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Abstract. Let FolR(2, d) be the space of real algebraic foliations of degree d in RP(2).
For fixed d, let IntR(2, d) = {F ∈ FolR(2, d) | F has a non-constant rational first integral}.
Given F ∈ IntR(2, d), with primitive first integral G, set O(F) = number of real ovals of

the generic level (G = c). Let O(d) = sup{O(F) | F ∈ IntR(2, d)}. The main purpose of
this paper is to prove that O(d) = +∞ for all d ≥ 5.
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1. Introduction

It is well known (Harnack’s theorem) that a real algebraic curve of degree d in

RP(2) has at most (d−1)(d−2)2 +1 connected components (ovals). A similar question
in the context of real algebraic foliations can be posed. Let FolR(2, d) be the
set of algebraic foliations in RP(2) of degree d. A foliation F ∈ FolR(2, d) can
be complexified to one in CP(2) that we denote FC. We will study the following
problem :

Problem 1. Given d ≥ 2 does there exists N(d) ∈ N such that for any complex
algebraic leaf L of a foliation FC, F ∈ FolR(2, d), then the number of ovals of
L ∩ RP(2) is ≤ N(d) ?
We would like to remark that for d = 1 there exists such a bound : N(1) = 1.

The main purpose of this paper is to prove that there is no such a bound for
all d ≥ 5. In order to pose the main result, let us recall some facts and fix some
notations concerning the subject.
Let Fol(2, d) be the space of holomorphic foliations of degree d in CP(2). Any

foliation F ∈ Fol(2, d) can be represented in homogeneous coordinates by an inte-
grable 1-form

(1) ΩF = P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz

where P , Q and R are homogeneous polynomials of degree d+ 1 and x.P + y.Q+
z.R ≡ 0 (cf. [LN]). Geometrically the degree of F is the number of tangencies of F

1This research was partially supported by Pronex.
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with a generic straight line of CP(2). For instance, in the affine coordinate system
(z = 1) the foliation is defined by the differential equation ω = 0, where

ω = P (x, y, 1) dx+Q(x, y, 1) dy ,

and the number of tangencies of F in C2 = (z = 1) ⊂ CP(2) with the line (y =
a x+ b) is the number of complex solutions of the equation f(x) = 0, where f(x) =
P (x, a x + b) − aQ(x, a x + b). With the condition x.P + y.Q + z.R = 0 and if
a, b ∈ C are generic then the polynomial f(x) has degree d.
We will denote by sing(F) the singular set of F . If ΩF is as in (1) then in

homogeneous coordinates we have sing(F) = (P = Q = R = 0).
The set of real algebraic foliations of degree d, in these coordinates, is

FolR(2, d) = {F | ΩF = P dx+Qdy+Rdz , x.P+y.Q+z.R = 0 , P,Q,R ∈ R[x, y, z]
and P , Q and R are homogeneous of degree d+ 1} .

From now on, we will suppose the homogeneous coordinate fixed.
Let Int(2, d) = {F ∈ Fol(2, d) | F has a non-constant rational first integral} and

IntR(2, d) = Int(2, d) ∩ FolR(2, d). It is well known that if F ∈ FolR(2, d) has a
non-constant rational first integral then it has one, say F/G, where F,G ∈ R[x, y, z],
that is with real coefficients. For a fixed F ∈ IntR(2, d) we will denote by O(F) the
number of ovals of the generic level (GF = c), c ∈ R, where GF is a real primitive
rational first integral of F .
The main goal of this paper is to prove the following result :

Theorem 1. For all d ≥ 5 there are families (Fα)α∈J , J = (a < t < b) ⊂ R, in
FolR(2, d) with the following properties :

(P.1). Fα ∈ IntR(2, d) if, and only if, α ∈ Q ∩ J .
(P.2). The set {O(Fα) |α ∈ Q ∩ J} is unbounded.
(P.3). If α /∈ Q ∩ J then for almost all complex leaves L of the complexification

of Fα such that L ∩ RP(2) = ∅ then L ∩ RP(2) has an infinite number of
connected components.

In particular, (P.2) implies that for all d ≥ 5 we have
sup{O(F) | F ∈ IntR(2, d)} = +∞ .

The proof of theorem 1 will be based in [LN] and in some results of [LN-1]. In
[LN], for any degree d ≥ 2, we give examples of 1-parameter families of foliations
Fd = (Fdα)α∈C in Fol(2, d), with the following properties :

(I). The set Ed = {α ∈ C | Fdα has a non-constant rational first integral} is
countable and dense in C. Denote by Gdα a primitive rational first integral
of Fdα.

(II). The set {dg(Gdα) |α ∈ Ed} is unbounded (dg = degree).
(III). The family is generically equisingular, in the following sense :

(a). There exists a finite subset F of C such that for any α ∈ C \ F the
singularities of Fdα are non-degenerate.
(b). For any fixed αo /∈ F and any singularity po of Fdαo there exists

a holomorphic function p(α) defined in a neighborhood of αo such that
p(αo) = po, p(α) ∈ sing(Fdα) and the germs of Fdo and Fdα at po and p(α),
respectively, are holomorphically equivalent.



POLYNOMIAL ODES WITH MANY REAL OVALS IN THE SAME COMPLEX SOLUTION 3

The families of degrees d = 2, 3, 4 are exhibited explicitly in [LN]. For instance, F4
is defined in affine coordinates by the family of polynomial 1-forms on C2 ⊂ CP(2),
(ωα := ω − α.ω∞)α∈C, where

(2)
ω = (x3 − 1)xdy − (y3 − 1)y dx

ω∞ = (x3 − 1)y2 dy − (y3 − 1)x2 dx
It is shown in [LN] that for d ∈ {2, 3, 4} and α ∈ Ed the normalization of a

generic level (Gdα = c) is an elliptic curve biholomorphic to C/ < 1, e2πi/3 >, where
< 1, a > denotes the lattice {m + n.a |m,n ∈ Z}. In particular, these families
cannot satisfy condition (P.2) of theorem 1. However, for d ≥ 5 the family Fd is
obtained by pulling-back one of the families F2, F3 or F4 by some fixed rational
map Φ : CP(2)− → CP(2), that is Fd = Φ∗(Fj), for some j ∈ {2, 3, 4}. In this way,
for d ≥ 5, it is shown in [LN] that Fd satisfies :
(IV). For a fixed α ∈ Ed denote by g(α) the genus of the generic level (Gdα = c).

