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Abstract

We prove the existence and uniqueness of graphs with prescribed mean

curvature function in a large class of Riemannian manifolds which comprises

spaces endowed with a conformal Killing vector field.

1 Introduction

Our aim in this paper is to continue the research theme elaborated in [2] and [3]
where the existence of a Killing vector field in a manifold or, more generally, a Rie-
mannian submersion structure, permitted to formulate and solve Dirichlet problems
associated to the mean curvature equation. For instance, given a function defined in
a domain of the base space of the submersion, its Killing graph is a hypersurface in
the total space transverse to the flow lines of the vector field. The function assigns
to each point of the graph a value of the flow parameter calculated with respect
to a fixed reference hypersurface. It is verified that the graph has prescribed mean
curvature if the function satisfies a certain quasilinear elliptic PDE.

In this paper, we expand our scope by dealing with conformal Killing vector fields
and the corresponding notion of graph. The result we obtain extends Theorem 1 in
[2] and provides a significant improvement of the results in [1]. In fact, the method
used here allows us to discard or weaken several assumptions in the latter paper, in
particular, the conformal Killing field does not have to be closed.

To explain the framework of this paper we first fix some terminology. Let M̄n+1

denote a Riemannian manifold endowed with a conformal Killing vector field Y
whose orthogonal distribution D we assume integrable. Thus, there exists a function
ρ ∈ C∞(M̄) such that £Y ḡ = 2ρḡ, where ḡ is the metric in M̄ . It results that the
integral leaves of D are totally umbilical hypersurfaces. If in addition Y is closed,
then they are spherical, i.e., have constant mean curvature.

We denote by Φ : I ×Mn → M̄n+1 the flow generated by Y , where I = (−∞, a)
is an interval with a > 0 and Mn is an arbitrarily fixed integral leaf of D labeled as
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t = 0. It may happen that a = +∞, i.e., the vector field Y is complete. For instance,
this occurs when the trajectories of Y are circles and we pass to the universal cover.
Since Φt = Φ(t, · ) is a conformal map for any fixed t ∈ I, there exists a positive
function λ ∈ C∞(I) such that λ(0) = 1 and Φ∗

t ḡ = λ2(t)ḡ.
Given a bounded domain Ω in M , the conformal Killing graph Σ of a function z

on Ω̄ is the hypersurface

Σ = {ū = Φ(z(u), u) : u ∈ Ω̄}.

Proving the existence of a conformal Killing graph with prescribed mean curvature
and boundary requires establishing apriori estimates. This is accomplished by the
use of Killing cylinders as barriers. The Killing cylinder K over Γ = ∂Ω is the
hypersurface ruled by the flow lines of Y through Γ, that is,

K = {ū = Φ(t, u) : u ∈ Γ}.

Let Ω0 denote the largest open subset of points of Ω that can be joined to Γ by
a unique minimizing geodesic. At points of Ω0, we denote

Ricrad
M̄ (x) = RicM̄(η, η)

where RicM̄ is the ambient Ricci tensor and η ∈ TxM is a unit vector tangent to the
the unique minimizing geodesic from x ∈ Ω0 to Γ.

The following result assures the existence of conformal Killing graphs with pre-
scribed mean curvature H and boundary data φ. Here, the functions H and φ are
defined on Ω̄ and Γ, respectively. Moreover, HK denotes the mean curvature of K
when calculated pointing inwards.

Theorem 1. Let Ω ⊂M be a C2,α bounded domain such that Ricrad
M̄ ≥ −n infΓH

2
K.

Assume λt ≥ 0 and (λt/λ)t ≥ 0. Let H ∈ Cα(Ω) and φ ∈ C2,α(Γ) be such that
infΓHK > H ≥ 0 and φ ≤ 0. Then, there exists a unique function z ∈ C2,α(Ω̄)
whose conformal Killing graph has mean curvature function H and boundary data φ.

Proposition 5 below implies that Theorem 1 holds under weaker but somewhat
more technical assumptions on the ambient Ricci tensor. We also point out that we
can prove with minor modifications an existence result for functions H depending
also on t by imposing the condition (λH)t ≥ 0 instead of λt ≥ 0. In the case
comprised in Theorem 1 the condition λt ≥ 0 says that the mean curvatures of the
leaves and of the graph have opposite signs.

It is worth to mention that M̄ is conformal to a Riemannian product manifold
I × M̃ where M̃ is conformal to M . A quite remarkable fact is that the mean
curvature equation for a general conformal metric to a product metric like this does
not satisfy, in general, the maximum principle. In fact, we will see that the class
of metrics which we deal in this paper stands as a borderline for the validity of the
elliptic techniques in the treatment of that equation.
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The particular case of closed conformal Killing fields encompasses a broad range
of examples, namely, product and warped ambient spaces, that have been extensively
considered in the recent pertinent literature. In this case, we have the following
consequence stated in terms of the Ricci tensor of M .

Corollary 2. Theorem 1 holds when the conformal Killing field Y is closed if the
assumption on the Ricci curvature is replaced by

nRicrad
M ≥ −(n− 1)2 inf

Γ
H2

Γ.

