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Abstract. We prove that, under a mild summability condition on the growth of the
derivative on critical orbits any piecewise monotone interval map possibly containing
discontinuities and singularities with infinite derivative (cusp map) admits an ergodic
invariant probability measures which is absolutely continuous with respect to Lebesgue
measure.

1. Introduction and statement of results

1.1. Introduction. The existence of absolutely continuous invariant probability measures
(acip’s) for dynamical systems is a problem with a history going back more than 70 years,
see for example pioneering papers by Hopf [7] and Ulam and von Neumann [13]. Notwith-
standing an extensive amount of research in this direction in the last two or three decades,
the problem is still not completely solved even in the one-dimensional setting which is the
focus of this paper. Quite general conditions are known which guarantee the existence of
acip’s for uniformly expanding maps in the smooth case or possibly admitting singularities,
i.e. discontinuities with possibly unbounded derivatives (see [14][8] for additional remarks
and references), and for smooth maps with a finite number of critical points (see [4] for the
most recent and possibly the most general conditions in this setting) and even for smooth
maps with a countable number of critical points [2]. We are interested here in a general
class of maps which contain critical points and singularities.

A natural family of maps belonging to this class was introduced in [9] [10] and motivated
by the study of the return map of the Lorenz equations near classical parameter values,
see Figure 1. It is clear from the arguments in these papers, that the presence of both
critical points and singularities and their interaction can give rise to significant technical
as well as fundamental issues. In particular, as we shall in the present setting, it is not
enough to have just some expansivity conditions in order to obtain the existence of an
acip, as expansivity might occur due to the regions of unbounded derivative even when the
deeper dynamical structure of the map is very pathological. Moreover, it is possible that
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Figure 1. Interval maps with critical points and singularities

the interaction of critical points and singularities could give rise to new phenomena which
are still unexplored.

1.1.1. Exponential growth and subexponential recurrence. Some general results for the ex-
istence of acip’s and their properties in maps with critical points and singularities were
obtained in [1] under the assumption that Lebesgue almost every point satisfy some ex-
ponential derivative growth and subexponential recurrence conditions. These conditions
provide an interesting conceptual picture but may be hard to verify in practice. On the
other hand, it was proved in [9] [10] that with positive probability in the parameter space
of Lorenz-like families, the orbits of the critical points satisfy such exponential derivative
growth and subexponential recurrence conditions. In [6] it was shown, within a more gen-
eral setting of maps with multiple critical points and singularities, that these conditions
are in fact sufficient guarantee the existence of an ergodic acip (from which it can in fact
be proved that Lebesgue almost every point also satisfies such conditions).

1.1.2. Summability conditions. Our aim in this paper is to obtain the same conclusion but
relax as much as possible the conditions on the orbit of the critical points, to include in par-
ticular cases in which the derivative growth may be subexponential and/or the recurrence
of the critical points exponential. A crucial observation concerning the difference between
the smooth case and the case with singularities discussed here is that in the smooth case,
for which in particular the derivative is bounded, any condition on the growth of the deriv-
ative is also implicitly a condition on the recurrence to the critical set. Indeed sufficiently
strong recurrence to the critical set will always kill off any required derivative growth. On
the other hand, this is not the case in our setting. Derivative growth may be exponential
but arise as a consequence of very strong recurrence to the singularities even if we have at
the same time very strong recurrence to the critical set. Strong recurrence to either the
singular or the critical set brings its own deep structural problems and can be an intrinsic
obstruction to the existence of an acip. To condition on the critical orbits which we formu-
late below is an attempt to optimize our result by combining derivative growth and and
recurrence within a single summability condition. We conjecture that it is not possible to
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obtain a general result on the existence of acip’s in the presence of both critical points and
singularities by assuming only conditions on the derivative growth of critical points.

1.2. Statement of results. We now give the precise statement of our result. We let F
denote the class of interval map satisfying the conditions formulated in Sections 1.2.1, 1.2.2
and 1.2.3 below. Then we have the following

Theorem. Every map f ∈ F admits a finite number of absolutely continuous invariant
(physical) probability measures whose basins cover I up to a set of measure 0.

