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Abstract

We analyze one-step direct methods for variational inequality problems, establishing con-
vergence under paramonotonicity of the operator. Previous results on the method required
much more demanding assumptions, like strong or uniform monotonicity, implying uniqueness
of solution, which is not the case for our approach.
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1 Introduction

Let C be a nonempty, closed and convex subset of R* and 7' : R* — P(R") a point-to-set operator.
The variational inequality problem for 7" and C, denoted VIP(T, C), is the following;:
find z* € C such that there exists u* € T(z*) satisfying

(w r—2*) >0 Vzedl.

We denote the solution set of this problem by S(T,C).

The variational inequality problem was first introduced by P. Hartman and G. Stampacchia
[11] in 1966. An excellent survey of methods for finite dimensional variational inequality problems
can be found in [7].
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1.1 Direct methods for VIP(T,C)

Here, we are interested in direct methods for solving VIP(T', C). The basic idea consists of extending
the projected gradient method for constrained optimization, i.e., for the problem of minimizing f(z)
subject to « € C. This problem is a particular case of VIP(T, C) taking T' = Vf. This procedure
is given by the following iterative scheme:

¥ € C, (1)

a* = Po(z* — oV f (%)), (2)

with o > 0 for all k. The coefficients «;, are called stepsizes and Po : R* — C' is the orthogonal
projection onto C, i.e. Po(z) = argmi(rjl |z — vyl
WIS

An immediate extension of the method (1)-(2) to VIP(T,C) for the case in which 7' is point-
to-point, is the iterative procedure given by

2% € C, (3)

o* = Po(zF — oy T(2Y)). (4)
Convergence results for this method require some monotonicity properties of 1. We introduce

next several possible options.

Definition 1. Consider T : R" — P(R") and W C R" convez. T is said to be:

i) monotone on W if (u —v,x —y) >0 for allz, y € W and all u € T(z), v € T(y),

i) paramonotone on W if it is monotone in W, and whenever (u — v,z —y) = 0 with z,y € W,
u € T(z), v € T(y) it holds that u € T'(y) and v € T(z),

i1i) strictly monotone on W if (u — v,z —y) > 0 for all x, y € W such that z # vy, and all
u€T(x),veT(y),

i) uniformly monotone on W if (u — v,z —y) > ¢(|lz —y||) for all z, y € W and all u € T(x),
v € T'(y), where ¢ : Ry — R is an increasing function, with ¥(0) =0,

v) strongly monotone on W if (u — v,z — y) > w||z — y||> for some w > 0 and for all z, y € W
and all u € T(x), v € T(y).

It follows from Definition 1 that the following implications hold: (v) = (iv) = (iii) = (ii) =
(i). The reverse assertions are not true in general.

It has been proved in [8] that when T is strongly monotone and Lipschitz continuous, i.e. there
exists L > 0 such that ||T(z) —T'(y)|| < L||lx—y|| for all z,y € R™, then the scheme (3)-(4) converges
to the unique solution of VIP(T, C), provided that ay € (e, %—‘*2’) for all k and for some € > 0.



Y. Alber extended this method in three directions: he considers point-to-set operators, works
in a general Hilbert space, and demands uniform monotonicity of 7" instead of strong monotonicity.
Under these assumptions he proved that the iterative procedure given by

"t = Po(aF — apul), (5)

where u* € T'(z*), and the sequence «y, satisfies some conditions related to 1, is strongly convergent
to a solution of VIP(T, C), see [1].

These results are somewhat undesirable for several reasons. The hypotheses of strong or uniform
monotonicity are too demanding, since they imply uniqueness of the solution of VIP(T, C). Even
if they hold, it may happen that the constants w, L or the function 1) are not known “a priori”,
and even when they are known they may lead to too small estimates of the stepsize ay, entailing
a slow convergence of the method.

