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Abstract

We study the local well-posedness of the initial-value problem for
the nonlinear generalized Boussinesq equation with data in Hs(Rn)×
Hs(Rn), s ≥ 0. Under some assumption on the nonlinearity f , local
existence results are proved for Hs(Rn)-solutions using an auxiliary
space of Lebesgue type. Furthermore, under certain hypotheses on s,
n and the growth rate of f these auxiliary conditions can be eliminated.

1 Introduction

In this paper we consider the generalized Boussinesq Equation{
utt −∆u+ ∆2u+ ∆f(u) = 0, x ∈ Rn, t > 0,
u(x, 0) = u0, ut(x, 0) = u1,

(1)

where the nonlinearity f satisfies the following assumptions

(f1) f ∈ C [s](C,C), where s ≥ 0 and [s] denotes the smallest positive
integer greater than s;

(f2) |f (l)(v)| . |v|k−l for all integers l varying in the whole range 0 ≤ l ≤
[s] ≤ k with k > 1;

∗Mathematical subject classification: 35B30, 35Q55, 35Q72.
†Partially supported by CNPq-Brazil.
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(f3) If s ≤ n

2
then 1 < k ≤ 1 +

4
n− 2s

.

Equations of this type, in one dimension, but with the opposite sign in
front of the fourth derivative term, were originally derived by Boussinesq [3]
in his study of nonlinear, dispersive wave propagation. We should remark
that it was the first equation proposed in the literature to describe this
kind of physical phenomena. The equation (1) was also used by Zakharov
[23] as a model of nonlinear string and by Falk et al [8] in their study of
shape-memory alloys.

In one dimension, local and global results have been obtained for (1).
Using Kato’s abstract theory for quasilinear evolution equation, Bona and
Sachs [2] showed local well-posedness (1), where f ∈ C∞ and initial data
u0 ∈ Hs+2(R), u1 ∈ Hs+1(R) with s > 1

2 . Tsutsumi and Matahashi [20]
established similar result when f(u) = |u|k−1u, k > 1 and u0 ∈ H1(R),
u1 = χxx with χ ∈ H1(R). These results were improved by Linares [14]. He
proved local well-posedness when f(u) = |u|k−1u, 1 < k < 5, u0 ∈ L2(R),
u1 = hx with h ∈ H−1(R) and f(u) = |u|k−1u, k > 1, u0 ∈ H1(R), u1 = hx
with h ∈ L2(R). Moreover, assuming smallness in the initial data, it was
proved that these solutions can be extended globally in H1(R). The main
tool used in [14] was the Strichartz estimates satisfied by solutions of the
linear problem.

Another problem studied in the context of the Boussinesq equation is
scattering of small amplitude solutions. This question was investigated by
several authors, see for instance Linares and Scialom [16] and Liu [17] for
results in one dimension and Cho and Ozawa [6] for arbitrary dimension.

Here we consider the local well-posedness and uniqueness problems,
studying the integral equation associated to (1). To describe the integral
formulation we first consider the following modified linear equation{

utt + ∆2u = 0, x ∈ Rn, t > 0,
u(x, 0) = φ, ut(x, 0) = ∆ψ.

(2)

First, we recall that the solution to the linear Schrödinger equation{
i∂tu+ ∆u = 0, x ∈ Rn, t > 0,
u(x, 0) = u0

is given by

S(t)u0 =
(
e−it|ξ|

2
û0

)∨
. (3)
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On the other hand, applying the Fourier transform to the equation (2),
we obtain that the solution is given by

u(t) = Bc(t)φ+Bs(t)∆ψ, (4)

where the operators Bc(t) and Bs(t)∆ are completely describe by the unitary
group (3), that is

Bc(t) =
1
2

(S(t) + S(−t)) (5)

and

Bs(t)∆ =
1
2i

(S(t)− S(−t)) . (6)

Therefore, applying the Duhamel’s principle, the integral formulation of
the initial value problem (IVP){

utt + ∆2u+ ∆(f(u)− u) = 0, x ∈ Rn, t > 0,
u(x, 0) = φ, ut(x, 0) = ∆ψ

(7)

is given by

u(t) = Bc(t)φ+Bs(t)∆ψ +
∫ t

0
Bs(t− t′)∆(f(u)− u)(t′)dt′ (8)

Since the operators (5) and (6) are linear combinations of the Schrödinger
unitary group and its adjoint, we have that the structure of (8) is very
similar to the Schrödinger’s integral equation. Therefore, applying well
known results for this last equation we establish new results about local
well-posedeness and uniqueness for the generalized Boussinesq equation (7).

The local well-posedness question was first raised by Hadamard [11] in
the case of Laplace equation and refined by Kato in the case of an initial
value problem (IVP) (see, for example, [12]). In the present work, we adopt
the following definition

Definition 1.1 (Well-posedness) We say that the IVP (7) is locally well-
posed in Hs(Rn)×Hs(Rn) if for any initial data (φ, ψ) ∈ Hs(Rn)×Hs(Rn)
there exists a time T > 0, a subset Ξ of C([0, T ];Hs(Rn)) and a function
u ∈ Ξ such that

(i) Existence and Uniqueness The function u is the unique solution in
Ξ of the integral equation (8) (interpreted in a distributional sense).
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(ii) Continuous Dependence The flow map is (at least) continuous from
a neighborhood of (φ, ψ) in Hs(Rn)×Hs(Rn) into C([0, T ];Hs(Rn)).

Remark 1.1 If T can be taken arbitrarily large, we say that the well-
posedness is global.

To obtain a solution of (7), we analyze the integral equation (8) applying
a fixed point argument. That is, we find T > 0 and define a suitable com-
plete subspace of C([0, T ];Hs(Rn)), for instance Ξs, such that the integral
equation is stable and contractive in this space. Then, by Banach’s fixed
point theorem, there exists a unique solution in Ξs.

However, to define the subset Ξs we will need some auxiliary conditions,
which is based on the available Strichartz estimates for the Schrödinger
equation

Definition 1.2 We call (q, r) an admissible pair if they satisfy the condi-
tion:

2
q

= n

(
1
2
− 1
r

)
,

where 
2 ≤ r ≤ ∞ , if n = 1,
2 ≤ r <∞ , if n = 2,

2 ≤ r ≤ 2n
n− 2

, if n ≥ 3.

Now, we can define the (auxiliary) space

Ys = (1−∆)−
s
2

(⋂
{LqLr : is an admissible pair}

)
=

⋂
{LqHs

r : (q, r) is an admissible pair}

where Hs
r = (1−∆)−

s
2 Lr.

With these notations and definitions, we have the following result on the
local well-posedness for the generalized Boussinesq equation (7).