Moreover, we may assume just infΓHK ≥ H if Y is a Killing field.

Theorem 1 generalizes under an unifying perspective several previous results,
in particular, since conformal Killing graphs include the notion of radial graphs.
Corollary 2 generalizes the main result in [1] for graphs of constant mean curvature
and initial condition Γ. Our result removes the restriction on the Ricci curvature
to be minimal in the direction of the conformal Killing field and weakens other
requirements on that tensor. It also rules out some restrictions on λ, thus applying
successfully to product ambient spaces.

2 Preliminaries

Let (M̄n+1, ḡ) be a Riemannian manifold endowed with a conformal Killing vector
field Y whose orthogonal distribution D is integrable. Let ∇̄ denote the Riemannian
connection in M̄ and

〈X,Z〉 = ḡ(X,Z).

From £Y ḡ = 2ρḡ we deduce the conformal Killing equation

〈∇̄XY, Z〉 + 〈∇̄ZY,X〉 = 2ρ〈X,Z〉, (1)

where X,Z ∈ TM̄ . It is a standard fact [8] that the conformal factor λ ∈ C∞(I)
and ρ ∈ C∞(I) are related by

ρ = λt/λ. (2)

Denote
|Y (t, u)|2 = 1/γ̄(t, u) and γ(u) = γ̄(0, u).

It follows from (1) and (2) that

γ̄(t, u) = γ(u)/λ2(t).

We have from (1) and the integrability of D that

〈∇̄XY, Z〉 = ρ〈X,Z〉 (3)
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for any X,Z ∈ D. Thus, the leaves Mn
t = Φt(M) are totally umbilical and the mean

curvature k = k(t, u) of Mt with respect to the unit normal vector field Y/|Y | is

k = − ρ

|Y | = −λt
√
γ

λ2
. (4)

We assign coordinates x0 = t, x1, . . . , xn to points in M̄ of the form ū = Φ(t, u)
where x1, . . . , xn are local coordinates in M . Then, the coordinate vector fields are

∂0|ū = Y (ū) and ∂i|ū = Φt ∗∂i|u.

The components of the ambient line element ds2 in terms of these coordinates are

σ̄00 = 〈∂0, ∂0〉 = |Y |2 = λ2(t)/γ(u), σ̄0i = 〈∂0, ∂i〉 = 0, σ̄ij |ū = λ2(t)σij |u,

where σij are the local components of the metric dσ2 in M . Therefore,

ds2 = λ2(t)(γ−1(u)dt2 + dσ2). (5)

Thus M̄ is conformal to the Riemannian warped product manifold

Mn ×1/
√

γ I

with conformal factor λ. Moreover, after the change of variable

r = r(t) =

∫ t

0

λ(τ)dτ,

we see that (5) takes the form of a Riemannian twisted product

ds2 = γ−1(u)dr2 + ψ2(r)dσ2

where ψ(r) = λ(t(r)).

Examples 3. Let φ ∈ C∞(M) be a positive function.

(a) By means of the change of variable et = r, we have that

M̄ = R+ ×M, ds̄2 = φ2(u) dr2 + r2dσ2

is isometric to
M̃ = R ×M, ds̃2 = e2t(φ2(u) dt2 + dσ2).

(b) By means of the change of variable t = 1 − e−r, we have that

M̄ = R ×M, ds̄2 = φ2(u) dr2 + e2rdσ2

is isometric to

M̃ = (−∞, 1) ×M, ds̃2 =
1

(1 − t)2
(φ2(u) dt2 + dσ2).
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(c) By means of the change of variable t = c + log(b tanh (t/2)), where c > 0 and
b−1 = tanh (c/2), we have that

M̄ = R+ ×M, ds̄2 = φ2(u) dr2 + (sinh t)2dσ2

is isometric to

M̃ = (−∞, c+ log b) ×M, ds̃2 = (sinh(2 argtanh b−1es−c))2(φ2(u) dt2 + dσ2).

Suppose now that the conformal Killing field Y is closed, i.e.,

〈∇̄XY, Z〉 = ρ〈X,Z〉.

For simplicity, we take γ(u) = 1. Thus M̄n+1 has a warped product structure and
is conformal with conformal factor λ to the Riemannian product manifold I ×Mn.
Observe that in this situation the leaves of D are spherical, that is, totally umbilical
with constant mean curvature k = k(t).

3 Killing cylinders

Let Ω ⊂ Mn be a bounded domain with regular boundary Γ. The Killing cylinder
K over Γ determined by the conformal Killing field Y is the hypersurface defined by

K = {Φ(t, u) : t ∈ I, u ∈ Γ}.

Let t1, . . . , tn−1 be local coordinates for Γ. We denote by (τij) the components
of the metric in Γ with respect to these coordinates. It results that t, t1, . . . , tn−1

are local coordinates for K. Let η be the unit inward normal vector along Γ as a
submanifold of M . Then

η̄ =
1

λ
Φt∗η

is an unit normal vector field to K. Thus,

〈η̄, ∂t〉 = 0 = 〈η̄, ∂ti〉

where ∂t = ∂/∂t and ∂tj = ∂/∂tj . We deduce from (3) that

〈∇̄∂
ti
∂t, η̄〉 = ρ〈∂ti , η̄〉 = 0.