We remark that there is no chance to relax the assumption on 7" to plain monotonicity. For
. . 0 1 .

example, consider T : R? — R? defined as T'(z) = Az, with A = < 1 0 ) T is monotone and
the unique solution of VIP(T, C) is z* = 0. However, it is easy to check that ||z* — oy, T'(z%)|| > ||z¥||
for all ¥ # 0 and all o, > 0, and therefore the sequence generated by (5) moves away from the
solution, independently of the choice of the stepsize ay.

Thus, we cannot proceed much further unless we impose a condition stronger than monotonicity
of T'. In this paper we assume paramonotonicity of 7. The notion of paramonotonicity, which is
in-between monotonicity and strict monotonicity, was introduced in [6], and many of its properties

were established in [12]. Among them, we mention the following:

i) If T is the subdifferential of a convex function then 7' is paramonotone, see Proposition 2.2
in [12].

ii) If T : R* — R™ is monotone and differentiable, and Jr(x) denotes the Jacobian matrix of T'
at z, then T is paramonotone if and only if Rank(Jr(z) + Jr(z)!) = Rank(Jr(z)) for all z,
see Proposition 4.2 in [12].

It follows that affine operators of the form T(z) = Az + b are paramonotone when A is positive
semidefinite (not necessarily symmetric), and Rank(A + A?) = Rank(A). This situation includes
cases of nonsymmetric and singular matrices, in which case S(7,R") can be a subspace, differently
from the case of strictly or strongly monotone operators, for which S(7T',C) is always a singleton,
when nonempty. Of course, this can happen also for nonlinear operators.

In Section 3, we consider Algorithm (5). Assuming that 7' is a paramonotone operator, we
obtain that the sequence generated by (5) is globally convergent to some point on S(7,C), if

S(T,C) is nonempty and the stepsizes {ay} satisfy: oy = f’—”: where 7, = max{1, |«*||}, and

> B = oo, (6)
k=0



and
Y B < 0. (7)
k=0

This selection rule has been considered several times for similar methods, see [14], [3] and
[2]. Methods of this type, like (5), are called direct, because they do not require the solution of
subproblems at each iteration, and it is easy to compute z**! using only the previous point z*.

1.2 Relaxed projection methods

The method given by (5) is fully direct only in a few specific instances, namely when P¢ is given
by an explicit formula (e.g. when C is a halfspace, or a ball, or a subspace). When C is a general
closed convex set, however, one has to solve the problem min{||z — (z* — o} T(z*))|| : z € C}, in
order to compute the projection onto C.

One option for avoiding this difficulty consists of replacing at iteration k& Pc by Pc, , where Cj,
is a halfspace containing the given set C' and not z*. Observe that projections onto halfspaces are
easily computable.

We consider the case in which C' is of the form

C={zeR": g(z) <0}, (8)

where g : R* — R is a convex function, satisfying Slater’s condition, i.e. there exists a point &
such that g(Z) < 0. The differentiability of ¢ is not assumed and the representation (8) is therefore
rather general, because any system of inequalities g;(z) < 0 with j € J, where all the g;’s are
convex, may be represented as in (8) with g(z) = sup{g;(z) : j € J}.

M. Fukushima introduced in [10] a method for solving VIP(T, C), using the following relaxed
iteration:

ZEH o T(z")
P, (# - ey ) Y

where (i is an exogenous stepsize satisfying (6)-(7) and C is defined as
Cy :={z € R" : g(z*) + (v*, 2z — zF) < 0},

with v¥ € 8g(z*), where dg(z*) is the subdifferential of g at z*.
He proved convergence of {z*} to a point in S(T,C), under quite demanding assumptions: T
must be strongly monotone and it must satisfy the following coerciveness condition:

(P) There exist z € C, 7 > 0, and a bounded set D C R" such that (T'(z),x — z) > 7||T(z)|| for
all z ¢ D.

In this paper we will analyze the algorithm given by (9), except that T' is a point-to-set para-
monotone operator, and with the following condition, instead of (P):
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(Q) There exist z € C and a bounded set D C R" such that (u,z — z) > 0 for all z ¢ D and for
all uw € T'(z).

