There exists a local 2-shock part of H(UM ) having UM as beginning point, so S2 exists,
see [13]; locally, the speed decreases away from UM . The Bethe-Wendroff theorem [15] ensures
that the speed decreases (at least) until it equals a local characteristic speed, where the shock
ceases to be a 2-shock, so Lemma 2.21 holds. ¤
Theorem 2.22. Let UL, UM , UR be points that do not lie on a straight line,
UM ∈ H(UL), UR ∈ H(UL), UR ∈ H(UM ) and UM , UR, S2, Sad

2 and Saw
2 as in Lemma

2.21. Then the following facts hold:
i) H(UL) and H(UM ) are transversal at UR;
ii) If U∗

R ∈ Sad
2 the sequence of shocks (UL, UM , s), (UM , U∗

R, s∗) is compatible;
if U∗

R ∈ Saw
2 the sequence of shocks (UL, UM , s), (UM , U∗

R, s∗) is incompatible (see Figure 5).

Proof. Since UL, UM , UR do not lie on a straight line the triple shock rule [14] says that
s0 = s(UM , UR) = s(UL, UM ) = s(UL, UR).

Since (UM , UR, s0) is a 2-shock, s0 is not an eigenvalue of DF (UR), then the implicit function
theorem says that the sets H(UL) and H(UM ) are parametrized curves near UR. Let U̇ (u̇) be a
vector tangent to the curve H(UL) (H(UM )) at UR and Σ̇ (σ̇) the derivative of the shock speed
Σ = s(UL, UR) (σ = s(UM , UR)) at UR, respectively. (The Bethe-Wendroff theorem [15] ensures
that Σ̇ 6= 0, σ̇ 6= 0.)

We parameterize both curves and define the angles formed by the u-axis and the vectors U̇
and u̇ so that they lie in the interval [0, π) and |U̇ | = |u̇| = 1. We have: (DF (UR) − s0I)U̇ −
(UR − UL)Σ̇ = 0 and (DF (UR) − s0I)u̇ − (UR − UM )σ̇ = 0 then (DF (UR) − s0I)(U̇ − u̇) =
(UR − UL)Σ̇ − (UR − UM )σ̇. Since neither Σ̇ nor σ̇ are zero and UL − UM , UM − UR are not
parallel, then (UR−UL)Σ̇−(UR−UM )σ̇ 6= 0; thus U̇ 6= u̇, i.e., H(UL) and H(UM ) are transverse
at UR, (i) is proved.
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Figure 4. The
pieces Sad

2 , Saw
2 of

S2.
Figure 5. The shock sequence
(UL, UM , s), (UM , U∗

R, s∗) is compat-
ible if U∗

R ∈ Sad
2 and it is incompati-

ble if U∗
R ∈ Saw

2 .

Since s(UL, UM ) = s(UM , UR), Lemma 2.21 ensures that (ii) holds. ¤

The following sequences of shocks with equal speeds s0 are fundamental in our work:
i) (UL, UM ) is a L1-shock, (UL, UR) is a LO-shock and (UM , UR) is a 2-shock (see Figure 6,

case UM1);
ii) (UL, UM ) is a 1-shock, (UL, UR) is a O-shock and (UM , UR) is a 2-shock (see Figure 6, case

UM2).
iii) We need also the following consequence of the triple shock rule and Bethe-Wendroff theo-

rem: assume that (UL, UM ) is a 1-shock and (UL, UR) is a RO-shock; then, H(UL) and H(UM )
are tangent at UR and (UM , UR) is a R2-shock that may be followed by a 2-rarefaction (see
Figure 6, case UM3).

3. The Local Riemann Problem with Non Local Solution

We study a model of type IV in Schaeffer and Shearer’s [10] classification with the flux function

F

(
u
v

)
=

1
2

(
3u2 + v2

2uv

)
+

(
2v
0

)
. (3.1)

We have set a = 3 and b = 0 in the normal form given in [10]. We expect that other type IV
models with nearby parameters lead to similar results.

The eigenvalues of the Jacobian of the flux are λ1 = 2u −
√

u2 + (v + 1)2 − 1 and λ2 =
2u +

√
u2 + (v + 1)2 − 1, so λ1 = λ2 along the circle u2 + (v + 1)2 = 1, the coincidence locus.

The interior of this circle is the elliptic region in this model.
We show that non local solutions arise from RPs with arbitrarily small data. (In Section 4 we

show that this RP does not have local solutions.) This result is stated in the following theorems.