Hence ∂t is a principal direction of K with corresponding principal curvature

κ = γ̄〈∇̄Y Y, η̄〉.

It follows from (1) that

κ = −1

2
γ̄η̄(γ̄−1) = −1

2
γη̄(γ−1) =

1

2γ
η̄(γ) =

1

λ
η(log

√
γ). (6)
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It was shown in [6] that the distance function d(u) = dist(u,Γ) in Ω0 has the
same regularity as Γ. Hence, local coordinates in M̄ near K can be defined setting
t0 = t and tn = d. We denote by (tij) the components of the metric for these
coordinates. Thus,

tij(t, u) = λ2(t)τij(u) for 1 ≤ i, j ≤ n− 1.

Proposition 4. The mean curvature of the Killing cylinder K is given by

nHK(t, u) = κ(t, u) +
n− 1

λ(t)
HΓ(u). (7)

Proof: We have that

nHK = κ + tij〈∇̄∂
ti
∂tj , η̄〉|(t,u) = κ+ λ−2τ ij〈Φt∗∇∂

ti
∂tj |u, λ−1Φt∗η|u〉

= κ + λ−1τ ij〈∇∂
ti
∂tj |u, η|u〉,

and the proof follows.

We denote by Γǫ and Kǫ the level sets d = ǫ in M and M̄ , respectively. By HKǫ

we denote the mean curvature of the Killing cylinder Kǫ over Γǫ.

Proposition 5. Assume that the Ricci curvature tensor of M̄ satisfies

inf
Ω0

{

Ricrad
M̄ +

(

nk2 −√
γ kt

)

|t=0

}

≥ −n inf
Γ
H2

K . (8)

Then, HKǫ
|x0

≥ HK |y0
if y0 ∈ Γ is the closest point to a given point x0 ∈ Γǫ ⊂ Ω0.

Proof: The coordinate d-curve in Φ(t, u) is the image by Φt of the coordinate d-curve
passing through u ∈M . Thus,

η̄|Φ(t,u) =
1

λ
Φt ∗(u)∂d|u =

1

λ
∂d|Φ(t,u) =

1

λ
∂tn |Φ(t,u).

Extend η̄ near K as the velocity vector field of the geodesics in Mt departing
orthogonally from K ∩Mt. We obtain for 1 ≤ i, j ≤ n− 1 that

λ2η̄〈∇̄∂
ti
η̄, ∂tj〉 = ∂tn〈∇̄∂

ti
∂tn , ∂tj〉

= 〈∇̄∂
ti
∇̄∂tn

∂tn , ∂tj〉 + 〈R̄(∂tn , ∂ti)∂tn , ∂tj 〉 + 〈∇̄∂
ti
∂tn , ∇̄∂

tj
∂tn〉

= −λ2(γ̄〈∇̄η̄η̄, Y 〉〈∇̄∂
ti
∂tj , Y 〉 + 〈R̄(∂ti , η̄)η̄, ∂tj〉 − 〈∇̄∂

ti
η̄, ∇̄∂

tj
η̄〉).

Using (3) and (4), we have

η̄〈∇̄∂
ti
η̄, ∂tj〉 = −k2tij − 〈R̄(∂ti , η̄)η̄, ∂tj〉 + 〈A2

ǫ∂ti , ∂tj〉 (9)

where Aǫ denotes the Weingarten map of Kǫ relative to η̄.
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For the remaining case i = j = 0, we have

η̄〈∇̄∂
t0
η̄, ∂t0〉 = 〈∇̄Y ∇̄η̄η̄, Y 〉 + 〈R̄(η̄, Y )η̄, Y 〉 + 〈∇̄[η̄,Y ]η̄, Y 〉 + 〈∇̄Y η̄, ∇̄η̄Y 〉.

However,

[η̄, Y ] = −[Y, η̄] = −[∂t0 , λ
−1∂tn ] =

λt

λ2
∂tn = ρη̄. (10)

Thus,
〈∇̄[η̄,Y ]η̄, Y 〉 = ρ〈∇̄η̄η̄, Y 〉 = −ρ2.

Using (10) we have

〈∇̄Y η̄, ∇̄η̄Y 〉 = 〈∇̄Y η̄, ∇̄Y η̄〉 + 〈∇̄Y η̄, [η̄, Y ]〉 = 〈A2
ǫY, Y 〉

and
〈∇̄Y ∇̄η̄η̄, Y 〉 = Y 〈∇̄η̄η̄, Y 〉 − γ̄〈∇̄η̄η̄, Y 〉〈∇̄Y Y, Y 〉 = −Y (ρ) + ρ2.