It is clear that condition (Q) is weaker than (P). The following two conditions are sufficient for
establishing (Q):

i) T is monotone and there exists z* € C such that 0 € T'(z*), (we can take z = z* in condition

(Q))-
(1)

ii) T is uniformly monotone and ¢ satisfies lim; ,, = = oco. Indeed, we have, in view of
Definition 1(iv), (u,z — 2) > (0,2 — 2) + ¥(|z — 2|) > ||z — || (w - ||'u||) for all

(z,u), (z,v) € G(T), so that (Q) holds for any z € C, taking as D a large enough ball
centered at z.

It is easy to check that if T is Lipschitz continuous and uniformly monotone with lim;_, o, @ = 00,
then property (Q) holds. As an example of an operator satisfying (Q) but not (P), take T'(z) =
xz — Pr(z) where L C R" is a subspace, and C such that C N L # (). T is paramonotone, because
T(z) = Vf(z) with f(z) = (dist(z,C))?, and satisfies (Q) because the points in C' N L are zeroes
of T'. It can be easily shown that T does not satisfy (P).

In Section 4, we analyze the method given by (9), relaxing the hypotheses in [10] in three
directions: T can be point-to-set, we assume paramonotonicity of T" instead of strong monotonicity,
and use (Q) instead of (P). Under these conditions, we prove that the sequence generated by (9)
is bounded, the difference between consecutive iterates converges to zero, and all its cluster points

belong to S(T',C).

2 Preliminary results

In this section, we present some definitions and results that are needed for the convergence analysis
of the proposed methods.

Definition 2. Let S be a nonempty subset of R*. A sequence {z*} in R is said to be quasi-Fejér
convergent to S if and only if for all x € S there exist kg > 0 and a sequence {0y} C Ry such that
Yool 0k < 00 and ||zFtt — z||? < ||z* — z||? + 6k for all k > k.

Proposition 1. If {z*} is quasi-Fejér convergent to S then:
i) {z*} is bounded,
i) if a cluster point * of {x*} belongs to S, then the whole sequence {z*} converges to x*.

Proof. See Theorem 1 in [4]. O



It is convenient to introduce the following notation: let g : R* — R be a convex function, and
X a nonempty, compact and convex subset of R”. Given a point € X and v € dg(z), the solution
of the problem

min{||z —z|| : g(z)+ (v,z—z) <0, z € X}
is denoted by Z(z,v). Let C = {z € R" : g(z) < 0}.

Lemma 1. There ezists k € [0,1) such that dist(Z(z,v),C) < kdist(z,C) for all z € X \ C and
for all v € 0g(z), where dist(z,C) = mingec ||z — y||.

Proof. See Lemma 4 in [9]. O
Lemma 2. Take {&;},{vx} C Ry and p € [0,1). If the inequalities
Ekt1 < pék + vk, kEN
hold and limy o0 v = 0, then limy o0 &, = 0.
Proof. See Lemma 2 in [10]. O

Lemma 3. Take K C R” closed and z ¢ K. Let {z¥} CR™ be such that limy_,, ||2¥1! — 2F|| = 0
and both z and some point in K are cluster points of {zk} Then there exist { > 0 and a subsequence
{z9%} of {z¥} such that

dist(z7* 1) K) > dist(2%%, K) (10)

and .
dist(z7%, K) > (. (11)

Proof. Let ¢ = %dist(z,K ) > 0 and define
U:={zeR" : dist(z,K) < 2(}. (12)

Clearly, there exists a subsequence {z7%} of {z*} such that 27+ € U, z/*T! ¢ U. Otherwise either
{z*} eventually remains out of U, in which case dist(z*, K) > 2( for large k and then {z*} cannot
have a cluster point belonging to K, or it eventually remains in U, in which case all its cluster
points, including z, belong to U, but dist(z, K) = 3(, contradicting the definition of U given in
(12). Thus, dist(z/**!, K) > 2¢ > dist(z’*, K) by definition of U, so that (10) holds.