1.2.1. Nondegenerate critical/singular set. Let M be the interval I or the circle S1 and
f : M → M be a piecewise C2 map: By this we mean that there exists a finite set C ′
such that f is C2 and monotone on each connected component of M \ C ′ and admits a
continuous extension to the boundary so that f(c) := limx→c± f(x) exists. We denote by
C the set of all “one-sided critical points” c+ and c− and define corresponding one-sided
neighbourhoods

∆(c+, δ) = (c+, c+ + δ) and ∆(c−, δ) = (c− − δ, c−),

for each δ > 0. For simplicity, from now on we use c to represent the generic element of
C and write ∆ for ∪c∈C∆(c, δ). We assume that each c ∈ C has a well-defined (one-sided)
critical order ` = `(c) > 0 in the sense that

(1) |f(x)− f(c)| ≈ d(x, c)` and |Df(x)| ≈ d(x, c)`−1 and |D2f(x)| ≈ d(x, c)`−2

for all x in some ∆(c, δ). Note that we say that f ≈ g if the ratio f/g is bounded above
and below uniformly in the stated domain. If `(c) < 1 we say that c is a singular point
as this implies unbounded derivative near c; if 1 < `(c) we say that c is a critical point as
this implies that the derivative tends to 0 near c. We shall assume also that `(c) 6= 1 for
every c as otherwise would be a degenerate case which is not hard to deal with but would
require having to introduce special notation and special cases just for this, whereas the
other cases can all be dealt with in a unified formalism.

Remark 1.1. For future reference we point out that this immediately implies

(2)
|D2f(x)|
|Df(x)|

≈ 1

d(x)

for all x, where d(x) denotes the distance of the point x to the critical/singular set C
(indeed this is the actual property of which we will make use).

1.2.2. Uniform expansivity outside the critical neighbourhood. We suppose that f is “uni-
formly expanding away from the critical points”, meaning that the following two conditions
are satisfied: there exists a constant κ > 0, independent of δ, such that for every point x
and every integer n ≥ 1 such that d(f j(x), C) > δ for all 0 ≤ j ≤ n−1 and d(fn(x), C) ≤ δ
we have

(3) |Dfn(x)| ≥ κ
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and, for every δ > 0 there exist constants c(δ) > 0 and λ(δ) > 0 such that

(4) |Dfn(x)| ≥ c(δ)eλ(δ)n

for every x and n ≥ 1 such that d(f j(x), C) > δ for all 0 ≤ j ≤ n− 1. We emphasize that
both these conditions are always satisfied if f is globally C2 and all periodic points are
repelling [4, 11].

1.2.3. Summability condition along the critical orbit. For each c ∈ C we write

Dn(c) = |(fn)′(f(c))| and d(cn) = d(cn, C)

to denote the derivative along the orbit of c and the distance of c from the critical set
respectively. We then assume that for every critical point c with ` = `(c) > 1 we have

(?)
∑

n

−n log d(cn)

d(cn)D
1/(2`−1)
n−1

<∞.

Remark 1.2. This condition plays off the derivative against the recurrence in such a way
as to optimize to some extent the class of maps to which it applies. As mentioned in
Section 1.1.2 above, we cannot expect to obtain the conclusions of our main theorem in
this setting using a condition which only takes into account the growth of the derivative.
Notice that condition (?) is satisfied if the derivative is growing exponentially fast and the
recurrence is not faster than exponential in the sense that

Dn−1 & eλn and d(cn) & e−αn with α <
λ

2`− 1
.

Remark 1.3. The proof actually gives a slightly stronger result allowing us to replace the
exponent 2` of d(cn) in condition (?) with max{1, 2`− 2}.

2. The main technical theorem

2.1. Inducing. Our strategy for the proof is to construct a countable partition I of M
(mod 0), define an inducing time function τ : M →M which is constant on elements of I,

and let f̂ : M →M denote the induced map defined by

f̂(x) = f τ(x)(x).

This induced map is uniformly expanding but does not have many desirable properties
such as uniformly bounded distortion or long branches. Nevertheless it has the two key
properties we shall require which are summable inducing times and summable variation.
We recall that the variation of a function ϕ : M → R over a subinterval I = [a, b] of M is
defined by

var
I
ϕ = sup

N∑
i=1

|ϕ(ci)− ϕ(ci−1)|
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where the supremum is taken over all N ≥ 1 and all choices of points a = c0 < c1 < · · · <
cN−1 < cN = b. For each I ∈ I we define the function ωI : M →M by

ωI(x) =

{
|Df̂(f̂−1(x) ∩ I)|−1 if x ∈ f̂(I)

0 otherwise

Our main technical result in this paper is the following

Theorem 1. There exists a countable partition I of M (mod 0) and an inducing time

function τ : M → N, constant on elements of I, such that the induced map f̂ = f τ(x)(x)
is uniformly expanding and satisfies the the following properties.