If d ≥ 5 then the set {g(α) | α ∈ Ed} is unbounded.
As we will see in §3, when we pull-back the family F4 by an appropriate rational

map Φ with real coefficients then we get a real family of degree d = 8 satisfying
(P.1), (P.2), and (P.3) of theorem 1. In §4 we will sketch how to obtain families of
any degree d ≥ 5 satisfying (P.1), (P.2) and (P.3).
We would like to observe that property (P.1) will be a consequence of the fol-

lowing result of [LN-1] :

(V). For all d ≥ 2 we have
Ed = {a+ b.e2πi/3 | a, b ∈ Q} ∪ {∞}

In particular, Ed ∩R = Q.
Remark 1.1. In [LN-1] it is exhibited another family of degree three such that
the set of parameters for which the correspondent foliation has a first integral is
{a+ b.i | a, b ∈ Q} ∪ {∞}, i = √−1. Families satisfying properties (P.1), (P.2) and
(P.3) of theorem 1 can be also constructed by pulling-back this particular one.

Theorem 1 motivates the following problems :

Problem 2. Is the statement of theorem 1 true for degrees d = 2, d = 3 or d = 4 ?

Problem 3. For an algebraic curve L ⊂ CP(2) denote by O(L) be the number of
connected components of L ∩ RP(2). Given F ∈ FolR(2, d) set

O(F) = max{O(L) | L is an algebraic leaf of F} .
We would like to observe that an algebraic leaf is automatically irreducible (by the
definition of leaf).
A natural question is the following : does there exists d ≥ 2 such that

sup{O(F) | F ∈ FolR(2, d) \ IntR(2, d)} < +∞ ?

Remark 1.2. Concerning problem 3 the following result was proved in [C] by M.
Carnicer : let F be a foliation of degree d in CP(2) without dicritical singularities.
If L is an algebraic leaf of F then dg(L) ≤ d + 2. In particular, L ∩ RP(2) has at
most d(d+1)2 + 1 ovals.
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Remark 1.3. In this remark we consider families of logarithmic foliations in
FolR(2, d) from the point of view problem 1. Let f1, ..., fr be real irreducible poly-
nomials in two variables, two by two relatively primes, and consider the family of
foliations in RP(2) defined in an affine coordinate system by the (r-1)-parametric
differential equation ωλ = 0, where

(3) ωλ = f1...fr

r

j=1

λj
dfj
fj

,
r

j=1

λj .dg(fj) = 0 .

Denote by Gλ the foliation in RP(2) defined by ωλ = 0. If λ = (0, ..., 0), it can
be shown that Gλ has degree d, where d = dg(f1) + ... + dg(fr) − 2. Moreover,
Gλ ∈ IntR(2, d) if, and only if λ = c.μ, where μ ∈ Zr. If λ = (n1, ..., nr) ∈ Zr
and gcd(n1, ..., nr) = 1 then a primitive first integral of Gλ is Fλ = fn11 ...f

nr
r . In

particular, the set

{dg(Fλ) | λ ∈ Zr}
is unbounded. On the other hand, this family doesn’t satisfy property (P.2) of
theorem 1. This is a consequence of the results of Khovanskii in [Kh] wich assert
that the maximal number of ovals of the level (Fλ = c) has a bound N(f1, ..., fr),
which does not depends on λ, but only on the number of non-zero monomials of
f1,..., fr. This fact, of course, implies that the maximal number of ovals that can
be obtained from a solution of an equation like in (3) inducing a foliation of degree
d has a bound which depends only of d.

I would like to thank Jean Jacques Risler who convinced me of the importance
of the subject and strongly stimulated me to write this paper.

2. Some properties of the family F4

We begin this section by describing some properties of the family F4 that will
be needed (see [LN] and [LN-1]). We will use the notation j = e2πi/3.
Let F4α be the foliation defined in the affine coordinates (x, y) ∈ C2 ⊂ CP(2) by

ωα = ω − α.ω∞, where ω and ω∞ are as in (2). We will consider also F4α defined
by the dual vector field Xα of ωα : Xα = X − α.X∞, where X = (x3 − 1)x ∂x +
(y3 − 1)y ∂y and X∞ = (x3 − 1)y2 ∂x + (y3 − 1)x2 ∂y.
The tangency divisor of F40 and F4∞, denoted by L, is the union of 9 lines in

CP(2), say 1, ..., 9, defined in C2 by

(4) (x3 − 1) (y3 − 1) (y3 − x3) = 0
These lines are invariant by all foliations in the family. They intersect two by two
in the 12 points of the set

R = {(a, b) ∈ C2 | a, b ∈ {1, j, j2} } ∪ {[0 : 1 : 0], [1 : 0 : 0]} .
The points [0 : 1 : 0] and [1 : 0 : 0] are contained in L∞, the line at infinity of
C2 ⊂ CP(2). For all α ∈ C we have R ⊂ sing(F4α).
Let us describe F4α for α /∈ {1, j, j2,∞}. In this case, the foliation F4α has 21

singularities, the 12 in the set R and 9 more in the set

Sα = (x3 − 1 = y − αx2 = 0) ∪ (y3 − 1 = x− αy2 = 0) ∪ (y3 − x3 = x− αy2 = 0) .
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In particular, each line of L contains 4 singularities of F4α. For instance, the
line (y = x) contains the singularities (1, 1), (j, j), (j2, j2) and (1/α, 1/α). The 12
points in R are of radial type for F4α : if p ∈ R then there exists a local chart (u, v)
around p with u(p) = v(p) = 0 such that Xα = a(u∂u + v∂v), a = 0. In particular,
v/u is a local meromorphic first integral of F4α. The 9 points in Sα are of saddle
type : if q ∈ Sα∩ k, k ∈ {1, ..., 9}, then there exists a local chart (W, (u, v)) around
q such that u(q) = v(q) = 0, k ∩W = (v = 0) and Xα = a(u∂u − 3 v∂v), a = 0. In
particular, u3.v is a local holomorphic first integral of F4α.
The resolution of F4α, in the sense of Seidenberg (cf. [Se] or [Br]), is done by

blowing-up in the 12 points of R. Denote by π : M → CP(2) this blowing-up
procedure and set F̃α := π∗(F4α). Let k̃ denote the strict transform of k by π,

k = 1, ..., 9, and set L̃ = ∪9k=1 k̃. The following properties are proved in [LN] :