Since limy_, |28t — 2%|| = 0 there exists k& > 0 such that |27 T1 — 27k|| < ¢ for all k > , so
that

dist(z7F, K) > dist(2/* T, K) — |27t — 20k > 2¢ = ¢ =¢

for all k > k, and hence {2z’ }e>7 satisfies (10) and (11). O

Now, we state two well known facts on orthogonal projections.



Lemma 4. Let K be any nonempty closed and conver set in R" and Py the orthogonal projection
onto K. For all z,y € R" and all z € K, the following properties hold:

i) |Px(z) — Px ()l < llz -yl
ii) (x — Px(z),z — Pk (z)) < 0.
Proof. See Lemma 4.1 in [13]. O
We recall now the definition of maximal monotone operators.

Definition 3. Let T : R* — P(R") be a monotone operator. T is mazimal monotone if T =T’
for all monotone T' : R* — P(R™) such that G(T) C G(T"), where G(T) := {(z,u) € R* x R" :
u € T(x)}.

We also need the following results on maximal monotone and paramonotone operators.
Lemma 5. Let T : R* — P(R") be a mazimal monotone operator. Then
i) T is locally bounded at any point in the interior of its domain.
it) G(T) is closed.
i1i) T is bounded on bounded subsets of the interior of its domain.
Proof. i) See Theorem 4.6.1(ii) of [5].
ii) See Proposition 4.2.1(ii) of [5].

iii) It follows easily from (i).
U

Proposition 2. Let T' be a paramonotone operator in C. Take x € S(T,C) and z* € C. If there
exists u* € T'(z*) such that (u*,xz* —x) = 0 then z* is also solution of VIP(T,C).

Proof. See Proposition 13 in [6]. O

Lemma 6. Let T be a mazimal monotone and paramonotone operator. Let {(z*,u*)} C G(T) be
a bounded sequence such that all cluster points of {z*} belong to C. For each z € S(T,C) define
Y (z) := (u¥,zF — z). If for some z € S(T,C) there ezists a subsequence {v; (z)} of {vk(z)} such

that limg_,o0 v;, (7) < 0, then there ezists a cluster point of {z’*} belonging to S(T,C).



Proof. Suppose that there exist z € S(T,C) and a subsequence {v;, ()} of {vx(z)} such that
limg 00 Y5, () < 0. Let (z*,u*) be a cluster point of the bounded subsequence {(z%*,u/*)}. Since
T is maximal monotone, u* € T'(z*) by Lemma 5(ii). Without loss of generality we assume that
limg o0 (z7%, u/%) = (z*,u*). Therefore, limg_, 00 V), (%) = limg_ oo (u/*, 7% — z) = (u*,z* — z) < 0.
Since z € S(T,C), there exists u € T'(z) such that (u,z* — ) > 0, and using the monotonicity of
T we obtain

0> lim v, (z) = (u*, 2" —z) > (u,z* —z) > 0. (13)

k—o00

It follows from (13) that (u*, z*—x) = 0, and we conclude from Proposition 2 that z* € S(T,C). O

3 A direct method for VIP(T,C) with paramonotone operators

In this section we assume that 7" is maximal monotone and paramonotone.
Our algorithm requires an exogenous sequence {f;} C Ry of stepsizes satisfying (6)-(7). The
algorithm is defined as:

Algorithm 1
Initialization step:
20 e C.