(1) (Summable variation) ∑
I∈I

var
I
ωI <∞

(2) (Summable inducing times) ∑
I∈I

τ(I)|I| <∞

Theorem 1 implies the Main Theorem by known arguments. Indeed, by a result of
Rychlik the summable variation property implies that f̂ admits an ergodic absolutely con-
tinuous invariant measure [12, 14, 3], and by standard arguments the summable inducing
time property implies that the absolutely continuous invariant probability measure for
f̂ can be pulled back to an absolutely continuous invariant probability measure for the
original map f [5].

2.2. Definition of the induced map. The induced map f̂ can in fact be defined in
complete generality with essentially no assumptions on the map f . We will only require
our assumptions to show that this induced map has the desired properties.

2.2.1. Notation. For a point x in the neighbourhood ∆(c, δ) of one of the critical points c,
we let

Î = Î0 = (x, c) and Îj = (xj, cj) = (f j(x), f j(c)).

For an arbitrary interval I we let |I| denote the length of I and d(I) denote it’s distance to
the critical set C, i.e. the minimum distance of all point in I to C. For each critical point
c with ` = `(c) > 1, and every integer n ≥ 1 we let

γn(c) = min

{
1

2
,

1

d(cn)D
1/(2`−1)
n−1

}
It follows immediately from the summability condition (?) that∑

n

γn <∞.
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2.2.2. Binding. Given c ∈ C,we define the binding period of a point x ∈ ∆(c, δ) as follows.
If `(c) < 1 we just define the binding period as p = 1. Otherwise we define the binding
period as the smallest p = p(x) ∈ N such that

|Îj| ≤ γj d(cj) for 1 ≤ j ≤ p− 1 and |Îp| > γp d(cp).

For each c ∈ C and p ≥ 1, define I(c, p) to be the interval of points x ∈ ∆(c, δ) such
that p(x) = p. Observe that this interval may be empty and indeed that is the case, for
instance, for all p < h(δ).

2.2.3. Fixing δ. Observe that from the definition of binding it follows immediately that

h(δ) := inf{p(x) : x ∈ ∆(c, δ), c ∈ C} → ∞

monotonically when δ → 0. We can therefore fix at this moment and for the rest of the
paper δ sufficiently small so that

(1) the critical neighbourhood of size δ of all critical/singular points are disjoint and
the images of the critical/singular neighbourhoods are also disjoint from the criti-
cal/singular neighbourhoods themselves;

(2) γn < 1/2 for all n ≥ h(δ);

(3) D
1

2`−1

n−1 � 2/κ for all n ≥ h(δ). The symbol � here means that D
1

2`−1

n−1 must be
larger than some constant factor of 2/κ for a constant which depends only on the
map itself and which is determined in the course of the proof but which could in
principle we specified explicitly at this point.

2.2.4. Fixing q0. We now fix an integer q0 = q0(δ) ≥ 1 sufficiently large so that

C(δ)eλ(δ)q0(δ) ≥ 2.

Notice that the constants C(δ) and λ(δ) come from the expansion outside the critical
neighbourhoods given in Section 1.2.2. The choice of q0 is motivated by the fact that any
finite piece of orbit longer than q0 iterations staying outside a δ neighbourhood of the
critical points has an accumulated derivative of at least 2.

2.2.5. The inducing time. and let

Mf = {x ∈M : f i(x) /∈ ∆ for all 0 ≤ l < q0} and Mb = M \Mf

so that Mf denotes the set of points of M which remain outside ∆ for the first q0 − 1
iterations, and Mb denotes those which enter ∆ at some time before q0. For x ∈Mb let

l0 = l0(x) = min{0 ≤ l < q0 : f l(x) ∈ ∆} and p0 = p0(f
l0(x))

so that l0 is the first time the orbit of x enters ∆ and p0 denotes the binding period
corresponding to the point f l0(x). Then we define the inducing time by

τ(x) =

{
q0 if x ∈Mf

l0 + p0 if x ∈Mb.
(5)
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2.2.6. The induced map. We define the induced map as

f̂(x) = f τ(x)(x)

and let I denote the partition of M into the maximal intervals restricted to which the
induced map f̂ is smooth, and write If = I|Mf and Ib = I|Mb. This completes the
definitions of the induced map.