It follows that

η̄〈∇̄∂
t0
η̄, ∂t0〉 = −Y (ρ) − 〈R̄(Y, η̄)η̄, Y 〉 + 〈A2

ǫY, Y 〉. (11)

We also have

η̄〈∇̄∂
ti
η̄, ∂tj 〉 = −〈∇̄η̄Aǫ∂ti , ∂tj 〉 − 〈Aǫ∂ti , ∇̄η̄∂tj〉 = −〈(∇̄η̄Aǫ)∂ti , ∂tj〉 + 2〈A2

ǫ∂ti , ∂tj〉

for 0 ≤ i, j ≤ n−1. Taking traces with respect to the metric (tij) in K with t00 = γ̄
and t0i = 0, and using (9) and (11) gives

tr∇̄η̄Aǫ = tij〈(∇̄η̄Aǫ)∂ti , ∂tj〉 = −tij η̄〈∇̄∂
ti
η̄, ∂tj〉 + 2tij〈A2

ǫ∂ti , ∂tj〉

= −γ̄η̄〈∇̄∂
t0
η̄, ∂t0〉 + 2γ̄〈A2

ǫ∂t0 , ∂t0〉 −
n−1
∑

i,j=1

tij(η̄〈∇̄∂
ti
η̄, ∂tj〉 − 2〈A2

ǫ∂ti , ∂tj 〉)

= γ̄Y (ρ) + (n− 1)k2 + RicM̄(η, η) + trA2
ǫ .

However,

√
γ̄ kt =

Y (k)

|Y | = − 1

|Y |2Y (ρ) + kY
( 1

|Y |
)

= −γ̄Y (ρ) + k2. (12)

We conclude that

tr∇̄η̄Aǫ = trA2
ǫ + RicM̄(η̄, η̄) + nk2 −√

γ̄ kt.

Since nḢKǫ
= ∇̄η̄trAǫ = tr∇̄η̄Aǫ, at d = ǫ, it follows that

nḢKǫ
≥ nH2

Kǫ
+ RicM̄(η̄, η̄) + nk2 −√

γ̄ kt.

Therefore, at t = 0 and by the assumption on Ricrad
M̄ there exist constants c > 0 and

d0 > 0 such that
ḢKd

≥ c(HKd
− inf

Γ
HK)

for d ∈ [0, d0]. Hence, HKd
does not decrease with increasing d.
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4 Conformal Killing graphs

The conformal Killing graph Σn of a function z : Ω̄ ⊂ Mn → I is the hypersurface
in M̄n+1 given by

Σn = {X(u) = Φ(z(u), u) : u ∈ Ω̄}.
We show next that the partial differential equation for a prescribed mean curvature
function H in Ω̄ is the quasilinear elliptic equation of divergence form

div

( ∇z
√

γ + |∇z|2

)

− 1
√

γ + |∇z|2

(〈∇γ,∇z〉
2γ

+
nγλt

λ

)

− nλH = 0. (13)

Here, the gradient ∇ and the divergence div are differential operators in the leaf
Mn endowed with the metric dσ2.

A sufficient condition to have a maximum principle for (13) (see Theorem 10.1
in [5]) is

(λt/λ)t = ρt ≥ 0 and λtH ≥ 0. (14)

The graph Σ is parametrized in terms of local coordinates by

X(u) ∈ Σ 7→
(

z(x1, . . . , xn), x1, . . . , xn
)

.

Thus, the tangent space to Σ at X(u) is spanned by the vectors

Xi = zi∂0|X(u) + ∂i|X(u), (15)

where zi = ∂z/∂xi. Hence, the metric induced on Σ is

gij|X(u) = λ2(z(u))

(

σij(u) +
zizj

γ(u)

)

.

The inverse is

gij|X(u) =
1

λ2(z(u))

(

σij(u) − zizj

γ(u) + |∇z|2
)

where zi = σikzk and |∇z|2 = zjzj as usual.
Fix the orientation on Σ given by the unit normal vector field

N |X(u) =
1

λ2W

(

γ(u)∂0|X(u) − Φz(u) ∗∇z(u)
)

, (16)

where
λ2W 2 = γ + |∇z|2.

Notice that 〈N, Y 〉 > 0. We compute the second fundamental form

aij = 〈∇̄Xi
Xj, N〉
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of Σ. From (15) and (16) we obtain

λ2Waij = γzij〈∂0, ∂0〉 + γzizj〈∇̄∂0
∂0, ∂0〉 + γzj〈∇̄∂i

∂0, ∂0〉 + γzi〈∇̄∂j
∂0, ∂0〉

+ γ〈∇̄∂i
∂j , ∂0〉 − zizj〈∇̄∂0

∂0,Φz(u)∗∇z〉 − zj〈∇̄∂i
∂0,Φz(u)∗∇z〉

− zi〈∇̄∂j
∂0,Φz(u)∗∇z〉 − 〈∇̄∂i

∂j ,Φz(u)∗∇z〉.

The Levi-Civita connections in M and Mt are determined by the same Christoffel
symbols since σ̄ij |ū = λ2σij |u if u ∈ M and ū = Φt(u) ∈ Mt. We have from (2) and
(3) that

〈∇̄∂i
∂j , ∂0〉 = −ρ(z(u))〈∂i|X(u), ∂j |X(u)〉 = −λλt(z(u))σij(u).