Theorem 3.1. Let O be (0, 0). There exists an open set B in the strictly hyperbolic region (with
O on ∂B) with the following property. Given a small β > 0, for any UR ∈ B with |UR −O| < β
the solution of the RP with data (UL = O, UR) has amplitude close to 4, consisting of two Lax
shocks that are limits of traveling waves.

This behavior can be extended for UL, UR in open sets near O in the hyperbolic region. For
each β let T (β) be the open triangle in the hyperbolic region

T (β) =
{
(u, v) ∈ R2 : 0 < v < β2/9 and − v < u < v

}
. (3.2)

The choice β2/9 is explained in the proof of Lemma 4.1.

Theorem 3.2. Let be β & 0. For every UL ∈ T (β) there is a non empty open set A(UL, β) with
the following properties:

i) A(UL, β) lies in the strictly hyperbolic region;
ii) The distance of all points of A(UL, β) to UL is smaller than β;
iii) For all UR in A(UL, β) the solution of the RP with data (UL, UR) has amplitude larger

than 4: this solution consists of two Lax shocks;
iv) For all UR in A(UL, β) there are no small solution of the RP with data (UL, UR).

We remark that both T (β) and A(UL, β) approach O as β goes to zero.
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Figure 6. Typical configura-
tions of global solutions of RP.

Figure 7. The curve
H(O). The 1-shocks:
solid curve; O-shocks:
dashed.

Figure 8. Quadratic curves
for U− = O and s = 0.

Figure 9. Quadratic curves
for U− = O and s . 0.

4. Proof of the theorems

The proof of the Theorems 3.1 and 3.2 is divided in three parts. In subsections 4.1 and 4.2 we
analyze the solutions formed by a sequence of two shocks, under the conditions of the Theorem
3.1 and 3.2, respectively. We prove that only high amplitude shocks satisfy the compatibility
condition.

In the subsection 4.3 we study solutions formed by small 1-rarefactions followed by 2-shocks
and we prove that they do not provide solutions for our RP.

The RPs in the Theorems 3.1 and 3.2 do not include 2-rarefactions because in a neighborhood
of UR the speed along 2-rarefactions starting on a 1-wave curve decreases towards UR.

4.1. Proof of Theorem 3.1 for sequences of shocks. Substituting (3.1) in the RH relation
(2.5) yields

−s(u+ − u−) + 3(u2
+ − u2

−)/2 + (v2
+ − v2

−)/2 + 2(v+ − v−) = 0, (4.1a)

−s(v+ − v−) + u+v+ − u−v− = 0. (4.1b)

Fixing (u−, v−), these curves are conic sections in the variables (u+, v+), so there are 0, 2 or 4
intersections or zeros counting multiplicity. Since U+ = U− is always a solution of (4.1), there
are 2 or 4 zeros.

For U− = O =(0, 0), Eqs. (4.1) reduce to:

Q ≡ 3
2 (u+ − s

3 )2 + 1
2 (v+ + 2)2 = 2 + s2

6 and (u+ − s)v+ = 0. (4.2)

The RH locus H(O) defined in (2.6) consists of the horizontal axis v+ = 0 together of the circle
u2

+ +(v+ +2)2 = 4. On the horizontal axis the shock velocity is given by s = 3
2u+. On the circle,

s = u+, so we see that s < λ1(U+) if and only if u+ > 0 and −2 < v+ < 0; also s > λ2(U+) if
and only if u+ < 0 and −2 < v+ < 0.
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Figure 10. Phase portrait,
U− = O, s = 0. The coincidence
curve contains an orbit

Figure 11. Phase por-
trait for U− = O, s . 0.

Figure 12. The
five shocks defined
by U− = O, s . 0.

Figure 13. Solutions of the Riemann
problem with UL = O and UR out the
compressive sector but yet near D2.

The classification of the points in H(O) according to the Definitions 2.5 and 2.7 is shown in
Fig. 7. No bifurcation exists that interrupts the viscous profiles, which were checked numerically
anyway. The 1-shock (O,O′, 0) is left-characteristic, i.e., s(O,O′) = λ1(O) = 0. The points D1,
D2 and D3 will be used later.

The intersections of the two curves in (4.2) are the equilibria of the associated ODE (2.4).
With s = 0 there are just two equilibria, O and O′ = (0,−4), see Fig. 8. The equilibrium O′
plays an important role.