3. Variation, Distortion and Expansion

In this section we prove a general formula relating the variation, the distortion and the
expansion. First of all we define the notion of generalized distortion. This is a very natural
notion which is no more difficult to compute than standard distortion and which appears
in variation calculations. Strangely it does not seem to us to have been defined before in
the literature. For any interval I and integer n ≥ 1 we let Ij = f j(I) for j = 0, ..., n and
define the (generalized) distortion

D(fn, I) =
n−1∏
j=0

sup
xj ,yj∈Ij

|Df(xj)|
|Df(yj)|

.

We remark here that we are taking the supremum over all choices of sequences xj, yj ∈ Ij.
If these sequences are chosen so that xj = f j(x), yj = f j(x) for some x, y ∈ I then we
recover the more standard notion of distortion. In particular, by choosing the sequence xj

arbitrary and the sequence yj = f j(y) as the actual orbit of a point, we can compare the two
products and,in this case, the definition given above of generalized distortion immediately
implies

(6)
n−1∏
j=0

sup
Ij

1

|Df |
≤ D(fn, I)

|Dfn(y)|

for any y ∈ I. For future reference we remark also that by the mean value theorem, there
exists some ξj ∈ Ij such that

Df(xj)

Df(yj)
= 1 +

Df(xj)−Df(yj)

Df(yj)
= 1 +

D2f(ξj)

Df(yj)
|xj − yj|.

Therefore we have
(7)

sup
xj ,yj∈Ij

|Df(xj)|
|Df(yj)|

≤ 1 +
supIj

|D2f |
infIj

|Df |
|Ij| and D(fn, I) ≤

n−1∏
j=0

(
1 +

supIj
|D2f |

infIj
|Df |

|Ij|

)
.

We are now ready to state the main result of this section.

Lemma 3.1. For any interval I and integer l ≥ 1 such that f l : I → f l(I) is a diffeomor-
phism, we have

var
I

1

|Df l|
.

D(f l, I)

infI |Df l|
·

l−1∑
j=0

∫
Ij

dx

d(x)
.
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Before starting the proof we recall a few elementary properties of functions with bounded
variation which will be used here and later on. Proofs can be found, for instance, in [14]
or [3]. For any interval I ⊂M , a, b ∈ R, and ϕ, ψ : M → R,

(V1) varI |ϕ| ≤ varI ϕ;
(V2) varI(aϕ+ bψ) ≤ |a| varI ϕ+ |b| varI ψ;
(V3) varI(ϕψ) ≤ supI |ϕ| varI ψ + varI |ϕ| supI ψ;
(V4) varJ ϕ = varI(ϕ ◦ h) if h : I → J is a homeomorphism;
(V5) if ϕ is of class C1 then varI ϕ =

∫
I
|Df(x)| dx.

(V6) for any interval I, any bounded variation function ϕ, and any probability ν on I,

(8)

∫
I

ϕdν − var
I
ϕ ≤ inf

I
ϕ ≤ sup

I
ϕ ≤

∫
I

ϕdν + var
I
ϕ.

In particular, this holds when ν = normalized Lebesgue measure on I.

Proof. We start by writing

var
I

1

Df l
= var

I

[
l−1∏
j=0

1

Df
◦ f j

]
= var

I

[(
1

Df
◦ f l−1

)( l−2∏
j=0

1

Df
◦ f j

)]
Thus, from (V3) we have

var
I

1

Df l
≤
(

sup
I

1

|Df |
◦ f l−1

)(
var

I

l−2∏
j=0

1

Df
◦ f j

)
+

(
var

I

1

Df
◦ f l−1

)(
sup

I

l−2∏
j=0

1

|Df |
◦ f j

)
Since the supremum of the product is clearly less than or equal to the product of the
supremums this gives

var
I

1

Df l
≤
(

sup
I

1

|Df |
◦ f l−1

)(
var

I

l−2∏
j=0

1

Df
◦ f j

)
+

(
var

I

1

Df
◦ f l−1

)( l−2∏
j=0

sup
I

1

|Df |
◦ f j

)
Thus, multiplying and dividing through by both the first and last term of the right hand
side of this expression, we get

