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Abstract. We propose a new approach to analyzing dynamical systems that

combine hyperbolic and non-hyperbolic (“center”) behavior, e.g. partially
hyperbolic diffeomorphisms. A number of applications illustrate its power.

We find that any ergodic automorphism of the 4-torus with two eigenvalues

in the unit circle is stably Bernoulli among symplectic maps. Indeed, any
nearby symplectic map has no zero Lyapunov exponents, unless it is volume

preserving conjugate to the automorphism itself. Another main application

is to accessible skew-product maps preserving area on the fibers. We prove,
in particular, that if the genus of the fiber is at least 2 then the Lyapunov

exponents must be different from zero and vary continuously with the map.

These, and other dynamical conclusions, originate from a general Invariance
Principle we prove in here. It is formulated in terms of smooth cocycles,

that is, fiber bundle morphisms acting by diffeomorphisms on the fibers. The
extremal Lyapunov exponents measure the smallest and largest exponential

rates of growth of the derivative along the fibers. The Invariance Principle

states that if these two numbers coincide then the fibers carry some amount
of structure which is transversely invariant, that is, invariant under certain

canonical families of homeomorphisms between fibers.

1. Introduction

A core issue in the theory of partially hyperbolic dynamical systems is the
possible vanishing of center Lyapunov exponents. Recall that a diffeomorphism
f : M →M is called partially hyperbolic if the tangent bundle admits a continuous
Df -invariant splitting

TxM = Esx ⊕ Ecx ⊕ Eux , x ∈M
such that Df | Esx is a uniform contraction, Df | Eux is a uniform expansion, and
the behavior of Df | Ecx lies in between those two (not quite as contracting nor
as expanding, respectively). When the vectors in the center bundle Ec also have
non-zero Lyapunov exponents, that is, when

lim
1
n

log ‖Dfn(x)v‖ 6= 0 ∀v ∈ Ecx

at typical points x ∈ M , one can build on (non-uniform) hyperbolicity theory
to derive important geometric and statistical information on the dynamics. See
Pesin [38, 39], Ledrappier, Young [32, 34, 35], Katok [29], Barreira, Pesin, Schmel-
ing [8], Young [45, 46], and Alves, Bonatti, Viana [2, 15].
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So, one would like to know: When is it possible to remove vanishing center Lya-
punov exponents by a small perturbation of the map ? Supposing center Lyapunov
exponents do vanish (stably), what can be said about the dynamical behavior ?

Substantial progress on this kind of questions has been achieved recently in
the simpler, but closely related setting of linear cocycles. A linear cocycle over a
transformation g : X → X is a map F : E → E on a vector bundle E → X such
that

F : E → E
↓ ↓

g : X → X

commutes and the action Fx : Ex → Eg(x) on every fiber is by a linear isomorphism.
As before, the exponential rates of growth or decay of iterates of vectors

lim
1
n

log ‖Fnx v‖, v ∈ Ex

are called Lyapunov exponents. By Oseledets [37], they are well defined at almost
every point x ∈ X, relative to any g-invariant probability measure µ.

Assuming the base dynamics (g, µ) is fairly “chaotic” (hyperbolic, possibly in a
non-uniform fashion), there is now a good understanding of such issues as the exis-
tence of non-zero Lyapunov exponents (see Bonatti, Gomez-Mont, Viana [14, 43])
or the simplicity of the Lyapunov spectrum (see Avila, Bonatti, Viana [5, 6, 16]),
in line with the classical theory of random matrices developed by Furstenberg [23],
Ledrappier [33], Guivarc’h, Raugi [25], Gol’dsheid, Margulis [24], and other authors.
In a nutshell, for generic linear cocycles the Lyapunov exponents are not all zero.
Even more, at least in the so-called fiber bunched case, all Lyapunov exponents are
generically distinct.

In this paper we propose to extend that family of ideas to a general non-linear
context, suitable, in particular, to addressing such questions as we stated before in
the realm of partially hyperbolic dynamics. The power of this kind of analysis is
made evident by the following surprising rigidity phenomenon we have discovered,
and which motivates our discussion below.

Let A : T4 → T4 be a linear automorphism with exactly two eigenvalues on the
unit circle and assume that no eigenvalue is a root of unity. The latter condition
means that A is ergodic relative to the Haar measure on the 4-torus. Rodriguez-
Hertz [26] proves that A is even stably ergodic, that is to say, every nearby volume
preserving map f : T4 → T4 is ergodic. Notice that A is a partially hyperbolic dif-
feomorphism, with 2-dimensional center bundle Ec that corresponds to the eigen-
values of norm 1. Clearly, the center Lyapunov exponents are identically zero.

The hypotheses imply that A preserves some symplectic form on T4. Let this
form be fixed once and for all.

Theorem A. There exists a neighborhood U of A in the space of smooth symplectic
diffeomorphisms on T4 such that for every f ∈ U ,

• either f is non-uniformly hyperbolic, that is, all Lyapunov exponents are
non-zero almost everywhere,
• or f is conjugate to A by some volume preserving homeomorphism.

In particular, every f ∈ U is equivalent to a Bernoulli shift.

In other words, the center Lyapunov exponents must become non-zero when-
ever A is perturbed, unless the perturbation leaves the dynamics unchanged up
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to volume preserving conjugacy. Moreover, A is stably Bernoulli, a much stronger
property than ergodicity.

The proof of Theorem A has many ingredients, but the main thread is that in
order to prove conjugacy to the original automorphism one must recover a commu-
tative group structure in the torus compatible with the dynamics. In the hardest
case to analyze, such structure is obtained as the completion of an almost periodic
translation structure on the center leaves, which is itself a refinement of a conformal
structure. Thus, at the basis of the entire proof, one needs to connect vanishing of
center Lyapunov exponents with existence of invariant conformal structures.

With these motivations in mind, we now describe the abstract Invariant Principle
that is the foundation of this paper. It is formulated in terms of smooth cocycles
F : E → E , a natural extension of the notion of linear cocycles where E is now
taken to be a fiber bundle whose fibers are manifolds, and F is taken to act by
diffeomorphisms on the fibers. Lyapunov exponents are defined in this setting by

lim
1
n

log ‖DFx(ξ)v‖, v ∈ TξEx, ξ ∈ Ex.

In a few words, the Invariance Principle states that if the Lyapunov exponents van-
ish then the fibers carry some amount of structure which is transversely invariant,
that is, invariant under certain canonical homeomorphisms between the fibers. The
precise statement will be given in the next section, once we have introduced all
the necessary notions. In the applications, we exploit such transversely invariant
structure, together with information on the fiber (e.g. its topology), to deduce some
very precise information on the dynamics.

Besides Theorem A, we apply this approach to certain area preserving cocycles.
Namely, suppose the fibers of E are modeled on some compact surface N and
the cocycle F : E → E is such that all Fx : Ex → Eg(x) preserve some given
area form. Assuming the genus of N is at least 2, together with a few additional
conditions, we can prove that the Lyapunov exponents of F are non-zero at almost
every point. Moreover, the Lyapunov exponents of every nearby cocycle are close
to the Lyapunov exponents of F .

The idea of extending Furstenberg’s theory to a non-linear set-up is, of course,
not new. Let us mention, in particular, Carverhill [19] and Baxendale [9], who
both dealt with i.i.d. situations. For instance, Baxendale’s (discrete time) stochas-
tic flows of diffeomorphisms correspond to the particular case of smooth cocycles
where the base dynamics is a Bernoulli shift and the cocycle depends on only one
coordinate in shift space. For the sharpest results Baxendale [9] also assumes the
stationary measure to be absolutely continuous on the fibers.

However, the formulation we propose here seems particularly suited for applica-
tions to various situations in Dynamics. Indeed, several applications of the present
methods have been found in the meantime, some of which had not been foreseen. In
our joint paper with Santamaria [3] the Invariance Principle is refined and combined
with other techniques to handle cocycles over partially hyperbolic systems. This is
also a main ingredient in our joint paper with Wilkinson [7], where new connections
between the dynamics of partially hyperbolic systems and the measure-theoretical
properties of their invariant foliations are unveiled.

In a setting of dissipative systems, Viana, Yang [44] combine methods in the
present paper with other ideas to prove existence and finiteness of physical (or Sinai-
Ruelle-Bowen) measures for partially hyperbolic maps with 1-dimensional center.
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The Invariance Principle allows them to treat the case of vanishing center Lyapunov
exponent, which was not covered by [2, 15]. Also very recently, F. and J. Rodriguez-
Hertz, R. Ures, A. Tahzibi announced further applications of these methods, to
entropy maximizing measures of partially hyperbolic maps. Again, the Invariance
Principle allows them to deal with the case when the maximizing measures have
zero center exponents.

Acknowledgments. We are grateful to Jairo Bochi, Carlos Bocker, Jimmy Santa-
maŕıa, Amie Wilkinson, and Jiagang Yang for several useful discussions. This work
was started while the authors were visiting the Collège de France. It was partly
conducted during the period A. A. served as a Clay Research Fellow. M. V. was
partially supported by CNPq, FAPERJ, and PRONEX-Dynamical Systems.

2. Statement of results

In the sequel we give the precise definitions and statements that lead to the
conclusions outlined in the Introduction.

2.1. Smooth cocycles. Let (M̂, B̂, µ̂) be a probability space and f̂ : M̂ → M̂ be
a measurable transformation preserving µ̂. Let N be a Riemannian manifold, not
necessarily complete, and let Diff1(N) be endowed with a uniform C1 norm. Let
P̂ : Ê → M̂ be a measurable fiber bundle with fibers modeled on N . By this we
mean Ê comes with a countable system of bijections

(1) P̂−1(Un)→ Un ×N

that map each fiber Êx̂ = P̂−1(x̂) onto {x̂} × N , and all coordinate changes are
measurable maps of the form

(2) (Um ∩ Un)×N → (Um ∩ Un)×N, (x̂, ξ̂) 7→ (x̂, gx̂(ξ̂))

where gx̂ : N → N is a diffeomorphism depending measurably on the base point x̂
and such that both the derivative Dgx̂(ξ̂) and its inverse are uniformly continuous
and uniformly bounded. Then one may consider a Riemannian metric on the fibers,
varying measurably with the base point, transported from N via these coordinates.
This metric depends on the choice of the coordinates, but only up to a uniformly
bounded factor, which does not affect the notions that follow.

A smooth cocycle over f̂ is a measurable map F̂ : Ê → Ê such that P̂ ◦ F̂ = f̂ ◦ P̂ ,
every

F̂x̂ : Êx̂ → Êf̂(x̂)

is a diffeomorphism depending measurably on x̂, and the derivative DF̂x̂(ξ̂) and its
inverse are uniformly bounded in norm. Then the functions

(x̂, ξ̂) 7→ log ‖DF̂x̂(ξ̂)‖ and (x̂, ξ̂) 7→ log ‖DF̂x̂(ξ̂)−1‖

are integrable, relative to any probability measure m̂ on Ê . The extremal Lyapunov
exponents of F̂ at a point (x̂, ξ̂) ∈ Ê are

λ+(F̂ , x̂, ξ̂) = lim
n→∞

1
n

log ‖DF̂nx̂ (ξ̂)‖ .

λ−(F̂ , x̂, ξ̂) = lim
n→∞

1
n

log ‖DF̂nx̂ (ξ̂)−1‖−1 .
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The limits exist m̂-almost everywhere if m̂ is invariant under F̂ , by the subadditive
ergodic theorem (Kingman [31]). Notice that

λ−(F̂ , x̂, ξ̂) ≤ λ+(F̂ , x̂, ξ̂),

because ‖DF̂nx̂ (ξ̂)‖‖DF̂nx̂ (ξ̂)−1‖ ≥ 1. Denote

λ± = λ±(F̂ , m̂) =
∫
λ±(F̂ , x̂, ξ̂) dm̂(x̂, ξ̂).

If (F̂ , m̂) is ergodic then λ±(F̂ , x̂, ξ̂) = λ± for m̂-almost every (x̂, ξ̂). Throughout,
we shall only be interested in measures m̂ that project down to µ under P̂ .

2.2. Invariance Principle - measurable. The main technical tool developed in
this paper is a measurability criterion for the disintegration along the fibers of
probability measures invariant under a cocycle. This is inspired by the main result
in Ledrappier [33]: while Ledrappier’s original formulation was for linear cocycles,
ours applies to any deformation of a smooth cocycle, a notion that we also introduce
in here.

Take (M̂, B̂, µ) to be a Lebesgue space, that is, a separable probability space
which is complete mod 0. See Rokhlin [41, §2–§3]. Then any probability m̂ on
Ê such that P̂∗m̂ = µ̂ admits a family {m̂x̂ : x̂ ∈ M̂} of probabilities such that
x̂ 7→ m̂x̂ is B̂-measurable, every m̂x̂ is supported inside the fiber Êx̂ and

m̂(E) =
∫
m̂x̂(E) dµ̂(x̂)

for any measurable set E ⊂ Ê . Moreover, such a family is essentially unique. We
call it the disintegration of m̂ and refer to the m̂x̂ as its conditional probabilities
along the fibers.

Assume that f̂ is invertible. A σ-algebra B0 ⊂ B̂ is generating if its iterates
f̂n(B0), n ∈ Z generate the whole B̂ mod 0. A deformation of a smooth cocycle F̂
is a measurable transformation F̃ : Ê → Ê which is conjugated to F̂ ,

F̃ = H ◦ F̂ ◦H−1,

by an invertible measurable map H : Ê → Ê of the form H(x̂, ξ̂) = (x̂, Hx̂(ξ̂)) such
that all the H−1

x̂ , x̂ ∈ M̂ are Hölder continuous, with uniform Hölder constants:
there exist positive constants B and β such that

(3) d(ξ̂, η̂) ≤ Bd(Hx̂(ξ̂), Hx̂(η̂))β for all x̂ ∈ M̂ and ξ̂, η̂ ∈ Ex̂.

To each F̂ -invariant probability measure m̂ corresponds an F̃ -invariant probability
m̃ = H∗m̂, and m̂ projects down to µ̂ if and only if m̃ does.

Theorem B. Let F̃ be a deformation of a smooth cocycle F̂ . Let B0 ⊂ B̂ be a
generating σ-algebra such that both f̂ and x 7→ F̃x are B0-measurable mod 0. Let
m̂ be an F̂ -invariant probability that projects down to µ̂. If λ−(F̂ , x̂, ξ̂) ≥ 0 for
m̂-almost every (x̂, ξ̂) ∈ Ê then any disintegration x 7→ m̃x of the corresponding
F̃ -invariant measure m̃ is B0-measurable mod 0.

We get a dual result assuming that λ+(F̂ , x̂, ξ̂) ≤ 0 for m̂-almost every (x̂, ξ̂),
and considering a σ-algebra B0 relative to which both maps f̂−1 and x̂ 7→ F̃−1

x̂ are
measurable mod 0. Indeed, it is clear that F̂ has the same invariant probabilities
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as F̂−1, and F̃ is a deformation of F̂ if and only if F̃−1 is a deformation of F̂−1.
Since

λ+(F̂ , x̂, ξ̂) + λ−(F̂−1, x̂, ξ̂) = 0,

the new assumption means that λ−(F̂−1, x̂, ξ̂) ≥ 0 for m̂-almost every (x̂, ξ̂). Thus,
we may apply Theorem B to the inverse cocycle, to obtain the same conclusion as
before under this new assumption. See also Example 3.15 below.

Theorem C. Let F̃ be a deformation of a smooth cocycle F̂ . Let B0 ⊂ B̂ be a
generating σ-algebra such that both f̂ and x 7→ F̃x are B0-measurable mod 0. Let
(m̂k)k be a sequence of F̂ -invariant probabilities projecting down to µ̂ and converging
to some probability m̂ in the weak∗ topology. Assume

∫
min{0, λ−(F̂ , ·)} dm̂k → 0

when k → ∞. Then any disintegration x 7→ m̃x of the corresponding F̃ -invariant
measure m̃ is B0-measurable mod 0.

Theorem B may be viewed as the special case when mk = m for all k: it is clear
that

∫
min{0, λ−(F̂ , ·)} dm̂ = 0 if and only if λ−(F̂ , ·) ≥ 0 m̂-almost everywhere.

2.3. Hyperbolic homeomorphisms. Next, we are going to derive more concrete
versions of these results for continuous cocycles over hyperbolic homeomorphisms.