The terms involving the flow lines acceleration are

〈∇̄∂0
∂0, ∂0〉|X(u) =

1

2
∂t|t=z(u)(λ

2/γ) =
λλt(z(u))

γ(u)

and

〈∇̄∂i
∂0, ∂0〉|X(u) =

1

2
∂i|X(u)

(

λ2/γ
)

= −λ
2(z(u))γi(u)

2γ2(u)
.

Similarly,

〈∇̄∂i
∂j |X(u),Φz(u) ∗∇z(u)〉 = 〈Φz(u) ∗∇̄∂i

∂j |u,Φz(u) ∗∇z(u)〉 = λ2(z(u))〈∇∂i
∂j |u,∇z|u〉

and

〈∇̄∂i
∂0,Φz(u)∗∇z〉 = 〈∇̄∂i

∂0|X(u), z
j∂j |X(u)〉 = zjρ〈∂i|X(u), ∂j |X(u)〉 = ziλλt(z(u)).

Since zi;j = zij − 〈∇∂i
∂j ,∇z〉 are the Hessian components, we have

Waij = zi;j −
λt

λ
zizj −

λt

λ
γσij −

γi

2γ
zj −

γj

2γ
zi −

γk

2γ2
zizjz

k.

We easily obtain

λ4W 3ai
k = λ4W 3gijajk

=
(

λ2W 2σij − zizj
)

zj;k −
1

2
ziγk − λ2W 2

(

γi

2γ
zk +

γλt

λ
δi
k

)

. (17)

Taking traces after dividing both sides by λ3W 3 yields

nλH =
1

λW

(

σij − zizj

λ2W 2

)

zj;i −
γiz

i

2λ3W 3
− 1

λW

(

γiz
i

2γ
+
nγλt

λ

)

. (18)

Equivalently,

QH [z] :=

(

zi

√

γ + zkzk

)

;i

− 1
√

γ + zkzk

(

γiz
i

2γ
+
nγλt

λ

)

− nλH = 0. (19)
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In what follows, we will be concerned with finding a conformal Killing graph Σ
with prescribed mean curvature function H and boundary Γ̄. This amounts to be
equivalent to solving the Dirichlet problem

{

QH [z] = 0

z|Γ = φ.
(20)

In the next sections, our goal is to establish a priori estimates for solutions of the
above Dirichlet problem under the hypothesis of Theorem 1.

5 Height estimates

In this section, we obtain an a priori height estimate.

Lemma 6. Under the assumptions of Theorem 1 there exists a positive constant
C = C(Ω, H) such that

|z|0 ≤ C + |φ|0
for any solution z of the Dirichlet problem (20).

Proof: The second condition in (14) implies that k ≤ 0 ≤ H . Thus, it follows from
the tangency principle (see [4]) that any solution z of (20) satisfies z ≤ supΓ φ ≤ 0.

We construct barriers on Ω0 which are subsolutions to (20) of the form

ϕ(u) = inf
Γ
φ+ f(d(u)) (21)

where d(u) = dist(u,Γ) and the real function f will be chosen later. Hence,

ϕi = f ′di and ϕi;j = f ′′didj + f ′di;j. (22)

At points in Ω0, we have
|∇d| = 1. (23)

It follows that
didi;j = 0 (24)

and
2〈∇∂d

∇d, ∂d〉 = ∂d|∇d|2 = 0.

Moreover,
di

;i = σijdi;j = σij〈∇∂i
∇d, ∂j〉 = −(n− 1)HΓǫ

, (25)

where HΓǫ
denotes the mean curvature of Γǫ ⊂ Ω0 with respect to η.

Combining (18) and

〈∇γ,∇z〉 = − 2

|Y |4 〈∇̄∇zY, Y 〉 = 2γ2〈∇̄Y Y,∇z〉.
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yields

QH [ϕ] =
1

U

(

ϕi
;i −

ϕiϕjϕi;j

U2

)

− γ

U3
(γ + U2)〈∇̄Y Y,∇ϕ〉 −

nγλt

λU
− nλH.

where
U = λW =

√

γ + f ′2.

Using (22) and (25) we obtain

QH [ϕ] =
γ

U3
(f ′′ − γ〈∇̄Y Y, η〉f ′) − f ′

U
((n− 1)HΓǫ

+ γ〈∇̄Y Y, η〉) −
nγρ

U
− nλH.

We take for (21) the test function

f =
eDB

D

(

e−Dd − 1
)

where B > diam(Ω) and D > 0 is a constant to be chosen later. Then,

f ′ = −eD(B−d) and f ′′ = −Df ′.

By assumption and using (12) it follows that

nk2 −√
γ̄kt = (n− 1)k2 + γ̄ρt ≥ 0.

We obtain from Proposition 5 that

HKǫ
≥ H∗ > H ≥ 0

where H∗ = infΓHK > 0. Since λ(ϕ) ≤ 1, it follows that QH [ϕ] > 0 if

QH [ϕ] > −γf
′

U3
(D + κǫ) −

f ′

U
nH∗ − nγρ

U
− nH.