(9) var
I

1

Df l
≤

(
l−1∏
j=0

sup
I

1

|Df(f j)|

)[
varI

∏l−2
j=0

1
Df(fj)∏l−2

j=0 supI
1

|Df(fj)|

+
varI

1
Df(f l−1)

supI
1

|Df(f l−1)|

]
We have used here the simplified notation [Df(f j)]−1 to denote [Df ]−1 ◦ f j. Using this
bound recursively we get

(10) var
I

l−2∏
j=0

1

Df(f j)
≤

(
l−2∏
j=0

sup
I

1

|Df(f j)|

)[
varI

∏l−3
j=0

1
Df(fj)∏l−3

j=0 supI
1

|Df(fj)|

+
varI

1
Df(f l−2)

supI
1

|Df(f l−2)|

]
and therefore, substituting (10) into (9) we get

var
I

1

Df l
≤

(
l−1∏
j=0

sup
I

1

|Df(f j)|

)[
varI

∏l−3
j=0

1
Df(fj)∏l−3

j=0 supI
1

|Df(fj)|

+
varI

1
Df(f l−2)

supI
1

|Df(f l−2)|
+

varI
1

Df(f l−1)

supI
1

|Df(f l−1)|

]
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Continuing in this way and and then using (V4) we arrive at

var
I

1

Df l
≤

(
l−1∏
j=0

sup
I

1

|Df(f j)|

)[
l−1∑
j=0

varI
1

Df(fj)

supI
1

|Df(fj)|

]
=

(
l−1∏
j=0

sup
Ij

1

|Df |

)[
l−1∑
j=0

varIj

1
Df

supIJ

1
|Df |

]
From the definition of generalized distortion, in particular (6), this gives

var
I

1

Df l
≤

(
l−1∏
j=0

sup
Ij

1

|Df |

)[
l−1∑
j=0

varIj

1
Df

supIJ

1
|Df |

]
≤ D(f l, I)

infI |Df l|

[
l−1∑
j=0

varIj

1
Df

supIj

1
|Df |

]
.

Finally from (V5) and (2) to get

var
Ij

1

Df
=

∫
Ij

∣∣∣∣ D2f

(Df)2

∣∣∣∣ ≤ sup
Ij

1

|Df |

∫
Ij

∣∣∣∣D2f

Df

∣∣∣∣ dx . sup
Ij

1

|Df |

∫
Ij

dx

d(x, C)
.

�

4. Binding

4.1. Distortion during binding periods.

Lemma 4.1. For any x ∈ ∆ with x ∈ Î0, and any 1 ≤ j ≤ p(x)− 1 we have

(11)
|Îj|
d(Îj)

≤ 2γj and sup
xj ,yj∈Îj

|D2f(xj)|
|Df(yj)|

.
1

d(Îj)

In particular there exists Γ > 0 independent of x such that for all 1 ≤ k ≤ p(x) − 1 we
have

D(fk, Î1) ≤ Γ and

∫
Îj

1

d(x)
dx ≤ 2γj

and for all y, z ∈ [x, c] we have s

|Dfk(f(y))| ≈ |Dfk(f(z))|.

Proof. The definition of binding period is designed to guarantee that the length |Îj| of the

interval Îj = (f j(x), f j(c)) is small compared to its distance d(Îj) to the critical set. Indeed,

from the definition we have d(Îj) ≥ d(f j(c), C)− d(f j(c), f j(x)) ≥ (1− γj)d(f
j(c), C) and

therefore, for every 1 ≤ j ≤ p− 1 we have

|Îj|
d(Ij)

≤ d(f j(x), f j(c))

(1− γj)d(f j(c), C)
≤ γj

1− γj

≤ 2γj.

In particular this also implies, from the order of the critical points, that supÎj
|Df 2| .

d(Îj)
`−2 and inf Îj

|Df | & d(Îj)
`−1 and therefore

sup
xj ,yj Îj

|D2f(xj)|
|Df(yj)|

=
supÎj

|D2f(xj)|
inf Îj

|Df(yj)|
.