Let M̂ be a metric space. Let Ê be a continuous fiber bundle (the local coordi-
nates (1) are defined on open sets and the coordinate changes (2) are homeomor-
phisms) where the diffeomorphisms gx̂ vary continuously with x̂ ∈ M̂ . Assume that
a Riemannian metric has been chosen on each fiber, varying continuously with the
base point. Moreover, let F̂ be a smooth cocycle such that the diffeomorphisms F̂x̂
vary continuously with x̂ ∈ M̂ .

We call a homeomorphism f̂ : M̂ → M̂ hyperbolic if there exist ε > 0, δ > 0,
K > 0, τ > 0, and positive functions ν(·) and ν−(·) such that

(h1) d(f̂(ŷ1), f̂(ŷ2)) ≤ ν(x̂)d(ŷ1, ŷ2) for all ŷ1, ŷ2 ∈W s
ε (x̂), x̂ ∈ M̂ ;

(h2) d(f̂−1(ẑ1), f̂−1(ẑ2)) ≤ ν−(x̂)d(ẑ1, ẑ2) for all z1, z2 ∈Wu
ε (x̂), x̂ ∈ M̂ ;

(h3) νn(x̂) := ν(f̂n−1(x̂)) · · · ν(x̂) ≤ Ke−τn for all x̂ ∈ M̂ and n ≥ 1;
(h4) ν−n(x̂) := ν−(f̂−n+1(x̂)) · · · ν−(x̂) ≤ Ke−τn for all x̂ ∈ M̂ and n ≥ 1;
(h5) if d(x̂1, x̂2) ≤ δ then Wu

ε (x̂1) and W s
ε (x̂2) intersect at exactly one point,

denoted [x̂1 , x̂2], and this point depends continuously on (x̂1, x̂2);
where W s

ε (x̂) is the set of all ŷ ∈ M̂ such that d(f̂n(x̂), f̂n(ŷ)) ≤ ε for all n ≥ 0, and
Wu
ε (x̂) is defined analogously, with n ≤ 0 instead. Then the stable and unstable

sets of x̂ are given by

W s(x̂) =
⋃
n≥0

f̂−n(W s
ε (f̂n(x̂))) and Wu(x̂) =

⋃
n≥0

f̂n(Wu
ε (f̂−n(x̂))).

Example 2.1. Let f̂ : M̂ → M̂ be the shift map on M̂ = XZ where (X, dX) is a
complete metric space, and the metric d(·, ·) on M̂ is defined by

d(x̂, ŷ) =
∑
n∈Z

e−τ |n|min
{

1, dX(xn, yn)
}

for x̂ = (xn)n and ŷ = (yn)n.

Take ε ∈ (0, 1), δ ∈ (0, 1), K = 1, and ν(x̂) = ν−(x̂) = e−τ for all x̂ ∈ M̂ .

Then there exist relative neighborhoods Bs(x̂) ⊂ W s
ε (x̂) and Bu(x̂) ⊂ Wu

ε (x̂)
of every x̂ ∈ M̂ such that ι : (x̂1, x̂2) 7→ [x̂1 , x̂2] defines a homeomorphism from
Bs(x̂) × Bu(x̂) to some neighborhood B(x̂) of every x̂ ∈ M̂ . We always consider
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f̂ -invariant probabilities µ̂ with local product structure: for every x̂ in the support
there exist measures µs and µu on Bs(x) and Bu(x), respectively, such that

(4) µ̂ | B(x) ∼ ι∗(µu × µs),

meaning that the two measures have the same zero sets. This implies that the
support is su-saturated, meaning it consists of entire stable leaves (s-saturated set)
and of entire unstable leaves (u-saturated set). Moreover, µ̂ is locally ergodic, that
is, its ergodic components are essentially open sets.

A measure µ̂ is called σ-compact if it gives full weight to some countable union
of compact sets. If M is a Polish space, that is, a separable completely metrizable
topological space then every Borel measure in it is σ-compact.

2.4. Invariance Principle - topological. An s-holonomy for F̂ is a family hs of
β-Hölder homeomorphisms hsx̂,ŷ : Êx̂ → Êŷ, with uniform Hölder constant β > 0,
defined for all ŷ ∈W s(x̂) and satisfying

(sh1) hsŷ,ẑ ◦ hsx̂,ŷ = hsx̂,ẑ and hsx̂,x̂ = id
(sh2) F̂ŷ ◦ hsx̂,ŷ = hs

f̂(x̂),f̂(ŷ)
◦ F̂x̂

(sh3) (x̂, ŷ, ξ) 7→ hsx̂,ŷ(ξ) is continuous.

In the last condition (x̂, ŷ) varies in the space of pairs of points in the same local
stable set. A disintegration {m̂x̂ : x̂ ∈ M̂} of an F̂ -invariant probability m̂ is
s-invariant if

(5) (hsx̂,ŷ)∗mx̂ = mŷ for every ŷ ∈W s(x̂)

with x̂ and ŷ in the support of the projection of m̂. Replacing f̂ and F̂ by their
inverses, one obtains dual notions of u-holonomy hu and u-invariant disintegration.

Theorem D. Assume F̂ : Ê → Ê admits s-holonomy and u-holonomy. Let (m̂k)k
be a sequence of F̂ -invariant probability measures whose projection µ̂ is σ-compact
and has local product structure. Assume the sequence converges to some probability
measure m̂ in the weak∗ topology and

∫
|λ±(F̂ , ·)| dm̂k → 0 when k → ∞. Then

m̂ admits a disintegration {m̂x̂ : x̂ ∈ M̂} which is s-invariant and u-invariant and
whose conditional probabilities m̂x̂ vary continuously with x̂ on the support of µ̂.

An extension for cocycles over certain partially hyperbolic maps will be given in
Theorem 5.10. A first application of Theorem D is given in the proposition that
follows. It will be clear from the arguments that the hypotheses can be relaxed
considerably.

Corollary E. Let f̂ : M̂ → M̂ be the shift map on M̂ = XZ, where X is a complete
metric space. Let Ê = M̂×S1 and F̂ : Ê → Ê be a continuous smooth cocycle over f̂
admitting invariant holonomies. Suppose f̂ admits an invariant probability measure
µ̂ and fixed points p and q in the support of µ̂ such that

• F̂p : S1 → S1 has exactly two fixed points, an attractor ap and a repeller rp
• F̂q : S1 → S1 has no periodic points of period less than 3.

Then λ±(F̂ , m̂) are bounded away from zero, over all ergodic F̂ -invariant measures
m̂ that project down to µ̂.
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2.5. Volume preserving cocycles. We apply the previous ideas to area preserv-
ing cocycles over hyperbolic homeomorphisms satisfying certain partial hyperbol-
icity conditions.

From now on we take the fiber manifoldN to be compact. Assume the continuous
fiber bundle is Lipschitz, in the sense that the diffeomorphisms gx̂ in (2) depend
in a Lipschitz fashion on the base point. Assume that the continuous cocycle is
Lipschitz, in the sense that F̂x̂ depends in a Lipschitz fashion on the point x̂. We
shall consider the following topology: two Lipschitz cocycles are close if they admit
the same Lipschitz constant, they are uniformly close, and their actions on the
fibers are close in the uniform C1 norm.

Remark 2.2. For all our purposes it suffices to assume Hölder continuity, for some
Hölder constant ν > 0: up to replacing the metric on M̂ , one may always reduce
the situation to the Lipschitz case ν = 1.

We take the cocycle F̂ : Ê → Ê to satisfy a normal hyperbolicity property
similar to the center bunching condition of Burns, Wilkinson [18] and which was
first introduced in [14] in the context of linear cocycles. We say that a Lipschitz
smooth cocycle F̂ is dominated if there exist ` ≥ 1 and θ < 1 such that

(6) ‖(DF̂ `x̂(ξ))−1‖ ν`(x̂) ≤ θ and ‖DF̂ `x̂(ξ)‖ ν−`(x̂) ≤ θ

for every (x̂, ξ) ∈ E , and we say f̂ is fiber bunched if, in addition to (6),

(7) ‖DF̂ `x̂(ξ)‖ ‖(DF̂ `x̂(ξ))−1‖ ν±`(x̂) ≤ θ

for every (x̂, ξ) ∈ E . Interpretations of these conditions will be provided in Section 5.
Let B(f̂) be the set of fiber bunched cocycles over f̂ . Observe that this is an open
subset of Lipschitz cocycles, relative to the topology introduced above.

Let m̂ŷ denote the normalized Riemannian volume on each fiber Êŷ. We also
take the cocycle F̂ : Ê → Ê to be volume preserving, meaning that each

F̂x̂ : Êx̂ → Êf̂(x̂) maps m̂x̂ to m̂f̂(x̂).

Then the following probability measure m̂ on Ê is F̂ -invariant:

(8) m̂(B) =
∫
m̂x̂(B ∩ Êx̂) dµ̂(x̂).

Let Bvol(f̂) denote the subset of volume preserving fiber bunched cocycles.

2.6. Continuity of Lyapunov exponents. From now on we take Ê to be compact
and the fiber N to be a surface. Area preserving yields λ−(F̂ , x̂, ξ)+λ+(F̂ , x̂, ξ) = 0
at m̂-almost every point. We call F̂ ∈ Bvol(f̂) a continuity point for Lyapunov
exponents if the functions

Bvol(f̂) 3 Ĝ 7→ λ±(Ĝ, m̂)

are continuous at F̂ . Otherwise, F̂ is a discontinuity point for Lyapunov exponents.
By analogy with Pugh, Shub [40], we say that a cocycle is accessible if any two

points in the fiber bundle are joined by some su-path, consisting of a finite number
of legs each of which is either an s-holonomy path or a u-holonomy path (assuming
the cocycle admits s-holonomy and u-holonomy).
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Theorem F. Let F̂ : Ê → Ê be fiber bunched, area preserving, and ergodic. Let F̂
be a discontinuity point for Lyapunov exponents. Then λ−(F̂ , m̂) < 0 < λ+(F̂ , m̂)
and both Oseledets subspaces E−x̂,ξ and E+

x̂,ξ are essentially invariant under the s-
holonomy and the u-holonomy of the projective extension. If, in addition, the cocy-
cle F̂ is accessible then the Oseledets subspaces vary continuously with (x̂, ξ) ∈ Ê.

Our methods also reveal a remarkable connection between the behavior of Lya-
punov exponents and the topology of the fiber, at least when the cocycle F̂ is
accessible. This is illustrated by the next corollary, which will follow from the more
detailed statement in Theorem 6.6; see also Remark 6.7.

Corollary G. Let F̂ : Ê → Ê be fiber bunched, area preserving, and accessible.
Assume the genus of the fiber N of Ê is at least 2. Then λ−(F̂ , m̂) < 0 < λ+(F̂ , m̂)
and F̂ is a continuity point for the Lyapunov exponents λ±(·, m̂).

Remark 2.3. It is an important problem to characterize those cocycles which are
continuity points for the Lyapunov exponents. The results of Bochi [10, 11] and
Bochi, Viana [12] show that continuity depends quite subtly on topology in the
space of cocycles. In a positive direction, J. Yang (personal communication) uses
ideas from the present paper to conclude that the set of cocycles with zero Lya-
punov exponents is closed in the Lipschitz topology among fiber bunched SL(2,R)-
cocycles. Furthermore, Bocker, Viana [13] prove that for locally constant SL(2,C)-
cocycles over Bernoulli shifts the Lyapunov exponents always vary continuously
with the cocycle relative to the L∞ norm.

For the next theorem, let f̂ : M̂ → M̂ be a Cr Anosov diffeomorphism on a
compact manifold, for some r ≥ 1. Moreover, take the fiber bundle to be trivial,
that is, Ê = M̂ ×N , and the cocycle F̂ : Ê → Ê to be Cr. Recall we take N to be
a compact surface. Let Brvol(f̂) be the space of area preserving fiber bunched Cr

cocycles, endowed with the uniform Cr topology. For simplicity, we also assume
that the fiber N is orientable and F̂ preserves the orientation of the fibers (the
non-orientable case can be treated by considering a double cover).

Theorem H. There is an open and dense set U ⊂ Brvol(f̂) such that every Ĝ ∈ U
is ergodic for m̂ and the Lyapunov exponents Ĝ 7→ λ±(Ĝ, m̂) vary continuously and
never vanish on U .

2.7. Rigidity for symplectic diffeomorphisms. Theorem A is contained in the
following result for symplectic toral automorphisms in any dimension.

Let M = Td for some even integer d ≥ 4 and A : M → M be a linear automor-
phism with exactly two eigenvalues on the unit circle. Assume A is pseudo-Anosov,
that is, A is ergodic (equivalently, no eigenvalue is a root of unity) and the charac-
teristic polynomial pA(t) is irreducible over the integers and can not be written as
a polynomial of tn for any n ≥ 2; when d = 4 ergodicity implies the other two con-
ditions, cf. [26, Corollary A.7]. It was shown by Rodriguez-Hertz [26] that every
pseudo-Anosov linear automorphism with 2-dimensional center is stably ergodic:
all nearby volume preserving diffeomorphisms f : M →M are ergodic.

Here we also assume that A is symplectic, meaning that it preserves some sym-
plectic form ω on the torus M . This implies that the stable (Es) and unstable (Eu)
subspaces of A have the same dimension, and the center subspace Ec is symplectic
orthogonal to Es ⊕ Eu.
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Theorem I. There exists a neighborhood U of A in the space of C∞ symplectic
diffeomorphisms on M such that every f ∈ U either is non-uniformly hyperbolic
or is conjugate to A by a volume preserving homeomorphism. In particular, every
f ∈ U is Bernoulli.

The statement remains true for Ck diffeomorphisms, as long as k is large enough
for the conclusions of Rodriguez-Hertz [26] to hold (k ≥ 22 suffices).

2.8. Structure of this paper. In Section 3 we prove Theorems B and C. In Sec-
tion 4 we apply them to continuous cocycles with holonomies, to deduce Theorem D
and Corollary E. In Section 5 we show that holonomies do exist if the cocycle is
fiber bunched. Theorem F and Corollary G are proved in Section 6. In Section 7
we prove Theorem H and in Section 8 we explain how to obtain Theorem I. The
latter contains Theorem A as a special case.

3. Invariance Principle

In this section we prove Theorems B and C. It is no restriction to suppose that
the fiber bundle Ê is trivial, since the measurable trivialization domains Un in (2)
may always be chosen to be disjoint.

The first step is to reduce the proof to a natural extension situation similar to
Example 3.13. As observed by Rokhlin [41, §1-§2], one may find a Lebesgue space
(M,B, µ) and a projection π : M̂ → M such that B = π∗B0 and µ = π∗µ̂. Here
M is the quotient space obtained by identifying any two points of M̂ which are
not distinguished by any B0 ∈ B0 and B and µ are characterized by the properties
we just stated: B ∈ B if and only if π−1(B) ∈ B0 and then µ(B) = µ̂(π−1(B)).
Since f̂ is B0-measurable mod 0, there exists a B-measurable mod 0 transformation
f : M → M such that π ◦ f̂ = f ◦ π. This transformation, which is usually
non-invertible, preserves µ. Let E = M × N and P : E → M be the canonical
projection. Since the deformation F̃ is B0-measurable mod 0, it may be written as
F̃x̂ = Fπ(x̂) for some B-measurable mod 0 fiber bundle morphism F : E → E over f .
Since m̃ = H∗m̂ is a F̃ -invariant probability projecting down to µ̂, the probability
m = (π × id)∗m̃ is F -invariant and projects down to µ.

Let κ be the dimension of N . Let

(9) (F−1
x )∗mf(x) = J(x, ·)mx + ηx

be the Lebesgue decomposition of (F−1
x )∗mf(x) relative to mx: the function

(10) J(x, ξ) =
d(F−1

x )∗mf(x)

dmx
(ξ).

is integrable for mx and the measure ηx is singular with respect to mx. We call
J : E → [0,∞) the fibered Jacobian, and define the fibered entropy to be

(11) h = h(F̃ , m̃) =
∫
− log J dm.

The definition (9) implies
∫
{J>0} J dm =

∫
J dm ≤ 1. Then, by Jensen’s inequality,

(12)
∫
{J>0}

− log J dm ≥ 0.

The definition (11) means that h is the sum of this integral with the term (+∞) ·
m({J = 0}) with the usual convention that the latter vanishes if m({J = 0}) = 0.
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Thus, h is always well-defined and non-negative. In our context h is finite, as we
shall see later, and so {J = 0} always has zero measure.

Proposition 3.1. Let m̂ be an F̂ -invariant probability measure projecting down to
µ̂ and let m̃ = H∗m̂. Then

0 ≤ βh(F̃ , m̃) ≤ −κ
∫

min{0, λ−(F̂ , ·)} dm̂.