The phase portrait for the ODE (2.4) associated to the shock (O,O′, s = 0) is shown in Fig.
10. For this EDO the nilpotent singularity O is a possibly degenerate elliptic equilibrium in the
classification given by Dumortier, Roussarie and Sotomaior, see [4] and [1]. Thus O is called the
DRS point in this phase space. One can verify that the coincidence curve contains an homoclinic
orbit of O, thus the orbits that connect the equilibrium O to the saddle O′ lie in the hyperbolic
region.

The phase portrait for U− = O with shock speed s . λ1(O) has four equilibria, as it can be
easily seen using 4.2, see Figs. 9 and 11. We see that O splits into three equilibria, O, D1 and
D2, while O′ moves to D3; D1 and D3 lie on the 1-shock parts of H(O), or 1S, while D2 lies
on the over-compressive part O near O, see again Fig. 7. The Jacobian DF at the equilibrium
O has only one eigenvector, with double eigenvalue −s. It is easy to check that D1 is a saddle
and D2 is an attractor. Since O′ was a saddle for s = 0, D3 is also a saddle. Thus, the four
equilibria define five shocks with the same speed s (see Figs. 11 and 12): the 1-shocks (O, D1)
and (O, D3), the O-shock (O, D2) and the 2-shocks (D1, D2) and (D3, D2). Therefore the RP
with UL = O and UR = D2 has three solutions in phase space that coincide in physical space.

Now we remove the degeneracy of the Riemann solution. The states O, D1 and D2 form a
triple shock then we may apply Theorem 2.22. Let UR be a point on the 2-shock part of H(D1)
near D2 that not belong to O (see Fig. 13.a). If UR lies above D2 then the sequence of shocks
(O, D1, s) followed by (D1, UR, su) is compatible (s < su). On the other hand, if UR lies below
D2 then the sequence of shocks (O, D1, s) followed by (D1, UR, sd) is incompatible (sd < s).
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Figure 14. The
open set B in The-
orem 3.1.

Figure 15. H(UL) for UL ∈ T (β).
The 1-shocks: solid curve; O-shocks:
dashed; 2-shocks: dotted curve; dot-
dashed curve: X-disc.

The states O, D3 and D2 form a triple shock then we may apply Theorem 2.22. Let UR

be a point on the 2-shock part of H(D3) near D2 that not belong to O (see Fig. 13.b). If
UR lies below D2 then the sequence of shocks (O, D3, s) followed by (D3, UR, sd) is compatible
(s < sd). On the other hand, if UR lies above D2 then the sequence of shocks (O, D3, s) followed
by (D3, UR, su) is incompatible (su < s). We remark that UR is an attractor and D1 and D3

are a saddles for every su (or sd) close to s.
In summary, the solution of the RP with data O, UR has D1 as middle state if UR lies above

C; and D3 as middle state if UR lies below C: in the latter case, the RP does not have a local
solution formed by two small shocks.

Because O is adjacent to O we can choose UR as close to O as we wish, so there are RPs
with data UL = O, UR with non local solutions formed by shocks. The open set B (see Fig. 14)
lies in the gap between O and the coincidence, so B lies in the hyperbolic region. The proof of
Theorem 3.1 is complete for sequence of shocks.

4.2. Proof of Theorem 3.2 for sequences of shocks. We now show that the behavior shown
in Subsection 4.1 actually occurs also for UL lying in open triangles above O. Let T (β) be the
family of triangles defined in (3.2). For UL in T (β) the RH curve is shown in Fig. 15; the points
Mi will be defined later. Because UL now lies in the hyperbolic region it has two characteristic
speeds, and we set s0 = λ1(UL). The Lax theorem guarantees that the O-shock part of the RH
is not adjacent to UL. Moreover, in Lemma 4.1 we calculate the two points on H(UL) where
s = s0. It is also possible to calculate the two points where s = λ2(UL) and the other two
points where s equals one of the right-characteristic speeds. Knowing these points it is possible
to classify H(UL) based on the nature of the equilibria, as shown in Fig. 15.

The phase portrait for UL ∈ T (β) with s− . s0 has four equilibria, UL, M1, M2 and M3, see
Figure 16.a. The equilibria define the following shocks with the same speed s−: the 1-shocks
(UL,M1) and (UL,M3), the O-shock (UL, M2), and the 2-shocks (M1,M2) and (M3,M2). By
increasing the speed back to s0 the equilibria M1 and UL collapse into each other (UL is a
repeller-saddle) but M2 stays away. In this case we rename M2 and M3 as, respectively, MO and
MS , see Figures 15 and 16.b. The equilibria define the following shocks with the same speed s0:
the L1-shock (UL,MS), the LO-shock (UL,MC) and the the 2-shock (MS , MC). For s+ & s0

there is just one shock starting at UL, namely the 2-shock (UL,M∗
2 , s+), see Figures 15 and 16.c.

