A note on the Giulietti-Korchmáros maximal curve

Arnaldo Garcia

Abstract

We present a very simple proof of the maximality over $\mathbb{F}_{q^{6}}$ of the curve introduced by Giulietti and Korchmáros in [GK] .

Math. Subject Classification (2000). 11G20, 11D45, 14H50.

Keywords. Rational points, finite fields, Hasse-Weil upper bound, maximal curves.

Introduction

Let \mathcal{C} be a curve (projective, nonsingular and geometrically irreducible) defined over a finite field k, and let $g(\mathcal{C})$ denote its genus.

We have the following bound on the cardinality of the set $\mathcal{C}(k)$ of k-rational points:

$$
\begin{equation*}
\# \mathcal{C}(k) \leq 1+\# k+2 \sqrt{\# k} \cdot g(\mathcal{C}) \tag{1}
\end{equation*}
$$

The bound above is the so-called Hasse-Weil upper bound. If the cardinality of the finite field is a square, then we say that the curve \mathcal{C} is maximal if equality holds in Eq. (1).

Suppose $k=\mathbb{F}_{q^{2}}$ and \mathcal{C} is maximal. From [Ih] we know that

$$
\begin{equation*}
g(\mathcal{C}) \leq q(q-1) / 2 . \tag{2}
\end{equation*}
$$

From $[\mathrm{RS}]$ we have that the Hermitian curve is the unique maximal curve over $\mathbb{F}_{q^{2}}$ with genus $g=q(q-1) / 2$. The Hermitian curve over $\mathbb{F}_{q^{2}}$ can be given by:

$$
\begin{equation*}
X^{q}+X=Y^{q+1} \tag{3}
\end{equation*}
$$

It is well-known that subcovers of maximal curves are also maximal, and we have then a natural question:

Question: Is any maximal curve over $\mathbb{F}_{q^{2}}$ a subcover of the Hermitian curve?

Recently Giulietti and Korchmáros introduced a maximal curve over $\mathbb{F}_{q^{6}}$ which is not a subcover of the corresponding Hermitian curve for $q \neq 2$ (the Hermitian curve is here given by $X^{q^{3}}+X=Y^{q^{3}+1}$). Their curve \mathcal{C} over $\mathbb{F}_{q^{6}}$ is given by (see [GK] and [GGS]):

$$
\left\{\begin{array}{l}
X^{q}+X=Y^{q+1} \tag{4}\\
Y^{q^{2}}-Y=Z^{N} \text { with } N=\frac{q^{3}+1}{q+1}
\end{array}\right.
$$

The proof in [GK] that \mathcal{C} given by Eq. (4) is maximal over $\mathbb{F}_{q^{6}}$ is based on the fact that the curve \mathcal{C} lies on a Hermitian surface. In [GGS] we have proved in an elementary way a generalization of this result of [GK]; i.e., we have proved that for an odd integer $n \geq 3$, the curve \mathcal{C} given by Eq. (4) with $N:=\left(q^{n}+1\right) /(q+1)$ is maximal over the field $\mathbb{F}_{q^{2 n}}$. The proof in [GGS] is based on the fact that the curve χ over $\mathbb{F}_{q^{2 n}}$ given by

$$
\begin{equation*}
Y^{q^{2}}-Y=Z^{N} \quad \text { with } \quad N=\frac{q^{n}+1}{q+1} \tag{5}
\end{equation*}
$$

is a maximal curve over $\mathbb{F}_{q^{2 n}}$ (see $[\mathrm{GS}]$ and $\left.[\mathrm{ABQ}]\right)$.
Here we give an even simpler proof of the maximality of the curve \mathcal{C} given by Eq. (4). This new proof is based on the fact that the Hermitian curve given by Eq. (3) is also maximal over $\mathbb{F}_{q^{6}}$. Since the curve χ over $\mathbb{F}_{q^{6}}$ given by Eq. (5) with $n=3$ is a subcover of the curve \mathcal{C}, we get as a corollary a simpler proof for the maximality of χ (see [GS]).

The maximality of the curve

The curve \mathcal{C} over $\mathbb{F}_{q^{6}}$ given by Eq. (4) can also be described by the plane equation:

$$
\begin{equation*}
Z^{q^{3}+1}=\left(\frac{X^{q^{2}}-X}{X^{q}+X}\right)^{q+1} \cdot\left(X^{q}+X\right) \tag{6}
\end{equation*}
$$

It follows easily from Eq. (6) that

$$
\begin{equation*}
2 g(\mathcal{C})=q^{5}-2 q^{3}+q^{2} . \tag{7}
\end{equation*}
$$

To prove the maximality of \mathcal{C} over $\mathbb{F}_{q^{6}}$ we have to show that the following equality holds:

$$
\begin{equation*}
\# \mathcal{C}\left(\mathbb{F}_{q^{6}}\right)=q^{8}-q^{6}+q^{5}+1 . \tag{8}
\end{equation*}
$$