Iterative step: Given z*, if 0 € T'(z*) then stop. Otherwise, take u* € T'(z*), u* # 0, n;, :=
max{1, |||} and

oot = Pg (:vk - &uk> . (14)
Nk

3.1 Convergence analysis of Algorithm 1
We start by proving the quasi-Fejér properties of the sequence {z*} generated by Algorithm 1.
Proposition 3. If Algorithm 1 generates an infinite sequence {z*} and S(T,C) is nonempty, then:
i) {z*} is quasi-Fejér convergent to S(T,C).
ii) If a cluster point of {z*} belongs to S(T,C) then {z*} converges to a point in S(T,C).
Proof. i) Take z € S(T,C). Thus there exists u € T'(z) such that

(u,z —z) >0 VzeC. (15)



Then,

Bk 2 Bk 2
||.’Ijk:+1 - .’i‘”2 = HPC (xk - n—kuk> - PC(.’i‘) S ‘ (.’I)k - ’r]_kUk> -z
= Ie* ol + g - 2E (b0t - a)
k

= fF—F|2 82— 2% (tw —a,2% —2) + (5,2* — 7))

VAN

o — 2+ 62— 2 %w,xk _3) < |l — 2P + 82,

using (14), the fact that z € S(T, C) and Lemma 4(i) in the first inequality, the monotonicity
of T in the second inequality and (15) in the third inequality.

Using Definition 2 we conclude, in view of the fact that 3y satisfies (7), that the sequence
{z*} is quasi-Fejér convergent to S(T,C).

ii) Follows from (i) and Proposition 1(ii).

Corollary 1. The sequences {z*}, {u*} generated by Algorithm 1 are bounded.

Proof. For {z*} use Proposition 3(i) and Proposition 1(i). For {u*}, use boundedness of {z*} and
Lemma, 5(iii). O

Paramonotonicity of T is used for the first time in the following theorem, which is our main
convergence result on Algorithm 1.

Theorem 1. Assume that T is mazimal monotone and paramonotone. If S(T,C) is nonempty
then either Algorithm 1 stops at some iteration k, in which case z* € S(T,C), or it generates an
infinite sequence which converges to some z* € S(T,C).

Proof. If the algorithm stops at iteration k&, i.e. 0 € T'(z*), the result follows from the definition of
S(T,C). Therefore, we assume that the sequence {z*} is infinite. By Corollary 1, {z*} has cluster
points. We claim that there exists a cluster point of {z*} belonging to S(T, C). Otherwise, in view
of Lemma 6, for each Z € S(T,C) there exists k > 0 and p > 0 such that v,(z) = (u*,2¥ —z) > p
for all k > k. Fix some z € S(T,C), nonempty by hypothesis, and consider the corresponding p,
k. Since {u*} is bounded by Corollary 1, there exists > 1 such that ||u*|| < @ for all k. Therefore

ne = max{1, ||u*||} < max{1,0} =0 VEk, (16)
and since limy_, o, B = 0, we can find & > 0 such that

B < and (u* zF —Z)>p Vk > k. (a7)

I



Thus, for all & > k,

Bk 2 Bk 2
|zF Tt —z|2 = HPC (wk - —uk> —Pe(z) || < ‘ (wk — —uk> -z
Tk Mk
ok -3l + B - 22 ot 5)
Nk

_ _ p
< ok —al? 265+ 87 = lla* —all? - e (25 - i)
) p
< la* -z - Pry (18)
using Lemma 4(i) in the first inequality, with K = C, z = z* — &uk and y = Z, (16) in the second
g

one and (17) in the third one. It follows from (18) that
p _ _
P < llz® —a|* — [|lz" — 2], (19)

Summing (19) with k between k and m,
p m m _ _
£ 8 < Y (Ilek =2l — b+ — all?) = flaF — 2l ~ ™! — 3l < o — 2% (20)
k=k k=k

Taking limits in (20) with m — oo, we contradict the assumption > 722 o By = oo. Thus, there exists
a cluster point of {z*} belonging to S(T, C). In view of Proposition 3(ii), {z*} converges to a point
in (T, C). O

4 A relaxed projection algorithm

In this section, we introduce an algorithm which eliminates the projection onto C. We assume that
C is of the form given in (8). The algorithm is defined as follows.