We require D > supΩ0
|κǫ| and denote nD0 = D + κǫ. Thus QH [ϕ] > 0 if

HU3 < −H∗f ′U2 − γρU2 − γD0f
′. (26)

Since f ′2 → +∞ asD → +∞, we conclude that forD sufficiently large the inequality
holds. If Y is a Killing field (ρ = 0) and we only assume that H∗ ≥ H , then (26) is
equivalent to

(H∗)2(γ + f ′2)2f ′2 −H2(γ + f ′2)3 + 2H∗γD0f
′2(γ + f ′2) + γ2D2

0f
′2 > 0.

Clearly, the last inequality holds for D sufficiently large. Hence, we have shown that

QH [ϕ] > 0 = QH [z], ϕ|Γ ≤ z|Γ
To prove that ϕ ≤ z on Ω̄ we just follow the reasoning in the proof of Lemma 6 in

[2] (see [5], p. 171). We conclude that ϕ is a continuous subsolution for the Dirichlet
problem (20).
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6 Boundary gradient estimates

In this section, we establish an a priori gradient estimate along the boundary of the
domain.

Lemma 7. Under the assumptions of Theorem 1 there exists a positive constant
C = C(Ω, H, φ, |z|0) such that

sup
Γ

|∇z| ≤ C

for any solution z of the Dirichlet problem (20).

Proof: We use barriers of the form w+φ along a tubular neighborhood Ωǫ of Γ. We
set w = f(d) and, for simplicity, we extend the boundary data φ to Ωǫ by taking
φ(ti, d) = φ(ti). We choose

f(d) = −µ ln(1 + µ̃d)

where µ and µ̃ are positive constants. Hence,

f ′ = − µµ̃

1 + µ̃d
and f ′′ =

1

µ
f ′2.

Choosing

µ̃ =
1

ln(1 + µ)
,

we have that
f ′(0) → −∞ as µ→ ∞. (27)

A simple estimate gives

QH [w + φ] = aij(x,∇w + ∇φ)(wi;j + φi;j) + b(x,∇w + ∇φ) − nλH

≥ aijwi;j + Λ|φ|2,α + b− nλH.

Here, Λ = γ/U3 is the lowest eigenvalue of the matrix

aij =
δij

U
− 1

U3
(wi + φi)(wj + φj)

and
b = − γ

U3

(

γ + U2
)

〈∇̄Y Y,∇w + ∇φ〉 − nγρ

U
,

where from (23) we have

U2 = θ + f ′2 and θ = γ + |∇φ|2.

It follows from (23) and (24) that

wiwjwi;j = f ′2didj(f ′′didj + f ′di;j) = f ′2f ′′,

12



wiφjwi;j = f ′diφj(f ′′didj + f ′di;j) = f ′f ′′〈∇d,∇φ〉 = 0

and
φiφjwi;j = φiφj(f ′′didj + f ′di;j) = f ′φiφjdi;j.

Since
∆w = f ′′ + f ′∆d = f ′′ − (n− 1)f ′HΓd

,

we obtain

aijwi;j = −(n− 1)
f ′

U
HΓd

+
f ′′

U3
(γ + |∇φ|2) − f ′

U3
φiφjdi;j.

Since ∇w = f ′η and κ = γ〈∇̄Y Y, η〉, a suitable expression for b is

b = −f
′

U

( γ

U2
+ 1
)

κ− γ

U

( γ

U2
+ 1
)

〈∇̄Y Y,∇φ〉 −
nγρ

U

Using Proposition 4, we conclude that

QH [w + φ]U3 ≥ −n(f ′HKd
+ λHU)U2 + γ|φ|2,α − nγρU2 − γ〈∇̄Y Y,∇φ〉U2

+f ′′(γ + |∇φ|2) − f ′γκ+ f ′φiφjdi;j − γ2〈∇̄Y Y,∇φ〉.

Since φ ≤ 0, we have λ(φ) ≤ 1 and ρ(ϕ) ≤ ρ0. At points of Γ, we obtain

QH [w + φ]U3 ≥ −n(f ′HK +H
√

θ + f ′2)(θ + f ′2) + ln(1 + µ)(γ + |∇φ|2)f ′2

−γ(nρ0 + 〈∇̄Y Y,∇φ〉)(θ + f ′2) − (γκ+ φiφjdi;j)f
′ + γ|φ|2,α − γ2〈∇̄Y Y,∇φ〉

where f ′ = f ′(0) satisfies (27). It is easy to see using infΓHK ≥ H ≥ 0 and choosing
µ large enough assures that QH [w + φ] > 0 on a small tubular neighborhood Ωǫ of
Γ and that w + φ ≤ z on both boundary components. Therefore, w + φ is a locally
defined lower barrier for the Dirichlet problem (20).

7 Interior gradient estimates

In this section, we establish an a priori global estimate for the gradient.

Lemma 8. Under the assumptions of Theorem 1 there exists a positive constant
Ĉ = Ĉ(Ω, H, φ, |∇z|Γ|0) such that

sup
Ω

|∇z| ≤ Ĉ

for any solution z of the Dirichlet problem (20).