1

d(Îj)
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where . means that the bound holds up to a multiplicative constants independent of δ, I
or j. Now, from (7) and (11) we have

D(fk, Î1) ≤
n∏

j=1

(
1 + sup

xj ,yj∈Ij

|D2f(xj)|
|Df(yj)|

|Îj|

)
≤

n∏
j=1

(
1 + C

|Îj|
d(Îj)

)
≤

n∏
j=1

(1 + 2Cγj)

The right hand side is uniformly bounded by the summability of the γj’s. Indeed, taking
logs and using the inequality log(1 + x) ≤ x for all x ≥ 0 we get log

∏
(1 + Cγj) =∑

log(1+Cγj) ≤
∑
Cγj. This proves the uniform bound on the distortion D(fk, Î1). The

fact that |Dfk(f(x))| ≈ |Dfk(f(c))| then follows directly from the definition of D(fk, Î1)

and the fact that it is uniformly bounded. Finally notice that
∫

Îj
1/d(x) ≤ |Îj|/d(Îj) and

therefore the required bound follows from (11). �

4.2. The binding period partition. The partition I is defined quite abstractly and we
do not have direct information about the sizes of the partition elements and in particular
the relation between their sizes and their distances to the critical set. However, using the
distortion bounds obtained above, we can prove the following

Lemma 4.2. Let I ∈ I with p(I) = p and I in the neighbourhood of a critical point with
order `. Then

(12) D
−2/(2`−1)
p−1 . inf

x∈I
d(x) ≤ sup

x∈I
d(x) . D

−2/(2`−1)
p−2 .

In particular, letting `k = `k(c) denote the order of the critical/singular point closest to ck
we have

(13) D(f, I) .

[
Dp−1

Dp−2

] 2(`−1)
2`−1

. d(cp−1)
2(`−1)(`p−1−1)

2`−1

and

(14)

∫
I

1

d(x)
dx . log

[
Dp−1

Dp−2

] 2(`−1)
2`−1

. log d(cp−1)
−1.

Remark 4.3. W remark that the distortion not uniformly bounded in p implying that the
induced map does not have uniformly bounded distortion. Notice also that for some values

of p it may happen that D
−2/(2`−1)
p−2 � D

−2/(2`−1)
p−1 ; in this case the corresponding interval I

would necessarily be empty, i.e. there is no x with binding period p.

Proof. From Lemma 4.1 and the definition of binding period we have, for any x ∈ I,
d(x) = |Î0| ≈ |Î1|1/` ≈ [D−1

p−1|Îp|]1/` ≥ [D−1
p−1γpd(cp)]

1/`

and
d(x) = |Î0| ≈ |Î1|1/` ≈ [D−1

p−2|Ip−1|]1/` ≤ [D−1
p−2γp−1d(cp−1)]

1/`

By taking a sufficiently small δ we can assume that p is sufficiently large so that γp−1, γp <
1/2 and therefore, from the definition of the sequence {γn} we get

γnd(cn) = D
−1/(2`−1)
n−1 .
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Thus, substituting into the expressions above gives

d(x) & [D−1
p−1γpd(cp)]

1/` = [Dp−1D
−1/(2`−1)
p−1 ]1` = [D

−2`/(2`−1)
p−1 ]1/` = D

−2/(2`−1)
p−1

and, similarly,

d(x) . D
−2/(2`−1)
p−2 .

This gives the first set of inequalities. As a consequence we immediately get

D
−2(`−1)/(2`−1)
p−2 & sup

I
|Df(x)| ≥ inf

I
|Df(x)| & D

−2(`−1)/(2`−1)
p−1

and therefore,

D(f, I) = sup
x,y∈I

|Df(x)|
|Df(y)|

.

[
Dp−1

Dp−2

] 2(`−1)
2`−1

This gives the first inequality in (13). To get the second inequality we simply use the fact
that Dp−1 ≈ Dp−2d(cp−1)

`p−1−1. To get the last inequality we simply integrate 1/d(x) over
the interval I = (x, y) to get∫

I

1

d(x)
dx = log d(z)− log d(y) . log

[
Dp−1

Dp−2

]2/(2`−1)

and then argue as above. �

4.3. Expansion during binding periods.

Lemma 4.4. For all c ∈ C , x ∈ ∆(c, δ) and p = p(x), we have

(15) |Dfp(x)| & D
1

2`−1

p−1

In particular we can choose δ small enough so that

|Dfp(x)| ≥ 2/κ.

Proof. Using the chain rule, bounded distortion in binding periods and Lemma 4.2 we have

|Dfp(x)| = |Dfp−1(f(x)) ·Df(x)| & Dp−1D
−2(`−1)/(2`−1)
p−1 = D

1
2`−1

p−1

This gives (15). The inequality |Dfp(x)| ≥ 2/κ then just follows from the choice of δ in
Section 2.2.3. �

5. Inducing

5.1. Expansion of the induced map.

Lemma 5.1. For every x ∈M we have

|Df̂(x)| ≥ 2.