This result may be seen as a coarse fibered version of the Ruelle inequality [42].
Indeed, Ruelle showed that the entropy of a diffeomorphism is bounded above by
the integrated sum of the positive Lyapunov exponents. Considering the inverse
map, we get that the entropy is also bounded by minus the integrated sum of the
negative Lyapunov exponents. In view of this, Proposition 3.1 can probably be
refined replacing κmin{0, λ−(F̂ , ·)} by the sum of all negative exponents.

Proposition 3.2. If h(F̃ , m̃) = 0 then x̂ 7→ m̃x̂ is B0-measurable mod 0.

Theorem B is an immediate consequence of Propositions 3.1 and 3.2. Indeed, the
assumption λ−(F̂ , ·) ≥ 0 means that min{0, λ−(F̂ , ·)} vanishes identically. Then
Proposition 3.1 yields h(F̃ , m̃) = 0 and, by Proposition 3.2, it follows that the
disintegration x̂ 7→ m̃x̂ is B0-measurable mod 0, as claimed. This reduces the proof
of Theorem B to proving Propositions 3.1 and 3.2.

For Theorem C we need the following version of Proposition 3.2 for sequences of
measures. In what follows it is understood that m̃k = H∗m̂k and mk = (π×id)∗m̃k.

Proposition 3.3. Let (m̂k)k be a sequence of F̂ -invariant probability measures on Ê
that project down to µ̂ and converge to some probability m̂ in the weak∗ topology. If
h(F̃k, m̃k) converges to 0 when k →∞ then the disintegration x̂ 7→ m̃x̂ of m̃ = H∗m̂
is B0-measurable mod 0.

In view of Proposition 3.1, the hypothesis of Theorem C implies that h(F̃ , m̃k)
converges to 0 when k goes to ∞. Then we may apply Proposition 3.3 to conclude
that the disintegration x̂ 7→ m̃x̂ is B0-measurable mod 0, as claimed. This reduces
the proof of Theorem C to proving Propositions 3.1 and 3.3.

3.1. Entropy zero means deterministic. Let us prove Propositions 3.2 and 3.3.

Lemma 3.4. The disintegrations {m̃x̂ : x̂ ∈ M̂} and {mx : x ∈ M} of m̃ and
m = (π × id)∗m̃, respectively, are related by

m̃x̂ = lim
n→∞

(Fnx(n))∗mx(n) where x(n) = π(f̂−n(x̂)), at µ̂-almost every x̂ ∈ M̂ .

Proof. Let m0 be the probability defined on B0 by π∗m0 = m. The disintegration
of m0 is just x̂ 7→ mπ(x̂). The relation π∗m̃ = m implies that m̃ | B0 = m0 or, in
other words, E(x̂ 7→ m̃x̂ | B0) = [x̂ 7→ mπ(x̂)]. Next, the relation F̃∗m̃ = m̃ implies
that

E(x̂ 7→ m̃x̂ | f̂ n(B0)) = E(x̂ 7→ (F̂ n
x̂(n))∗m̃x̂(n) | B0),

with x̂(n) = f̂−n(x̂), and so

E(x̂ 7→ m̃x̂ | f̂ n(B0)) = [x̂ 7→ (F n
x(n))∗mx(n)].
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Any of these expressions defines a martingale of probability measures, relative to
the sequence of σ-algebras f̂ n(B0). Since B0 is generating and the sequence f̂n(B0)
is increasing, the limit of the left hand side is

[x̂ 7→ m̃x̂] = E(x̂ 7→ m̃x̂ | B̂).

It follows that (F n
x(n))∗mx(n) converges and the limit coincides with m̃x̂ at µ̂-almost

every point. �

Lemma 3.5. If h(F̃ , m̃) = 0 then (Fx)∗mx = mf(x) for µ-almost every x ∈M .

Proof. The definition (9) implies that
∫
J(x, ξ) dmx(ξ) ≤ 1 for µ-every x. So,

by Jensen’s inequality,
∫
− log J(x, ξ) dmx(ξ) ≥ 0 for µ-every x. Moreover, the

equalities hold if and only if J(x, ξ) = 1 for mx-almost every ξ. This implies that
h ≥ 0, and h = 0 if and only if J(x, ξ) = 1 for mx-almost every ξ and µ-almost
every x. In particular, h = 0 implies mf(x) = (Fx)∗mx for µ-almost every x, as
claimed. �

Lemma 3.5 implies (Fnx(n))∗mx(n) = mx(0) for every n ≥ 0 and µ̂-almost every x̂.
Then Lemma 3.4 yields m̃x̂ = mx(0) for µ̂-almost every x̂. Since x(0) = π(x̂), this
implies that x̂ 7→ m̃x̂ is B0-measurable. The proof of Proposition 3.2 is complete.

Next, we prove Proposition 3.3. Let (F−1
x )∗mk,f(x) = Jk(x, ·)mk,x + ηk,x be

the Lebesgue decomposition for each mk: in particular, Jk : E → R is the fibered
Jacobian. We denote by ‖ξ‖ the total variation of a signed measure ξ.

Lemma 3.6.
∫
|Jk(x, ξ)− 1| dmk(x, ξ)→ 0 and

∫
‖ηk,x‖ dµ(x)→ 0 when k →∞.

Proof. Since the mk,y are probabilities,

ηk,x(Ex) = mk,f(x)(Ef(x))−
∫
Jk(x, ·) dmk,x =

∫
(1− Jk(x, ·)) dmk,x.

Integrating with respect to µ, we obtain
∫
‖ηk,x‖ dµ =

∫
(1 − Jk) dmk and so the

second claim is a consequence of the first one. Next, define φ(x) = x − log(1 + x)
for x > −1. Then φ(x) ≥ 0 for all x and, given any δ > 0, there exists c(δ) > 0 such
that φ(x) ≥ c(δ)|x| whenever |x| ≥ δ. Let δ > 0 be fixed. Denote ak =

∫
Jk dmk

for each k ≥ 0. Using Jensen’s inequality,

h(F̃ , m̃k) ≥ − log ak ≥ 0,

and so ak converges to 1 when n → ∞. Assume k is large enough that h(F̃ , m̃k)
and ak − 1 are both less than δc(δ). Then, by the definition of φ,∫

− log Jk dmk =
∫

(1− Jk) dmk +
∫
φ(Jk − 1) dmk.

The first integral is less than δc(δ) and the second one is 1 − ak > −δc(δ). The
third integral is bounded below by∫

{|Jk−1|>δ}
φ(Jk − 1) dmk ≥ c(δ)

∫
{|Jk−1|>δ}

|Jk − 1| dmk.

This implies ∫
|Jk − 1| dmk ≤ δ +

∫
{|1−Jk|>δ}

|Jk − 1| dmk ≤ 3δ

for all large k. This completes the proof of the lemma. �
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For each k ≥ 1, let m̌k be the probability measure on E that projects down to µ̂
and whose conditional measures along the fibers are given by

m̌k,x̂ = mk,x for all x = π(x̂).

Up to taking a subsequence, we may assume m̌k to converge to some measure m̌,
whose disintegration x̂ 7→ m̌x along the fibers is B0-measurable mod 0. Clearly,
(π × id)∗m̌k = mk for every k. Taking the limit as k → ∞, we conclude that
π∗m̌ = m.

Lemma 3.7. The total variation ‖F̃−1
∗ m̌k − m̌k‖ converges to 0 as k →∞.

Proof. Given any measurable set B ⊂ Ê , we denote Bx̂ = B ∩ Êx̂ for each x̂ ∈ M̂ .
Then (

F̃−1
∗ m̌k − m̌k

)
(B) =

∫
m̌k,ŷ(F̃ (B)ŷ) dµ̂(ŷ)−

∫
m̌k,x̂(Bx̂) dµ̂(x̂)

=
∫
m̌k,f̂(x̂)(F̃x̂(Bx̂)) dµ̂(x̂)−

∫
m̌k,x̂(Bx̂) dµ̂(x̂)

because µ̂ is invariant under f̂ . Since F̃x̂ and m̌k,x̂ are both B0-measurable, the last
term may be rewritten as∫

mk,f(x)(Fx(Bx̂)) dµ̂(x̂)−
∫
mk,x(Bx̂) dµ̂(x̂)

=
∫ (∫

Bx̂

(Jk(x, ·)− 1) dmk,x + ηk,x(Bx̂)
)
dµ̂(x̂)

These relations imply that∣∣(F̃−1
∗ m̌k − m̌k

)
(B)

∣∣ ≤ ∫ (∫ |Jk(x, ·)− 1| dmk,x + ‖ηk,x‖
)
dµ̂(x̂)

for every B ⊂ Ê , and so ‖F̃−1
∗ m̌k − m̌k‖ ≤

∫
|Jk − 1| dmk +

∫
‖ηk,x‖ dµ(x). Now

the claim follows from Lemma 3.6. �

Taking the limit in Lemma 3.7 we conclude that the measure m̌ is invariant
under F̃ . It follows that m̌ = m̃: any two F̃ -invariant measures that project down
to m under π must coincide, because the σ-algebra B0 is generating. This proves
that the disintegration of m̃ is B0-measurable mod 0, as claimed. The proof of
Proposition 3.3 is complete.

3.2. Entropy is smaller than exponents. We are left to prove Proposition 3.1.
We begin by reducing the proof to the ergodic case. Let {m̂α} be the ergodic
decomposition of m̂ and dα denote the corresponding quotient measure:∫

ϕdm̂ =
∫ (∫

ϕdm̂α

)
dα

for any integrable function ϕ. Then m̃α = H∗m̂α and mα = (π× id)∗m̃α define the
ergodic decompositions of m̃ = H∗m̂ and m = (π × id)∗m̃, respectively, with the
same quotient measure. If λ−(F̂ , x̂, ξ) ≥ 0 at m̂-almost every point then the same is
true at m̂α-almost every point, for dα-almost every ergodic component. Assuming
the proposition holds for ergodic measures, it follows that

0 ≤ β
∫
− log J dmα ≤ −κ

∫
min{0, λ−(F̂ , ·)} dm̂α
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for dα-almost every α. Integrating with respect to dα, we obtain that

0 ≤ βh(F̃ , m̃) ≤ −κ
∫

min{0, λ−(F̂ , ·)} dm̂,

as claimed. Hence, it is no restriction to assume that m̂ is ergodic for F̂ , and we do
so in what follows. Then m̃ and m are ergodic for F̃ and F , respectively. Moreover,
min{0, λ−(F̂ , ·)} is constant m̂-almost everywhere. Let −λ denote this constant.

Now we begin the proof of the proposition in the ergodic case. Given ε > 0,
define Jε = J + ε and hε = −

∫
log Jε dm. Notice that hε → h as ε → 0, by the

monotone convergence theorem. Our goal is to prove that h ≤ κβ−1λ. The proof is
by contradiction. Assume this inequality is false. Then we may choose some small
ε > 0 such that

(13) hε − 10ε ≥ κβ−1(λ+ 10ε).

Lemma 3.8. There exists a sequence of countable partitions Pn(x, ·) of each fiber
Ex, depending measurably on x ∈ M , a sequence of measurable subsets Wn of E
with m(Wn)→ 1 such that, for every large n,

(a) diamPn(x, ξ) ≤ e−β−1(λ+5ε)n for every (x, ξ) ∈ E
(b) each Wn ∩ Ex is covered by not more than eκβ

−1(λ+8ε)n atoms of Pn(x, ·)
(c) mx(∂Pn(x, ξ)) = 0 for every (x, ξ) ∈ E.

Proof. Since N is a manifold, we may choose a sequence of countable partitions
Qn with relatively compact atoms with diameter bounded by e−β

−1(λ+6ε)n, and
an increasing sequence of subsets Vn exhausting N and such that Vn is covered
by not more than eκβ

−1(λ+8ε)n atoms of Qn. Of course, we may take these to be
the first atoms of Qn with respect to some ordering of the partition. This defines
ordered countable partitions Qn(x, ·) of each fiber Ex, and sets Wn ⊂ E exhausting
every fiber, such that diamQn(x, ξ) ≤ const e−β

−1(λ+6ε)n for every (x, ξ), and every
Wn ∩ Ex is covered by the first eκβ

−1(λ+8ε)n atoms of Qn(x, ·). For each atom Q
of Qn(x, ·), let B1, . . . , Bk be a finite covering of the boundary of Q by open sets
with diameter less than e−β

−1(λ+6ε)n and such that mx(∂Bj) = 0 for all j. Let
Q̃n(x, ·) be the family of all Q̃ = Q ∪ B1 ∪ · · · ∪ Bk obtained in this way. Notice
that mx(∂Q̃) = 0. Removing from each Q̃ the union of the elements of Q̃n(x, ·)
that precede it, relative to the ordering inherited from Qn(x, ·), one obtains a
new ordered partition Pn(x, ·) such that the diameter of its atoms is bounded by
const e−β

−1(λ+6ε)n, the first eκβ
−1(λ+8ε)n atoms cover Wn∩Ex, and the boundary of

every atom has zero mx-measure. Replacing 6ε by 5ε in the exponent and assuming
n is large, one gets rid of the constant. This finishes the construction. �

For 0 ≤ k < n, define Pn,k(·, ·) as the pullback of Pn(·, ·) by Fn−k, that is,

Pn,k(x, ξ) = (Fn−kx )−1
(
Pn(Fn−k(x, ξ))

)
.

Let also Pn,n(·, ·) = Pn(·, ·). For each 0 ≤ k < n, define

Jn(x, ξ) =
mfn(x)(Pn(Fn(x, ξ)))

mx(Pn,0(x, ξ))
and Jn,k(x, ξ) =

mf(x)(Pn,k+1(F (x, ξ)))
mx(Pn,k(x, ξ))

.
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Then Jn(x, ξ) =
∏n−1
k=0 Jn,k(F k(x, ξ)). Moreover, let

Jn,k,ε = Jn,k + ε and Jn,ε(x, ξ) =
n−1∏
k=0

Jn,k,ε(F k(x, ξ)).

Notice that Jn,ε ≥ Jn because Jn,k,ε ≥ Jn,k for every k. The key ingredient in
the proof of Proposition 3.1 is the following lemma, whose proof we postpone for a
while:

Lemma 3.9. We have limn→∞ sup0≤k<n ‖ log Jn,k,ε − log Jε‖L1(m) = 0.

As a consequence of this lemma and the ergodic theorem,

lim
1
n

log Jn,ε = lim
1
n

n−1∑
k=0

log Jε ◦ F k =
∫

log Jεdm = −hε

in L1(m) and, hence, in measure. In particular, for every large n there exists
En ⊂ E with m(En) ≥ 1− ε such that

1
n

log Jn(x, ξ) ≤ 1
n

log Jn,ε(x, ξ) ≤ −hε + 5ε for all (x, ξ) ∈ En.

Using Lemma 3.8 and the definition of Jn, we conclude that the fiber of Fn(En)∩Wn

over fn(x) is covered by at most eκβ
−1(λ+8ε)n atoms of Pn(fn(x), ·) all with mfn(x)-

measure at most e(−hε+5ε)n. By (13), this implies m(Fn(En)∩Wn) goes to zero as
n → ∞, contradicting the fact that both m(Wn) and m(En) are close to 1. This
contradiction reduces the proof of Proposition 3.1 to proving Lemma 3.9.

For every l ≥ 1, define ωl(x̂, ξ) = log ‖(DF̂ lx̂(ξ))−1‖−1 and

Ωl(x̂, ξ) = lim inf
n→∞

inf
0≤k<n

1
n

n−1∑
j=k

1
l
ωl(F̂ jl(x̂, ξ)).

Lemma 3.10. We have supl≥1 Ωl(x̂, ξ) ≥ −λ for every (x̂, ξ) in some full m̂-
measure set Ẑ ⊂ Ê.

Proof. We begin by claiming that supl≥1 Ωl is constant along orbits. Indeed, since
the norms of DF±1 are uniformly bounded, there exists some constant A > 0 such
that |ωl(F̂ (ŷ, η))− ωl(ŷ, η)| ≤ A for every (ŷ, η). This implies

(14) |Ωl(F̂ (x̂, ξ))− Ωl(x̂, ξ)| ≤
A

l
for every (x̂, ξ).

Similarly, since, ω2l(ŷ, η) ≥ ωl(ŷ, η)+ωl(F̂ (ŷ, η)) for every (ŷ, η), we have Ω2l(x̂, ξ) ≥
Ωl(x̂, ξ) for every (x̂, ξ) and every l ≥ 1. This implies

(15) sup
l

Ωl(x̂, ξ) = lim sup
l→∞

Ωl(x̂, ξ) for every (x̂, ξ).