(I). If α = β then F̃α and F̃β are transversal outside L̃.
(II). If β ∈ {1, j, j2,∞} then the foliation F̃β has a holomorphic first integral

F̃β : M → CP(1). Moreover, F̃β is an elliptic fibration with three singular
fibers. For instance, G(x, y) := (y3 − 1)/(x3 − 1) is a rational first integral
of F4∞ and F̃∞ = G◦π : M → CP(1). The critical levels of F̃∞ are 0, 1,∞ ∈
CP(1). The fibration is sketched in figure 1. After blowing-down the −1-
component of one of the critical fibers, it becomes of type IV in Kodaira’s
classification of critical fibers elliptic fibrations (cf. [K]).

Remark 2.1. Set Tc := F̃−1∞ (c), where c = 0, 1,∞. We would like to observe
that Tc is an elliptic curve biholomorphic to C/Γ, where Γ = {m+ n.j |m,n ∈ Z},
j = e2πi/3.

This is a consequence of the fact that G−1(c) = (y3 − c.x3 + c− 1 = 0) admits
the automorphism ϕ(x, y) = (j.x, j.y) which has period three and fixed points at
G−1(c) ∩ L∞, where L∞ is the line at infinity of C2.

We will denote by Πc : C → Tc a holomorphic universal covering of Tc, so that
Tc C/Γ, for all c /∈ {0, 1,∞}. For z ∈ C we will denote by z md(Γ) its equivalence
class in C/Γ.

Remark 2.2. Since F̃α is transversal to F̃∞ outside L̃, we can define a global
holonomy representation Φα : Π1(CP(1) \ {0, 1,∞}, c) → Aut(Tc), c /∈ {0, 1,∞}.
If we consider the set of generators of Π1(CP(1) \ {0, 1,∞}, c) sketched in figure
2, then we can write Φα(γk) := fkα, k = 1, 2, as fkα(z) = (j.z + Ak(α))md(Γ),
where Ak : C → C/Γ is holomorphic, k = 1, 2 (cf. [LN]). In particular, the global
holonomy is the sub-group < f1α, f

2
α > of Aut(Tc), generated by f

1
α and f

2
α.
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Let a(α) := (1 − j)−1A1(α) md(Γ) and h : C/Γ → C/Γ be defined by h(z) =
(z + a(α))md(Γ). Since f1α has a fixed point at a(α) we have h

−1 ◦ f1α ◦ h(z) =
j.z md(Γ) and h1 ◦ f2α ◦ h(z) = (j.z + A(α))md(Γ), where A(α) = A2(α) − A1(α).
In particular, the global holonomy group of F̃α is conjugated to the group Gα
generated by f(z) := j.z md(Γ) and fα(z) = (j.z + A(α))md(Γ). In [LN] it is
proved that α→ A(α) is non-constant.
Another important fact, proved in [LN-1], is that the functions Ak(α), k = 1, 2,

are affine, that is Ak(α) = Bk.α + Ckmd(Γ) , where Bk, Ck ∈ C. Hence, A(α) is
also affine and we can write A(α) = (B.α+ C)md(Γ), where B ∈ C∗ and C ∈ C.
We are mainly interested in the real foliations F̃α, α ∈ R, and how their real

leaves cut the real levels of F̃∞. Let us denote by MR the strict transform of RP(2)
by π : M → CP(2). Remark that MR is RP(2) blowed-up in four points : the four
real points of R, q1 := (0, 0), q2 := (1, 1), q3 := [1 : 0 : 0] and q4 := [0 : 1 : 0]. In
particular,MR is diffeomorphic to the non-orientable surface of Euler characteristic
−3. Let us denote by Sc the real trace of Tc, Sc =MR ∩ Tc, c ∈ R \ {0, 1}.

Lemma 2.1. If c ∈ R \ {0, 1} then Sc is connected and homeomorphic to the
circle S1. Moreover, there exists an universal covering Πc : C → Tc such that
Πc(R) = Πc(0 ≤ t < 1) = Sc.

Proof. If c ∈ R \ {0, 1} then Sc is the strict transform of G−1(c) ∩RP(2) by π. On
the other hand, G−1(c) = (y3 − c.x3 + c − 1 = 0). For each x ∈ R there is only
one y ∈ R such that y = [c.x3 + 1− c]1/3. Therefore, G−1(c) ∩ R2 is a graph, and
so G−1(c) ∩ RP(2) is connected and homeomorphic to S1. Since Sc is the strict
transform of G−1(c) ∩ RP(2), the same is true for it.
Let

P(z) = 1

z2
+

ω∈Γ∗

1

(z − ω)2 −
1

ω2
, Γ∗ = Γ \ {0} ,

be the Weierstrass P-function associated to the latice Γ. The cubic G−1(c) in
the Weierstrass normal form can be written as v2 = 4 (u3 − C), where C =
35 ω∈Γ∗

1
ω6 ∈ R+. It is known that z ∈ C → (P(z),P (z)) = (u, v) parame-

trizes G−1(c) in the normal form, that is (P )2 = 4(P3 − C). On the other hand,
the projective automorphism Ψ(u, v) = (x, y) given by

x = b.B.u
A.v−1/2

y = b (A.v+1/2)
A.v−1/2

, where b = (1− c)1/3 , A = 1/
√
48.C and B = 1/(4.c.C)1/3
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sends G−1(c) to the normal form : v2 = 4(u3−C). By writing explicitly the inverse
Ψ−1 we get that G−1(c) in the original affine coordinate system is parametrized by

z ∈ C → b.B.P(z)
A.P (z)− 1/2 ,

b (A.P (z) + 1/2)

A.P (z)− 1/2 := Φc(z)

and Φc : C→ G−1(c) is an universal covering. If c ∈ R then we can take b, A,B ∈ R,
because C > 0. Since P(R) , P (R) ⊂ R ∪ {∞} we get Φc(R) ⊂ G−1(c) ∩ RP(2).
Therefore, Φc(R) = G−1(c) ∩ RP(2), because G−1(c) ∩ RP(2) is connected. On
the other hand, πc := π|Tc : Tc → G−1(c) is a biholomorphism. Hence, Πc :=
π−1c ◦ Φc : C → Tc is an universal covering and Πc(R) = Sc. Since 1 is a period of
Πc, we get Πc(0 ≤ t < 1) = Sc.
From now on we will fix the fiber Tc := T , c ∈ R \ {0, 1}, where the global

holonomy group is calculated. We will set S := Sc = T ∩MR.