There are $q+1$ points on \mathcal{C} with $X=\infty$ or $X^{q}+X=0$; there are $\left(q^{2}-q\right)(q+1)=q^{3}-q$ points on \mathcal{C} with $X \in \mathbb{F}_{q^{2}}$ and $X^{q}+X \neq 0$; all those $q^{3}+1=(q+1)+\left(q^{3}-q\right)$ points
 have to prove that there are exactly

$$
q^{8}-q^{6}+q^{5}-q^{3}=\left(q^{3}+1\right) \cdot\left(q^{5}-q^{3}\right)
$$

rational points on \mathcal{C} with $Z \in \mathbb{F}_{q^{6}}$ and $Z \neq 0$. Hence we have to show that

$$
\begin{equation*}
\#\left\{X \in \mathbb{F}_{q^{6}} \left\lvert\,\left(\frac{X^{q^{2}}-X}{X^{q}+X}\right)^{q+1} \cdot\left(X^{q}+X\right) \in \mathbb{F}_{q^{3}}^{*}\right.\right\}=q^{5}-q^{3} . \tag{9}
\end{equation*}
$$

Clearly we have that (with $N:=\left(q^{3}+1\right) /(q+1)$):

$$
\begin{equation*}
\left(\frac{X^{q^{2}}-X}{X^{q}+X}\right)^{q+1} \cdot\left(X^{q}+X\right)=X^{q^{3}}+X-\left(X^{q}-X\right)^{N} \tag{10}
\end{equation*}
$$

Since $X^{q^{3}}+X$ is the trace from $\mathbb{F}_{q^{6}}$ to $\mathbb{F}_{q^{3}}$, from Eq. (10) we have to show that

$$
\begin{equation*}
\#\left\{X \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q^{2}} \mid\left(X^{q}+X\right)^{N} \in \mathbb{F}_{q^{3}}\right\}=q^{5}-q^{3} \tag{11}
\end{equation*}
$$

To prove this result in Eq. (11) we use that the Hermitian curve \mathcal{H} given by

$$
X^{q}+X=Y^{q+1}
$$

is a maximal curve over $\mathbb{F}_{q^{6}}$ with genus $g=q(q-1) / 2$. Hence we know that

$$
\begin{equation*}
\# \mathcal{H}\left(\mathbb{F}_{q^{6}}\right)=q^{6}+q^{5}-q^{4}+1 \tag{12}
\end{equation*}
$$

As before there are $\left(q^{3}+1\right)$ rational points on \mathcal{H} with $X \in \mathbb{F}_{q^{2}}$ or $X=\infty$. Subtracting them from Eq. (12) we get that there are exactly

$$
q^{6}+q^{5}-q^{4}-q^{3}=(q+1) \cdot\left(q^{5}-q^{3}\right)
$$

$\mathbb{F}_{q^{6}}$-rational points on \mathcal{H} with $X \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q^{2}}$. We then conclude that it holds:

$$
\begin{equation*}
\#\left\{X \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q^{2}} \mid\left(X^{q}+X\right) \text { is a }(q+1) \text {-power in } \mathbb{F}_{q^{6}}\right\}=q^{5}-q^{3} \tag{13}
\end{equation*}
$$

The proof is now complete since Eq. (11) follows now easily from Eq. (13). Note that

$$
N \cdot(q+1)=q^{3}+1
$$

is the norm exponent in the extension $\mathbb{F}_{q^{6}} / \mathbb{F}_{q^{3}}$. We have then proved:
Theorem. The curve \mathcal{C} given by Eq. (4) is a maximal curve over $\mathbb{F}_{q^{6}}$.
Since the curve χ given by Eq. (5) with $n=3$ is a subcover of the curve \mathcal{C} we get also:
Corollary. The curve χ given by Eq. (5) with $n=3$ is a maximal curve over $\mathbb{F}_{q^{6}}$.

References

[ABQ] M. Abdón, J. Bezerra and L. Quoos, Further examples of maximal curves, preprint.
[GS] A. Garcia and H. Stichtenoth, A maximal curve which is not a Galois subcover of the Hermitian curve, Bull. Braz. Math. Soc. 37 (2006), 139-152.
[GGS] A. Garcia, C. Güneri and H. Stichtenoth, A generalization of the Giulietti-Korchmáros maximal curve, preprint.
[GK] M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite field, preprint.
[Ih] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo 28 (1981), 721-724.
[RS] H.G. Rück and H. Stichtenoth, A characterization of Hermitian Function Fields over Finite Fields, J. Reine Angew. Math. 457 (1994), 185-188.

ARNALDO GARCIA

IMPA- Estrada Dona Castorina 110
22460-320, Rio de Janeiro, Brazil.
e-mail: garcia@impa.br