13



Proof: The proof follows the same guidelines as in [2]. Consider on Σ the function

χ = ve2Cz

where v = |∇z|2 = zizi and C > 0 is a constant. If χ achieves its maximum on
Γ then we already have the desired bound. Thus, we may assume that χ attains
maximum value at an interior point ū ∈ Ω where |∇z| 6= 0. This assumption enables
us to choose a local normal coordinate system x1, . . . , xn so that ∂1|ū = ∇z/|∇z|
and σij(ū) = δij . Therefore, at ū we have

z1 = |∇z| > 0 and zj = 0 if j ≥ 2.

Since vj = 2zlzl;j, we also obtain at ū from

0 = χj = 2e2Cz
(

Cvzj + zlzl;j

)

that zlzl;j = −Cvzj . Thus, at ū we conclude that

v1 = −2Cv3/2, z1;1 = −Cv and vj = 0 = z1;j if j ≥ 2. (28)

Rotating the vector fields ∂j we may assume that (zi;j), 2 ≤ i, j ≤ n, is diagonal.
Covariantly differentiating QH [z] = 0 in the tensorial form ai

i = ψ = nλH gives

ai
i;l = ψzzl + ψl,

where the subscript in ψ indicates taking derivative. Contraction with zl yields

zlai
i;l = ψz|∇z|2 + ψlz

l.

Thus,

zl(W 3λ4ai
i);l = zlW 3

;lλ
4ψ +W 3λ4(ψz|∇z|2 + ψlz

l) + 4W 3λ3λt|∇z|2ai
i.

At ū and since λ2W 2 = γ + v, we obtain

zlW 3
;l =

3

2λ2
W (γ1v

1/2 − 2Cv2).

Therefore,

zl(W 3λ4ai
i);l =

3

2
Wλ2ψ(γ1v

1/2 − 2Cv2) +W 3λ4(ψz|∇z|2 + ψlz
l) + 4(γ + v)3/2vλtψ.

is a polynomial in C of first order. We have from (17) that

W 3λ4ai
k =

(

(γ + v)σij − zizj
)

zj;k −
1

2
ziγk − (γ + v)

(

γi

2γ
zk +

λtγ

λ
δi
k

)

.

14



Thus,
zl(W 3λ4ai

i);l = C1 + C2 (29)

where

C1 = zl((γ + v)σij − zizj)zj;i);l and C2 = −zl
(1

2
ziγi + (γ + v)

( γi

2γ
zi +

nλtγ

λ

))

;l
.

At ū, we obtain

C2 =−z1
2

(

z1;1γ1+z1γ1;1+(γ1+v1)
(γ1

γ
z1+

2nλtγ

λ

)

+(γ+v)
((γ1

γ

)

1
z1+

γ1

γ
z1;1+

2nλtγ1

λ

))

.

It follows from (28) that C2 is a polynomial in C of first order.
Computing C1 at ū, we have

C1 = z1
(

((γ + v)σij − zizj)zj;i

)

;1

= (γ1v
1/2 − 2Cv2)zi

;i − 2C2v3 + v1/2Djizj;i1 (30)

where
Dij = (γ + v)σij − zizj .

For the first term in (30), it follows from (18) that

(γ + v)zi
;i = nλH(γ + v)

3

2 − Cv2 +
γ1

2γ
(2γ + v)v

1

2 +
nγλt

λ
(γ + v) = −Cv2 + B

where B is independent of C. We use the Hessian matrix of χ for computing the
last term in (30). We have,

χj;k = 2e2Cz(2C2zjzkv + 2Czkz
lzl;j + Czj;kv + 2Czjz

lzl;k + zl
;kzl;j + zlzl;jk),

which is nonpositive at ū. Thus Djiχj;i ≤ 0. Therefore,

0 ≥ 2C2Djizjziv + 2CDjiziz
lzl;j + CDjizj;iv + 2CDjizjz

l +Djizl
;izl;j +Djizlzl;jizl;i

= (γ + v)(Cvzi
;i + zl

;iz
i
;l) − 2C2γv2 +Djizlzl;ji.

Since zi;k is diagonal, it follows that

zl
;iz

i
;l = (zl

;l)
2 ≥ (z1

;1)
2 = C2v2.

Hence,

Djizlzl;ji ≤ 2γC2v2 − (γ + v)Cvzi
;i − (γ + v)C2v2 = γC2v2 + CBv.

Next we use the Ricci identity in the form

zi;jk − zk;ij = Rijkmz
m.
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Since Rjklmz
lzm = 0, we obtain

Djizlzj;il =
(

γ + v
)

σijzlzj;il − zizjzlzj;il

=
(

γ + v
)

σijzl
(

zl;ji +Rjilmz
m
)

− zizjzl
(

zl;ji +Rjilmz
m
)

= ((γ + v)σij − zizj)zlzl;ji

= Djizlzl;ji.

Therefore,
v1/2Djizj;i1 ≤ γC2v2 + CBv.

It follows that

C1 ≤ (γ1v
1/2 − 2Cv2)

B − Cv2

γ + v
− 2C2v3 + γC2v2 + CBv.

As a polynomial in C we obtain an inequality of the form

(γ + v)C1 ≤ γ(γ − v)v2C2 +mC + n.

We now use (29) where we have seen that only the term C1 is a polynomial in C of
second order. We obtain a polynomial inequality in C of the form

γ(γ − v)v2C2 + bC + c ≥ 0.