For right states near the over-compressive part O of H(UL) there are two kinds of solutions,
see Fig. 17. If UR lies above C, the solution is a 1-shock from UL to M1 followed by a faster
2-shock from M1 to UR (the equilibrium UR is an attractor). We remark that the sequence of
a 1-shock from UL to M3 followed by a 2-shock from M3 to UR has incompatible shock speeds,
as stated by Theorem 2.22. Therefore, the RP with data UL and UR above O has a a solution
formed by local shocks with middle state M1 as in Lax Theorem.

On other hand if UR lies below C, see again Fig. 17, the solution is a 1-shock from UL to
M3 followed by a faster 2-shock from M3 to UR. We will show that M3 stays away from UL,
therefore, the RP with data UL, UR below O has a large amplitude solution and for such Riemann
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Figure 16. Phase portraits for UL ∈ T (β) with different speeds: a) s− . s0;
b) s0 (the equilibrium M1 = UL is a repeller-saddle); c) s+ & s0.

Figure 17. Solutions of the Rie-
mann problem with UL ∈ T (β)
and UR out of compressive sector
but near M2.

Figure 18. Solution for
UL ∈ T (β), UR ∈
A(UL, β).

data there is no solution formed by small amplitude shocks. We remark that the sequence of a
1-shock from UL to M1 followed by a 2-shock from M1 to UR below O has incompatible shock
speeds, as stated by Theorem 2.22. We need to locate the points MO, separating the 2-shock
and O-shock parts, and MS , separating the 1-shock and X-disc. parts of H(UL).

Lemma 4.1. For UL ∈ T (β) with small β we have |UL −MC | < β and |UL −MS | > 4.

Proof. Let us find the location of MC ≡ (uC , vC) and MS ≡ (uS , vS).
If UL = (αvL, vL) ∈ T (β), with −1 < α < 1 and 0 < vL < β2

9 , straightforward calculations using
(4.1) with s = λ1(UL) lead to vC = −vL−2+b, vS = −vL−2−b and ui = 2αvL−a−(αv2

L+avL)/vi

for i = C, S, with a =
√

2vL + (1 + α2)v2
L and b =

√
4 + (6αa− 2)vL − 6(α2 − 2)v2

L. The quan-
tity a is real in the hyperbolic region; b is real in part of the hyperbolic region, e.g. where
vL <

√
3uL + 1 and vL > − 1

2 , or where vL > −√3uL + 1 and vL < − 1
2 . For small positive β

both MO, MS lie in the strictly hyperbolic region.
Expanding the Euclidean distances from UL to MS and MO in power series in vL near the

origin we have:

|UL,MC | ' (5
√

2vL − αvL)/3 and |UL,MS | ' 4 + 7
4vL, (4.3)

with error O(v3/2
L ), so for small positive vL we have

|UL,MC | < 3
√

vL < β and |UL,MS | > 4. (4.4)

The proof is complete. ¤

Lets us examine the Riemann solution for UR lying in the region below the part of O to the
left of MO (see Fig. 18). The 1-shock from UL to M3 near MS has speed s slightly lower than
s0; the 2-shock from M3 to UR near M2 and MO has speed higher than s. By continuity we
have |UL,M3| > 4 and |UL, UR| < β.
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Figure 19. Solution of the
RP for UL ∈ T (β).

Figure 20. Solution of the
RP for UL = O.

The curves H(UL) and H(MS) are transversal at MO, as stated by Theorem 2.22. So we can
define an open set A(UL, β), see Fig. 18, with corner on MO and angle given by the tangents of
H(UL) and H(MS) at MO. Imposing that the distance of all points of A(UL, β) to UL should
be is smaller than β the proof of theorem 3.2 is complete for sequences of shocks.

4.3. Absence of small rarefactions: proof. For a UL ∈ T (β) there exists a LO-shock
(UL,MC , s0). The solutions using a small 1-rarefaction form an envelope that is a compati-
bility boundary, see Corollary 2.18. Because the envelope and the O-shock part of H(UL) join
differentiably the set A(UL, β) is not covered by 2-shocks starting on the 1-rarefaction. We also
note that the set A(UL, β) is not reached by 2-rarefactions starting at 1-waves from UL (see the
global solution in Section 5). Therefore, there are no small amplitude solutions for a RP with
UL ∈ T (β) and UR ∈ A(UL, β). The proof of the Theorem 3.2 for small waves is complete.