Algorithm 2
Initialization step:
0 e C.
Tterative step: Given z*, if 0 € T'(z*) then stop. Otherwise, take u* € T'(z*), u* # 0, choose
ny := max{1, |[u*||}, v* € dg(z*) and let

Cp:={z€R": g(:vk) + (’Uk,z - CUk) < 0}. (21)
Compute
o+ = P, (xk _ @uk> : (22)
Nk
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with By satisfying (6)-(7). If zF*! = z* then stop.

Unlike other projection methods, Algorithm 2 generates a sequence {z*} which is not necessarily
contained in the set C. Note that Algorithm 2 can be easily implemented, because P, has the
following explicit formula.

Proposition 4. For any y € R*,

g(=*) + (¥ y —a*)

; k k k
- v zv) + (v, y —z%) >0
PCk (y) — y ||’Uk||2 f g( k) < . y k)
y if  g(a®) + (v, y —2%) <0.
Proof. See Proposition 3.1 in [15]. O

It follows from Proposition 4 that

gkt = Pc, (wk - &uk> =gk — &uk — 5 Max {O,g(wk) —<uk,vk)} ok,
Mk Mk ||vk|| Mk

so that Algorithm 2 can be considered as a fully direct method for VIP(T', C).

_ B

4.1 Convergence analysis of Algorithm 2

For convergence of our method, we assume that 7' is maximal monotone, paramonotone and satisfies
Condition (Q), with we repeat here:

(Q) There exist 2 € C and a bounded set D C R” such that (u,z — 2) > 0 for all z ¢ D and for
all u € T(g).

Observe that dg(z) # 0 for all z € R™, because we assume that g is convex and dom(g) = R™.
Proposition 5. Take C, Cy, and z* defined by (8), (21) and (22) respectively. Then
i) C C Cy for all k.
i) If 2t = 2% for some k, then z* € S(T,O).
Proof. i) It follows from (21) and the definition of subgradient.

ii) Suppose that z**1 = z*. Then , since z**! € Cy, we have g(z*) + (v*, zF 1 —z*) = g(z*) <0,
i.e. o8 € C. Moreover, since zF*! is given by (22), using Lemma 4(ii) with z = z* — ’S—I’:uk
and K = Cj, we obtain

<xk+1 _ (wk _ %M) z— (Ek+1> >0 VzeC. (23)
k

11



Taking %t = z¥ in (23) and taking into account the facts that B > 0, n > 1 for all ,
and C C Cy, we get (u¥,z — zF) > 0 for all z € C. Since u* € T(z*), we conclude that
Tk € S(T,0).

]

Lemma 7. Take 2 € C and D satisfying (Q), let {z*} be the sequence generated by Algorithm 2
and choose A > 0 such that ||z° — 2|| < X and D C B(2,)\). Then,

i) if 2% € D then ||zF T — 2| < A2 + B2 + 2Bk,
ii) if z¥ ¢ D then ||z*+! — 2|2 < |jzF — 2|2 + B2

Proof. Since zZ € C, we get from Proposition 5(i) that 2 € Cj, for all k, i.e. 2 = P¢,(2). Then, in
view of (22) and Lemma 4(i) with K = Cy, = = zF — 'g—”:uk and y = 2, we obtain
Pe, (a:k - @uk> — P, (2)

(wk — &uk> -2z
Nk Nk

. B2 Bk .
B2 + Rk - 252 (uF, 2 - 2)
k

2
<

2
o+t = = |

= |l

o = 211+ B} 20 (a5 (24)

IA

Thus,

i) if z¥ € D, applying Cauchy-Schwartz inequality in (24) and the fact that D C B(%,)), we
obtain that

. Br X
la**t =2 < llo® = 207 + B+ 202 Il lla” — 21 < X + B + 281,

ii) if zF ¢ D, it follows from (Q) that (u*,z* — 2) > 0 and we get from (24) that

a1 = 2] <l — 2 + 6.

Proposition 6. Let {z*}, {u*} be the sequences generated by Algorithm 2. Then,
i) {z*} and {u*} are bounded.
i) limy_,q dist(z*, C) = 0.

i) limg_yq0 ||2FT! — zF|| = 0.