Proof. This follows immediately from the definition of the induced map and the expansion
estimates during binding periods obtained in Lemma 4.4together with condition 4, the
choice of δ and the corresponding choice of q0. �
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5.2. Distortion of the induced map. We now study the distortion of the induced map
f̂ on each of its branches.

Lemma 5.2. There exists a constant D = D(δ) > 0 such that

(16) D(f τ , I) ≤ D and D(f τ , I) . Dd(cp−1)
2(`−1)(`p−1−1)

2`−1

for all I ∈ Mf (in which case τ ≡ q0) and I ∈ Mb (in which case τ = l + p) respectively,
where ` is the order of the critical point associated to Il. Also, we have

τ−1∑
j=0

∫
Ij

1

d(x)
dx ≤ D

and

(17)
τ−1∑
j=0

∫
Ij

1

d(x)
dx ≤ D log d(cp−1)

−1

respectively for I ∈Mf and I ∈Mb.

Proof. For I ∈ If we have standard distortion estimates for uniformly expanding maps
which give a uniform distortion bound depending on ∆. For I ∈ Ib on the other hand we
write

D(f τ , I) = D(f l, I) · D(f, Il) · D(fp−1, Il+1).

The first term consists of iterates for which Ij lies always outside ∆ and therefore is bounded
above by the same constant D as above. The second and third term have already been
estimated above in Lemmas 4.1 and 4.2. Combining these estimates we complete the first
set of estimates.

For the second set. For I ∈ Mf , using the uniform expansion outside ∆ we have
|Ij| ≤ c(δ)−1e−λ(δ)(τ−j) and therefore

τ−1∑
j=0

∫
Ij

1

d(x)
dx ≤

τ−1∑
j=0

|Ij|
d(Ij)

≤
τ−1∑
j=0

c(δ)−1e−λ(δ)(τ−j)

δ
≤ D.

For I ∈ Mb we again split the sum into three parts corresponding to the initial iterates
outside ∆, the first iterate in ∆, and the following binding period. The fist part of the
sum is bounded by the same constant D as above. The second and third have already
been estimated above. Thus, from Lemmas 4.1 and 4.2 and in particular (14) we get the
statement.

�

6. Summability

We are now ready to prove the summable variation and the summable inducing time
properties.
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6.1. Summable variation. From the definition of ωI that we have

var
M
ωI = var

I
ωI + 2 sup

I
ωI = var

I

1

|Df τ |
+ 2 sup

I

1

|Df τ |
For the supremum we have, from Lemma 5.1,

(18) sup
I

1

|Df τ |
≤ 1

D
1/(2`−1)
p−1

and for the variation, we have, substituting the estimates in (18), (16) and (17) into the
formula obtained in Lemma 3.1,

var
I

1

|Df τ |
.

D(f τ , I)

infI |Df τ |
·

τ−1∑
j=0

∫
Ij

dx

d(x)
.

log d(cp−1)
−1

d(cp−1)
−

2(`−1)(`p−1−1)

2`−1 D
1/(2`−1)
p−1

.

We can write

D
1

2`−1

p−1 ≈ D
1

2`−1

p−2 d(cp−1)
`p−1−1

2`−1

and

d(cp−1)
−

2(`−1)(`p−1−1)

2`−1 d(cp−1)
`p−1−1

2`−1 = d(cp−1)
−

(2`−1)(`p−1−1)

2`−1 = d(cp−1)
(1−`p−1)

and so, substituting above, gives

var
I

1

|Df τ |
.

log d(cp−1)
−1

d(cp−1)(1−`p−1)D
1/(2`−1)
p−2

≤ log d(cp−1)
−1

d(cp−1)D
1/(2`−1)
p−2

.

The summability then follows immediately from (?).

6.2. Summable inducing times. To prove the summability of the inducing time notice
first of all that the number of intervals of a given inducing time is uniformly bounded.
Therefore it is sufficient to prove the summability with respect to the binding time. For
this we give a basic upper bound for the size of each element I ∈ I using the mean value
theorem and Lemma 5.1. This gives∑

τ(I)|I| .
∑

p

p|I| .
∑

p

p

D
1/(2`−1)
p−1

.

Again, the summability follows directly from (?). This completes the proof of the Theorem.
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