Theorem 3.1 is a limit case of Theorem 3.2, where the LO-shock is degenerate. Despite this
degeneracy, there exists an envelope that joins differentiably with the O-shock part. Therefore,
the 2-shocks that start on the 1-rarefaction do not cover the open set B. We also note that the
set B is not reached by 2-rarefactions starting at 1-waves from UL. The proof of Theorem 3.1 is
complete.

5. Solution for any UR

First we present the solution of the RP with UL ∈ T (β) and any UR. There are six important
points (see Fig. 19): (i) UL; (ii) MO; (iii) MS ; (iv) MBW , the point between the O-shock
and 1-shock parts of H(UL), where the Bethe–Wendroff ensures the tangency of H(UL) with an
H(UM ) for some UM ; (v) MInf , the point on the 1-rarefaction where the genuine non-linearity
is lost; (vi) M∗

Inf , the point such that (MInf ,M∗
Inf , s) is a LO-shock.

The state plane is divided in nine parts, P1 to P9, by the following fourteen curves:
• the 1-shock part of H(UL) containing UL;
• the 1-rarefaction that starts at UL and stops at MInf ;
• the envelope that starts at MS and glues with MInf ;
• the 1-shock part of H(UL) between MS and MBW ;
• the O-shock part of H(UL) between MBW and MO;
• the 2-shock part of H(UL) between MO and UL;
• the envelope that starts at MO and stops at M∗

Inf ;
• the 2-shock part of H(MInf ) between MInf and M∗

Inf ;
• the 2-rarefaction starting at UL;
• the 2-rarefaction starting at MInf ;
• the 2-rarefaction starting at MS ;
• the 2-rarefaction starting at MBW ;
• the 2-shock part of H(MS) between MS and MO;
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Figure 21. Phase
portrait for the
elliptic singularity
DRS.

Figure 22. One of the possible per-
turbations of the phase portrait for
the elliptic singularity DRS.

• the line of critical speeds that starts at MBW .
The solution of the RP for UR in:

• P1 is a 1-shock followed by a 2-rarefaction;
• P2 is a 1-rarefaction followed by a 2-rarefaction;
• P3 is a 1-RS group followed by a 2-rarefaction;
• P4 is a 1-shock followed by a 2-rarefaction;
• P5 is a 1-shock followed by a 2-SR group;
• P6 is a 1-shock followed by a 2-shock;
• P7 is a 1-rarefaction followed by a 2-shock;
• P8 is a 1-RS group followed by a 2-shock;
• P9 is a 1-shock followed by a 2-shock.

The solution of the RP with UL = O is the limit of a solution for UL ∈ T (β) when MO collapses
with UL, see Fig. 20. The state space is also divided in nine parts, P1 to P9, with the same
kinds of solution.

6. Remarks

Dumortier, Roussarie and Sotomaior studied the versal bifurcation for a nilpotent singularity
for a planar vector field with three parameters (see [4]). They classify the codimension-3 bifur-
cation types as saddle, focus and elliptic. In [1] it is proved that saddle and elliptic bifurcations
occur in quadratic models; moreover for a type IV flux with identity viscosity matrix the singu-
larity is elliptic. The phase portrait for this kind of nilpotent singularity is sketched in Fig. 21,
while one of the sixteen stable deformation is shown on Fig. 22. No high amplitude solutions
arise directly from the local bifurcation. In fact, looking only at local solutions would lead to
nonexistence of Riemann solution. However the phase portraits of the solution for UL ∈ T (β)
contain an extra equilibrium M3 near O′ which is fundamental for defining the non local solution,
see again Fig. 16.a.

For Riemann Problems with a type IV umbilic point, which arise for homogeneous quadratic
polynomials, it is shown in [7] that high amplitude solutions do not appear. The singularity
ceases to be nilpotent, since when the umbilic point is taken as UL the latter contains all four
equilibria points. In other words, the phase portrait for UL on the umbilic point with speed
lower than characteristic is topologically equivalent to the phase portrait for O with s . 0, see
again Fig. 11. However, if s equals the left-characteristic speed the phase portraits are not
topologically equivalent any more: there is just one equilibrium in the umbilic case and two
equilibria O, O′ in our case.
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