12



iv) All cluster points of {z*} belong to C.

Proof.

i)

i) Take 2 and D satisfying (Q), A > 0 such that ||z — 2| < Aand D C B(2,),and 8 > 0

such that By < 3 for all k (3 exists by (7)). Let o = E;'io 5]2 Define A := /A2 4+ 28\ + 0.
We claim that {z*} C B(2,)). We consider two cases.

If z¥ € B(2,)\), we have ¥ € B(%,)) because A > \. If zF ¢ B(2,)), let 4(k) =
max {£ < k : 2t € B(2,\)}. £(k) is well defined because ||z° — 2|| < A, so that 2° € B(2, \).
By Lemma 7(i),

[ — 22 < X%+ By + 2B < N+ 2B+ By (25)

Iterating the inequality in Lemma 7(ii), since 27 ¢ D for j between £(k) + 1 and &,

lz* — 2> < [l — 2 + Z b5 (26)
k)+1
Combining (25) and (26)
k-1
lzF — 22 < X+ 2Ba+ > BZ< A2+2ﬁA+Zﬁ] = A2 428\ +0 =2
j=t(k) 3=0

Thus, z¥ € B(2,)) and hence {z*} is bounded. For {u*} use boundedness of {z*} and
Lemma 5(iii).

For all k¥ we have that

&+ — Py (a4)]] =

Pc, (mk — &uk) — Pg, (%)

Nk

< P 1) < By (27)
Mk

using (22) and Lemma 4(i) in the first inequality, and the fact that n > ||u*|| for all k in the
second one.

We apply Lemma 1 with X = B(2,A) and conclude that there exists i € [0,1) such that

dist(z(z,v),C) < g dist(z, C) (28)
for all z € B(2,)A) \ C and all v € dg(z).

By (i), {z*} C B(%, \), and we obtain, using the definition of Z(z, v), that Z(z*, v*) = P¢, (z¥).
Therefore, it follows from (28) that

dist(Pg, (zF), C) = dist(2(z*, o), C) < @i dist(z*, 0), (29)

13



for all k such that =¥ ¢ C. If ¥ € C, (29) holds trivially because C C Cj, by Proposition
5(i). Observe that

dist(zF*1, 0) < ||2* — Pg, (2)|| + dist(Pg, (z*),0) < Bk + i1 dist(z*, C),

using (27) and (29) in the second inequality. Therefore, using Lemma 2 with v, = 5 and
& = dist(z¥, C), we obtain klim dist(z*, C) = 0, establishing (ii).
—00

iii) Using (27), we get
|2+t — ¥ < |l2F T — Pe, (2%)| + || Pe, (2F) — 2| < B + dist(z*, ©). (30)
Since limy_, o, B, = 0 by (7), it follows from (ii) and (30) that limy_,o ||zF+1 — 2¥|| = 0.

iv) Follows from (ii).

Paramonotonicity of T is used for the first time in this section in the following theorem.

Theorem 2. If T is paramonotone and S(T,C) # () then all cluster points of the sequence {z*}
generated by Algorithm 2 solve VIP(T,C).

Proof. Let {z*}, {u*} be the sequences generated by Algorithm 2. Define y;, : S(T,C) — R as

Note that

2
<

2
||.’L‘k+1 _ 11)”2

m(z) = (uF, 2* - z). (31)
‘ Pc, (xk — %M) — Pg, () (sck — %M) -z

B Bk
= [lz* — 2| + = |u*|? - 2= (b, 2F - z)
% Nk

la* — o] - i (2”’;7‘:”’ - ﬂk) . (32)

We prove first that {z¥} has cluster points in S(T,C). Since {(z*,u*)} is bounded by Propo-
sition 6(i), it suffices to prove that {7} has a nonpositive cluster point for some z € S(T,C).
Assume that this is not true, and fix some z € S(T,C). Clearly {v(Z)} must be bounded away
from zero for large k, i.e. there exist k and p > 0 such that v (z) > p for all k& > k. Since {u*} is
bounded, there exists § > 1 such that ||u*|| < @ for all k. Therefore