Corollary 2.1. For any α ∈ R there exists an universal covering Πα : C→ T with
the following properties :

(a). The global holonomy group in the fiber T is Gα =< f, fα >, where f(z) =
j.z md(Γ) and fα(z) = (j.z +B.α+ C)md(Γ), with B ∈ C∗ and C ∈ C.

(b). Πα(R − a(α)) = S, where R − a(α) = {t − a(α) | t ∈ R} and a(α) =
(1− j)−1A1(α)md(Γ) is as before.

In particular, Π−1α (S) = ∪n∈Z(R− a(α) + n.j).
Proof. Consider the universal covering Πc : C → T as in lemma 2.1, for which
Πc(R) = S. The global holonomy group in the fiber T is generated by f1α and f2α,
which are covered by the maps f̂kα(z) := j.z+Ak(α), that is Πc◦ f̂kα(z) = fkα(z)◦Πc,
k = 1, 2. On the other hand, if ĥ(z) := z + a(α) then f̂ := ĥ−1 ◦ f̂1α ◦ ĥ and
f̂α := ĥ−1 ◦ f̂2α ◦ ĥ are of the form f̂(z) = j.z and f̂α(z) = j.z + A(α), where

A(α) = A2(α)−A1(α) = B.α+C. Therefore, the universal covering Πα := Πc ◦ ĥ
satisfies Πα(R− a(α)) = S, Πα ◦ f̂ = f1α ◦Πα and Πα ◦ f̂α = f2α ◦Πα.
Recall that E = {α ∈ CP(1) | F̃α has a first integral}. In [LN] it is proved that

the following condition are equivalent :

(I). α ∈ E.
(II). Gα is finite.
(III). A(α) ∈ Q.Γ := {a+ b.j | a, b ∈ Q}.

Notations :

(a). For α ∈ C fixed, set Γ(α) = {c.A(α) md(Γ) | c ∈ Γ} and for α ∈ R, set
ΓR(α) = Γ(α) ∩R md(Γ).

(b). We have seen in lemma 2.1 and corollary 2.1 that Πc(R) = Πα(R−a(α)) =
S. We define a segment I on S as the immage of an open interval I :=
Πc((a, b)) ⊂ S, (a, b) ⊂ R, a < b.

(c). Given α ∈ C ∪ {∞} and q ∈ M \ sing(F̃α) denote by (α, q) the complex

leaf of F̃α through q. If α ∈ R ∪ {∞} and q ∈ MR \ sing(F̃α) then set
R(α, q) := (α, q) ∩MR.

(d). Given α ∈ E ∩ R, a point q ∈MR \ sing(F̃α) and a segment I of S define
N(α, q, I) = #( R(α, q) ∩ I)
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Note that N(α, q, I) is always finite, because F̃α is transverse to S and has
rational first integral for any α ∈ E ∩R.
Lemma 2.2. For any fixed α ∈ R, qo ∈ S and zo ∈ C such that Πα(zo) = qo we
have :

(5) R(α, q) ∩ S = Πα(zo + ΓR(α)) ,
where zo + ΓR(α) = {zo + t | t ∈ ΓR(α)}. Moreover,
(a). R(α, qo) ∩ S is dense in S ⇐⇒ α ∈ R \Q.
(b). Let αo ∈ R \ Q and (αn)n≥1 be a sequence in Q such that lim

n→∞αn = αo.

Then for any segment I of S and any sequence (qn)n≥1 in S we have

lim
n→∞N(αn, qn, I) = +∞

Proof. Since S = Πα(R− a(α)), we can suppose that zo ∈ R− a(α).
The global holonomy group Gα is constructed in such a way that for any q ∈ T

we have (α, q)∩T = {g(q) | g ∈ Gα}. Let Ĝα = {ĝ ∈ Aut(C) | Πα◦ĝ = g◦Πα, g ∈
Gα}. If Ĝα(zo) denotes the orbit of zo by Ĝα then

(α, qo) ∩ T = Πα(Ĝα(zo)) .
Since S = T ∩MR = Πα(R− a(α)) we get

R(α, qo) ∩ S = Πα(Ĝα(zo) ∩ [R− a(α)]) .
The transformations ĝ ∈ Ĝα for which ĝ(R − a(α)) = R − a(α) are in the group
Ĥα = {ĝ ∈ Ĝα | ĝ(z) = z + t , t ∈ ΓR(α)}. Therefore,

R(α, qo) ∩ S = Πα(zo + ΓR(α)) .
It follows from (5) that R(α, qo)∩ S is dense in S if, and only if, ΓR(α) is dense

in R md(Γ) = R md(1). The next claim implies assertion (a) of lemma 2.2.

Claim 2.1. The set Γ(α) is an additive sub-group of C/Γ, whereas ΓR(α) is an
additive sub-group of Rmd(1) S1, if α ∈ R. Moreover, ΓR(α) is dense in Rmd(1)
if, and only if α ∈ R \Q.
Proof. The first two assertions are consequence of the definitions. Recall that
A(α) = B.α + C md(Γ) where B ∈ C∗ and C ∈ C. We will use the following
facts proved in [LN] :

(i). If α ∈ {1, j, j2} then #(Gα) = 3. In particular, G1 = Gj = Gj2 =
{z md(Γ) , j.z md(Γ) , j2.z md(Γ)}.