Since C > 0 is arbitrary it follows that v ≤ γ, and this concludes the proof.

8 Proof of the theorem

We apply the well-known continuity method to the family of Dirichlet problems
{

QτH [z] = 0,

z|Γ = τφ

where τ ∈ [0, 1]. The subset I of [0, 1] consisting of values of τ for which the above
Dirichlet problem has a C2,α solution is open in view of (14). That I is closed follows
from standard theory of quasilinear elliptic equations [5] and the a priori estimates
we had proved in Lemmas 6, 7 and 8 above. Thus, it remains to prove that I is non-
empty. In fact, we prove that 0 ∈ I. This corresponds to guarantee the existence of
a minimal graph with boundary Γ.

We first show that an extreme of the functional

I[z] =

∫

Ω

F (u, z(u),∇z(u))dx,

where

F (u, z,∇z) =
λn

√
γ

√

γ + |∇z|2
√

det σij
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defined in
C = {z ∈ C0,1(Ω̄) : z|Γ = 0}

provides a weak solution of the mean curvature equation (19) for minimal graphs
(H = 0) with boundary Γ. The corresponding Euler-Lagrange equation is

∂F

∂z
−
(

Fzi

√

γ + |∇z|2

)

,i

= 0. (31)

However, we have
∂F

∂z
=
nλt

λ
F

and
∂F

∂zi
=

λn

2U
√
γ

∂

∂zi
(σklz

kzl)
√

det σkl =
G

U
σikz

k =
G

U
zi,

where

U =
√

γ + |∇z|2 and G =
F

U
=

λn

√
γ

√

det σkl.

Since
(

Gzi

U

)

,i

= G

(

zi

U

)

,i

+
ziG,i

U
= G

(

zi

U

)

,i

+G
zi

U

(

nλtzi

λ
− γi

2γ
+
∂i

√
det σkl√

det σkl

)

,

we obtain from (31) that

−
(

zi

U

)

,i

+
1

U

(ziγi

2γ
+
nγλt

λ

)

+
zi

U

∂i

√
det σkl√

det σkl

= 0.

Since

√

det σkl = |∂1 ∧ . . . ∧ ∂n| and ∇∂i
(∂1 ∧ . . . ∧ ∂n) =

n
∑

j=1

Γj
ij ∂1 ∧ . . . ∧ ∂n

we have
∂i

√
det σkl√

det σkl

= Γj
ij.

We conclude that (19) for H = 0 is the Euler-Lagrange equation for I as claimed.
Lipschitz extrema for I in C are C2 functions by standard regularity results (see

Theorem 1.10.4 (i) in [7]). Thus, these extrema are classical solutions for the mean
curvature equation for H = 0. The a priori estimates combined with the fact that
C1(Ω̄) is continuously immersed in C0,1(Ω̄) assure that there exists a constant L > 0
so that Lipschitz extrema of I in C satisfy |u|0,1 ≤ L. Thus, we must seek for
extrema in the subset

CL = {z ∈ C : |z|0,1 ≤ L}.
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Since 0 ∈ CL this is a non-empty subset of C. Moreover, it results that F is convex
since this condition is equivalent to the ellipticity of the PDE. Thus, we conclude
from Theorem 11.10 in [5] that there exists a solution for the problem of extremizing
I in CL. This establishes the existence of a minimal graph with boundary Γ, and
concludes the proof of the theorem.

Proof of Corollary 2: Being Y closed we may assume γ = 1. Thus (6) and (7) yield

n2H2
K = (n− 1)2H2

Γ.

On the other hand, the relation between the Ricci tensors of M̄n+1 and Mn is

RicM̄(X,Z) = RicM(X,Z) − (nk2 − kt)〈X,Z〉

for any X,Z ∈ TM . Thus (8) is equivalent to

inf
Ω0

Ricrad
M ≥ −(n− 1)2

n
inf
Γ
H2

Γ,

and the proof follows.

Finally, we point out that our existence results still hold if φ is only assumed
continuous. We may approximate φ uniformly by smooth boundary data and use the
interior gradient estimate to obtain strong convergence on compact subsets of Ω. A
local barrier argument shows that the limiting solutions achieves the given boundary
data.

9 Final Remark

We have from (5) that the ambient space M̄ is the product manifold I×M endowed
with the metric

ds2 = λ2(t)γ−1(u)(dt2 + γ(u)dσ2).

It is thus natural to consider the general situation of an ambient space I×M endowed
with the conformal metric

g̃ = λ2(t, u)g = e2ϕ(t,u)g

where g is the product metric in I ×M . In this case, the mean curvature equation
for the graph X = (z(u), u) is

div

( ∇z
√

1 + |∇z|2

)

− n
√

1 + |∇z|2
(

〈∇̄z, ∇̄ϕ〉 − ϕt

)

− nλH = 0,

where z(t, u) = z(u) and we compute 〈∇̄z, ∇̄ϕ〉 in the ambient space.
We conclude that in order to have a maximum principle for the above equation

we have to ask ϕt to be independent of t, that is, the function λ has to separate
variables. But this is precisely the case we studied in this paper.
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Analyse non linéaire.
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