IN

me = max(1, ||} < max{1,0} = 0

14



for all k. Thus, we can find p > 0 such that 7’;—(? > 7’“55) > p and hence, in view of (32), we obtain

Iz = 2]* < [la* — 2|* — Bk (25 — Br) (33)

for all k > k. Since limy_,o, B = 0 by (7), there exists k' > k such that 8 < p for all k > k. So,
we get from (33), for all k& > &,

pBr < lla* —z|* — ||z — 2|2, (34)

Summing (34) with k between k' and m, we obtain:

m m
P> B < Y (lah — a2 — a* ! = a2) < ot — all? — lo™ ! — a2 < [l — 22 (35)
k=K' k=K

Taking limits in (35) with m — oo, we contradict the assumption that Y -, Bx = oo. Thus, there
exists a cluster point of {z*} belonging to S(T,C).

Finally, we prove that all cluster points of {z*} belong to S(T,C). Suppose that {z*} has a
cluster point z ¢ S(T,C). Since S(T,C) is closed by Lemma 5(iii), we invoke Lemma 3 to obtain
a subsequence {27k} of {z¥} and a real number ¢ > 0 such that

dist(z7%, S(T, C)) > ¢, (36)

and
dist(z7* 1, (T, C)) > dist(z*, S(T, C)). (37)

Take 7x(z) as defined by (31). Note that {yx(z)} is bounded by Proposition 6(ii) and define
v : S(T,C) = R as y(z) := liminfy_, 7, (). We claim that y(z) > 0 for all z € S(T,C).
Otherwise, by Lemma 6 {z7*} has a cluster point in S(T,C), in contradiction with (36). We claim
now that v is continuous in S(T,C). Take z, 2’ € S(T,C). Note that v;, (z) = (u/k,z/* — 1) =
(uk, 27k —z'y + (uk 2’ — z) < 7, (2') +0||z —2'||. Thus, v(z) < v(z')+0||z—z'||, where 6 is a upper
bound of {||u*||}. Reversing the role of z, z', we obtain |y(z) — y(z')| < ||z — '|| establishing the
claim.

Let V be the set of cluster points of {z*}. We have shown above that V N S(T,C) # 0. Since
{z*} is bounded, V is compact and so is V N S(T,C). It follows that vy attains its minimum on
VNS(T,C) at some z*, so that y(z) > y(z*) > 0 for all z € V N S(T,C), using the claim above.

Take k such that

Vi () > @ (38)
and i
6jk < ’Y(;U )’ (39)
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for all k > k. In view of (32), we get, for all z € V N S(T,C) and all k > k,

; ; Vi, (T ; v(z* ;
ot =2 < o~ alf = 3, (222 - g, ) < o~ 2 - g, (152 - i) < L —

Ik

using (38) in the second inequality and (39) in the third one. It follows that dist(z/**1,V N
S(T,C)) < dist(z/k, VN S(T,C)) for all k > k, in contradiction with (37). The contradiction arises
from assuming that {z*} has clusters points out of S(T’,C), and therefore all cluster points of {z*}
solve VIP(T, C). O

We summarize the convergence sequence properties of Algorithm 2 in the following corollary.

Corollary 2. If T is paramonotone and S(T,C) # (), then the sequence {x*} generated by Algo-
rithm 2 is bounded, limy_,o ||z*t! — 2| = 0 and all cluster points of {z*} belong to S(T,C). If
VIP(T,C) has a unique solution then the whole sequence {z*} converges to it.

Proof. It follows from Proposition 6(i), Proposition 6(iii) and Theorem 2. O

Remark 1. Note that we have convergence of the whole sequence under any hypothesis on T
ensuring uniqueness of solutions of VIP(T', C), like e.g. strict monotonicity. This is much weaker
than strong monotonicity, as demanded in [10] for obtaining a similar result.
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