The relations (14) and (15) imply our claim.
Next, by ergodicity and the definition of smallest Lyapunov exponent,

λ− = lim
l

1
l
ωl(x̂, ξ) = sup

l

1
l
ωl(x̂, ξ) for m̂-almost every (x̂, ξ).

Given ε > 0, fix s ≥ 1 large enough so that m̂(Es,ε) > 1− ε, where

Es,ε = {(ŷ, η) :
1
s
ωs(ŷ, η) ≥ λ− − ε}.
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By ergodicity, for m̂-almost every (x̂, ξ) the number of iterates 0 ≤ i < ns for which
F i(x̂, ξ) /∈ Es,ε is less than 2εns, assuming n is large enough. Then there exists
0 ≤ r < s such that the number of iterates 0 ≤ j < n for which F js+r(x̂, ξ) /∈ Es,ε is
less than 2εn. Let B > 0 be an upper bound for the absolute value of log ‖DF̂−1‖.
Then |ωl(ŷ, η)| ≤ Bl for every (ŷ, η) and every l ≥ 1. It follows that, given any
0 ≤ k < n,

1
n

n−1∑
j=k

1
s
ωs(F̂ js+r(x̂, ξ)) ≥

1
n

[
(λ− − ε)#{k ≤ j < n : F̂ js+r(x̂, ξ) ∈ Es,ε} − 2nεB

]
≥ −λ− ε(1 + 2B).

Since this holds for every 0 ≤ k < n and every n sufficiently large, we conclude that

sup
l

Ωl(F̂ r(x̂, ξ)) ≥ Ωs(F̂ r(x̂, ξ)) ≥ −λ− ε(1 + 2B).

So, in view of the claim in the first paragraph, supl Ωl(x̂, ξ) ≥ −λ − ε(1 + 2B).
Since ε > 0, this completes the proof of the lemma. �

The next results provides the main estimate for the proof of Lemma 3.9. Let

dx(ξ, η) = sup{d(H−1
x̂ (ξ)), H−1

x̂ (η)) : x̂ ∈ π−1(x)}

for each x ∈ M and ξ, η ∈ Ex. This defines a metric dx on each fiber Ex which, by
(3), relates to the Riemannian distance d through dx(ξ, η) ≤ Bd(ξ, η)β . Then let
∆n,k(x, ξ) denote the dx-diameter of each atom Pn,k(x, ξ).

Lemma 3.11. We have limn→∞ sup0≤k<n ∆n,k = 0 at m-almost every point.

Proof. It suffices to show that limn→∞ sup0≤k<n ∆n,k(x, ξ) = 0 holds for every
(x, ξ) in the full m-measure set Z = (π × id)(Ẑ). To this end, consider any x̂ ∈
π−1(x) ∩ Ẑ. We claim that, given any δ > 0, there exists m0 ≥ 1 such that (balls
are with respect to the Riemannian metric along the fiber)

(16) F̂m(Bδ(x̂, ξ)) ⊃ Be−(λ+4ε)m(F̂m(x̂, ξ))

for every m > m0. Assume this fact for a while. It implies that

(17) F̂n−k(Bδ(x̂, ξ)) ⊃ Be−(λ+4ε)n(F̂n−k(x̂, ξ))

for all 0 ≤ k < n, as long as n is large enough: when n − k ≥ m0 this is a direct
consequence of (16); otherwise, use the fact that F̂±j , 1 ≤ j ≤ m0 are uniformly
continuous along fibers, and take n to be large enough. By the Hölder property (3)
and Lemma 3.8, we also have H−1

x̂ (Pn(Fn−k(x, ξ))) ⊂ Be−(λ+4ε)n(F̂n−k(x̂, ξ)), as
long as n is large enough (to make the radius of the last neighborhood sufficiently
small). Combined with (17), this gives

Pn(Fn−k(x, ξ)) ⊂ Fn−kx (Hx̂(Bδ(x̂, ξ))), that is, Pn,k(x, ξ) ⊂ Hx̂(Bδ(x̂, ξ))

for all 0 ≤ k < n, as long as n is large enough. Since Hx̂ is continuous, this implies
the conclusion of the lemma.

To prove the claim (16), begin by fixing l ≥ 1 such that Ωl(x̂, ξ) ≥ −(λ + ε).
Then define δk,n, 0 ≤ k ≤ n by

log δn,n = −(λ+ 3ε)ln and log δk,n = log δk+1,n + ε− ωl(F̂ kl(x̂, ξ)).



EXTREMAL LYAPUNOV EXPONENTS 17

Then log δk,n ≤ −εn for all 0 ≤ k ≤ n, because

log δk,n = log δn,n +
n−1∑
j=k

ε− ωl(F̂ jl(x̂, ξ)) ≤ −(λ+ 3ε)ln+ (ε− Ωl(x̂, ξ))ln.

Since the derivatives DF̂±lŷ are uniformly bounded and uniformly continuous, we
conclude from the definition of ωl that

F̂ l(Bδk,n(F̂ kl(x̂, ξ))) ⊃ Bδk+1,n(F̂ (k+1)l(x̂, ξ))

for every 0 ≤ k < n, as long as n is large enough (to make e−εn sufficiently small).
In particular,

F̂ ln(Bδn,0(x̂, ξ)) ⊃ Bδn,n(F̂n(x̂, ξ)).
This gives a version of (16) for the iterates that are multiples of l: given any δ > 0
there exists n0 ≥ 1 such that

F̂ ln(Bδ(x̂, ξ)) ⊃ Be−(λ+3ε)ln(F̂ ln(x, ξ))

for every n ≥ n0. To complete the proof it suffices to note that, since the derivatives
DF̂±jŷ , 0 ≤ j < l are bounded,

F̂ j(Be−(λ+3ε)ln(F̂ ln(x, ξ))) ⊃ Be−(λ+4ε)ln(F̂ ln+j(x, ξ))

for all 0 ≤ j < l, as long as n is large enough. This finishes the proof of (16) and
of the lemma. �

We also need the following abstract result:

Lemma 3.12. Let K be a complete metric space and µ0 and µ1 be probability
measures on K with µ1 ≥ αµ0 for some α > 0. Let φ = dµ1/dµ0 and, given any
countable partition P of K, define

φP (x) =
µ1(P (x))
µ0(P (x))

.

Then
∫

log φ(x)dµ0(x) ≤
∫

log φP (x)dµ0(x) ≤ 0. Moreover, given ε > 0 there exists
δ > 0 such that ‖ log φP − log φ‖L1(µ0) ≤ ε for any countable partition P of K such
that the total measure of the atoms with diameter larger than δ is smaller than δ.

Proof. By convexity,
∫

log φP dµ0 ≤ log
∫
φP dµ0 = 0. Similarly,∫

P (x)

log φdµ0 ≤ µ0(P (x)) log φP (x)

for every atom P (x), and so
∫

log φdµ0 ≤
∫

log φP dµ0. This proves the first claim.
Next, notice that the functions φP satisfy a uniform integrability condition: for

all X ⊂ K with µ0(X) < 1/e,

(18)
∫
X

| log φP |dµ0 ≤ −µ0(X)(logµ0(X) + logα).

Indeed, the assumption implies − log φP ≤ − logα and so the claim is trivial if
log φP happens to be negative on X. When log φP ≥ 0 on the set X, the claim
follows from convexity:∫

X

log φP d
µ0

µ0(X)
≤ log

∫
X

φP d
µ0

µ0(X)
≤ log

µ1(X̃)
µ0(X)

≤ log
1

µ0(X)



18 ARTUR AVILA AND MARCELO VIANA

(X̃ denotes the union of all atoms of P that intersect X). The general case is
handled by splitting X into two subsets where log φP has constant sign.

We also use the following fact: if R refines Q then

(19) ‖ log φR − log φQ‖L1(µ0) ≤ ‖ log φ− log φQ‖L1(µ0).

To see that this is so, write∫
| log φR − log φQ| dµ0 =

∑
r⊂q

∫
r

| log φR − log φQ| dµ0,

where the sum is over the pairs of atoms r ∈ R and q ∈ Q with r ⊂ q. Since φR
and φQ are constant on r, this may be rewritten as∑

r⊂q
µ0(r) | log φR − log φQ| =

∑
r⊂q
|
∫
r

log φdµ0 − µ0(r) log φQ|

≤
∑
r⊂q

∫
r

| log φ− log φQ| dµ0 .

The combination of these two relations proves (19).
Let (Qn)n be any refining sequence of partitions with diameter decreasing to

zero. Then φQn → φ at µ0-almost every point (martingale convergence theorem).
By uniform integrability (18), it follows that log φQn → log φ in L1(µ0). Assume,
in what follows, that the sequence was chosen so that µ0(∂Qn(x)) = 0 for every
x and every n (this can be obtained using the argument in Lemma 3.8(c)). Given
ε > 0, fix n sufficiently large so that

‖ log φQn − log φ‖L1(µ0) < ε/4.

Let R = P ∨Qn (the coarsest partition that refines both P and Qn) and let ∆ be
the set of all x such that P (x) 6⊂ Qn(x). By (19),

‖ log φR − log φ‖L1(µ0) < ε/2.

Choosing δ > 0 small, we also ensure that the measure of ∆ is small, so that
−µ0(∆)(logµ0(∆) + logα) < ε/4. Clearly, P (x) = R(x) for every x in the comple-
ment of ∆. So, using (18),

‖ log φP − log φR‖L1(µ0) =
∫

∆

| log φP − log φR| dµ0 < ε/2.

From these two relations it follows that ‖ log φP − log φ‖L1(µ0) < ε, as claimed in
the second part of the lemma. �

We are ready to prove Lemma 3.9. Lemmas 3.8 and 3.11 ensure that the
hypotheses of Lemma 3.12 are satisfied for K = N and µ0 = mx and µ1 =
(F−1
x )∗mf(x) + εmx (α = ε) and P = Pn,k(x, ·). Notice that

φ = J(x, ·) + ε = Jε and φP = Jn,k,ε(x, ·).
From Lemma 3.12 we conclude that

sup
k
‖ log Jn,k,ε − log Jε‖L1(mx) → 0

for µ-almost every x. Since
∫
| log Jn,k,ε− log Jε|dmx ≤ −2 log ε for µ-almost every

x, this implies that ‖ log Jn,k,ε − log Jε‖L1(m) → 0, as claimed in Lemma 3.9.
The proof of Proposition 3.1 is complete, finishing the proofs of Theorems B/C.
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3.3. Examples. A few simple examples illustrate the contents of Theorems B/C.

Example 3.13. Given any (non-invertible) measure-preserving map f : M →M in
a probability space (M,B, µ), define M̂ to be the space of all sequences (xn)n≤0 in
M such that f(xn) = xn+1 for all n < 0, and consider the natural extension of f ,

f̂ : M̂ → M̂, f̂(. . . , xn, . . . , x0) = (. . . , xn, . . . , x0, f(x0)).

Then f̂ is invertible and π ◦ f̂ = f ◦ π, where π : M̂ → M is the projection to the
zeroth term. Denote B0 = π−1(B) and let B̂ be the σ-algebra on M̂ generated by
the iterates f̂n(B0), n ≥ 0. Then f̂ is measurable with respect to B0 and to B̂.
Let µ0 be the probability measure defined on B0 by π∗µ0 = µ. There is a unique
f̂ -invariant probability µ̂ on (M̂, B̂) such that π∗µ̂ = µ: it is characterized by

(20) E
(
µ̂ | f̂ n(B0)

)
= f̂ n∗ µ0 for every n ≥ 0.

To any smooth cocycle F : E → E over f , defined on a fiber bundle P : E → M ,
we may associate the smooth cocycle F̂ : Ê → Ê over f̂ defined by Êx̂ = Eπ(x̂) and
F̂x̂ = Fπ(x̂). Their extremal Lyapunov exponents are related by

λ±(F̂ , x̂, ξ̂) = λ±(F, π(x̂), ξ̂).

Clearly, x̂ 7→ F̂x̂ is B0-measurable. We denote by π× id the natural projection from
Ê to E (this terminology is motivated by the case when Ê = M̂×N and E = M×N).
Given any F -invariant probability m, there is exactly one F̂ -invariant probability
m̂ with (π × id)∗m̂ = m: it is characterized by

(21) E
(
x̂ 7→ m̂x̂ | f̂n(B0)

)
= [x̂ 7→ (F̂nx̂ )∗mπ(x̂)] for every n ≥ 0

(see Lemma 3.4 below), where {m̂x̂ : x̂ ∈ M̂} and {mx : x ∈ M} are the disinte-
grations of m̂ and m, respectively. If P∗m = µ then P̂∗m̂ = µ̂.

Example 3.14. Ledrappier [33] deals with the particular case when the cocycle is
actually linear or, more precisely, projective: E = M̂ × P(Rd) and each F̂x̂ is the
diffeomorphism induced on the projective space N = P(Rd) by some linear map
A(x̂) ∈ GL(d,R). Denote

λ+(x̂) = lim
n→∞

1
n

log ‖An(x̂)‖ and λ−(x̂) = lim
n→∞

1
n

log ‖An(x̂)−1‖−1.

The subadditive ergodic theorem [31] ensures that these two limits exist almost
everywhere, and it is clear that λ+(x̂) ≥ λ−(x̂) at µ-almost every x̂. Theorem 1 in
[33] assumes that

(22)
∫
λ+ dµ̂ =

∫
λ− dµ̂

or, equivalently, λ+(x̂) = λ−(x̂) for µ̂-almost every x̂. This implies the hypothesis of
Theorem B. To see this, notice that, locally, the points of P(Rd) may be represented
by unit vectors ξ̂. Then

F̂nx̂ (ξ̂) =
An(x̂)ξ̂

‖An(x̂)ξ̂‖
for every x̂, ξ̂, and n. It follows that,

DF̂nx̂ (ξ̂)ξ̇ =
projAn(x̂)ξ̂(A

n(x̂)ξ̇)

‖An(x̂)ξ̂‖
,
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where proju v = v−u(u·v)/(u·u) is the projection of v to the orthogonal complement
of u. This implies that

(23) ‖DF̂nx̂ (ξ̂)‖ ≤ ‖An(x̂)‖/‖An(x̂)ξ̂‖ ≤ ‖An(x̂)‖‖An(x̂)−1‖

for every x, ξ̂, and n. Replacing n by −n and (x̂, ξ̂) by an appropriate iterate, it
also follows that

(24) ‖DF̂nx̂ (ξ̂)−1‖ ≤ ‖An(x̂)−1‖‖An(x̂)‖

for every x, ξ̂, and n. The last two inequalities imply that

λ−(x̂)− λ+(x̂) ≤ λ−(F̂ , x̂, ξ̂) ≤ λ+(F̂ , x̂, ξ̂) ≤ λ+(x̂)− λ−(x̂).

Hence, (22) implies λ+(F̂ , x̂, ξ̂) = λ−(F̂ , x̂, ξ̂) = 0 for m-almost every (x̂, ξ̂).

Similar observations apply in the more general case of projective cocycles on
Grassmannian bundles, such as considered in [5, 6].

Example 3.15. Let F : M × P(R2)→M × P(R2) be the projective cocycle defined
by some A : M → SL(2,R) over a non-invertible system (f, µ). Let F̂ and (f̂ , µ̂)
be the natural extensions and the σ-algebra B0 be as in Example 3.13. Assume the
Lyapunov exponents are distinct

λ−(x̂) < λ+(x̂) at almost every point

and let E−x̂ and E+
x̂ be the Oseledets subspaces, viewed as elements of the projective

space. Notice that

λ−(F̂ , x̂, ξ̂) = λ+(F̂ , x̂, ξ̂) =
{
λ+(x̂)− λ−(x̂) for ξ̂ = E−x̂
λ−(x̂)− λ+(x̂) for ξ̂ = E+

x̂ .

Consider the F̂ invariant measures m− and m+ whose conditional probabilities
along the fibers are the Dirac masses at ξ̂ = E−x̂ and ξ̂ = E+

x̂ , respectively, and
whose projections down to M coincide with µ̂. Then λ−(F̂ , x̂, ξ̂) > 0 at m−-almost
every point and so we may use Theorem D to conclude that the disintegration
x̂ 7→ δE−x̂

is B0-measurable. This conclusion is also an immediate consequence
of the observation that the contracting subspace E−x̂ depends only on the future
iterates. On the other hand, λ+(F̂ , x̂, ξ̂) < 0 at m−-almost every point and yet
x̂ 7→ δE+

x̂
is usually not B0-measurable: the expanding subspace is determined by

the past, not the future iterates of the cocycle.