Theorem 1.1 Assume (f1) − (f3) and s ≥ 0. Then for any (φ, ψ) ∈
Hs(Rn)×Hs(Rn), there are T > 0 and a unique solution u of (7) with the
following properties

(i) u ∈ C([0, T ];Hs(Rn));
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(ii) u ∈ Ys.

Note that this theorem cover the cases analyzed by Linares [14]. In
fact in one dimension and with nonlinearity f(u) = |u|k−1u, assumptions
(f1)− (f3) impose the restrictions k > 1 and 1 < k < 5 for s = 0 and s = 1,
respectively.

On the other hand, the above theorem generalizes the local result of
Linares [14] in two ways. Firstly, it provides local well-posedness in Hs(R)
with s 6= {0, 1} and s ≤ 2 + 1/2, which up to our knowledge are not present
in the literature for the generalized Boussinesq equation in one dimension.
Moreover, it includes the IVP associated to (7) in arbitrarily dimension.

Based in the proof of Theorem 1.1, we can also obtain results in the life
span and blow-up of the solutions given above. This is done in the following
two theorems

Theorem 1.2 Let [0, T ∗) be the maximal interval of existence for u in The-
orem 1.1. Then T ∗ depends on φ, ψ in the following way

(i) Let s >
n

2
and σ > 0 such that

n

2
< σ ≤ s. Then T ∗ can be estimate

in terms of ‖φ‖Hσ and ‖ψ‖Hσ only. Moreover,

T ∗ →∞ when max {‖φ‖Hσ , ‖ψ‖Hσ} → 0. (9)

(ii) Let s ≤ n

2
and σ ≥ 0 such that

σ ∈
[
0,
n

2

)⋂[
n

2
− 2
k − 1

, s

]
; (10)

(iia) If σ >
n

2
− 2
k − 1

, Then T ∗ can be estimate in terms of ‖Dσφ‖L2

and ‖Dσψ‖L2 only. Moreover,

T ∗ →∞ when max {‖Dσφ‖L2 , ‖Dσψ‖L2} → 0.

(iib) If σ =
n

2
− 2
k − 1

, the time T ∗ can be estimated in terms of

Dσφ,Dσψ ∈ L2, but not necessarily of their norms.

Theorem 1.3 Suppose, in Theorem 1.2, that T ∗ <∞. Then

(a) In case (i), max{‖u(t)‖Hσ , ‖∆−1ut(t)‖Hσ} blows up at t = T ∗ for all
σ such that

n

2
< σ ≤ s;
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(b) In case (iia), max{‖Dσu(t)‖L2 , ‖Dσ∆−1ut(t)‖L2} blows up at t = T ∗

for all σ 6= n

2
− 2
k − 1

and in (10).

Note that part (ii) of Theorem 1.1 is an essential part; without such
a condition, uniqueness might not hold. In this case, we say that (7) is
conditionally well-posed in Hs(Rn), with the auxiliary space Ys.

A natural question arise in this context: Is it possible to remove the
auxiliary condition? In other words, is it possible to prove that uniqueness
of the solution for (7) holds in the whole space C([0, T ];Hs(Rn))? If the
answer for this last question is yes, then we say that (7) is unconditionally
well-posed in Hs(Rn). In [12], Kato introduce this notion and extensively
studies it for the nonlinear Schrödinger equation{

iut + ∆u+ f(u) = 0, x ∈ Rn, t > 0,
u(x, 0) = u0,

where f is a nonlinear function satisfying certain hypotheses.
Based on the integral formulation (8), we will use Kato’s argument to

prove the same kind of result for the generalized Boussinesq equation (7).
The next theorem gives a precise statement of our uniqueness result.

Theorem 1.4 Assume (f1)− (f3) and let s ≥ 0. Uniqueness for (7) holds
in C([0, T ];Hs) in each of the following cases

(i) s ≥ n

2
;

(ii) n = 1, 0 ≤ s < 1
2

and k ≤ 2
1− 2s

;

(iii) n = 2, 0 ≤ s < 1 and k <
s+ 1
1− s

;

(iv) n ≥ 3, 0 ≤ s < n

2
, k ≤ min

{
1 +

4
n− 2s

, 1 +
2s+ 2
n− 2s

}
.

The fundamental tool to prove Theorem 1.4 are the classic Strichartz
estimates satisfied by the solution of the Schrödinger equation. We remark
that parts (i), (ii), and (iii) of the above theorem are identical, respectively,
to (i), (iii), and (ii) for n = 2 of [12], Corollary 2.3. However, for n ≥ 3,
we include the high extreme point for the value of k, in the range of validity
of the theorem. This is possible due to the improvement in the Strichartz
estimates proved by Keel and Tao [13].

For the particular case where f(u) = |u|k−1u, we can also improve The-
orem 1.4 for a large range of values k. This is done in the following theorem.
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Theorem 1.5 Let n ≥ 3, 0 < s < 1 and f(u) = |u|k−1u, with k > 1
satisfying (f3). Uniqueness for (7) holds in C([0, T ];Hs) if k verifies the
following conditions

(1) k > 2;

(2) k > 1 +
2s

n− 2s
, k < 1 + min

{
n+ 2s
n− 2s

,
4s+ 2
n− 2s

}
;

(3) k < 1 +
4

n− 2s
;

(4) k ≤ 1 +
n+ 2− 2s
n− 2s

.

Remark 1.2 Note that the restriction k ≤ n+ 2s
n− 2s

seems natural. In fact,

this assumption implies |u|k−1u ∈ L1
loc(Rn), which ensures that the equation{

utt −∆u+ ∆2u+ ∆
(
|u|k−1u

)
= 0, x ∈ Rn, t > 0,

u(x, 0) = φ, ut(x, 0) = ∆ψ
(11)

makes sense within the framework of the distribution.

Theorem 1.5 is inspired on the unconditional well-posed result proved by
Furioli and Terraneo [9] for the case of nonlinear Schrödinger equation. As
in [9], the proof of this theorem relies in the use of Besov space of negative
indices.

The plan of this paper is as follows: in Section 2, we introduce some
notation. Linear estimates and other preliminary results are proved in Sec-
tion 3. The local existence theory is established in Section 4. Finally, the
unconditional well-posedness problem is treated in Section 5.

2 Notations

In the sequel c denotes a positive constant which may differ at each
appearance.

We use local in time versions of the space-time Lebesgue spaces LqtL
r
x,

which we denote by LqTL
r
x, equipped with the norms

‖f‖LqTLrx = ‖‖f(t, ·)‖Lr(Rn)‖Lq([0,T ]).

Now we recall the definition of homogeneous Besov spaces. Let ω ∈
C∞c (Rn) be such that supp ω ⊆ {ξ : 2−1 ≤ ξ ≤ 2}, ω(ξ) > 0 for 2−1 < ξ < 2
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and
∑

j∈Z ω(2−jξ) = 1 for ξ 6= 0. Denote ∆̂jf = ω(2−jξ)f̂(ξ). We have the
following definition

Definition 2.1 Let s ∈ R, 1 ≤ p, q ≤ ∞. The homogeneous Besov space is
defined as follows:

Ḃs
p,q(Rn) = {f ∈ S′(Rn)/P : {2js‖∆jf‖Lp}j∈Z ∈ lq(Z)}

where P is the space of polynomials in n variables.

It is well-known that Ḃs
2,2(Rn) = Ḣs

2(Rn), where Ḣs
p(Rn), with 1 ≤

p ≤ ∞, denote the homogeneous (generalized) Sobolev space defined as the
completion of S(Rn) with respect to the norm

‖f‖Ḣs
p(Rn) = ‖(|ξ|sf̂(ξ))∨‖Lp(Rn).

For further details concerning the Besov and (generalized) Sobolev spaces
we refer the reader to [1].

3 Preliminary results

To treat the integral equation (8), we need to obtain estimates for the
operators Bc(·) and Bs(·)∆. From the definition of these operator and the
well-known Strichartz inequalities for solutions of Schrödinger Equation we
can easily prove the following two lemmas

Lemma 3.1 Let (q, r) and (γ, ρ) admissible pairs and 0 < T ≤ ∞. Then

(i) ‖Bc(·)h‖LqTLr + ‖Bs(·)∆h‖LqTLr ≤ c‖h‖L2;

(ii) ‖BI(g)‖LqTLr ≤ c‖g‖Lγ′T Lρ′
,

where BI(g) ≡
∫ t

0 Bs(t− t
′)∆g(t′)dt′.

Proof Since the above estimates are valid for the Schrödinger group
(see [15] Chapter 4), using (5) and (6) the lemma follows.

�

Lemma 3.2 Let (q, r) and (γ, ρ) be admissible pairs. Then

(i) ‖BI(g)‖LqT Ḃsr,2 ≤ c‖g‖Lγ′T Ḃsρ′,2
;

(ii) ‖Bc(·)h‖LqT Ḃsr,2 + ‖Bs(·)∆h‖LqT Ḃsr,2 ≤ c‖h‖Ḣs.
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Proof It follows from Theorem 2.2 in [5] and definitions (5) and (6).
�

Remark 3.1 Lemma 3.2 is still valid if we replace Ḃs
q,2(Rn) by the homo-

geneous Sobolev spaces Ḣs
q (Rn) (see [5] page 814).

Another important result are the estimates for nonlinear term that ap-
pear in equation (7). For the next two results see Lemmas A1-A4 in [12]
and Lemma 2.3 in [9].

Lemma 3.3 Assume (f1)-(f2) and for 0 ≤ s ≤ k, define Ds = F−1|ξ|sF ,
then

(i) ‖Dsf(u)‖Lr ≤ c‖u‖k−1
L(k−1)r1

‖Dsu‖Lr2

where
1
r

=
1
r1

+
1
r2

, r1 ∈ (1,∞], r2 ∈ (1,∞);

(ii) ‖Ds(uv)‖Lr ≤ c (‖Dsu‖Lr1‖v‖Lq2 + ‖u‖Lq1‖Dsv‖Lr2 )

where
1
r

=
1
r1

+
1
q2

=
1
q1

+
1
r2

, ri ∈ (1,∞), qi ∈ (1,∞], i = 1, 2.

Lemma 3.4 Let k > 1, s ≥ 0, p ∈ [1,∞), s < min
{
n

p
, k

}
and

1
p
− s

n
≤ 1
k

.

Let α =
n

s+ k

(
n

p
− s
) . Then there exists c > 0 such that for all g ∈

Ḣs
p(Rn), we have

(i) ‖|g|k−1g‖Ḣs
α
≤ c‖g‖k

Ḣs
p
;

(ii) ‖|g|k‖Ḣs
α
≤ c‖g‖k

Ḣs
p
.

4 Local well-posedness

First, we present some numerical facts that will be important in the
proof of the local well-posedness result.

Lemma 4.1 Let k > 1, there is q ≥ 2 and an admissible pair (γ, ρ), such
that

1
ρ′

=
1
2

+
k − 1
q

.
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Proof In the case n ≥ 3, we have to satisfy the following system
1
ρ

=
1
2
− (k − 1)

q

2 ≤ ρ < 2n
n− 2

,

thus, it is enough to choose q > max{n(k − 1), 2}.

In the case n = 1, 2 it is sufficient to satisfy the following system
1
ρ

=
1
2
− (k − 1)

q
2 ≤ ρ <∞,

which is clearly satisfied for every q ≥ max{2(k − 1), 2}.
�

Now by (f3) we have
n

2
− 2
k − 1

≤ s ≤ n

2
, then it is always possible to

choose σ ≥ 0 satisfying (10).

Lemma 4.2 Assume (f3). Then, for all σ satisfying (10) there exist (p1, p2)
and (q1, q2) such that

(i) (p1, p2) is an admissible pair;

(ii) There exists an admissible pair (q1, β2) such that:

1
q2

=
1
β2
− σ

n
;

(iii) p1 < q1;

(iv) If
1
ri
≡ 1
pi

+
k − 1
qi

, i = 1, 2, then there exists s1 ≥ 1 such that (s1, r2)

is the dual of an admissible pair and

1
r1
<

1
s1
, if σ ∈

[
0,
n

2

)⋂ (
n

2
− 2
k − 1

, s

]
;

1
r1

=
1
s1
, if σ = s =

n

2
− 2
k − 1

≥ 0.

Proof To obtain the points p1, p2, q1, q2, β2, r1, r2 and s1, we need to
solve the system of equations corresponding to conditions (i) − (iv). We
consider several cases.
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(a) n ≥ 2;σ ∈
[
0,

n
2

)⋂ (n
2
− 2

k− 1
, s
]

Set

q1 =∞,
1
q2

=
1
2
− σ

n
;

1
p1

=
k − 1

4
n

(
1
2
− σ

n

)
,

1
p2

=
1
2
− k − 1

2

(
1
2
− σ

n

)
.

Then, for β2 = 2, it is easy to verify properties (i) − (iii). On the
other hand, according to (vi), (r1, r2) are given by
1
r1

=
k − 1

4
n

(
1
2
− σ

n

)
,

1
p2

=
1
2

+
k − 1

2

(
1
2
− σ

n

)
.

Setting
1
s1

= 1− k − 1
4

n

(
1
2
− σ

n

)
, we have that (s1, r2) is the dual of

(p1, p2) and
1
r1
<

1
s1

, if and only if σ >
n

2
− 2
k − 1

.

(b) n ≥ 3;σ = s =
n
2
− 2

k− 1
≥ 0

In this case we can easily verify properties (i)− (iv) for the points

q1 =∞, q2 =
n(k − 1)

2
;

p1 = 2,
1
p2

=
1
2
− 1
n

;

β2 = 2;

r1 = 2,
1
r2

=
1
2

+
1
n

.

Note that (r1, r2) is the dual of (p1, p2).

(c) n = 2;σ = s = 1− 2
k− 1

≥ 0

For n = 2 the pair (2,∞) is not admissible. So in this case we choose

q1 = q2 = 2(k − 1);

p1 = 3, p2 = 6;

r1 =
6
5

, r2 =
3
2

.

Now it is easy to verify that properties (i) − (iv) hold for
1
β2

=
1
2
−

1
2(k + 1)

. Note that k ≥ 3 and thus (iii) holds. Moreover, (r1, r2) is
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the dual of the admissible pair (6, 3).

(d) n = 1;σ ∈
[
0,

1
2

)⋂ (1
2
− 2

k− 1
, s
]

In this case we consider two possibilities.

If k > 3 set
1
q1

=
1
4

(
1
2
− σ

)
,

1
q2

=
1
2

(
1
2
− σ

)
If k ≤ 3 then there exists m ∈ N − {1, 2} such that 1 +

8
2m−1

≥ k >

1 +
8

2m
. Then, set

1
q1

=
1

2m

(
1
2
− σ

)
,

1
q2

=
(

1− 1
2m−1

)(
1
2
− σ

)
For (p1, p2) set, in both cases
1
p1

=
k − 1

8

(
1
2
− σ

)
,

1
p2

=
1
2
− k − 1

4

(
1
2
− σ

)
.

A simple calculation shows that (i)− (iv) hold for

1
β2

=


1
2

(
1
2
− σ

)
+ σ , k > 3,(

1− 1
2m−1

)(
1
2
− σ

)
+ σ , otherwise

and

1
s1

=


1− k − 1

8

(
1
2
− σ

)
, k > 3,

1− (k − 1)
(

1
2
− σ

)(
3
8
− 1

2m

)
, otherwise.

(e) n = 1;σ = s =
1
2
− 2

k− 1
≥ 0

Set

q1 =
4
3

(k − 1), q2 = 2(k − 1);

p1 = 5, p2 = 10.

Therefore

β2 =
1
2
− 3

2(k − 1)
, r1 =

20
19

and r2 =
5
3

.
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We have that (r1, r2) is the dual of the admissible pair (20,
5
2

). More-

over, (iii) is verified since k ≥ 5.

�
Now we have all tools to prove our first main result.

Proof of Theorem 1.1

We consider three cases.

Case (i) s >
n
2

Choose σ ∈
( n

2
, s
]

and define

Xs = {u ∈ L∞T Hs : ‖u‖L∞T Hσ ≤ N and ‖Dsu‖L∞T L2 ≤ K}.

Remark 4.1 Note that Xs with the L∞T L
2-metric is a complete metric

space.

By the Sobolev Embedding we have for all q ≥ 2 and γ =
n

2
− n

q
(note

that γ <
n

2
< σ)

‖u(t)‖Lq ≤ c‖Dγu(t)‖L2 ≤ c‖u(t)‖Hσ .

Then, we obtain
‖u‖L∞T Lq ≤ cN.

We need to show that N,K and T can be chosen so that the integral
operator

Φ(u)(t) = Bc(t)φ+Bs(t)∆ψ +
∫ t

0
Bs(t− t′)∆(f(u)− u)(t′)dt′ (12)

maps Xs into Xs and becomes a contraction map in the L∞T L
2-metric.

Since Dσ commute with Bc, Bs and BI (see (8)), we have

‖Φ(u)‖L∞T Hσ ≤ ‖Φ(u)‖L∞T L2 + ‖DσΦ(u)‖L∞T L2

≤ c
(
‖φ‖Hσ + ‖ψ‖Hσ + ‖BI(f(u)− u)‖L∞T L2+

+ ‖BI(Dσ(f(u)− u))‖L∞T L2

)
≤ c

(
‖φ‖Hσ + ‖ψ‖Hσ + ‖BI(u)‖L∞T L2 + ‖BI(Dσu)‖L∞T L2

+ ‖BI(f(u))‖L∞T L2 + ‖BI(Dσf(u))‖L∞T L2

)
.
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So using Lemma 3.1 (i), we have for all (γ, ρ) admissible pair

‖Φ(u)‖L∞T Hσ ≤ c
(
‖φ‖Hσ + ‖ψ‖Hσ + ‖u‖L1

TL
2 + ‖Dσu‖L1

TL
2

+ ‖f(u)‖
Lγ
′
T L

ρ′ + ‖Dσf(u)‖
Lγ
′
T L

ρ′

)
≤ c

(
‖φ‖Hσ + ‖ψ‖Hσ + T‖u‖L∞T Hσ

)
+

+cT 1/γ′
(
‖f(u)‖L∞T Lρ′ + ‖Dσf(u)‖L∞T Lρ′

)
.

Let q, γ and ρ be given by Lemma 4.1. Then, using (f2), Hölder’s

inequality (
1
ρ′

=
1
2

+
k − 1
q

) and Lemma 3.3 we obtain

‖Φ(u)‖L∞T Hσ ≤c
(
‖φ‖Hσ + ‖ψ‖Hσ + T‖u‖L∞T Hσ

)
+

+ cT 1/γ′
(
‖u‖L∞T L2‖u‖k−1

L∞T L
q + ‖Dσu‖L∞T L2‖u‖k−1

L∞T L
q

)
≤c
(
‖φ‖Hσ + ‖ψ‖Hσ + T‖u‖L∞T Hσ

)
+

+ cT 1/γ′
(
‖u‖L∞T Hσ‖u‖k−1

L∞T L
q

)
≤c (‖φ‖Hσ + ‖ψ‖Hσ) + cN

(
T + T 1/γ′Nk−1

)
.

(13)

By an analogous argument, we obtain

‖DsΦ(u)‖L∞T L2 ≤ c (‖Dsφ‖L2 + ‖Dsψ‖L2) + cK
(
T + T 1/γ′Nk−1

)
.

Since γ 6= 1, it is clear that we can choose N,K and T such that Φ maps
Xs into Xs.
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Now we have to prove that Φ is a contraction in the L∞T L
2-metric. In-

deed, using Lemma 3.3 (i) and Hölder’s inequality we have

‖Φ(u)− Φ(v)‖L∞T L2 ≤ ‖BI(f(u)− f(v))‖L∞T L2 + ‖BI(u− v)‖L∞T L2

≤ c
(
‖f(u)− f(v)‖

Lγ
′
T L

ρ′ + ‖u− v‖L1
TL

2

)
≤ c

(
T 1/γ′

∥∥∥∥∫ 1

0
f ′(λu+ (1− λ)v)(u− v)dλ

∥∥∥∥
L∞T L

ρ′
+

+T‖u− v‖L∞T L2

)
≤ c

(
T 1/γ′

∫ 1

0
‖f ′(λu+ (1− λ)v)‖

L∞T L
q

k−1
dλ

)
·‖u− v‖L∞T L2 + cT‖u− v‖L∞T L2

≤ c
(
T 1/γ′

(
‖u‖k−1

L∞T L
q + ‖v‖k−1

L∞T L
q

)
+ T

)
‖u− v‖L∞T L2

≤ c
(
T 1/γ′Nk−1 + T

)
‖u− v‖L∞T L2 .

Then Φ is a contraction in the L∞T L
2-metric for suitableN and T > 0 and

by standard arguments there a unique solution u ∈ C([0, T ];Hs(Rn)) ∩ Ys
to (7).

Remark 4.2 Note that, if Φ(u) = u ∈ Xs, then by the proof of (13), we
have

‖u‖LqTHs
r
≤ c (‖φ‖Hs + ‖ψ‖Hs)+c

(
T (N +K) + T 1/γ′Nk−1(N +K)

)
(14)

for all (q, r) admissible pair. Therefore u ∈ Ys.

Case (ii) s ≤ n
2
, σ ∈

[
0,

n
2

)
∩
(

n
2
− 2

k− 1
, s
]

Consider (p1, p2) and (q1, q2) given by Lemma 4.2 and define the following
complete metric space

Y s =

u ∈ (1−∆)−
s
2
(
L∞T L

2 ∩ Lp1

T L
p2
)

:

‖u‖L∞T L2 , ‖u‖Lp1T Lp2 ≤ L;
‖Dsu‖L∞T L2 , ‖Dsu‖Lp1T Lp2 ≤ K;
‖Dσu‖L∞T L2 , ‖Dσu‖Lp1T Lp2 ≤ N


d(u, v) = ‖u‖L∞T L2 + ‖u‖Lp1T Lp2 .
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By Sobolev embedding, we have

‖u‖Lq1T Lq2 ≤ c‖D
σu‖Lq1T Lβ2 ; where

1
β2

=
1
q2

+
σ

n
.

Recall that (q1, β2) is an admissible pair. Therefore, in view of (iii) in
Lemma 4.2, we can interpolate between L∞T L

2 and Lp1

T L
p2 and find 0 < α <

1 such that

‖u‖Lq1T Lq2 ≤ c‖D
σu‖1−α

L∞T L
2‖Dσu‖α

L
p1
T Lp2

≤ cN. (15)

Moreover, by (iv) in Lemma 4.2 together with (i) in Lemma 3.1 there
exists θ > 0 such that

‖Φ(u)‖LaTLb ≤ ‖Bc(t)φ‖LaTLb + ‖Bs(t)∆ψ‖LaTLb + ‖BI(f(u)− u)‖LaTLb

≤ c
(
‖φ‖L2 + ‖ψ‖L2 + ‖BI(f(u))‖LaTLb + ‖BI(u)‖LaTLb

)
≤ c

(
‖φ‖L2 + ‖ψ‖L2 + T θ‖f(u)‖Lr1T Lr2 + ‖u‖L1

TL
2

)
where (a, b) ∈ {(∞, 2), (p1, p2)}.

Now using (f2), the definition of (r1, r2) in Lemma 4.2 and Hölder’s
inequality, we obtain

‖Φ(u)‖LaTLb ≤c
(
‖φ‖L2 + ‖ψ‖L2 + T θ‖u‖Lp1T Lp2‖u‖

k−1
L
q1
T L

q2
+

+T‖u‖L∞T L2

)
≤c
(
‖φ‖L2 + ‖ψ‖L2 + T θNk−1L+ TL

)
.

(16)

Following the same arguments, using the estimates for fractional deriva-
tives (remember that p2 6=∞) and the fact that Ds and Dσ commute with
BI , Bc and Bs∆, we have

‖DsΦ(u)‖LaTLb ≤ c
(
‖Dsφ‖L2 + ‖Dsψ‖L2 + T θNk−1K + TK

)
(17)

and

‖DσΦ(u)‖LaTLb ≤ c
(
‖Dσφ‖L2 + ‖Dσψ‖L2 + T θNk−1N + TN

)
. (18)
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On the other hand, from an argument analogous to the one used in case
(i), we have for (a, b) ∈ {(∞, 2), (p1, p2)}

‖Φ(u)− Φ(v)‖LaTLb ≤ ‖BI(f(u)− f(v))‖LaTLb + ‖BI(u− v)‖LaTLb

≤ c
(
T θ‖f(u)− f(v)‖Lr1T Lr2 + ‖u− v‖L1

TL
2

)
≤ c

(
T θ
∥∥∥∥∫ 1

0
f ′(λu+ (1− λ)v)(u− v)dλ

∥∥∥∥
L
r1
T L

r2

+

+T‖u− v‖L∞T L2

)
≤ cT θ

(
‖u‖k−1

L
q1
T L

q2
+ ‖v‖k−1

L
q1
T L

q2

)
‖u− v‖Lp1T Lp2 +

+cT‖u− v‖L∞T L2

≤ c
(
T θNk−1 + T

)
d(u, v).

The proof follows by choosing suitable L,N,K and T .

Case (iii) s ≤ n
2
, σ =

n
2
− 2

k− 1

Let τ < 1 and (p1, p2), (p1, p2) be given by Lemma 4.2. Define the
following complete metric space

Y s
τ =

u ∈ (L∞T Hs ∩ Lp1

T H
s
p2

)
:

‖u‖L∞T L2 , ‖u‖Lp1T Lp2 ≤ L;
‖Dsu‖L∞T L2 , ‖Dsu‖Lp1T Lp2 ≤ K;
‖Dσu‖L∞T L2≤N ; ‖Dσu‖Lp1T Lp2 ≤τN <N


d(u, v) = ‖u‖L∞T L2 + ‖u‖Lp1T Lp2 .

Then, following the same arguments of (15), there exists 0 < α < 1, such
that

‖u‖Lq1T Lq2 ≤ c‖D
σu‖1−α

L∞T L
2‖Dσu‖α

L
p1
T Lp2

≤ cταN.

As in the inequalities (16) and (17), we have for (a, b) ∈ {(∞, 2), (p1, p2)}

‖Φ(u)‖LaTLb ≤ c
(
‖φ‖L2 + ‖ψ‖L2 + (ταN)k−1L+ TL

)
, (19)

and

‖DsΦ(u)‖LaTLb ≤ c
(
‖Dsφ‖L2 + ‖Dsψ‖L2 + (ταN)k−1K + TK

)
. (20)
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On the other hand, the inequality (18) should be replaced by the follow-
ing two estimates

‖DσΦ(u)‖L∞T L2 ≤ c
(
‖Dσφ‖L2 + ‖Dσψ‖L2 + τ1+α(k−1)Nk + TN

)
(21)

and

‖DσΦ(u)‖Lp1T Lp2 ≤c
(
‖Bc(·)Dσφ‖Lp1T Lp2 + ‖Bs∆(·)Dσψ‖Lp1T Lp2

)
+ c

(
τ1+α(k−1)Nk + TN

)
.

(22)

Taking T small the terms ‖Bc(·)Dσφ‖Lp1T Lp2 and ‖Bs∆(·)Dσψ‖Lp1T Lp2

can be made small enough (note that p1 6= ∞ ). So it is clear that the
operator Φ maps Y s

τ into Y s
τ (choosing suitable L,N,K, T, τ). The reminder

of the proof follows from a similar argument as the one previously used and
it will be omitted.

Finally, we remark that once we established that Φ is a contraction in
appropriate spaces the proof of continuous dependence is straightforward.

�
Proof of Theorem 1.2

(i) By (13) we have to choose N,T such that

c0 (max{‖φ‖Hσ , ‖ψ‖Hσ}) + c0N
(
T + T 1/γ′Nk−1

)
≤ N. (23)

Setting N = 2c0 (max{‖φ‖Hσ , ‖ψ‖Hσ}) this inequality becomes

T + T 1/γ′ (2c0 max{‖φ‖Hσ , ‖ψ‖Hσ})k−1 ≤ 1/2c0.

This inequality is clearly satisfied for

T =
1

4c0
min

{
1, 2 (max{‖φ‖Hσ , ‖ψ‖Hσ})γ

′(1−k)
}
.

Now setting c = 1/4c0 and θ = 1/γ′ we have

T ∗ ≥ c
(

min
{

1, 2 (max {‖φ‖Hσ , ‖ψ‖Hσ})
1−k
θ

})
.

Note that (9) does not follow direct from the inequality above. To
prove (9) we will use an iterative argument. Set T = T̄ = 1/2c0.
Thus, inequality (23) becomes

c0 (max{‖φ‖Hσ , ‖ψ‖Hσ}) + c1N
k−1 ≤ N/2 (24)
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for some c1 > 0.

It is clear that (24) has a solution N if max{‖φ‖Hσ , ‖ψ‖Hσ} is suffi-
ciently small. In fact, we have more than that. An application of the
implicit function theorem tell us that there are δ̄ > 0 and λ > 1 such
that if max{‖φ‖Hσ , ‖ψ‖Hσ} ≤ δ ≤ δ̄ then N ≤ λδ, where N is the
solution of (24).

It follows that if max{‖φ‖Hσ , ‖ψ‖Hσ} ≤ λ−nδ̄ then we can find N1 ≤
λ−n+1δ̄ such that the solution exists in the interval [0, T̄ ]. Moreover
by construction

‖u(T̄ )‖Hσ ≤ N1 ≤ λ−n+1δ̄.

We want to repeat this argument. Therefore, we first need to control
the growth of ‖∆−1ut(t)‖Hσ . Since u(t) is given by (8) we have that

∆−1ut(t) = Bs(t)∆φ−Bc(t)ψ −
∫ t

0
Bc(t− t′)(f(u)− u)(t′)dt′.

Thus, applying the same argument used to prove (13), we obtain

‖∆−1ut(T̄ )‖Hσ ≤ ‖∆−1ut(T̄ )‖L∞
T̄
Hσ

≤ c0 (max{‖φ‖Hσ , ‖ψ‖Hσ}) +N/2 + c1N
k−1.

Since N1 is the solution of (24) we also have

‖∆−1ut(T̄ )‖Hσ ≤ N1 ≤ λ−n+1δ̄.

Now, solving equation (7) with initial data u(T̄ ) and ∆−1ut(T̄ ), we
can find N2 ≤ λ−n+2δ̄ such that the solution exists in the interval
[T̄ , 2T̄ ]. Moreover,

max
{
‖u(2T̄ )‖Hσ , ‖∆−1ut(2T̄ )‖Hσ

}
≤ λ−n+2δ̄.

Repeating this process we can find Ni, i = 1, . . . , n, such that the
solution exists on the intervals [0, T̄ ], . . . , [(n− 1)T̄ , nT̄ ], so that T ∗ ≥
T̄ . Thus T ∗ is arbitrarily large if max{‖φ‖Hσ , ‖ψ‖Hσ} is sufficiently
small.

(iia) The proof is essentially the same as (i) using inequality (18) instead
of (13).
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(iib) In view of (21) and (22), we have to choose N,T, τ such that

c
(

max{‖Dσφ‖L2 , ‖Dσψ‖L2}+ τ1+α(k−1)Nk + TN
)
≤ N

and

c
(

max{B1, B2}+ τ1+α(k−1)Nk + TN
)
≤ τN.

where B1 ≡ ‖Bc(·)Dσφ‖Lp1T Lp2 and B2 ≡ ‖Bs∆(·)Dσψ‖Lp1T Lp2 .

But the sizes of B1 and B2 depend on T and Dσφ, Dσψ (but not
necessarily on their norms). That is why T ∗ cannot be estimated only
in terms of ‖Dσφ‖L2 and ‖Dσψ‖L2 .

�
Proof of Theorem 1.3 We use an argument first used by [21] (see

also [5] page 826).

(a) Let T ∗ given by Theorem 1.2 and t < T ∗. If we consider u(t) and
∆−1ut(t) as the initial data, the solution cannot be extended to a time
≥ T ∗. Setting D(t) = max{‖u(t)‖Hσ , ‖∆−1ut(t)‖Hσ}, it follows from
(13) and the fixed point argument that if for some N > 0,

cD(t) + cN
(

(T − t) + (T − t)1/γ′Nk−1
)
≤ N

then T < T ∗.

Thus for all N > 0, we have

cD(t) + cN
(

(T ∗ − t) + (T ∗ − t)1/γ′Nk−1
)
≥ N.

Now, choosing N = 2cD(t) and letting t → T ∗ we have the blow up
result.

(b) The proof is similar to part (a).

�

5 Unconditional well-posedness

The aim of this section is to prove Theorems 1.4 and 1.5. We start with
the following uniqueness result.
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Lemma 5.1 Let (p1, p2) and (q1, q2) such that

(i) (p1, p2) is an admissible pair;

(ii) There exists δ ∈ [0, 1] such that

1
p1
≥ 1− δ

q1
and

1
p2

=
1− δ
q2

+
δ

2
;

(iii) If
1
ri
≡ 1
pi

+
k − 1
qi

, i = 1, 2, then there exists s1 ≥ 1 such that (s1, r2)

is the dual of an admissible pair and s1 ≤ r1.

Then uniqueness holds in X ≡ L∞T L2 ∩ Lq1T Lq2.

Proof The proof follows the same ideas of Lemma 3.1 in [12].
Using Hölder’s inequality and interpolation we have, in view of (ii), that

X ⊂ Lp1

T L
p2 .

Returning to the uniqueness question, suppose there are two fixed points
u, v ∈ X of the integral equation (12). Then w ≡ u− v may be written as

w = BI(f(u)− f(v))−BI(u− v).

But for (a, b) ∈ {(∞, 2), (p1, p2)}, we have by Lemma 3.1 (ii) that

‖BI(u− v)‖LaTLb ≤ c‖u− v‖L1
TL

2 (25)

≤ cT‖u− v‖L∞T L2 . (26)

It remains to estimate the term BI(f(u) − f(v)). Suppose first that
s1 < r1. In this case, using (iii), Lemma 3.1 (ii), the Mean Value Theorem
and Hölder’s inequality, we obtain for θ ≡ 1

s1
− 1

r1
> 0

‖BI(f(u)− f(v))‖LaTLb ≤ c‖f(u)− f(v)‖Ls1T Lr2
≤ cT θ‖f(u)− f(v)‖Lr1T Lr2

≤ cT θ‖
(
|u|k−1 + |v|k−1

)
(u− v)‖Lr1T Lr2

≤ cT θ
(
‖u‖k−1

L
q1
T L

q2
+ ‖u‖k−1

L
q1
T L

q2

)
‖u− v‖Lp1T Lp2 .

When s1 = r1 we have θ = 0 in the above inequality. To overcome this
difficulty we use an argument introduced by Cazenave (see [4] Proposition
4.2.5.). Define

fN = 1{|u|+|v|>N}(f(u)− f(v)),
fN = 1{|u|+|v|≤N}(f(u)− f(v)).
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Therefore by Lemma 3.1 (ii) we have for (a, b) ∈ {(∞, 2), (p1, p2)} that

‖BIfN‖LaTLb ≤ cNk−1‖u− v‖L1
TL

2

≤ cNk−1T‖u− v‖L∞T L2 .

On the other hand, using (iii), Lemma 3.1 (ii), the Mean Value Theorem
and Hölder’s inequality, we obtain

‖BIfN‖LaTLb ≤ c
(∥∥1{|u|+|v|>N}(|u|+ |v|)

∥∥
L
q1
T L

q2

)k−1
‖u− v‖Lp1T Lp2 .

Since |u|+ |v| ∈ Lq1T Lq2 , it follows by dominated convergence that∥∥1{|u|+|v|>N}(|u|+ |v|)
∥∥
L
q1
T L

q2
→ 0, when N →∞.

By choosing N large enough, we can find c̄ > 0 such that

‖u− v‖Lp1T Lp2 + ‖u− v‖L∞T L2 ≤ c̄TNk−1‖u− v‖L∞T L2 .

Set d(w) = ‖w‖Lp1T Lp2 + ‖w‖L∞T L2 . Therefore, in both cases we can find
a function H(T ) such that H(T )→ 0 when T → 0 and

d(w) ≤ H(T )d(w).

Taking T0 > 0 small enough such that H(T0) < 1, we conclude that d(w)
must be zero in [0, T0]. Now, since the argument does not depend on the
initial data, we can reapply this process a finite number of times to extend
the uniqueness result to the whole existence interval [0, T ].

�
By Sobolev embedding, we know that for s ≥ 0

C([0, T ];Hs) ⊂ L∞T (L2 ∩ Lq), for some q > 2.

Therefore, in view of Lemma 5.1, the unconditional well-posed problem
can be reduced to find pairs (p1, p2) and (q1, q2) satisfying the hypotheses
(i), (ii) and (iii). We remark that is at this point that the restrictions on k
and s appear (see Theorem 1.4). In the next lemma, we treat this geometric
problem.

Lemma 5.2 We have three cases:

(i) If n = 1, uniqueness holds in L∞T (L2 ∩ Lq) for all

q ≥ max{k, 2};
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(ii) If n = 2, uniqueness holds in L∞T (L2 ∩ Lq) for all

1
q
<

1
k

and
1
q
≤ min

{
1
2
,

1
k − 1

}
;

(iii) If n ≥ 3, uniqueness holds in L∞T (L2 ∩ Lq) for all

1
q
≤ min

{(
1
2

+
1
n

)
1
k
,

1
2
,

2
n(k − 1)

}
.

Proof Affirmations (i) and (ii) follow from Corollary 2.2 (see also
Theorem 2.1) in [12]. On the other hand, the proof of (iii) is a little bit
different from Kato’s proof since we have one more admissible pair, namely(

2,
2n
n− 2

)
. So we will give a detailed proof of this item. We consider

several cases separately

(a) 1 < k ≤ 1 +
2
n

Set (p1, p2) = (q1, q2) = (∞, 2). It is easy to see that there exists s1 ≥ 1
satisfying (i) − (iii) of Lemma 5.1 (with δ = 0). Then uniqueness
holds in L∞T L

2 and therefore in L∞T L
2 ∩ Lq1T Lq2 fol all (q1, q2). Note

that if k = 1 +
2
n

, we have that (r1, r2) must be given by r1 = ∞

and
1
r2

=
1
2

+
1
n

. Therefore, (2, r2) is the dual of the admissible pair(
2,

2n
n− 2

)
.

(b) 1 +
2
n
< k < 1 +

4
n− 2

Let bk ≡
(

1
2

+
1
n

)
1
k

. By the restriction on k we have
1
2
− 1
n
< bk <

1
2

.

Therefore there exists an admissible pair (αk, βk) such that βk =
1
bk

.

Let (∞, q) such that
1
q
≤ bk. By interpolation we obtain

L∞T L
2 ∩ L∞T Lq ⊆ L∞T L2 ∩ L∞T Lβk .

If uniqueness holds on L∞T L
2 ∩ L∞T Lβk , then it holds, a fortiori, in

L∞T L
2 ∩ L∞T Lq. Therefore, we just need to verify that (p1, p2) =
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(αk, βk), (q1, q2) = (∞, βk) satisfy the hypotheses of Lemma 5.1. In-
deed, in this case (i) − (ii) can be easily verified (for δ = 0). On the

other hand, (r1, r2) must be given by
1
r1

=
1
αk

and
1
r2

=
k

βk
.

Thus, (s1, r2), with s1 = 2 is the dual of the admissible pair
(

2,
2n
n− 2

)
.

Moreover

s1 < r1 ⇐⇒
1
2
>
n

2

(
1
2
− 1
βk

)
⇐⇒ k < 1 +

4
n− 2

.

(c) k ≥ 1 +
4

n− 2
In this case

2
n(k − 1)

≤ 1
2
− 1
n
<

1
2
. (27)

Let (∞, q) such that
1
q
≤ 2
n(k − 1)

. By the same argument used in

item (b) it is sufficient to prove that uniqueness holds in L∞T L
2∩L∞T Lq̃,

where
1
q̃

=
2

n(k − 1)
. Therefore, we need to verify that (p1, p2) =

(2,
2n
n− 2

) and (q1, q2) = (∞, q̃) satisfy the hypotheses of Lemma 5.1.

It is clear that (i) holds. On the other hand, in view of (27) we can
find δ ∈ [0, 1] such that (ii) holds. Now, we turn to property (iii).

The pair (r1, r2) must be given by r1 = 2 and
1
r2

=
1
2

+
1
n

, which is

the dual of the admissible pair
(

2,
2n
n− 2

)
.

�
Now we can prove our first uniqueness result.

Proof of Theorem 1.4 This is an immediate consequence of the last
lemma. Using Sobolev embedding and decreasing T if necessary we have

C([0, T ];Hs) ⊂ L∞T (L2 ∩ Lq̄)

where

q̄ =


2n/(n− 2s) if s < n/2;
any q̄ <∞ if s = n/2;
∞ if s > n/2.
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So we have only to verify that uniqueness holds in L∞T (L2 ∩ Lq̄), but
Lemma 5.2 tell us when it happens.

�
Now, we turn to the proof of Theorem 1.5. First of all, define H(u, v)

by

H(u, v) ≡
∫ 1

0
|λu+ (1− λ)v|k−1dλ. (28)

We will need some preliminary lemmas. The following result can be
found in [9] Lemma 3.8.

Lemma 5.3 Let n ≥ 3, 0 < s < 1, k > 2 and k ≤ 1 +
2n− 2s
n− 2s

. Let

h ∈ Ḣs
τ (Rn) with τ =

n

s+ (k − 1)
(n

2
− s
) . If k also verifies the following

conditions:

(i) k > 1 +
2s

n− 2s
;

(ii) k < 1 + min
{

4s+ 2
n− 2s

,
4

n− 2s
,
n+ 2s
n− 2s

}
;

(iii) k ≤ 1 +
n+ 2− 2s
n− 2s

.

Then there exist σ, p verifying σ − n

p
= s− n

2
and

(1) s− 1 ≤ σ ≤ s;

(2) −s < σ < 0;

(3) s− (k − 1)
(n

2
− s
)
≤ σ ≤ min

{
s+ 1,

n

2

}
− (k − 1)

(n
2
− s
)

.

Such that if g ∈ Ḃσ
p,2(Rn), then gh ∈ Ḃσ

r′,2(Rn) with

‖gh‖Ḃσ
r′,2
≤ c‖g‖Ḃσp,2‖h‖Ḣs

τ

where
1
r′

=
1
p

+
(k − 1)

(n
2
− s
)

n
and

2n
n+ 2

≤ r′ ≤ 2.

To estimate (28) we use the following lemma.
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Lemma 5.4 Let n ≥ 3, k > 2, 0 ≤ s < n

2
and s < k− 1. Suppose also that

(k − 1)
(

1
2
− s

n

)
≤ 1 and define τ =

n

s+ (k − 1)(
n

2
− s)

. If u, v ∈ L∞T Ḣs,

then H(u, v) ∈ L∞T Ḣs
τ . Moreover, τ ≥ 1 if and only if k ≤ 1 +

2n− 2s
n− 2s

.

Proof By definition of H(u, v), we have

‖H(u, v)‖Ḣs
τ

=
∫ 1

0
‖|λu+ (1− λ)v)|k−1‖Ḣs

τ
≤ c

(
‖|u|k−1‖Ḣs

τ
+ ‖|v|k−1‖Ḣs

τ

)
and using Lemma 3.4 (ii) we have the desire estimate.

�
Furthermore, we have the following embedding lemma which proof can

be found in [18].

Lemma 5.5 Ḣs ↪→ Ḃσ
p,2 for all σ ≤ s and σ − n

p
= s− n

2
. Moreover, there

exists γ ≥ 1 such that (γ, p) is an admissible pair if and only if s−1 ≤ σ ≤ s.

Now, we can proof our last uniqueness result.

Proof of Theorem 1.5 First, we recall that Ḃσ
2,2 = Ḣσ, Hs ⊆ Ḣσ

for all σ, s ∈ R and σ ≤ s. Then, using Lemma 5.5, we conclude that
(u − v) ∈ L∞T Ḃσ

p,2 ∩ L∞T Ḃσ
2,2, where σ and p satisfy conditions (1) − (3) of

Lemma 5.3. Moreover, in view of Lemma 5.5 and condition (1) of Lemma
5.3, there exists γ ≥ 1 such that (γ, p) is an admissible pair.

Thus, by Lemma 3.2 (i), we have for (a, b) ∈ {(∞, 2), (γ, p)}

‖u− v‖LaT Ḃσb,2 ≤ ‖BI(f(u)− f(v))‖LaT Ḃσb,2 + ‖BI(u− v)‖LaT Ḃσb,2
≤ c‖f(u)− f(v)‖

Lq
′
T Ḃ

σ
r′,2

+ c‖u− v‖L1
T Ḃ

σ
2,2

≤ c‖(u− v)H(u, v)‖
Lq
′
T Ḃ

σ
r′,2

+ cT‖u− v‖L∞T Ḃσ2,2

where
1
r′

=
1
p

+
(k − 1)

(n
2
− s
)

n
and

2n
n+ 2

≤ r′ ≤ 2. Recall that this last

condition implies that (q′, r′) is the dual of an admissible pair.

Then by Lemma 5.3, we obtain:

‖u− v‖LaT Ḃσb,2 ≤ c‖‖u− v‖Ḃσp,2‖H(u, v)‖Ḣs
τ
‖
Lq
′
T

+ cT‖u− v‖L∞T Ḃσ2,2 .
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But
1
q′
− 1
γ

= 1− (k − 1)
2

(n
2
− s
)
≡ θ > 0 since k < 1 +

4
n− 2s

. Thus

‖u− v‖LaT Ḃσb,2 ≤ cT
θ‖u− v‖LγT Ḃσp,2‖H(u, v)‖L∞T Ḣs

τ
+ cT‖u− v‖L∞T Ḃσ2,2 .

Set ω(u, v) ≡ ‖u− v‖L∞T Ḃσ2,2 + ‖u− v‖LγT Ḃσp,2 , therefore we conclude that

ω(u, v) ≤ c
(
T θ‖H(u, v)‖L∞T Ḣs

τ
+ T

)
ω(u, v).

Hence, for T0 > 0 small enough, u(t) = v(t) on [0, T0] and to recover the
whole interval we apply the same argument as the one used in the proof of
Lemma 5.1.
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