(ii). #(G0) = 9.
(iii). The group Gα can be explicitly written as :

Gα = {(λ.z + b.A(α)md(Γ) | λ ∈ {1, j, j2} and b ∈ Γ}
We can deduce from (i) and (iii) that A(1) = A(j) = A(j2) = 0md(Γ), and so

B + C = B.j + C = B.j2 + C ∈ Γ. Therefore,
A(α) = B.z −Bmd(Γ) = B(z − 1)md(Γ)

and

A(j) = A(j2) = 0 md(Γ) =⇒ B(j − 1) , B(j2 − 1) ∈ Γ =⇒ B ∈ 1

3
Γ



POLYNOMIAL ODES WITH MANY REAL OVALS IN THE SAME COMPLEX SOLUTION 9

It follows from (ii) that :

A(0) = −B /∈ Γ .
Therefore, we can write B = k

3 (m + n.j), where, k,m, n ∈ Z, 3 |k, and either
(m,n) = (1, 0), or (m,n) = (0, 1), or m,n = 0 and gcd(m,n) = 1.
Let λ := 1

3(m
2 + n2 −m.n) = (m+ n.j2).B ∈ Q \ {0}. We assert that if α ∈ R

then

(6) ΓR(α) = { .λ(α− 1)md(1) | ∈ Z} ,
In fact, recall that

ΓR(α) = {tmd(1) | t = c.B(α− 1) , c ∈ Γ , c.B ∈ R} .
In particular, ΓR(1) = {0md(1)}. If α = 1, set X := { .λ(α − 1)md(1) | ∈ Z}.
Since λ(α− 1) ∈ R, λ = (m+ n.j2).B and m+ n.j2 ∈ Γ we get λ(α− 1) ∈ ΓR(α).
Hence, X ⊂ ΓR(α), because ΓR(α) is an additive sub-group of Rmd(1). On the
other hand, if c.B.(α− 1) ∈ R for some c ∈ Γ, then
c.B ∈ R =⇒ c.(m+ n.j) ∈ R ∩ Γ = Z =⇒ c = .(m+ n.j2) , ∈ Z =⇒

c.B = .λ , ∈ Z =⇒ ΓR(α) ⊂ X ,

which proves (6). Finally, we have
α ∈ R \Q ⇐⇒ λ.(α− 1) ∈ R \Q ⇐⇒ ΓR(α) is dense in Rmd(1) ,
which proves the claim.

Proof of (b) of lemma 2.2. If α ∈ Q \ {1} then λ.(α − 1) ∈ Q \ {0}. Set
λ.(α− 1) = r/s, where r, s ∈ Z, gcd(r, s) = 1 and s > 0. Let p, q ∈ Z be such that
p.r − s.q = 1. Hence, p.λ(α− 1) = p.r/s = 1/smd(1), which implies that

ΓR(α) =
n

s
md(1) | n ∈ Z .

Let (a, b) ⊂ R be an open interval with b − a > 1/s. Then there exist u ≤ v ∈ Z
such that

u− 1
s
≤ a < u

s
≤ v
s
< b ≤ v + 1

s
=⇒

#
t

s
| t ∈ Z , t

s
∈ (a, b) = v − u+ 1 ≥ (b− a)s− 1 .

In particular, if qo ∈ S, Πα(zo) = qo and I = Πα(zo + (a, b)), then
(7) N(α, qo, I) = # [(zo + ΓR(α)md(1)) ∩ (zo + (a, b)md(1))] ≥ (b− a)s− 1 .
Fix αo ∈ R \Q and sequences (αn)n≥1 in Q and (qn)n≥1 in S, where lim

n→∞αn =

αo. Since αo /∈ Q, we can write λ(αn−1) = rn/sn, where rn, sn ∈ Z, gcd(rn, sn) = 1
and lim

n→∞ sn = +∞. It follows from (7) that

N(αn, qn, I) ≥ (b− a)sn − 1 =⇒ lim
n→∞N(αn, qn, I) = +∞ .
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3. Pulling-back the family F4
In the process of pulling-back the pencil F4 we will consider a polynomial map,

depending on α ∈ R, Φα : RP(2)− → RP(2) with a fold. The map will satisfy the
following properties :

(i). There are algebraic curves F,Fα ⊂ RP(2) and po ∈ F , qo ∈ Fα such that
Φα(F ) = Fα and Φα(po) = qo.

(ii). There are local coordinates (U, (u, v) ∈ R2) and (Uα, (x, y) ∈ R2) such that
u(po) = v(po) = 0, x(qo) = y(qo) = 0, F ∩ U = (v = 0), Fα ∩ Uα = (y = 0)
and Φα(u, v) = (u, v

2) = (x, y). In other words, Φα folds around F in the
sense of Whitney.

Let us suppose that the point qo is not contained in the set L. Since F40 and F4∞
are transversal outside L, there is an unique α ∈ R∪ {∞} such that the leaf of F4α
through qo is tangent to F1 at qo. This condition implies that :

(iii). The foliation F4α can be defined in (Uα, (x, y)) by a differential equation of
the form dy −Q(x, y) dx = 0, where Q(0, 0) = 0.

Let us assume further that Qx(0, 0) = −a < 0. The pull-back foliation
Fα := Φ∗(F4α) is defined in the chart (U, (u, v)) by Φ∗α(dy − Q(x, y) dx) =
2v dv − Q(u, v2) du = 0, or by the vector field X = 2 v ∂u + Q(u, v

2) ∂v. The

eigenvalues of DX(0, 0) are ±i√2a and the singularity po = (0, 0) is a center for
Fα.
In fact, with the condition Qx(0, 0) < 0, the real leaf of F4α through qo has a

tangency of order one with the line (y = 0), as shown in figure 3. A nearby leaf
of F4α|U in the set H+ := (y ≥ 0), say γ, cuts the line (y = 0) in two points and
γ∩H+ is a segment. In this case, Φ−1(γ∩H+) is a closed curve in the plane (u, v).
Hence, po is a center for Fα.

Let us specify the map Φα. Choose the point qo ∈ RP(2) as qo = π(q1), where
q1 ∈ S. Note that qo /∈ L. Let (x, y) ∈ R2 ⊂ C2 be the affine coordinate system
fixed in section 2, and qo = (ao, bo) in this coordinate system. Denote by α the
leaf of F4α through qo and by Lα the straight line tangent to α at qo. Since
ωα = (x3 − 1)(x − α.y2) dy − (y3 − 1)(y − α.x2) dx, the slope of Lα at qo with
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respect to the x-axis is

φ(α) :=
(b3o − 1)(bo − α.a2o)
(a3o − 1)(ao − α.b2o)

.

If we choose α = ao/b
2
o then Lα is not vertical and can be parametrized as s →

(s+ ao,φ(α).s+ bo).
Set

(8) Φa(s, t) = (s+ ao, ±t2 + φ(α).s+ bo) = (x, y) ,

where the sign + or − will be choosed next. Note that Φα(0, 0) = qo and Φα(t =
0) = Lα. From now on, we will denote by R2(s,t) the domain of Φα.
If the sign in the second component of (8) is + then

Φα(R2(s,t)) = {(x, y) | y ≥ φ(α).(x− ao) + bo} := H+(α) ,

whereas if the sign is − then
Φα(R2(s,t)) = {(x, y) | y ≤ φ(α).(x− ao) + bo} := H−(α) .

In particular, Φα folds R2(s,t) around the line (t = 0).
We have to impose an additional condition on α to guarantee that the tangency

of α with Lα at qo is of order one. The set of points p ∈ CP(2) where the tangency
of the leaf of some foliation G through p with its tangent line at p is of order
greater than one, called the inflection divisor of G, was computed in [JP]. Applying
this computation in the case of F4α we find the following equation for its inflection
divisor:

P (x, y,α) = (y3 − 1)(x3 − 1)(x3 − y3)([2 + α3]xy − αx3 − αy3 − α) .
Since qo = (ao, bo) /∈ L = ((x3 − 1)(y3 − 1)(y3 − x3) = 0) we have to choose α in

such a way that [2 + α3]ao bo − αa3o − αb3o − α = 0.
The sign of ±t2 in (8) is choosen to be + if the leaf α (near qo) is contained in

the region H−(α) and − otherwise. Note that in the first case Φα(R2(s,t)) ⊂ H+(α)
and in the second Φa(R2(s,t)) ⊂ H−(α). With these conditions, po = (0, 0) is a

center for the real pull-back foliation

Fα := Φ∗α(F4α) .
Fix αo ∈ R satisfying the above conditions and assume that αo near qo is

contained in the region H−(αo), so that we choose the sign + in (8) for Φαo .
From continuity and the arguments already exposed there exist > 0 and δ, δ1 >

0 such that if α ∈ J := (αo − ,αo + ) then :

(iv). If po = (0, 0) then Φα(po) = qo and po is a center for Fα (see figure 3).
(v). If K := (−δ,+δ)× {0} ⊂ R2(s,t) then the segment Φα(K) ⊂ Lα contains a

segment Iα of the line Lα of euclidean lenght 2 δ1 and centered at qo.
(vi). F4α is transverse to Lα in all points of Iα \ {qo}.
Let D ⊂ R2 be the disk of radius δ1 centered at qo. Denote Dα

+ := H+(α) ∩D.
Recall that π(S) is the real leaf of F4∞ through qo. Since F4∞ and F4α are transversal
at qo we can choose a segment I contained in S with the following properties :

(vii). qo is in one of the extremities of π(I) and π(I) ⊂ D+(α).
(viii). For all q ∈ π(I) and α ∈ J the leaf q of F4α|D cuts Iα in two points, say

q+ and q−, one in each side of qo in Iα.
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The situation described above is sketched in figure 4.

Let I1(α) ⊂ R2(s,t) be the connected component of Φ
−1
α (π(I)) which contains

po = 0. Note that I1(α) is a segment of curve in R2, because π(I) is transverse to Lα.
Moreover, if hα := Φα|I1(α) : I1(α)→ π(I) then h−1α (qo) = po and #(h

−1
α (q)) = 2 if

q ∈ I1(α) \ {qo}, because Φα folds at the line (t = 0) and Φα(R2(s,t)) = H+(α).
(ix). Given p ∈ I1(α) \ {po} the real leaf of Fα through p is a closed curve

(diffeomorphic to S1).
In fact, hα(p) = q ∈ π(I) and the leaf of F4α through q cuts Iα in two points

q− and q+, determining in this way a segment l between these points, as shown in
figure 4. Since Fα = Φ∗α(F4α) the leaf of Fα through p is Φ−1α (l) which is a closed
curve (see figure 3).

Let us prove that the family (Fα)α∈J satisfies properties (P.1), (P.2) and (P.3) in
the statement of theorem 1. Property (P.1) follows from the fact that E4 ∩R = Q,
where E4 = {α ∈ C | F4α has a non-constant rational first integral}.
In order to prove that it satisfies (P.2) and (P.3) we will consider a slightly more

general situation. Let M and N be two complex compact surfaces and Ψ : M− →
N be a non-degenerate rational map of topological degree dg(Ψ) = k ≥ 2. Let
CP (Ψ) ⊂ M be the set of critical points of Ψ and CV (Ψ) = Ψ(CP (Ψ)) be its set
of critical values. The fact that dg(Ψ) = k means that for any q /∈ CV (Ψ) we have
#(Ψ−1(q)) = k. Recall also that both sets CP (Ψ) and CV (Ψ) are holomorphic
curves. Let G be a holomorphic foliation on M and set G∗ := Ψ∗(G).
Lemma 3.1. In the above situation, given a leaf L of G not contained in CV (Ψ),
define L∗ as the satured set of Ψ−1(L \CV (Ψ)) by the foliation G∗. Then L∗ is an
union at most k leaves of G∗.
Proof. In fact, since Ψ is non-degenerate, Ψ−1(CV (Ψ)) is a holomorphic curve in
M . Let X :=M \Ψ−1(CV (Ψ)) and Y := N \CV (Ψ). Then X and Y are open and
dense in M and N , respectively, and ψ := Ψ|X : X → Y is a holomorphic covering
map with k-sheets. Let GY := G|Y and G∗X := G∗|X . Since L is a leaf of G not
contained in CV (Ψ), which is a curve, L ∩ CV (Ψ) is a discrete subset of L in its
intrinsic topology (cf. [C-LN]). Therefore, LY := L∩Y is connected, which implies
that it is a leaf of GY . Set LX := ψ−1(LY ) and ψL := ψ|LX : LX → LY . Note
that LX is an union of leaves of G∗X , because ψ|X is a local biholomorphism. If
we consider these leaves with the intrinsic topology, the map ψL is a covering map
with k-sheets. This implies that LX has at most k connected components, so that
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it is an union of at most k leaves of G∗X . This implies that L∗ is an union of at most
k leaves of G∗.
Denote by ΦC,α and FC,α the complexifications of Φα and Fα, respectively. With

these notations we have FC,α = Φ∗C,α(F4α). Note that ΦC,α can be considered as a
rational map CP(2)− → CP(2) of topological degree two. Moreover, CP (ΦC,α) ∩
C2 = (t = 0) and CV (ΦC,α)∩C2 = Lα. Given q ∈ R2\sing(F4α) denote the complex
leaf of F4α through q by (q,α). Following the notation of lemma 3.1, let ∗(q,α)
be the satured set of Φ−1C,α( (q,α) \ CV (ΦC,α) by the foliation FC,α. According to
lemma 3.1, ∗(q,α) contains at most two leaves of FC,α.
Remark 3.1. If (q,α) is transverse to Lα at some point of (q,α)∩Lα ∩C2 then
∗(q,α) is a leaf of FC,α.
Proof. Assume that ∗(q,α) contains two different leaves of FC,α, say 1 and 2. In

this case, if m ∈ (q,α) \ Lα then Φ−1C,α(m) contains two points, one in 1 and the

other in 2. Let mo ∈ Lα ∩ (q,α)∩C2 and suppose by contradiction that (q,α) is
transverse to Lα at mo. Note that Φ

−1
C,α(mo) = {m1}. It follows from (8) that there

are germs of coordinates systems (u, v) and (z, w) such that u(m1) = v(m1) = 0,
z(mo) = w(mo) = 0, Lα = (w = 0), ΦC,α(u, v) = (u, v2) = (z, w) and (q,α) near
mo can be parametrized by w → (ψ(w), w), ψ(0) = 0. In this case, the curve C
parametrized by v → (ψ(v2), v) satisfies ΦC,α(C) ⊂ (q,α), so that C ⊂ ∗(q,α).
On the other hand, if w = 0 and m = (ψ(w), w) then Φ−1C,α(m) contains two points
in C which implies that 1 = 2. Hence,

∗(q,α) is a leaf of FC,α.
As a consequence of (ix) and of remark 3.1 we obtain the following :

(x). With the notations of remark 3.1, assume that (q,α) is transverse to Lα
at some point of Lα ∩ (q,α). Then for each point q1 ∈ π(I) ∩ (q,α) the
real foliation Fα has a closed leaf contained in ∗(q,α) ∩RP(2).

For fixed λ ∈ J ∩Q and p ∈ I1(λ) \ {po}, denote by Fλ a primitive real rational
first integral of Fλ and by O(λ, p) the number of real connected components of
F−1λ (Fλ(p)). Let FC,λ be the complexification of Fλ. Note that the leaf of FC,λ
through p is

(̃p) := F−1C,λ(Fλ(p)) \ sing(FC,α) .
It follows from remark 3.1 that (̃p) = ∗(q,λ), where q = Φα(p), because (q,λ)
cuts transversely Lα at q+ and q− (see figure 4). Let q̂ ∈ I ⊂ S be such that
π(q̂) = q. If N(λ, q̃, I) is like in lemma 2.2 then we get from (x) that

O(λ, p) ≥ N(λ, q̂, I) .
Therefore, (b) of lemma 2.2 implies that the family (Fα)α∈J satisfies property (P.2).
With the same type of argument, it is possible to prove that (a) of lemma 2.2 implies
that it satisfies property (P.3). We leave the details for the reader.
Finally, the family (Fα)α∈J is in FolR(2, 8) because Φ∗α(ω−α.ω∞) = Pα(s, t)dt−

Qα(s, t)ds, where Pα and Qα have degree 8 and the homogeneous term of degree
eight of t.Pα(s, t)− s.Qα(s, t) is not identically zero, as the reader can check.

4. Other families

In this section we will describe briefly how to obtain families of foliations of any
degree ≥ 5 satisfying properties (P.1), (P.2) and (P.3) of theorem 1. These families
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will be obtained by pulling-back the family F2 := (F2α)α∈R already mentined in §1.
The foliation F2α is defined by the differential equation ωα := ω−α.ω∞ = 0, where

ω = (4x− 9x2 + y2)dy − (6 y − 12x y)dx
ω∞ = (2 y − 4x y)dy − 3(x2 − y2)dx

We would like to remark that the set Tang(F20 ,F2∞) consists of two irreducible
curves : the line at infinity of C2, L∞, and the quartic Q = (P = 0), where
P (x, y) = 4y2(1 − 3x) − 4x3 + (3x2 + y2)2. These two curves are invariant for all
foliations in the pencil. Moreover, sing(F2α) ⊂ Q ∪ L∞ for any α ∈ C.
The connection between the familes F2 and F4 is that there exists a rational

map of topological degree two Ψ : CP(2)− → CP(2) such that Ψ∗(F2α) = F4α for
all α ∈ C. This map satisfies Ψ(RP(2)) = RP(2) (cf. [LN]). As a consequence,
the set E2 = {α ∈ C | F2α has a non-constant rational first integral} coincides with
E4 = Q.Γ ∪ {∞}. Moreover, a statement analogous to lemma 2.2 is true.
Let us precise the last assertion, but before that, we will fix some notations.

In order to avoid confusion, when α ∈ R ∪ {∞} we will denote by F2R,α the real
foliation induced by ωα in RP(2). Given q ∈ RP(2) denote by (q,α) the (complex)
leaf of F2α through q. Set

R(q,α) = RP(2) ∩ (q,α) .

We would like to remark that R(q,α) is an union of leaves of F2R,α. By Poincaré-
Bendixson theorem, each leaf of F2R,α is homeomorphic to R and accumulates in at
most two points of sing(F2R,α) : the foliation has no closed leaf (homeomorphic to
S1). When α ∈ R\Q and q ∈ RP(2)\(Q∪L∞) then R(q,α) has an infinite number
of connected components, whereas if α ∈ Q ∪ {∞} then it has a finite number.
In the case of F2∞, we have the first integral G∞(x, y) := P (x, y)/(2x− 1)3 (cf.

[LN-1]). In particular, given qo ∈ RP(2) \ (Q ∪ L∞) then the closure of R(qo,∞)
is precisely G−1∞ (G∞(qo))∩RP(2). Moreover, if q1 ∈ RP(2) is such that Ψ(q1) = qo
then G−1∞ (G∞(qo)) = Ψ(π(Sc)), for some c ∈ R, where q1 ∈ Sc and Sc is like in
section 2. From now on, we will fix qo ∈ RP(2) \ (Q∪L∞) and set S1 := R(qo,∞).
An interval I ⊂ S1 will be by convention the immage of some interval I1 ⊂ Sc :

I = Ψ(π(I1)). Given q ∈ S1 \ (Q ∩ L∞) set
N(α, q, I) = # [I ∩ R(α, q)] .

If Gα is a real primitive first integral of F2R,α then
N(α, q, I) = # [I ∩G−1α (Gα(q))] .

We have the following consequence of lemma 2.2 :

Corollary 4.1. With the above notations, we have :

(a). If q ∈ S1 then R(α, q) ∩ S1 is dense in S1 ⇐⇒ α ∈ R \Q.
(b). Let αo ∈ R \ Q and (αn)n≥1 be a sequence in Q such that lim

n→∞αn = αo.

Then for any non-trivial segment I of S1 and any sequence (qn)n≥1 in S1
we have

lim
n→∞N(αn, qn, I) = +∞

It follows that we can apply to the family F2 the same method of section 3
to obtain families satisfying properties (P.1), (P.2) and (P.3) of theorem 1. The
inflexion divisor of F2α is a curve of degree six in CP(2) which contains the line L∞.
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Its intersection with R2 = RP(2) \ L∞ is an irreducible curve Cα of degree five.
Given q = (a, b) ∈ R2 denote by Lα(q) the line tangent to Fα at q. The slope of
Lα(q) is

φ(q,α) =
6 b− 12 a b− 3α(a2 − b2)

4 a− 9 a2 + b2 − α(2 b− 4 a b) .
It is clear that we can choose qo = (ao, bo) ∈ R2 and αo in such a way that
φ(q,o ,αo) = ∞ and qo /∈ Cαo . Let > 0 be such that φ(α) := φ(qo,α) = ∞ and
qo /∈ Cα for all α ∈ (αo − ,αo + ) := J . The line Lα is not vertical and can be
parametrized by s→ (s+ ao,φ(α).s+ bo).
When we pull-back (F2α)α∈J by the family of maps (Φα)α∈J given in (8) we obtain

a family of foliations (Fα)α∈J of degree five. In fact, if we set ωα = Pα(x, y) dy −
Qα(x, y) dx, where Pα(x, y) = 4x − 9x2 + y2 − α(2 y − 4x y) and Qα(x, y) =
6 y − 12x y − 3α(x2 − y2), then
Φ∗α(ωα) = Pα◦Φα(s, t) (±t dt+φ(α).ds)−Qα◦Φα(s, t) ds := P̂α(s, t) dt−Q̂α(s, t) ds .
As the reader can check, P̂α(s, t) has degree 5 and Q̂α(s, t) degree ≤ 4, and so

the foliation Gα := Φ∗α(F2α) has degree five. We then choose the sign + or −, as
indicated in section 3, in such a way that Gα has a real center at the point po = (0, 0)
(Φα(po) = qo). In this way, we get a family of degree 5 satisfying (P.1), (P.2) and
(P.3) of theorem 1.

Based in the same idea, we can obtain families of any degree k ≥ 5 as follows.
Consider Φα : RP(2)− → RP(2) defined in R2 ⊂ RP(2) by

Φα(s, t) := (s+ ao, q(s).p(t) + φ(α).s+ bo) ,

where p(t) =
d
j=2 t

j (dg(p) = d) and q ∈ R[s] is a polynomial of degree k ≥ 0
such that q(0) = 0.
Let Gα = Φ∗α(F2α), α ∈ J = (αo− ,αo+ ). The reader can check that Φ∗α(ωα) =

P̂α(s, t) dt− Q̂α(s, t) ds, where
P̂α(s, t) = q(s).p (t).Pα ◦ Φα(s, t)

Q̂α(s, t) = Qα ◦ Φα(s, t)− (q (s).p(t) + φ(α)).Pα ◦ Φα(s, t) .

Note that dg(P̂α(s, t)) = 3d+ k − 1 and dg(Q̂α(s, t)) ≤ 3d+ k − 1. The line at
infinity L of the plane (s, t) is invariant for Gα. This can be proved by observing
that Φα(L) = [0 : 1 : 0] ∈ L∞, where L∞ is the line at infinity of the plane
(x, y), which is invariant for F2α. This implies that the degree of the foliation Gα is
3d + k − 1. By letting k ∈ {0, 1, 2} we obtain in this way families of foliations of
degrees 3d− 1, 3d, 3d+ 1, d ≥ 2, and so families of any degree ≥ 5.
Now, the critical set of Φα in R2 is given by CV (Φα) = (q(s).p (t) = 0) and

so it contains the line (t = 0). Moreover, Φα(s, 0) = (s + ao,φ(α).s + bo) and
Φα(t = 0) = Lα, the line tangent to the leaf of F2α through qo. On the other hand,
if we fix s = so ∈ R such that q(so) = 0, we get

Φα(so, t) = (so + ao, q(so).p(t) + φ(α).so + bo) ,

which implies that Φα sends the line (s = so) into the line (x = so + ao) folding
near t = 0 because p(t) = t2 + h.o.t.. Since q(0) = 0, it follows that there exists
a disk D around 0 ∈ R2, which does not depends on α ∈ J , if is small enough,
such that Φα|D has a fold line at (t = 0) ∩ D and Φα(D) ⊂ H+(α) if q(0) > 0,
whereas Φα(D) ⊂ H−(α) if q(0) < 0. Let αo be the germ at qo of the leaf of F2αo
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through qo. If αo ⊂ H−(αo), as in figure 4, we choose q so that q(0) = 1, and if
αo ⊂ H+(αo) we choose q(0) = −1. With this condition, the foliation Gα has a real
center at po = (0, 0), as in figure 3. By applying corollary 4.1 we obtain families of
foliations of any degree ≥ 5 satisfying properties (P.1), (P.2) and (P.3) of theorem
1.
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