4. Cocycles with invariant holonomies

For simplicity, from now on we write M , B, µ, f , E, P , F , m in the place
of M̂ , B̂, µ̂, f̂ , Ê, P̂ , F̂ , m̂. In this section we prove Theorem D and Corollary E.

Let M be a metric space, E be a continuous fiber bundle endowed with a contin-
uous Riemannian metric, and F be a continuous smooth cocycle. We assume that
µ is a Borel measure on M which gives full measure to some σ-compact set, that is,
some countable union of compact subsets of M . This is automatic in several cases
of interest, for instance when M is a Polish space.
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4.1. Holonomy invariance. An s-lamination for the transformation f : M →M
is a partition W s = {W s(x) : x ∈ M} of M such that there exist ε, K, τ > 0, a
family W s

ε = {W s
ε (x) : x ∈ M} of closed subsets of M , and a function ν(·) such

that

(sl1) W s
ε (x) = {y ∈W s(x) : d(fn(x), fn(y)) ≤ ε for all n ≥ 0}

(sl2) W s(x) = ∪n≥0f
−n(W s

ε (fn(x)));
(sl3) graph(W s

ε ) := {(x, y) : y ∈W s
ε (x)} is a closed subset of M ×M ;

(sl4) d(f(y1), f(y2)) ≤ ν(x)d(y1, y2) for all y1, y2 ∈W s
ε (x);

(sl5) νn(x) := ν(fn−1(x)) · · · ν(x) ≤ Ke−τn for all x ∈M and n ≥ 1.

Suppose f admits some s-lamination W s. A subset of M is s-saturated (relative
to W s) if it consists of entire leaves of W s. An s-holonomy for F (relative to W s)
is a family hs of homeomorphisms hsx,y : Ex → Ey defined for all y ∈ W s(x) and
satisfying conditions (sh1), (sh2), (sh3) in Section 2.4.

Let M(µ) be the set of probabilities on E that project down to µ. Suppose F
admits an s-holonomy hs (relative to W s). An F -invariant probability measure
m ∈ M(µ) is called an s-state (relative to hs) if it admits some disintegration
{mx : x ∈ suppµ} which is essentially s-invariant, meaning that

(25) (hsx,y)∗mx = my for every y ∈W s(x)

with x and y in some full µ-measure subset E. Then the same is true for any other
disintegration of m. The full measure set may always be taken to be s-saturated:
just consider the union E′ of all W s leaves through E and modify the disintegration
on the (zero measure) set E′ \ E so as to enforce (25) for all points of E′.

Replacing f and F by their inverses, one obtains dual notions of u-lamination
Wu, u-saturated set, u-holonomy hu, u-invariant disintegration, and u-state. We
say that the cocycle F admits invariant holonomies if it admits both s-holonomy
and u-holonomy. Then we call an invariant probability an su-state if it is both an
s-state and a u-state.

Remark 4.1. In some cases existence of s-states or u-states can be ensured a priori.
For instance, if the fiber N is compact then one may start with a product measure
µ × ν on E and consider Cesaro limits of its forward/backward iterates: any such
limit is a u-state/s-state. See [16, Proposition 4.2] for a similar construction.

Proposition 4.2. Assume F admits s-holonomy. Let m ∈ M(µ) be such that
there exists a sequence (mk)k of F -invariant probability measures converging to m
in the weak∗ topology, such that

∫
min{0, λ−(F, ·)} dmk → 0 as k →∞. Then m is

an s-state.

The proof of Proposition 4.2 occupies Sections 4.2 and 4.4. Let us also register
the following particular case, corresponding to mk ≡ m:

Corollary 4.3. Assume F admits s-holonomy. Let m ∈ M(µ) be an F -invariant
probability measure such that λ−(F, x, ξ) ≥ 0 at m-almost every point. Then m is
an s-state.

Replacing F by its inverse one obtains dual statements for cocycles admitting
u-holonomy. In particular: if m ∈ M(µ) is an F -invariant probability measure
such that λ+(F, x, ξ) ≤ 0 at m-almost every point then m is a u-state. Compare
Example 3.15.
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4.2. Local Markov property. We need the following local Markov property of
the s-lamination. Fix ` ≥ 1 such that Ke−τ` < 1/4 and let g = f `. We restrict con-
siderations to an f -invariant σ-compact subset of full measure, which for simplicity
we still denote by M .

Proposition 4.4. There exists δ > 0 and for every x ∈M there exists a partition
Q = Qx of M such that

(1) if gj(Q(z)) intersects Q(w) then gj(Q(z)) ⊂ Q(w)
(2) every Q(y) is contained in some W s

ε (z)
(3) W s

ε (y) ∩B(x, δ) ⊂ Q(y) ⊂W s
ε (y) for every y ∈ B(x, δ).

Proof. Pick δ < ε/4 and write V = B(x, δ). For the sake of clearness, we split the
proof into three steps:

Step 1: We claim that, for any z, w ∈ V and k ≥ 0, if gk(W s
ε (w)) intersects

W s
ε (z)∩V then either k = 0 and W s

ε (w)∩V = W s
ε (z)∩V or gk(W s

ε (w)) ⊂W s
ε (z).

We call this the pre-Markov property. For the proof, consider any z, w, p ∈ V such
that p ∈ gk(W s

ε (w)) ∩W s
ε (z) ∩ V . Suppose first that k = 0. Let q be any point

in W s
ε (w) ∩ V . Since W s(z) and W s(w) intersect each other (at p), they must

coincide. It follows that q ∈ W s(z). Given our choices of ` and δ, and using that
p ∈W s

ε (z) ∩ V and p, q ∈W s
ε (w) ∩ V ,

d(gj(z), gj(q)) ≤ d(gj(z), gj(p)) + d(gj(p), gj(q))

≤ Ke−j`d(z, p) +Ke−j`d(p, q) ≤ 4−j4δ ≤ ε

for all j ≥ 0. By (sl1), this proves that q ∈ W s
ε (z). So, we have shown that

W s
ε (w) ∩ V ⊂ W s

ε (z) ∩ V . The converse inclusion follows as well, by symmetry.
Now suppose k ≥ 1. Let q be any point in gk(W s

ε (w)). Since W s(gk(w)) and
W s(z) intersect each other, they must coincide. It follows that q ∈ W s(z). Since
p ∈W s

ε (z) and p, q ∈ gk(W s
ε (w))

d(gj(z), gj(q)) ≤ d(gj(z), gj(p)) + d(gj(p), gj(q))

≤ 4−j2δ + 4−(j+k)2ε ≤ ε

for all j ≥ 0. This shows that q ∈W s
ε (z), which completes the proof of the claim.

Step 2: Call P a stable pre-piece of rank k ≥ 0 if P = gk(W s
ε (y) ∩ V ) for some

y ∈ V . By the pre-Markov property, two stable pre-pieces of rank 0 either coincide
or are disjoint. Since g is invertible, the same holds for any two stable pre-pieces
of the same rank k ≥ 0. Call P0, ..., Pn a chain if the Pi are stable pre-pieces and
Pi∩Pi−1 6= ∅ for 1 ≤ i ≤ n. Denote by kj the rank of each Pj and call n the length
of the chain. We claim that if P0, ..., Pn is a chain then

(26)
n⋃
j=0

Pj ⊂ gks(W s
ε (g−ks(z)))

for any z ∈ Ps with rank ks = min0≤j≤n kj . To see this, we argue by induction on
n. The case n = 0 is obvious. Assume the claim is true for every m < n, and let
P0, ..., Pn be any chain as above. If 0 < s < n then both P0, . . . , Ps and Ps, . . . , Pn
are chains with smaller lengths, and so the conclusion follows immediately from
the induction hypothesis. Hence, we may suppose either s = 0 or s = n. In what
follows we deal with the former case, the latter being entirely analogous. We may
also assume that ks = 0, up to replacing z and all the Pj by their pre-images under



EXTREMAL LYAPUNOV EXPONENTS 23

gks . The definition of chain implies that P0 = W s
ε (z) ∩ V intersects the union of

the other Pj , 1 ≤ j ≤ n. By the induction hypothesis,
n⋃
j=1

Pj ⊂ gkr (W s
ε (g−kr (ζ)))

for some ζ ∈ Pr, 1 ≤ r ≤ n with rank kr = min1≤j≤n kj . If kr = 0 then the pre-
Markov property implies that W s

ε (ζ) ∩ V = W s
ε (z) ∩ V , and so the union of all Pj ,

0 ≤ j ≤ n is indeed contained in W s
ε (z). Similarly, if kr > 0 then the pre-Markov

property implies
gkr (W s

ε (g−kr (ζ))) ⊂W s
ε (z)

and so the union of all Pj , 0 ≤ j ≤ n is again contained in W s
ε (z). This completes

the induction step.
Step 3: Define the stable piece of a point y ∈ M to be the set Q(y) all ξ ∈ M

such that there exists a chain P0, ..., Pn with y ∈ P0 and ξ ∈ Pn. If no such point
ξ exists, just let Q(y) = {y} instead. It is clear that the image under g of a stable
piece is contained in a stable piece, and any two stable pieces that intersect must
coincide. This implies property (1) in the lemma. Next, the property in (26) gives
that Q(y) ⊂ gk(W s

ε (g−k(z))) ⊂W s
ε (z) for any z in a pre-piece with minimum rank

k. This gives (2). If y ∈ V then Q(y) ⊃ W s
ε (y) ∩ V , because one may always take

P0 = W s
ε (y) ∩ V . Moreover, in this case k = 0 and Q(y) ⊂W s

ε (y). This proves (3)
and the proposition. �

4.3. Measurability. In this section we prove that the partition Q constructed in
Proposition 4.4 admits a measurable section:

Proposition 4.5. There exists a measurable map π : M → M constant on every
Q(y) and such that π(y) ∈ Q(y) for every y ∈ M . In particular, d(y, π(y)) ≤ 2ε
for every y ∈M .

For the proof, we need the following abstract result. Recall that a partition P
of a probability space is measurable (Rokhlin [41]) if it is the limit modulo 0 of an
increasing sequence of finite partitions into measurable sets.

Lemma 4.6. Let (X,A, ν) be a Lebesgue space and P be a partition of X into
measurable sets. If P is a measurable partition then there exists a measurable map
π : X → X that is constant on every partition element and satisfies π(x) ∈ P(x)
for every x.

Proof. We begin by recalling that (Rokhlin [41, §1–§3]) every Lebesgue space is
isomorphic (modulo 0) to the interval I = [0, 1], endowed with the σ-algebra of
Lebesgue measurable sets and a probability measure whose nonatomic part is a
multiple of Lebesgue measure. After appropriate restrictions to full measure sets
and consideration of this isomorphism, we may assume that X = I and that P
is the limit (not just in the modulo 0 sense) of an increasing subsequence (Pn)n
of finite partitions of I into Lebesgue measurable sets. For each atom Pn ∈ Pn,
let K(Pn) ⊂ Pn be a compact subset such that ν(Pn \ K(Pn)) ≤ 2−nν(Pn). Let
K ′n =

⋂
m≥n

⋃
Pm∈Pm K(Pm) × K(Pm) ⊂ X × X. Then the projection of K ′n on

the first coordinate is Kn =
⋂
m≥n

⋃
Pm∈Pm K(Pm). Notice that Kn and K ′n are

compact sets, and ν(Kn) ≥ 1 − 21−n. Let φn : Kn → X be defined so that φn(y)
is the infimum of all z with (y, z) ∈ K ′n. For n ≥ 2, let Yn be the projection
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on the first coordinate of K ′n ∩ (Kn × Kn−1), and let ψn : Yn → Kn−1 be such
that ψn(y) is the infimum of all z with (y, z) ∈ K ′n ∩ (Kn × Kn−1). Define by
induction πn : Kn → Kn so that π1 = φ1 and for n ≥ 2 let πn(y) = φn(y) if y /∈ Yn
and πn(y) = πn−1(ψn(y)) if y ∈ Yn. Then πn is a Borel function. Notice that
πn(y) = πn−1(z) whenever y ∈ P(z), and for n ≥ 2 we have πn|Kn−1 = πn. Define
π = limπn on

⋃
nKn, and extend it to the whole X in an arbitrary way to satisfy

π(y) = π(z) whenever y ∈ P(z). Then π is the desired measurable section. �

As a criterion for measurability of partitions, we use:

Lemma 4.7. Let P be a partition in a σ-compact metric space X and suppose that
graph(P) = {(x, y) : y ∈ P(x)} is a closed subset of X ×X. Then P is the limit of
an increasing sequence of finite partitions of X into Borel sets.

Proof. Let Z ⊂ X be a countable dense subset. For each x ∈ Z and i ≥ 1, let
Ux,i be the set of all z ∈ X such that P(z) intersects the closed ball of radius 1/i
centered at x. Then Ux,i is σ-compact, since it is the projection of a closed subset of
X×X. Since the atoms of P are closed, for any two different ones there exists (x, i)
such that Ux,i contains one of the atoms and is disjoint from the other. Thus, the
countably many partitions {Ux,i, X \Ux,i} generate P. This proves the lemma. �

Proof of Proposition 4.5. Let Gk ⊂ M ×M be the union of the diagonal {(y, y) :
y ∈ M} with the set of all (y, z) ∈ V × V such that z ∈ W s

ε (y), and for k ≥ 1 let
Gk be the set of all (f j(y), f j(z)) ∈M ×M with (y, z) ∈ G0 and 0 ≤ j ≤ k. Then
Gk is closed for every k ≥ 0. Let G(k) ⊂ Mk+1 = M × · · · ×M be the set of all
(y1, ..., yk+1) such that (yi, yi+1) ∈ G(k) for 1 ≤ i ≤ k. If we denote by Qk(y) the
set of all z ∈ M such that there exists y2, ..., yk ∈ M with (y, y2, ..., yk, z) ∈ G(k),
then it is clear that Qk(y) ⊂ Qk+1(y) for every k ≥ 0 and

⋃
kQk(y) = Q(y). Given

a Borel subset Z ⊂ M , let Q(Z) =
⋃
y∈Z Q(y). Notice that Q(Z) is measurable

since Q(Z) =
⋃
kQk(Z) where Qk(Z) =

⋃
y∈Z Qk(y) and each Qk(Z), being the

projection in the last coordinate of the Borel subset G(k) ∩ (Z ×Mk) ⊂ Mk+1, is
measurable. Moreover, this argument shows that if Z is σ-compact then Q(Z) is
σ-compact as well. Notice that if y /∈ Q(V ) then f(Q(f−1(y))) = Q(y). Thus, if
we can construct a measurable section π′ : Q(V ) → Q(V ) for the restriction P of
Q to Q(V ), then we can define the section π by π(y) = fn(π′(f−n(y)), when there
exists a minimal n ≥ 0 such that f−n(y) ∈ Q(V ), and π(y) = y when no such n
exists (as in this case we clearly have Q(y) = {y}). If Q(V ) has zero µ-measure,
any section will be measurable. So assume that Q(V ) has positive µ-measure.
Since Q(V ) is σ-compact, it is a Lebesgue space with respect to the completion
of any Borel probability measure. So, by Lemma 4.6, it is enough to show that
P is measurable. Let P ′ be the restriction of Q to V . Its atoms are of the form
Q(y) ∩ V = W s

ε (y) ∩ V , y ∈ V . So, by Lemma 4.7, it is the limit of an increasing
sequence P ′n of finite partitions of V into Borel subsets. Then P is the limit of
partitions Pn = {Q(P ) : P ∈ P ′n}. In particular P is measurable, as desired. �

4.4. Lyapunov exponents and holonomy invariance. In this section we con-
clude the proof of Proposition 4.2. Let ` ≥ 1 and δ > 0 be as in Proposition 4.4.
The main remaining step is to show that every disintegration of m is essentially
s-invariant restricted to the δ-neighborhood of any point x ∈M . This will be done
by applying Theorem C to a deformation of the cocycle G = F ` over g = f `, more
precisely, to a cocycle which is conjugate to G via s-holonomies. Covering M with
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these neighborhoods we obtain a disintegration of m which is essentially s-invariant
on the whole space.

Clearly, m is invariant under G and λ−(G, x, ξ) = `λ−(F, x, ξ) ≥ 0 for m-almost
every point. Given any x ∈ M , let V be its δ-neighborhood, and let Q = Qx be
the partition constructed in Proposition 4.4. Let B0 be the σ-algebra of measurable
subsets of M that are unions of entire atoms of Q. In other words, a measurable
subset E belongs to B0 if and only if every stable piece is either contained in or
disjoint from E. Notice that g is B0-measurable, because the image of any stable
piece is contained in a stable piece. Let π : M →M be as in Proposition 4.5.

Let G̃ = G̃(x) : E → E be the transformation defined by

G̃y = hsg(π(y)),π(g(y)) ◦Gπ(y).

Then G̃ is B0-measurable, because π is constant on stable pieces and the image
of every stable piece is contained in a stable piece. Property (sh2) applied to G
(the properties in the definition of s-holonomy remain valid when one replaces the
cocycle by any forward iterate) yields

(27) G̃y = hsg(y),π(g(y)) ◦Gy ◦ h
s
π(y),y

for every y ∈M . This relation can be rewritten as G̃ = Φ◦G◦Φ−1, where Φ : E → E
is given by Φ(y, ξ) = (y, hsy,π(y)(ξ)). Then G̃ is a deformation of G, since Φ and its
inverse are β-Hölder continuous on every fiber. Let m̃ be the probability measure
on E defined by m̃ = Φ∗(m). Clearly, it is invariant under G̃, it projects down to
µ, and its conditional probabilities along the fibers are given by

(28) m̃y = (hsy,π(y))∗my.

So, we are in a position to apply Theorem C to conclude that the disintegration
{m̃y} is B0-measurable: there exists a full µ-measure subset restricted to which m̃y

is constant on stable pieces Q(y). Through (28), this gives rise to a disintegration
{my} of m which is s-invariant on each stable piece:

mz = (hsπ(z),z)∗m̃z = (hsπ(w),z)∗m̃w = (hsw,z)∗(h
s
π(w),w)∗m̃w = (hsw,z)∗mw

for any z and w in any Q(y). In particular, the disintegration of m is essentially
s-invariant restricted to the ball V = V (x) of radius δ around every x ∈ M . Now,
consider any countable set {xn} ⊂ suppµ such that the balls of radius δ/2 around
these xn cover the support of µ. For each n, let Bn be a zero µ-measure subset of
the ball V (xn) of radius δ around xn such that

(29) mw = (hsz,w)∗mz for all z, w ∈ V (xn) \Bn in the same stable piece.

Let E be the set of all point x ∈ suppµ whose orbits never meet ∪nBn and such
that

(30) mf l(x) = (F lx)∗mx for all l ∈ Z.

Then E has full µ-measure in M . By properties (sl1)-(sl5) in the definition of
s-lamination, given any x, y ∈ E with y ∈ W s(x) there exists k ≥ 1 such that
d(f l(x), f l(y)) ≤ δ/2 (≤ ε) for all l ≥ k. Fix n such that fk(x) ∈ B(xn, δ/2).
Then fk(y) ∈ V (xn)∩W s

ε (fk(x)). So, by Proposition 4.4, the two points z = fk(x)
and w = fk(y) belong to the same stable piece (associated to xn). Since they are
outside Bn, we may combine (29) and (30) with property (sh2) of s-holonomies
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to conclude that my = (hsx,y)∗mx. This proves that the disintegration of m is
essentially s-invariant, as claimed. This finishes the proof of Proposition 4.2.

4.5. Product structure and continuity. In particular, if the cocycle F admits
invariant holonomies, then any invariant measure m ∈ M(µ) for which Lyapunov
exponents vanish almost everywhere is an su-state. This means that m has some
disintegration which is s-invariant on a full measure s-saturated set and some dis-
integration which is u-invariant on a full measure u-saturated set. We are now
going to discuss additional conditions under which these two disintegrations may
be taken to coincide. Based on this we prove Theorem D and Corollary E.

Assume the s-lamination and the u-lamination of f : M → M satisfy a local
product condition like (h5) in Section 2.3: there is δ > 0 such that if d(x1, x2) ≤ δ
then Wu

ε (x1) and W s
ε (x2) intersect at exactly one point, and this point [x1 , x2]

depends continuously on (x1, x2). Given any x ∈ M , let Bs(x) and Bu(x) be the
balls of radius δ/2 around x inside W s

ε (x) and Wu
ε (x), respectively. Then

φ : Bs(x)×Bu(x)→M, (x1, x2) 7→ [x1 , x2]

defines a homeomorphism from Bs(x)×Bu(x) to a neighborhood B(x) of x. Indeed,
assumption (h5) ensures that φ is injective, its image covers a neighborhood of x,
and its inverse is continuous. Assume also that µ has local product structure. As
observed before, this implies that the support of µ is su-saturated.

Proposition 4.8. Assume F admits s-holonomy and u-holonomy. Assume f and
µ have local product structure, as described above. If m is an su-state then it
admits a disintegration which is s-invariant and u-invariant and whose conditional
probabilities mx vary continuously with x in the support of µ.

Proof. It suffices to prove that given any z ∈ suppµ there exists a disintegration
of m which satisfies the conclusion restricted to B(z). By assumption, there exists
some s-invariant disintegration {ms

x} and some u-invariant disintegration {mu
x}. By

essential uniqueness, mu
x = ms

x for every x in some full µ-measure set E ⊂M . Using
product structure, there exists xu ∈ Bu(z) such that E intersects {xu} ×Bs(z) on
a full µs-measure set. Define

mx = (huy,x)∗ms
y for every x ∈ B(z), y = [xu, x].

Note that y 7→ ms
y is continuous on {xu} × Bs(z), because ms

x is s-invariant and
s-holonomies vary continuously with the point. Using that u-holonomies also vary
continuously with the point, we get that x 7→ mx is continuous on B(z). By
construction, mx is u-invariant. Moreover, it coincides with mu

x almost everywhere,
due to product structure and the choice of xu. Hence, mx also coincides with ms

x

almost everywhere. By continuity, it follows that mx is also s-invariant. �

Proof of Theorem D. Clearly, the assumption
∫
|λ±(F, ·)| dmk → 0 is stronger than∫

min{0, λ−(F, ·)} dmk → 0. So, by Proposition 4.2, the measure m is an s-state.
Since the assumption is symmetric under time reversion, we may apply the propo-
sition to F−1 as well, to conclude that m is also a u-state. Now the conclusion of
the theorem follows from Proposition 4.8. �

Remark 4.9. The same arguments yield a more local version Theorem D. Let U ⊂
M be an invariant, s-saturated, u-saturated set, with positive Lebesgue measure.
An su-state over U is an invariant measure that projects down to the normalized
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restriction of the Lebesgue measure to U and which admits some essentially s-
invariant disintegration and some essentially u-invariant disintegration. Then it
admits a disintegration which is su-invariant and continuous.

Proof of Corollary E. Since the fiber is 1-dimensional, λ−(F, ·) = λ+(F, ·) wherever
they are defined. Suppose there is a sequence (mk)k of ergodic probability measures
projecting down to µ and such that λ±(F,mk)→ 0 as k →∞. By ergodicity, this
is the same as the condition in the assumption of Theorem D. Since the fiber is
compact, the sequence must have some accumulation point. Every accumulation
point m is also an invariant measure that projects down to µ. By Theorem D,
the measure m admits a disintegration {mx : x ∈ M} which is s-invariant, u-
invariant, and continuous on the support of µ. By invariance and continuity, this
disintegration satisfies

(Fx)∗mx = mf(x)

for every point in suppµ. In particular,

(31) (Fp)∗mp = mp and (Fq)∗mq = mq.

The first equality implies that the support of mp is contained in the subset {ap, rp}
of the circle. Let z ∈Wu(p)∩W s(q). By invariance of the conditional probabilities,

mq = (hsz,q ◦ hup,z)∗mp.

Consequently, suppmq contains at most two points. The second equality in (31)
implies that the support is invariant under Fq. It follows that Fq has periodic
points of period 1 or 2, which contradicts the assumption of the corollary. This
contradiction proves that the exponent is indeed bounded away from zero. �

5. Domination and fiber bunching

Here we introduce a number of ideas that will be useful for analyzing the depen-
dence of Lyapunov exponents on the cocycle. We take the fiber manifold N to be
compact; towards the end of the section, we assume the fiber bundle E itself to be
compact. In addition to the conditions in the previous section, we assume the fiber
bundle and the cocycle to be Lipschitz, in the sense of Section 2.5. We also consider
the Lipschitz topology in the space of Lipschitz cocycles introduced in Section 2.5.

5.1. Existence of holonomies. Assume f admits an s-lamination W s. We call
a cocycle F s-dominated (relative to W s) if there exist ` ≥ 1 and θ < 1 such that

(32) ‖DF `x(ξ)−1‖ ν`(x) ≤ θ for all (x, ξ) ∈ E .

In other words, the strongest contraction of F ` along the fibers is strictly weaker
than the weakest contraction of f ` along the leaves of W s. Replacing f and F by
its inverses, we obtain the dual notion of u-dominated cocycle. Denote by Ds(f) the
subset of s-dominated cocycles and by Du(f) the subset of u-dominated cocycles.
It is clear from the definition that these are open sets for the topology we have
just introduced. When f admits both an s-lamination and a u-lamination, we let
D(f) = Ds(f) ∩ Du(f) be the subset of dominated cocycles.

The s-domination condition is designed so that the usual graph transform argu-
ment yields a “strong-stable” lamination for the map F (there is a dual statement
for u-dominated cocycles):
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Proposition 5.1. If the cocycle F is s-dominated then there exists a unique par-
tition Ws = {Ws(x, ξ) : (x, ξ) ∈ E} of the fiber bundle E such that

(1) every Ws(x, ξ) is a Lipschitz graph over W s(x), with Lipschitz constant
uniform on x;

(2) F (Ws(x, ξ)) ⊂ Ws(F (x, ξ)) for all (x, ξ) ∈ E;
(3) the map hsx,y : Ex → Ey defined by (y, hsx,y(ξ)) ∈ Ws(x, ξ), for y ∈ W s(x),

coincides with the uniform limit of (Fny )−1 ◦ Fnx as n→∞;
(4) the family of maps hsx,y : Ex → Ey is an s-holonomy for F .

Proof. The claims follow from the same partial hyperbolicity methods (see Hirsch,
Pugh, Shub [27]) used before to obtain similar results for linear cocycles [14, 16, 43],
and so we just sketch the main ingredients. Existence (1) and invariance (2) of the
familyWs follow from a standard application of the graph transform argument [27].

Notice that, for every x and y in the same stable manifold, and every n ≥ 0,

(33) hsx,y = (Fny )−1 ◦ hsfn(x),fn(y) ◦ F
n
x

and the uniform distance from hsfn(x),fn(y) to the identity map is bounded by
Cd(fn(x), fn(y)), where C is the uniform Lipschitz constant in (1). Putting these
observations together, we find that

dC0(hsx,y, (F
n
y )−1 ◦ Fnx ) ≤ Lip

(
(Fny )−1

)
dC0(hsfn(x),fn(y), id)

≤ C sup
ξ
‖DFny (ξ)−1‖ d(fn(x), fn(y)).

Fix ` as in the domination condition (32) and write k = [n/`]. Clearly,

d(fn(x), fn(y)) ≤ Kd(fk`(x), fk`(y)) ≤ K
k−1∏
i=0

ν`(f i`(y))d(x, y)

and ‖DFny (ξ)−1‖ is similarly bounded above by a product of norms of the derivative
of (F `)−1 along the orbit of y. Using the domination condition (32) we conclude
that

dC0(hsx,y, (F
n
y )−1 ◦ Fnx ) ≤ const θk ≤ const θn/`,

where the constants are independent of n, x, y. This proves (3).
Conditions (sh1)-(sh3) in the definition of s-holonomy are direct consequences of

the definition of hsx,y. Thus, to prove (4) we only have to check that the maps hsx,y
are Hölder continuous, with uniform exponential Hölder constant. The arguments
are quite standard, see for instance [1, 27]. In view of (33), and the fact that the
Fz and their inverses are Lipschitz, it is no restriction to assume that x and y are
in the same local stable set. For each n ≥ 0, denote xn = fn(x) and yn = fn(y).
Given ξ, η ∈ Ex, denote ξn = Fnx (ξ) and ηn = Fnx (η). By domination, there exists
K > 0 and

(34) n ≤ −K log d(ξ, η)

such that d(xn, yn) ≤ d(ξn, ηn). Then

d(hsxn,yn(ξ), hsxn,yn(η)) ≤ d(ξn, ηn) + 2Cd(xn, yn) ≤ 3Cd(ξn, ηn),

where C is the uniform Lipschitz constant in (1). Let L be a uniform upper bound
for the norms of ‖DF±1

z ‖. The previous inequality yields

L−nd(hsx,y(ξ), hsx,y(η)) ≤ 3CLnd(ξ, η).
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In view of (34), we have L2n ≤ d(ξ, η)−θ for some uniform constant θ ∈ (0, 1).
Then the previous inequality gives

d(hsx,y(ξ), hsx,y(η)) ≤ 3Cd(ξ, η)1−θ,

which proves our claim. �

5.2. Continuity of holonomies. We are going to see that s-holonomies vary
continuously with the cocycle on Ds(f). Of course, there is a dual statement for u-
holonomies on Du(f). Let Ws(G) = {Ws(G, x, ξ) : (x, ξ) ∈ E} denote the “strong-
stable” lamination of a cocycle G ∈ Ds, as in Proposition 5.1, and hsG = hsG,x,y be
the corresponding s-holonomy:

(35) (y, hsG,x,y(ξ)) ∈ Ws(G, x, ξ).

Recall Ws(G, x, ξ) is a graph over W s(x). We also denote by Ws
ε (G, x, ξ) the part

of the graph located over W s
ε (x), that is, the set of all points (y, hsG,x,y(ξ)) with

y ∈W s
ε (x).

Proposition 5.2. Let (Fk)k be a sequence of cocycles converging to F in Ds(f).
Then

(1) every Ws(Fk, x, ξ) is a Lipschitz graph, with Lipschitz constant uniform on
x, ξ, and k

(2) Ws
ε (Fk, x, ξ) converges to Ws

ε (F, x, ξ), as graphs over the same domain,
uniformly on (x, ξ) ∈ E

(3) hsFk,x,y(ξ) converges to hsF,x,y(ξ) for every x ∈M , y ∈ W s(x), and ξ ∈ Ex,
and the converse is uniform over all y ∈W s

ε (x).

Proof. This is another standard consequence of the classical graph transform argu-
ment [27]. Indeed, the assumptions imply that the graph transform of Fk converges
to the graph transform of F in an appropriate sense, so that the corresponding fixed
points converge as well. This yields (1) and (2). Part (3) is a direct consequence of
(2) and the definition (35), in the case y ∈ W s

ε (y). The general statement follows,
using the invariance property (sh2):

Hs
Fk,x,y

= (Fnk,y)−1 ◦ hFk,fn(x),fn(y) ◦ Fnk,x.

See also [43, Section 4] where stronger results are proved in detail using similar
methods, in the context of linear cocycles. �

Corollary 5.3. The subset of cocycles admitting some su-state is closed in D(f).

Proof. If Fk → F in D(f) and mk are su-states for Fk projecting down to µ then
any weak limit m of the sequence mk is an su-state for F projecting down to µ. �

5.3. Projective extension. Let F : E → E be a dominated cocycle. It will be
convenient to think of F as a transformation in its own right, and to consider a
certain smooth cocycle P(F ) over F that we call projective extension. Here we
define P(F ) and discuss a stronger domination condition, called fiber bunching,
that ensures robust existence of holonomies for P(F ).

The partition Ws = Ws(F ) given by Proposition 5.1 is an s-lamination for F :
in particular, since strong-stable leaves are Lipschitz graphs (Proposition 5.1) and
local charts are Lipschitz, we have

(36) d(Fn(y, η), Fn(z, ζ)) ≤ C0νn(x) d((y, ξ), (z, ζ))
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for every (y, η), (z, ζ) ∈ Ws(x, ξ), where C0 > 1 is a uniform constant. Analo-
gously, the “strong-unstable” lamination Wu =Wu(F ) is a u-lamination for F . In
addition, we consider the c-lamination

Wc = {Wc(x, ξ) = Ex : (x, ξ) ∈ E}.

Let P(E) be the projective tangent bundle of E , that is, the fiber bundle over
E such that the fiber of each (x, ξ) is the projectivization of the tangent space
TξEx. The projective extension of F is the smooth cocycle P(F ) : P(E)→ P(E) over
F : E → E defined by

P(F )(x, ξ, [v]) = (f(x), Fx(ξ), [DFx(ξ)v]), for each [v] ∈ P(TξEx).

Notice P(E) is also a fiber bundle over M , with fiber P(TEx), and one may think
of P(F ) as a cocycle over f : M → M instead. However, this will usually not be
our point of view: instead, most of the time, we think of P(F ) as a cocycle over F
itself.

Assume the cocycle F is s-dominated. We say that F is s-fiber bunched if there
exist ` ≥ 1 and θ < 1 such that

(37) ‖DF `x(ξ)‖‖(DF `x(ξ))−1‖ ν`(x) ≤ θ for every (x, ξ) ∈ E .

The product of the first two factors bounds the norm of the derivative P(F )` and
its inverse. Recall (23) and (24). Thus, this condition means that the strongest
contraction of P(F )` along the fibers P(TξEx) is strictly weaker than the weakest
contraction of f ` along the leaves of W s.

It is easy to see that s-fiber bunching implies that P(F ) is s-dominated relative to
the s-lamination Ws of F and, consequently, has s-holonomy. Indeed, (37) implies

‖DF k`x (ξ)‖‖(DF k`x (ξ))−1‖C0νk`(x) ≤ C0θ
k

and so, in view of (36), it suffices to fix k ≥ 1 such that C0θ
k < 1.

Remark 5.4. Under condition (37), a computation similar to Proposition 5.1(3)
shows that (Fny )−1◦Fnx converges to hsx,y : Ex → Ey in the C1 topology. In particular,
in this case the s-holonomy maps are diffeomorphisms between the fibers of E . The
projectivizations

P(Dhsx,y(ξ)) : P(TξEx)→ P(TηEy), η = hsx,y(ξ)

of the derivatives are precisely the s-holonomy maps of P(F ).

A u-dominated cocycle F is u-fiber bunched if its inverse F−1 is s-fiber bunched.
Then P(F ) is u-dominated (relative to the u-laminationWu of F ), and so it admits
u-holonomies. Let Bs(f) ⊂ Ds(f) be the subspace of s-fiber bunched cocycles, and
Bu(f) ⊂ Du(f) be the subspace of u-fiber bunched cocycles. We call a dominated
cocycle fiber bunched if it belongs to B(f) = Bs(f) ∩ Bu(f).

Remark 5.5. Let F : E → E be a fiber bunched cocycle and m be an F -invariant
probability such that λ−(F, x, ξ) = λ+(F, x, ξ) = 0 at m-almost every x ∈M . Then
every P(F )-invariant probability η projecting down to m is an su-state. This follows
directly from Corollary 4.3 applied to the cocycle P(F ) over the transformation F ,
and to its inverse.
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5.4. Accessibility. In order to handle the construction in the previous section we
shall need a few facts about cocycles over partially hyperbolic systems, that we
present in here. Propositions 5.6 and 5.7 below are special versions of much more
general results of Pugh, Shub [40] and Avila, Santamaria, Viana [3], respectively.
We include the proofs since the arguments are much simpler in our setting, namely
skew-products with differentiable stable and unstable holonomies.

Let F be a smooth cocycle admitting stable and unstable holonomies. The
accessibility class of a point (x, ξ) ∈ E is the set of all (y, η) ∈ E such that there
exist (z0, ζ0) = (x, ξ), (z1, ζ1), . . . , (zn−1, ζn−1), (zn, ζn) = (y, η) in E satisfying

(zj+1, ζj+1) ∈ Ws(zj , ζj) ∪Wu(zj , ζj) for every j = 0, . . . , n− 1.

It is easy to see that any accessibility class with non-empty interior is open. We
say that F is accessible if the whole E is an accessibility class.

Proposition 5.6. If F is a fiber bunched volume preserving cocycle and Z is
an accessibility class with positive m-measure then there exists n ≥ 1 such that
Fn(Z) = Z and Fn | Z is ergodic for m. In particular, if F is accessible then it is
ergodic.

Proof. The first claims are immediate: Z must intersect Fn(Z) for some n ≥ 1,
since m(Z) > 0, and then the two sets must coincide. We are left to prove that,
given any continuous function ϕ : E → R, the time averages

ϕ± = lim
n

1
n

n−1∑
j=0

ϕ ◦ F±jn

are constant m-almost everywhere on Z. Given c ∈ R, let Ac be the set of points
z ∈ Z for which ϕ±(z) are well-defined and satisfy ϕ+(z) = ϕ−(z) ≤ c. All we
have to do is prove that every Ac has either zero of full m-measure in Z. Let c
be such that Ac has positive m-measure and let mc be the normalized restriction
of m to Ac. Since ϕ+ is constant on s-leaves, the set Ac is essentially s-saturated;
for similar reasons it is also essentially u-saturated. This implies that mc is an su-
state and projects down to µ (which we assume to have local product structure).
Then, by Proposition 4.8, the measure mc admits a continuous s-invariant and u-
invariant disintegration {mc

x : x ∈ suppµ}. Using also that the holonomies of F are
area preserving diffeomorphisms, we obtain that the density of mc

x with respect to
Lebesgue measure on the fiber is constant along s-leaves and along u-leaves, over
the support of µ. It follows that the density is constant on the whole accessibility
class Z, over the support of µ. This can only happen if Ac has full m-measure in
Z. �

Let M → E denote the fiber bundle where the fiber of each z = (x, ξ) ∈ E
is the space of probability measures in the projective fiber P(E)z = P(TξEx). Let
Hs
z,w : P(E)z → P(E)w be the s-holonomy maps of the projective extension P(F ): if

w = (y, η) with η = hsx,y(ξ) then Hs
z,w : P(TξEx)→ P(TηEy) is the projectivization

of the derivative of hsx,y : Ex → Ey at the point ξ.
Through the end of this section, we assume the ambient space E to be compact.

Proposition 5.7. Let F be a fiber bunched accessible volume preserving cocycle.
Then any invariant su-state of P(F ) projecting down to m admits a disintegra-
tion which is s-invariant and u-invariant and whose conditional probabilities vary
continuously with the base point on the support of µ.
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Proof. Let ζ be any invariant su-state of P(F ) projecting down to m. We begin
by thinking of P(F ) as a cocycle over the hyperbolic transformation f : M → M .
It is clear that ζ is an su-state of this cocycle as well. Then, by Proposition 4.8,
there exists a disintegration {ζx : x ∈ M}, along the fibers of P(E) → M which is
su-invariant and continuous. To proceed with the proof, let {ζ(x,ξ) : ξ ∈ Ex} be any
disintegration of ζx along the fibers of P(TEx) → Ex, for every x ∈ M . Consider
the section ψ : E →M defined by ψ(x, ξ) = ζ(x,ξ) We call z = (x, ξ) ∈ E a point of
measurable continuity for ψ if there exists some probability measure ν on P(TξEx)
such that z is a Lebesgue density point of ψ−1(U) for any neighborhood U of ν (use
any local trivialization of the fiber bundle E ; the definition does not depend on the
particular choice). Notice that ν is unique when it exists, and the set MC(ψ) of
points of measurable continuity has full m-measure. In that case define ψ̃(z) = ν.

Lemma 5.8. MC(ψ) is su-saturated and the section ψ̃ : MC(ψ) → M is su-
invariant on MC(ψ).

Proof. The fact that {ζx : x ∈ M} is s-invariant means that (Ĥs
x,y)∗ζx = ζy for

every x and y on the same stable leaf of f , where Ĥs denotes the s-holonomy of the
cocycle P(F ) over f (which fibers over the s-holonomy Hs of the cocycle P(F ) over
F ). Consequently,

(
Hs
z,w

)
∗ζz = ζw for Lebesgue almost every ξ ∈ Ex, where w =

(y, η) with η = hsx,y(ξ). Since the holonomy maps hsx,y are diffeomorphisms, and the
Hs
z,w are the fibers of the continuous map Ĥs

x,y, it follows that measurable continuity
points of the section ψ are preserved by the Hs. This proves s-saturation and s-
invariance; the arguments for u-saturation and u-invariance are analogous. �

Since we assume accessibility, this gives that MC(ψ) is the whole E and ψ̃ is su-
invariant. Since ψ̃ coincides with ψ almost everywhere, it defines a disintegration
of ζ. To conclude the proof we only have to check that ψ̃ is continuous. Given
z ∈ E , let us denote by B(z,N) ⊂ E the set of points which are accessible from
z through an su-path with not more than N legs, all of them contained in local
stable or unstable manifolds.

Lemma 5.9. There exists N ≥ 1 such that B(z,N) = E for every z ∈ E.

Proof. First, notice that, given any ε > 0 there exists N(ε) ≥ 1 such that B(z,N)
is ε-dense in E . Indeed, otherwise there would exist ε > 0 and sequences zN and
wN such that B(zN , N) avoids the ball B(wN , ε) for every N . By compactness, it
would follow that there exist z and w such that w /∈ B(z,N) for every N . This
would contradict the assumption of accessibility. Now fix z0 ∈ E . Clearly from the
definition, B(z0, N) is compact for every N ≥ 1. Since

⋃
N≥1 B(z0, N) = E , and E

is compact, there exists N0 such that B(z0, N) has non-empty interior. Hence it
contains some ε-ball for some ε > 0. Thus, B(z,N(ε)) ∩ B(z0, N0) 6= ∅ for every
z ∈ E . It follows that B(z,N) = E for every z ∈ E , with N = 2(N0 +N(ε)). �

Using this lemma, we can now upgrade measurable continuity to uniform mea-
surable continuity, as follows. Fix any metric on the fibers of M compatible
with the weak∗ topology. We claim that for every ε > 0 and every sufficiently
small ball B on any fiber Ex (with respect to a fixed, but arbitrary Riemannian
metric depending continuously on the fiber) there exists a subset W of B, with
Leb(W ) > (1 − ε) Leb(B), such that ψ̃(W ) is contained in the ε-ball around ψ̃(z)
in M. Indeed, for any two points z ∈ Ex and w ∈ Ey, there exists a composition
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H : Ex → Ey of at most N local holonomy maps such that H(z) = w. It follows that
H has uniformly bounded derivative, and the corresponding projective extension
Ĥ : P(Ex)→ P(Ey) is uniformly continuous. So, the quantifiers for measurable con-
tinuity at any two points are related with bounded distortion, yielding the claimed
uniformity. Finally, it is easy to see that any uniformly measurable continuous
function is in fact uniformly continuous in the fiber. Thus, the image under ψ̃ of
any small ball in any fiber has small diameter inM. Since ζx depends continuously
on x, it follows that ψ̃ is continuous. �

Combining Remark 5.5 with Proposition 5.7 one immediately obtains

Theorem 5.10. Let F be a fiber bunched accessible volume preserving cocycle.
If λ−(F, x, ξ) = λ+(F, x, ξ) = 0 at m-almost every (x, ξ) ∈ E then every P(F )-
invariant probability that projects down to m admits a disintegration which is s-
invariant, u-invariant, and whose conditional probabilities vary continuously with
the base point on the support of µ.

6. Continuity and positivity of exponents

Here we start our analysis of area preserving cocycles, to prove Theorem F and
Corollary G. Let us begin by observing that every cocycle volume preserving cocycle
admits some su-state, namely, the measure m defined by (8). Indeed, it is clear that
m is an F -invariant probability. Moreover, its disintegration mx is invariant under
s-holonomy and u-holonomy because, by part (4) of Proposition 5.1, all holonomy
maps are volume preserving if the cocycle is. This means that, unlike the situation
in Corollary E for instance, the methods we developed in the previous sections can
not be applied directly to cocycles F ∈ Bvol(f).

Nevertheless, we are going to show that those criteria remain useful to obtain
information on the Lyapunov exponents of F . The strategy is to apply them to the
projective extension P(F ) instead. As observed in Section 5.3, the fiber bunching
condition ensures that P(F ) is dominated and, hence, admits holonomies in a robust
fashion. A fiber bunched cocycle F is called bundle free if its projective extension
admits no su-states. Corollary 5.3 implies that this is an open condition (recall
that at this point we take the fiber N to be compact). More generally, given any
invariant su-saturated set U with positive Lebesgue measure, we say that F is
bundle free over U if the projective extension has no su-state over U .

6.1. Discontinuity points. We are going to prove Theorem F. Let F ∈ Bvol(f)
be ergodic for m and a discontinuity point for the Lyapunov exponents λ±(F,m).
Recall that λ+(F,m) + λ−(F,m) = 0. It is well-known that the upper exponent
λ+(·,m) is upper semi-continuous and the lower exponent λ−(·,m) is lower semi-
continuous. Thus, if F is a discontinuity point then we must have

λ−(F,m) < 0 < λ+(F,m).

By ergodicity, this means that λ−(F, x, ξ) < 0 < λ+(F, x, ξ) for m-almost every
(x, ξ). Let Tx,ξE = Esx,ξ⊕Eux,ξ be the Oseledets decomposition of F . For ∗ ∈ {s, u},
denote by η∗ the probability measure on P(E) which projects down to m under the
fibration P(E)→ E and whose conditional probability measure on the fiber of each
(x, ξ) is the Dirac mass at the Oseledets space E∗x,ξ. Equivalently,

η∗(B) = m
({

(x, ξ) : (x, ξ, E∗x,ξ) ∈ B
})
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for every measurable set B ⊂ P(E). Notice that ηu is an invariant u-state and ηs is
an invariant s-state of P(F ). Let M(m) denote the space of probability measures
η on P(E) that are mapped to m under the fibration P(E)→ E and, hence, project
down to µ under P(E)→M .

Lemma 6.1. A measure η ∈M(m) is P(F )-invariant if and only if it is a convex
combination of ηu and ηs, that is, if η = αηu +βηs for some F -invariant functions
α, β : M → [0, 1] such that α+ β = 1.

Proof. The ‘if’ part is trivial. For the converse just notice that every compact
subset of P(E) disjoint from {Eu, Es} accumulates on Eu in the future and on Es

in the past. �

Lemma 6.2. The exponent λ+(F,m) coincides with the maximum of∫
log ‖DFx(ξ)v‖ dη(x, ξ, v)

over all P(F )-invariant probability measures η ∈ M(m). When λ+(F,m) > 0, the
probability measure η = ηu realizes the maximum.

Proof. Clearly, for any probability η that projects down to m,
1
n

∫
log ‖DFnx (ξ)v‖ dη(x, ξ, v) ≤ 1

n

∫
log ‖DFnx (ξ)‖ dm(x, ξ).

The right hand side converges to λ+(F,m) when n → ∞. The left hand side
coincides with

1
n

∫ n−1∑
j=0

log ‖DFxj (ξj)vj‖ dη(x, ξ, v) =
∫

log ‖DFx(ξ)v‖ dη(x, ξ, v),

where (xj , ξj , vj) = P(F )j(x, ξ, v) and we take η to be P(F )-invariant. Combining
these observations, one obtains the upper bound in the statement.

Now we only have to check that ηu realizes the maximum. To this end, notice
1
n

∫
log ‖DFnx (ξ)v‖ dηu(x, ξ, v) =

1
n

∫
log ‖DFnx (ξ)vu‖ dm(x, ξ),

where vu = vu(x, ξ) is a unit representative of Eux,ξ. By the previous arguments,
the left hand side coincides with

∫
log ‖DFx(ξ)v‖ dηu(x, ξ, v), for every n ≥ 1. By

dominated convergence, the right hand side goes to∫
lim

1
n

log ‖DFnx (ξ)vu‖ dm(x, ξ) =
∫
λ+(F, x, ξ) dm(x, ξ) = λ+(F,m)

when n→∞. This proves our claim. �

Proposition 6.3. Let F be fiber bunched and ergodic. If F is a point of disconti-
nuity for the Lyapunov exponent then every P(F )-invariant probability η ∈ M(m)
is an su-state for P(F ). In particular, F is not bundle free.

Proof. The assumption implies there exists a sequence (Fk)k of cocycles converging
to F in Bvol(f) such that limk λ+(Fk,m) < λ+(F,m) (the other inequality always
holds, by semi-continuity of the largest exponent). Then, by Lemma 6.2, there
exists some invariant u-state ηk for each P(Fk), such that

lim
k

∫
log ‖DFk,z(ξ)v‖ dηk < λ+(F,m).
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We may assume that (ηk)k converges to some probability measure η. Clearly, η is
an invariant u-state for P(F ). By Lemma 6.1,

η = αηu + βηs

where α and β are constants (by ergodicity). Moreover,∫
log ‖DFz(ξ)v‖ dη = lim

k

∫
log ‖DFk,z(ξ)v‖ dηk < λ+(F,m).

This implies that η 6= ηu and, thus, β is not zero. It follows that ηs is a u-state for
P(F ), since η and ηu are. Analogously, ηu is an s-state for P(F ). Therefore, η is
an su-state for P(F ). �

Corollary 6.4. If F is fiber bunched, ergodic, and bundle free then it is a point of
continuity for the Lyapunov exponents and satisfies λ−(F,m) < 0 < λ+(F,m).

Remark 6.5. In the non-ergodic case we find that if F is a discontinuity point for the
Lyapunov exponents then there exists an s-saturated positive measure set Zs ⊂ E
where E−x,ξ is s-invariant and a u-saturated positive measure set Zu ⊂ E where E+

x,ξ

is u-invariant.

We are ready to finish the proof of Theorem F. We have seen in Proposition 6.3
that, under the theorem’s assumptions, every P(F )-invariant probability in M(m)
is an su-state. From Proposition 5.7 we conclude that it admits some disintegration
which is su-invariant and continuous. This completes the proof.

6.2. Topological obstructions. In this section we observe that the topology of
the fiber imposes certain restrictions on the behavior of the Lyapunov exponents.
Corollary G is a consequence of the following result:

Theorem 6.6. Let F : E → E be a fiber bunched area preserving cocycle admitting
some open accessibility class C. If F is not bundle free over U = ∪n∈ZF

n(C) then
either

(1) F is accessible, N = S2 or N = T2, and there exists a continuous Rie-
mannian metric on the fibers, inducing the same area form, and which is
invariant under both F and the invariant holonomies,

(2) or F admits either an invariant continuous line field over U or an invariant
pair of transverse continuous line fields over U .

Proof. Let η be an su-state for the projective extension, and {ηz : z ∈ suppm}
be a continuous, P(F )-invariant and su-invariant disintegration of η. Observe that
suppm = suppµ × N . For each x ∈ M , let Ux be the intersection of U with
each fiber Ex = N . Then Ux is an open subset of N . The definition implies that,
given any points (x0, ξ0) and (x1, ξ1) in U there exist homeomorphisms Ux0 → Ux1

obtained by concatenating cocycle iterates and stable and unstable holonomies
and mapping ξ0 to ξ1. These homeomorphisms preserve the family of conditional
probabilities.

Suppose first that for some (and, hence, for any) z ∈ suppm, the probability
ηz admits some atom with mass at least 1/2. Either such an atom is unique or
there exist exactly two, that exhaust the total mass of the conditional probability.
In the first case, the family of conditional probabilities defines a continuous map
assigning to each point in Ux a point in projective space, that is, a continuous line
field on Ux. Moreover, the line field is preserved by the cocycle and its invariant
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holonomies. The second case is analogous, except that one gets an invariant pair
of line fields instead. This gives part (2) of the theorem.

Now suppose that every ηz admits no atom with mass 1/2 or larger. Then, by
Douady, Earle [20, Section 2], the conditional measure has a well-defined confor-
mal barycenter ξ(z) ∈ D and, consequently, it defines a conformal structure on the
tangent space to the fiber at z. This endows every Ux with a Riemann surface
structure. Together with the area form, this conformal structure defines a Rie-
mannian metric on the tangent space to the leaves, which is invariant under the
cocycle and its holonomies. In particular, the group of isometries acts transitively
on every Ux. Thus (see Farkas, Kra [21, Theorem V.4]), Ux must be one of five
exceptional surfaces: the sphere S, the plane C, the punched plane C∗, the hyper-
bolic disk D, or the torus T. Moreover, the plane, the punched plane, and the disk
may be excluded, since Ux has finite area. It follows that Ux is either the sphere or
the torus and, in either case, coincides with the whole fiber N . In particular, F is
accessible. �

Remark 6.7. Part (2) of Theorem 6.6 can be strengthened considerably, if the
cocycle is sufficiently regular: the fiber is N = T2 and the cocycle is conjugate to
a sheer (ξ, η) 7→ (ξ + t(x)η, η) on the fibers. This fact is neither proved nor used in
this paper.

Proof of Corollary G. The assumptions of the corollary ensure we are in the setting
of Theorem 6.6, with C = U = E . The hypothesis on the genus excludes alternative
1 in the conclusion of the theorem. Alternative 2 is also similarly excluded: since
the Euler characteristic of the fiber is non-zero, there can be no continuous vector
field, nor pair of vector fields, over the whole E . This proves that F must be bundle
free. Now the conclusion follows from Corollary 6.4. �

7. Generic area preserving cocycles

Here we prove Theorem H: every F ∈ Bvol(f) is approximated by open sets
where the Lyapunov exponents vary continuously and do not vanish. We begin
with an outline of the arguments.

We have seen in Corollary 6.4 that if a cocycle F is bundle free and ergodic then
its Lyapunov exponents are non-zero and they are continuous at F . We also know,
from Corollary 5.3, that every bundle free cocycle is stably bundle free. In [4] we
prove that every accessible cocycle with 2-dimensional fiber is stably accessible. By
Proposition 5.6, every accessible fiber bunched volume preserving cocycle is ergodic.
In [4] we also prove that every fiber bunched cocycle with 2-dimensional fiber is
approximated by a (stably) accessible one. Thus, it suffices to prove that every
accessible F ∈ Bvol(f) is approximated by a (stably) bundle free cocycle.

By Theorem 6.6, if the fiber N is a hyperbolic surface then F itself is bundle free,
and so there is nothing to prove. Indeed, to finish the proof we only have to explain
how to perturb the cocycle in each of the situations left open by Theorem 6.6, in
order to make it bundle free. We use a simple mechanism to ensure the bundle free
property: creation of non-degenerate elliptic periodic points of F on some periodic
fiber. A few explanations are in order, before giving the details.

A periodic point p of an area preserving map h : N → N is elliptic if the
eigenvalues of Dhn(p) are not real, where n denotes the period. We call the elliptic
periodic point ζ non-degenerate if there exists κ 6= 0, ε > 0, and a Diophantine
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number α ∈ R, such that hn is locally conjugate to

r exp(2πiθ) 7→ r exp(2πiθ + α+ κr2) +O(r5)

by some C∞ diffeomorphism mapping ζ to 0 ∈ R2. Then, by the Kolmogorov-
Arnold-Moser theorem, there are arbitrarily small neighborhoods V of p which are
C∞ embedded disks invariant under hn such that hn | ∂V is conjugate to an irra-
tional rotation and ‖Dhn(x)‖ grows linearly with n for every x ∈ ∂V . Consequently,
h can not be an isometry with respect to any continuous Riemannian metric, and
h can not preserve any continuous line field on N either.

Choose some periodic point p ∈M of the transformation f once and for all. Note
that periodic points do exist, indeed they are dense in the support of µ: this follows
from the Poincaré recurrence theorem, using the shadowing lemma (see Bowen [17])
to close recurrent trajectories. For simplicity we take the period to be 1.

Let us consider first the case when N = S2 and the cocycle and its holonomies
are isometries with respect to some continuous Riemannian metric on the fibers.
Since Fp : Ep → Ep is an orientable homeomorphism of the sphere, it has some
fixed point ζ ∈ Ep. Since Fp is an isometry, this fixed point must be elliptic and
degenerate. Perturb F near the fiber of p so as to make ζ non-degenerate. By the
previous observations and Theorem 6.6, the new cocycle is bundle free.

Now let us consider the case when N = T2 and the cocycle and its holonomies
are isometries. We claim that, perturbing the cocycle if necessary, the map Fp has
some periodic point ζ ∈ Ep. If Fp is not homotopic to the identity then existence of
a periodic point follows for topological reasons. If Fp is homotopic to the identity,
then consider the rotation number

ρ(Fp) =
∫ (

Fp − id
)
dLeb .

Perturbing F near the fiber over p in such a way that Fp is replaced by Fp + v for
some convenient v ∈ T2, we can ensure that the rotation number is rational. Then,
by Franks [22], the map Fp has some periodic point. This proves the claim. From
now on the argument is analogous to the sphere case: perturbing the cocycle once
more, we can make the periodic point non-degenerate, and then the new cocycle
must be bundle free.

Next, assume N = T2 and the cocycle admits a continuous invariant line field.
Let V be the (open) set of all x ∈ T2 such that there exists Kx and εx such that
for every w which is εx close to x, and every k ≥ 0 such that F kp (w) is εx-close
to w, we have ‖DF kp (w)‖ < Kx. If there exists a periodic point of Fp in V , it
must be elliptic and we can argue as before. So, assume that there is no periodic
point in V . Similarly to what we did in the proof of Theorem 6.6, we can define on
V a locally bounded measurable Riemannian metric inducing the same area form,
which is Fp-invariant. Thus, V gets the structure of a one-dimensional complex
manifold, possibly disconnected, on which Fp acts holomorphically. By Poincaré
recurrence, all connected components of V are periodic. From the classification of
conformal automorphisms (see [21, Chapter V]) we see that any automorphism of a
Riemann surface which satisfies Poincaré recurrence admits a periodic point, unless
the Riemann surface is an annulus and the automorphism is an irrational rotation,
or the Riemann surface is the torus and the automorphism is not periodic. The
torus case is covered by previous arguments (Fp is necessarily homotopic to the
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identity and then a periodic point can be created by a small perturbation). So, we
are left with the annulus case only.

For every x /∈ V , choose sequences wn → x and kn →∞ such that F knp (wn)→ x

and ‖DF knp (wn)‖ → ∞, the direction sn most contracted under DFnp (wn) con-
verges to some limit s(x), and the image un of the direction most expanded under
DFnp (wn) converges to some limit u(x). Though the choice is not canonical, we fix
it once and for all. Then l(x) ∈ {s(x), u(x)}, because every line bundle is attracted
to u(·) under iteration, unless it coincides with s(·). Let h be the holonomy map as-
sociated to an arbitrary homoclinic loop of p. Since h preserves area, there exists a
connected component V0 of V and some k ≥ 1 such that hk(V0)∩V0 6= ∅. Using area
preservation again, we conclude that hk(∂V0) ∩ ∂V0 6= ∅, which implies that there
exists z ∈ T2 \V such that hk(z) ∈ T2 \V . Up to perturbing the dynamics without
touching Fp, we may assume that Dhk(z) · {s(z), u(z)} ∩ {s(hk(z)), u(hk(z))} 6= ∅.
For the perturbed system, no line field or pair of transverse invariant line fields is
invariant under both the dynamics and the invariant holonomies.

Finally, assume N = T2 and the cocycle admits a pair of transverse continuous
invariant line fields {l1(ξ), l2(ξ)}, but no continuous invariant line field. Then Fp
lifts to a map F̃p : Ẽp → Ẽp, where Ẽp is the set of all (x, ξ) with x ∈ T2 and
ξ ∈ {l1(x), l2(x)}. The assumption that there is no invariant line field ensures that
T̃2 is connected, and so it is a torus. Let π : T̃2 → T2 be the projection on the first
coordinate. Let Ṽ be the set of all x ∈ T̃2 such that there exists Kx and εx such
that for every w which is εx close to x, and every k ≥ 0 such that F̃ kp (w) is εx close
to w we have ‖DF̃ kp (w)‖ < Kx. Then the proof proceeds just as in the previous
case, with V = π(Ṽ ). In the present situation one gets {l1(x), l2(x)} = {s(x), u(x)}.
This completes the proof of Theorem H.

8. Rigidity and center Lyapunov exponents

Here we prove Theorem I. The argument has two main parts, corresponding to
Theorem 8.1 and Proposition 8.2 below. As mentioned before, all the arguments
hold in finite differentiability, as long as it is large enough for [26] to hold.

Theorem 8.1. There exists a neighborhood U0 of A in the space of C∞ volume
preserving diffeomorphisms on M such that if f ∈ U0 is accessible then its center
Lyapunov exponents are distinct.

The proof will appear in Sections 8.1 and 8.2. Here we just give an outline.
Assume, by contradiction, that f is accessible and the two center Lyapunov expo-
nents coincide. We deduce that there exists a translation surface structure on the
center leaves which is invariant under s-holonomy, u-holonomy, and the dynam-
ics. This is a consequence of the Invariance Principle, although we can not use
Theorem D directly because the relevant base dynamics, the map f itself, is only
partially hyperbolic (and not necessarily a skew-product, so that Theorem 5.10 is
also not sufficient here). Instead, we use a extension for cocycles over volume pre-
serving partially hyperbolic diffeomorphisms which is proven in [3]. In particular,
this translation structure gives rise to an invariant R2-action on the center leaves.
Using accessibility once more, we promote this to a transitive action of some com-
mutative group G by homeomorphisms of M . Then G 'M and we also check that
f : M → M corresponds to some automorphism of G. Up to the identification



EXTREMAL LYAPUNOV EXPONENTS 39

G 'M , this automorphism must coincide with A. It follows that f is topologically
conjugate to A, and we deduce that f is not accessible. This is a contradiction.

Proposition 8.2. There exists a neighborhood U ⊂ U0 of A in the space of C∞

symplectic diffeomorphisms on M such that if f ∈ U and its center Lyapunov
exponents coincide then f is conjugate to A by a volume preserving homeomorphism.

The proof will appear in Section 8.3. Here is an outline. By Theorem 8.1, the
hypothesis implies that f is not accessible. Then by Rodriguez-Hertz [26], the
strong stable and strong unstable subbundles are jointly integrable and, in fact,
the su-foliation of f is smoothly conjugate to the su-foliation of A. Moreover, the
two maps are conjugate by some homeomorphism h. Using the fact that Ec is
symplectic orthogonal to Es ⊕ Eu, we conclude that the center foliation is also
smooth. We show that the su-holonomy preserves the family of area measures
defined on the center leaves by the symplectic form ω, and we deduce that the
conjugacy h is absolutely continuous along center leaves. Similarly, the center
holonomy preserves the volume measures induced by ω on the su-leaves, and this
implies that h is absolutely continuous along su-leaves as well. We deduce that h
is absolutely continuous. Since both A and f ergodic, it follows that h preserves
volume.

Remark 8.3. In dimension d = 4 the conjugacy h is a C∞ diffeomorphism. This can
be shown using ideas from Avila, Viana, Wilkinson [7] as we now outline; detailed
arguments will appear in [7]. Let h(x) = hs(x) +hc(x) +hu(x) be the expression of
the conjugacy (lifted to the universal cover) with respect to the partially hyperbolic
splitting of A. It is observed in [26, Section 6] that hc is a C1 diffeomorphism from
each center leaf of f to the center subspace of A. Moreover, hs and hu are constant
on every center leaf of f . In fact, the same (KAM-type) arguments give much better
regularity for hc as long as f is sufficiently regular. In particular, in our setting hc

is C∞, and so h is C∞ on every center leaf of f . Next, since h preserves area along
the Es⊕Eu direction and it also preserves the strong stable and the strong unstable
foliations, it must preserve the disintegrations of Lebesgue measure along strong
stable and strong unstable leaves. It is well known that the conditional measures
are given by smooth densities (Ck−1 if f is Ck, k ≥ 2) which are positive and finite
at every point. Since the leaves are 1-dimensional, the fact that h preserves these
densities implies that h is C∞ along strong stable leaves and along strong unstable
leaves. Since strong stable, strong unstable, and center leaves span complementary
directions, it follows (Journé [28]) that h is C∞ in the ambient space, as stated.

To deduce Theorem I, consider any f ∈ U . If the center Lyapunov exponents
coincide then, by Proposition 8.2, the diffeomorphism f is volume preserving con-
jugate to A. In particular, f is Bernoulli since A is (Katznelson [30]). If the center
Lyapunov exponents are distinct then, as f is symplectic, they must be non-zero.
Then, f is non-uniformly hyperbolic. Since all the positive iterates of f are ergodic,
we may use Ornstein, Weiss [36] to conclude that f is Bernoulli. So, we have indeed
reduced the proof of Theorem I to proving Theorem 8.1 and Proposition 8.2.

8.1. Translation structures. Let us start the proof of Theorem 8.1. We think of
A as a partially hyperbolic diffeomorphism on M = Td, with invariant splitting

TM = Eu ⊕ Ec ⊕ Es, dimEc = 2.
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Then every diffeomorphism f : M →M in a neighborhood is also partially hyper-
bolic, with 2-dimensional center direction. Using that the center eigenvalues of A
have norm 1, one easily gets that f is center bunched in the sense of [18, 3]: for
some choice of the Riemannian structure

sup
x∈M
‖Df | Ecx‖ ‖(Df | Ecx)−1‖ ‖Df | