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Abstract. If two fluids are available to displace oil from a virgin reservoir, what is the
injection strategy that maximizes recovery? This question is considered here. Suppose that
the densities of the oil in the reservoir and the two injected fluids are similar, so that gravity
segregation can be neglected; and suppose that the injected fluids and the oil form three
immiscible phases with no mass interchanges. What is the mixing proportion for injected
fluid slugs that optimizes the oil recovery?

We derive formulae for the optimal injection proportion and oil recovery for Corey-type
quadratic permeabilities. The optimal quantities are essentially determined by the vis-
cosities of the three phases. The formulae are based on a recently-developed method-of-
characteristics theory for immiscible three-phase flow. We present numerical simulations to
illustrate this theory and the dependence of the saturation profiles and production histories
on the injection proportion. We also show simulations that demonstrate how alternating
injection of pure fluids in this proportion yields the same oil recovery.

1. Introduction

As is well known, the efficiency of oil recovery can be increased by injecting a mixture
of two fluid phases instead of a single pure phase. Determining the mixing proportion that
optimizes oil recovery requires finding solutions for the three-phase flow generalization of
Buckley-Leverett’s two-phase injection problem. The main result of this paper is a formula
for this optimal proportion.

We consider the injection of a mixture of two fluids into a thin cylinder of porous rock that
is initially saturated with pure oil. For concreteness, we call the injected fluids water and
gas, although they could be any two fluids that are immiscible with oil and each other. For
simplicity, we assume that the three phases are incompressible, that gravitational segregation
and capillarity effects are negligible, and that there is no mass transfer among the phases. The
mobility of each phase is assumed to be proportional to the square of its own saturation and
inversely proportional to the phase viscosity. (This particular Corey permeability model is
conducive to analysis and generalizes the well known examples of Buckley and Leverett [4, 6].)
The mathematical model consists of two conservation laws representing Darcy’s law combined
with mass conservation for two of the phases. As we do not make any prior assumption about
the phase viscosities, the flow problem depends on two dimensionless parameters, such as
two of the viscosity ratios.
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We find analytical solutions for such flow problems. There are two generic types of flows,
which are separated by a critical flow. In the critical flow, for which the injection proportion
is the water/gas viscosity ratio, the water/gas proportion remains constant in space and time.
In one of the generic flows, the water/gas proportion is higher than the critical proportion;
we say that such a flow is water-dominated. The other generic flow is gas-dominated, meaning
that the water/gas proportion is lower than critical.

In all injection flows, there is a faster shock wave across which the oil saturation decreases
discontinuously. Generically, a two-phase water/oil or gas/oil mixture is left behind, depend-
ing on whether the flow is water- or gas-dominated. Trailing the fast shock wave, there is, in
general, a slower shock wave and a smooth profile reaching back to the injection state, which
is similar to the Buckley-Leverett profile for two-phase flow. Breakthrough of the injected
fluid occurs when the faster shock wave arrives at the production point.

If fluid is injected at the critical proportion, the two shock waves coalesce and the whole
profile resembles the Buckley-Leverett profile. The maximal recovery up to breakthrough is
attained when fluid is injected precisely at the critical proportion. When the two injected
fluids have comparable viscosities, the gain in recovery over injection of a pure fluid is
substantial.

In practice, it is difficult to inject two immiscible fluids simultaneously at a specified
mixture proportion. Instead, one can inject them alternately in the appropriate proportions.
(This injection strategy is called WAG, for water-alternating-gas.) Because of fluid mixing
within the porous rock, the critical proportion is attained sufficiently far downstream of
the injection point (see, e.g., Ref. [9]). We present numerical simulations of this recovery
strategy that demonstrate how maximal recovery can indeed be attained using WAG.

The overall picture is essentially unchanged in a class of models more general than the
Corey quadratic permeability model. This qualitative stability is justified in a companion
paper, where numerical simulations, rather than explicit formulae, determine the solution
profiles.

A Corey-type model loses strict hyperbolicity at an umbilic point. Models without umbilic
points have been considered for three-phase flow; see Ref. [8]. They yield simple solutions
for the injection problem. However, they are unrealistic because immiscibility of the three
phases necessitates loss of strict hyperbolicity [13, 2, 10], i.e., either umbilic points or elliptic
regions are present. Models with umbilic points have complicated solutions, but are still
well behaved mathematically; see Ref. [9] for a review of their properties. In this paper, we
confront the extra complication entailed by the important physical property of immiscibility.

This paper is organized as follows. In Sec. 2, we describe our model, establish notation
and recall relevant definitions. In Sec. 3, we show that, whatever the injected mixture is,
the displacing fluid is separated from the in situ oil by a saturation discontinuity, which we
call the lead shock wave. Two types of lead shock waves occur in generic flows: one in which
the trailing fluid is a two-phase water/oil mixture, and the other in which it is a two-phase
gas/oil mixture. Besides these two types of lead shock waves, there is a critical shock type,
for which the displacing fluid is a critical mixture of oil, water and gas.

In Sec. 4, we study flows involving a critical shock wave. The solution profile consists of a
rarefaction wave trailing the lead shock wave, just as in a two-phase Buckley-Leverett profile.
Perturbing from a critical flow shows that a critical shock wave results from the coalescence
of a slow-family shock wave with a fast-family shock wave. As such, a critical shock wave
displaces more oil than either of these two shock waves individually; in fact, it optimizes
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recovery up to the breakthrough time. We provide explicit formulae for the critical injection
proportion, oil recovery, and breakthrough time.

In Sec. 5, we present evidence that the general solutions in our model have the same
type (water- or gas-dominated) as the injection mixture. (We describe in detail only water-
dominated flows, as gas-dominated flows are analogous.) The main feature of these flows is
the occurrence of both a fast-family shock wave and a slow-family shock wave. In Sec. 6,
we show results from numerical simulations of WAG recovery that demonstrate how this
strategy can achieve maximal oil recovery.

In Sec. 7, we discuss a three-phase flow model that does not exhibit the bifurcation into
water- and gas-dominated types. We argue that the bifurcation is absent from this model
because it is strictly hyperbolic, which in turn is caused by a permeability model such that
one phase becomes miscible at low saturation. We also summarize our results and explain
how they generalize when the permeabilities do not have the simple quadratic form.

2. Mathematical Model

Consider the flow of a mixture of three fluid phases (which, for concreteness, are called
water, oil and gas) in a thin, horizontal cylinder of porous rock. Let sw(x, t), sg(x, t) and
so(x, t) denote the respective saturations at distance x along the cylinder, at time t. Because
sw+sg+so = 1 and 0 ≤ sw, so, sg ≤ 1, we depict the space of states of the fluid mixture as the
saturation triangle; see Fig. 1. In our analysis, we choose sw and sg as the two independent
coordinates.
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Figure 1. Left: saturation triangle. Solution paths from injection states B,
I1, I, and I2 to O. The solid curves to B∗, T1, T , and T2 represent slow-family
rarefaction waves. The pairs (T1, T

W
1 ), (T,W∗), and (T2, T
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2 ) define slow-

family shock waves. The path (TW
2 ,W∗) represents a fast-family rarefaction

wave; the pairs from W∗ and TW
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explained in Sec. 4. Right: Welge’s construction of the states G∗, W∗, and B∗

for the oil fractional flow function on the invariant edges and line.
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We intend to understand flows relevant to enhanced oil recovery, as applied to a reservoir
that has never undergone production. Therefore we assume that the porous rock cylinder
initially contains pure oil, and imagine injecting a specific mixture of the so-called water and
gas into the left end of the cylinder. Later, in Sec. 6, we consider alternating injection of
water and gas (WAG).

2.1. Conservation laws. Three-phase flow is governed by the non-dimensionalized system

∂sw

∂t
+

∂fw(sw, sg)

∂x
= 0, (2.1)

∂sg

∂t
+

∂fg(sw, sg)

∂x
= 0 (2.2)

representing conservation of water and gas. The fractional flow functions fw(sw, sg) and
fg(sw, sg) are determined by the relative permeabilities of the three phases.

Although each fluid phase becomes immobile below an irreducible saturation, a model
of three-phase flow can be remapped so that the irreducible saturations are zero; see, e.g.,
Ref. [8]. Therefore we assume that the relative permeabilities are strictly positive within the
saturation triangle. (In other words, sw, sg, and so are reduced saturations.)

In this paper, we specialize to the Corey model for the permeabilities. With this choice,
we can highlight the phenomena of interest while avoiding complicated analysis. (We expect
that solutions for more realistic models are qualitatively similar to those of Corey models.)
Explicitly, the fractional flow functions we adopt are

fw(sw, sg) :=
s2
w/µw

λ(sw, sg)
and fg(sw, sg) :=

s2
g/µg

λ(sw, sg)
. (2.3)

Here the constants µw, µg, and µo are the water, gas, and oil phase viscosities, respectively,
and

λ(sw, sg) := s2
w/µw + s2

g/µg + s2
o/µo, where so = 1 − sw − sg, (2.4)

is the total mobility.

2.2. Basic solutions. Equations (2.1)–(2.2) have solutions that propagate as waves. The
propagation speeds of continuous waves are the two eigenvalues of the Jacobian derivative
matrix

J(sw, sg) :=
∂ (fw, fg)

∂ (sw, sg)
, (2.5)

provided that these eigenvalues are real, in which case the smaller is called the slow charac-
teristic speed λ s(sw, sg) and the larger is called the fast-family characteristic speed λ f(sw, sg).
For the Corey model, both eigenvalues are real and nonnegative for each state in the satu-
ration triangle.

The Corey model does, however, have the peculiarity that, for a unique state in the interior
of the saturation triangle (labeled U in Fig. 1), the two characteristic speeds coincide. Such a
state is called an umbilic point. The state U is determined by the viscosity of the fluid phases:
sw(U) = µw/µtot, sg(U) = µg/µtot, and so(U) = µo/µtot, where µtot = µw + µg + µo. We
shall see that the line through O and U plays a central role in the construction of solutions.

System (2.1)–(2.2) has continuous solutions called slow-family rarefaction waves. For such
a solution, λ s(sw, sg) = x/t and, as x varies for while t > 0 remains fixed, (sw, sg) follows a
rarefaction curve in the saturation triangle. Similarly there are fast-family rarefaction waves.
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This system also admits solutions that have jump discontinuities. For such a discontinuity,
the state a just ahead of it (i.e., downstream), the state b just behind it, and its propagation
speed σ are constrained by the Rankine-Hugoniot (RH) condition

−σ
(

sa
w − sb

w

)

+ fw(sa
w, sa

g) − fw(sb
w, sb

g) = 0, (2.6)

−σ
(

sa
g − sb

g

)

+ fg(s
a
w, sa

g) − fg(s
b
w, sb

g) = 0. (2.7)

If, in addition, a jump discontinuity obeys a physical admissibility criterion, then it is called a
shock wave. Admissibility for two-phase flow (i.e., for a scalar conservation law) is discussed
in Sec. 2.4. Admissibility for systems of conservation laws such as system (2.1)–(2.2) is
discussed in Ref. [1].

Notice that if the RH condition between states a and b holds with a certain speed σ,
and it also holds for the same speed between states b and c, it is easy to see that the RH
condition is satisfied between states a and c with the same speed. This is the essence of the
triple-shock rule [7].

2.3. Two-phase flow. In the simplest experiment, pure water (state W , with sw(W ) = 1)
is injected into the cylinder, which is saturated with oil (state O, with so(O) = 1). The
result is two-phase flow involving only states that lie along the water/oil edge W -O of the
saturation triangle in Fig. 1. For the purpose of establishing useful notation, we review this
kind of flow.

If sg = 0 initially, then because fg(sw, 0) = 0, Eq. (2.2) implies that sg remains zero.
In other words, the water/oil edge of the saturation triangle is invariant. By substituting
sg = 0 into Eq. (2.1), the first of Eqs. (2.3), and Eq. (2.4) one obtains the equation for sw

on this edge. For generality of notation, let us omit the subscript “w”; then s represents the
saturation of the injected fluid, which has phase viscosity µ, and so = 1− s. Thus we obtain
the following single conservation law governing two-phase flow:

∂s

∂t
+

∂f(s; ν)

∂x
= 0, (2.8)

where

f(s; ν) :=
s2

s2 + ν(1 − s)2
(2.9)

and the constant ν := µ/µo is the phase viscosity ratio. For states on the water/oil
edge, the slow-family characteristic speed is zero, and the fast-family characteristic speed is
df(s; ν)/ds. Moreover, one of the equations in the RH condition is satisfied trivially and the
other reduces to

−σ
(

sa − sb
)

+ f(sa; ν) − f(sb; ν) = 0. (2.10)

For example, the foregoing equations hold with s := sw and ν := µw/µo. Likewise, because
the gas/oil edge G -O is invariant for a similar reason, these equations hold with s := sg and
ν := µg/µo.

2.4. Buckley-Leverett solution. The flow that results when pure fluid (s = 1, meaning
either water or gas) is injected into the cylinder is the classical Buckley-Leverett solution.
In this solution, a lead shock wave is followed by a continuous wave, with the shock speed
matching the characteristic speed of the state just behind it.
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The Welge tangency construction equates the characteristic speed with the shock speed:
if s∗ denotes the injected phase saturation just behind the shock wave, then at s = s∗:

df(s; ν)

ds
=

f(s; ν)

s
. (2.11)

The solution of Eq. (2.11) and the corresponding shock speed are given respectively by

s = s∗(ν) :=
1

√
1 + ν−1

and σ = σ∗(ν) :=
1 +

√
1 + ν−1

2
. (2.12)

This shock wave satisfies Olĕınik’s E-criterion [11], which requires, for a shock wave with
sa < sb to be admissible, that [f(s; ν) − f(sa; ν)] /(s−sa) < σ for all s such that sa < s < sb.
Among shock waves with sa = 0 satisfying the E-condition, the one with sb = s∗(ν) is the
strongest and fastest. For this reason, we refer to it as the maximal shock wave.

The continuous wave trailing the shock wave in the Buckley-Leverett solution is a centered
rarefaction wave. Within this wave, the fast-family characteristic speed equals x/t, so that
the saturation s(x, t) is given implicitly by the equation

df(s; ν)

ds
=

x

t
. (2.13)

If t > 0 is fixed, then s decreases continuously from s = 1 to s = s∗(ν) as x varies from the
injection point to the position of the shock wave.

3. Lead Shock Wave

Return now to the three-phase flow in which a specific mixture of water and gas is injected
into a porous rock cylinder initially containing pure oil. We first focus on the lead wave that
displaces the in situ oil. In principle, this wave could be either a rarefaction wave or a shock
wave. However, it cannot be a rarefaction wave ending at O: an easy calculation shows that
characteristic speeds vanish at O in the saturation triangle, but are positive nearby.

3.1. Hugoniot locus. The RH condition for a jump discontinuity with state O ahead reads

σsw =
s2
w/µw

λ(sw, sg)
, σsg =

s2
g/µg

λ(sw, sg)
. (3.1)

There are three types of solutions of these equations. For the first type, sg = 0, so that the
second equation in (3.1) is satisfied trivially, whereas the first one determines σ in terms of
sw > 0. Such a solution is a water/oil two-phase discontinuity. Similarly, the second type,
for which sw = 0 and sg > 0, is a gas/oil two-phase discontinuity.

For the third type of solution, both sw and sg are nonzero. In (3.1), dividing the first
equation by the second one yields

sw

µw

=
sg

µg

. (3.2)

The umbilic point U satisfies this equation, so that the solution set is the straight line
segment B -O drawn in Fig. 1. Introducing the net water/gas saturation

swg := sw + sg = 1 − so, (3.3)

this line segment is conveniently parameterized as

sw =
µw

µwg

swg and sg =
µg

µwg

swg, where µwg := µw + µg, (3.4)
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for 0 ≤ swg ≤ 1. In other words, the Hugoniot locus of state O comprises the three line
segments W -O, B -O, and G -O in Fig. 1.

3.2. Invariance. We have noted in Sec. 2.3 that the two-phase edges W -O and G -O of
the saturation triangle are invariant. The line segment B -O is also invariant under the
evolution governed by system (2.1)–(2.2). Indeed, substituting sw and sg from (3.4) into
system (2.1)–(2.2), both equations reduce to the single Buckley-Leverett equation (2.8) with
fractional flow function given by (2.9) with s = swg and ν = µwg/µo. This reduction shows
that if the solution path for the system (2.1)–(2.2) lies initially on the straight line B -O,
its evolution continues on this line for all times. Therefore it is natural to refer to B -O as
the invariant line segment. For more general immiscible three phase flows, such as Stone’s
model [3, 14], the invariant line segment is replaced by a curve that separates different types
of solutions [1].

We refer to a solution lying entirely within W -B -O as a water-dominated solution, and
similarly refer to gas-dominated solutions.

We have shown that the water/gas mixture in the proportions of Eq. (3.2) effectively
behaves as a single phase; we can regard the flow of this phase and oil as another two-phase
flow. We will take advantage of this fact in the discussion that follows.

3.3. Maximal discontinuities. We have demonstrated that the state behind the lead shock
wave lies either on the invariant line segment or on one of the invariant edges. In each case,
the discussion in Sec. 2.4 shows that this state must have oil saturation at least as large as
that for the maximal shock wave given by Welge’s construction (recall Sec. 2.4).

For the water/oil edge, the maximal shock wave is characterized by Eqs. (2.12) with
s := sw and ν := µw/µo:

sw(W∗) = s∗(µw/µo), so(W∗) = 1 − sw(W∗), σ(W∗, O) = σ∗(µw/µo). (3.5)

Similar expressions hold for the gas/oil edge:

sg(G∗) = s∗(µg/µo), so(G∗) = 1 − sg(G∗), σ(G∗, O) = σ∗(µg/µo). (3.6)

For the invariant line segment, Eqs. (2.12) with s := swg and ν := µwg/µo imply that

swg(B∗) = s∗(µwg/µo), so(B∗) = 1 − swg(B∗), σ(B∗, O) = σ∗(µwg/µo), (3.7)

with the corresponding water and gas saturations obtained from Eqs. (3.4):

sw(B∗) =
µw

µwg

swg(B∗) and sg(B∗) =
µg

µwg

swg(B∗). (3.8)

Equations (3.5), (3.6), and (3.8) define the coordinates of the states W∗, G∗, and B∗ marked
in Fig. 1 (left); Welge’s construction for these states is illustrated in Fig. 1 (right). Notice
that, in the latter figure, we draw fo = 1 − f vs. so = 1 − s rather than f vs. s.

In summary, the amplitudes swg(B∗), sw(W∗), sg(G∗) of the maximal shock waves on the
invariant line segment, the water/oil edge, and the gas/oil edge, respectively, are determined
by the viscosity ratios µwg/µo, µw/µo, and µg/µo. Assuming that µg < µw, these viscosity
ratios are related by

µg

µo

<
µw

µo

<
µwg

µo

. (3.9)
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According to Eqs. (2.12), the shock amplitude s∗(ν) increases, and the shock speed σ∗(ν)
decreases, as ν increases. Therefore the shock wave (B∗, O) is slowest and has largest am-
plitude, whereas (G∗, O) is fastest and has smallest amplitude. As illustrated in Fig. 1, B∗

lies below W∗, which in turn lies below G∗.
Concerning the total oil recovery up to breakthrough of the lead wave, we conclude that

maximal recovery occurs when the state behind the lead shock wave lies on the invariant line
segment. We will see, in the next section, that maximal recovery occurs when the injected
water/gas mixture has the proportion specified by Eq. (3.2). The same effect is achieved by
alternating injection of water and gas in this proportion (see Sec. 6).

4. Critical Solution

When the injected mixture is state B in Fig. 1, the initial data lies within the invariant
line segment. Therefore the flow is governed by the two-phase flow equation (2.8), with
s := swg and ν := µwg/µo. Hence there is a solution, which we call the Buckley-Leverett
solution, consisting of the centered slow-family rarefaction wave from B to B∗ trailing the
shock wave from B∗ to O.

Let us understand the shock wave (B∗, O) as a solution of the three-phase flow sys-
tem (2.1)–(2.2). Its speed σ(B∗, O) is given in Eq. (3.7). Any shock wave joining (sw, sg) to
O with speed σ(B∗, O) satisfies the RH condition (3.1) with σ = σ(B∗, O). Besides the shock
wave with left state B∗ on the invariant line segment, there are two other shock waves with
right state O and speed σ(B∗, O), which have left states on the invariant edges, denoted by
BW

∗
and BG

∗
. (Recall Sec. 3.1.) To find the left state on the edge sg = 0, we solve a version

of the first of equations (3.1) with unknown sw:

σ(B∗, O) =
sw/µw

λ(sw, 0)
. (4.1)

This is a quadratic equation in sw, which has precisely one root sw = sw(BW
∗

) less than
sw(W∗), giving rise to the state BW

∗
. In a similar way, we find the state BG

∗
on the edge

sw = 0.
By the triple-shock rule mentioned in Sec. 2.2, each pair of states among O, B∗, BW

∗
, and

BG
∗

defines a discontinuity with speed σ(B∗, O). (Only some of these discontinuities represent
admissible shock waves, however.) For instance, the shock wave (B∗, O) can be viewed
alternatively as composed of two equal-speed shock waves (B∗, B

W
∗

) and (BW
∗

, O). From this
viewpoint, the solution, when mixture B is injected, comprises three waves: the slow-family
rarefaction wave from B to B∗ trailing the two shock waves (B∗, B

W
∗

) and (BW
∗

, O). We
call it the critical water-dominated solution. We shall see presently that the critical water-
dominated solution remains “stable” when the fraction of water in the injected mixture is
increased.

Similarly there is the critical gas-dominated solution comprising the slow-family rarefaction
wave from B to B∗ and the two shock waves (B∗, B

G
∗
) and (BG

∗
, O). We emphasize, however,

that fixed-time saturation profiles for the critical water- and gas-dominated solutions are
indistinguishable from that for the Buckley-Leverett solution, which is shown in Fig. 3(b).

5. Water-Dominated Solutions

There are two extremal cases for water-dominated flows. When pure water is injected, the
solution consists of the fast-family rarefaction wave from state W to state W∗ and the shock
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wave (W∗, O). This solution is the Buckley-Leverett solution reviewed in Sec. 2. The other
extremal case is the critical water-dominated flow; the solution consists of the slow-family
rarefaction wave from state B to state B∗ trailing the two (coincident) shock waves (B∗, B

W
∗

)
and (BW

∗
, O). The two extremal solutions are illustrated in Fig. 1, in state space, and in

Figs. 3(a) and 3(b), in physical space.
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Figure 2. Profiles for different injection states at the same PVI. Solid curves
indicate oil saturations, whereas dashed curves indicate water saturations.
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Figure 3. Profiles for different injection regimes. Figures 3(a) and 3(b) are
as in Fig. 2. See Sec. 6 for Fig. 3(c). States in Figs. 2 and 3 correspond to
those in Fig. 1.

Imagine injecting a mixture I1 having slightly higher fraction of water than B has. (Refer
to Fig. 1 and Fig. 2(a).) In the corresponding solution, there is a slow-family rarefaction
wave from I1 to a state T1 near B∗ such that a shock wave with speed λ s(T1) leads from
T1 to some state TW

1 on the water/oil edge; here TW
1 lies slightly below BW

∗
. The shock

wave (T1, T
W
1 ) trails the shock wave (TW

1 , O), which is strictly faster, so that a constant
region with state TW

1 appears between them. As I1 tends to B, the shock waves (T1, T
W
1 )

and (TW
1 , O) approach, respectively, the equal-speed shock waves (B∗, B

W
∗

) and (BW
∗

, O). A
proof of these assertions is shown in Ref. [1].
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The solution is qualitatively different if the injection mixture I2 has high enough water
fraction that the corresponding state TW

2 lies below W∗, as indicated in Fig. 1. Like for
states I1, there is a slow-family rarefaction wave from I2 to a state T2; a shock wave with
speed λ s(T2) from T2 to a state TW

2 ; and a constant region with state TW
2 . Now, however,

a fast-family rarefaction wave leads from TW
2 to W∗, and then a shock wave joins W∗ to O.

See the solution profile in Fig. 2(c).
Separating solutions with injection states I1 from those with injection states I2 is the

solution with injection state I, which contains the maximal shock wave (W∗, O), but not a
fast-family rarefaction wave. See Fig. 2(b).

In the solutions just described, the lead wave is the shock wave from either TW
1 or W∗

to O. Total oil recovery up to breakthrough of the lead wave is maximized by the critical
injection conditions, when the lead shock wave (BW

∗
, O) is slowest. As the fraction of water

in the injected mixture is increased from its value for B, the speed of the lead shock wave
increases, and hence oil recovery decreases. However, if the injected water fraction exceeds a
certain level, corresponding to state I, then the lead shock wave is (W∗, O) and oil recovery
is independent of the water fraction; in fact, the oil recovery is the same as when pure water
is injected.

Critical recovery is significantly larger than pure-fluid recovery only when the viscosities
of the injected fluids are comparable. This is the case for micellar flow [5]; however, Fig. 6
in that work indicates that the micro-emulsion relative permeability is not a quadratic. It
could also be the case for foam injection [12]. Perhaps there exist circumstances in which
one could take advantage of the slow-family shock for injection conditions given by I.
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Figure 4. For different injection mixtures B, I1, I, I2, and W : oil-saturation
profiles and production histories (on the right).

We summarize the results obtained so far in Fig. 4. We show oil profiles on the left and
oil-production histories on the right. Initially, the oil production is dictated by the injection
rate, which is the same for all the mixtures. At their respective breakthrough times, there
is increasing recovery from the injection of pure water (state W ), hypothetical mixtures
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with increasing proportion of gas I2, I, I1 and the critical mixture B. Notice that recovery
for injection mixtures with water saturations between I and B does not take too long to
catch up with the critical recovery history, indicating that this is a good range for injection
mixture proportions. Of course, there is an analogous range for gas-dominated flows where
this catch-up phenomenon occurs. Outside of this good range around the critical injection
proportion, the production history takes much longer to catch up with the critical recovery.

6. Simulations of WAG

When two fluids are injected alternately, the flow deep within the porous medium behaves
as if an effective mixture were injected; see, e.g., Ref. [9]. This phenomenon is confirmed in
the WAG simulation shown in Fig. 3(c), where the time-averaged injection proportion equals
the critical proportion. In this figure, there are two superimposed profiles corresponding to
the same time. The first one is the result for continuous injection at the critical proportion;
it is the same profile as in Fig. 3(b), except that the water saturation is shown as a solid
curve in Fig. 3(c). The second profile is the result of the WAG simulation. The lower ramp
shows the oil profiles for both continuous and WAG injection, which are indistinguishable.
The upper oscillating dashed curve is the water saturation profile for WAG injection; far
enough from the injection point, it becomes the same as that for continuous injection.

This simulation comparison illustrates that WAG with time-averaged injection proportion
equal to the critical proportion yields essentially the same results as continuous injection at
the critical proportion. Thus the WAG recovery strategy offers a way to achieve the maximal
recovery described in the previous section. To be practical, however, a stringent limitation
to the efficiency of WAG related to gravity segregation [12] must be overcome.

7. Discussion

A different model for three-phase flow was proposed in Ref. [8]. The main difference
between this model and ours is that the gas permeability tends to zero linearly with the gas
saturation, whereas in ours it tends to zero faster than linearly. We are of the opinion that
the linear behavior does not correctly account for the genuine immiscibility of the gas in the
other phases. This issue was studied mathematically in Ref. [2].

As a result of the linear behavior, the model in Ref. [8] is strictly hyperbolic in the
interior of the saturation triangle. Referring to Fig. 1, it is as if the line segment B -O
were pushed onto the edge W -O. In other words, the solutions of this model all look like
the gas-dominated ones in our model, except when pure water is injected. In particular,
the state behind the lead shock wave is always a gas/oil mixture. This feature suggests an
experimental way of determining whether either of the two models is realistic. We also note
that the difference between the flow profiles for the two models is biggest when the three
phases have comparable viscosities.

In summary, we have determined the long-time behavior of saturation profiles when a
mixture of two fluids is injected into porous rock that initially contains only oil. We have
confirmed that such injection mixtures can be attained within the rock by alternating the
injection of the two fluids. Neglecting gravity segregation, rock heterogeneity, hysteresis and
fingering effects, and assuming the Corey quadratic permeability model, we have found an
explicit formula for the injected fluid mixture proportion that leads to maximal oil recovery.
We expect similar results for other genuinely immiscible three-phase flow models, such as
Stone’s model; the reason is that non-hyperbolic three-phase fluid mixtures do not appear in
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the solutions we have constructed, so that these solutions ought to be stable under restricted
changes to the permeabilities. This and other model generalizations will be the object of
future study.
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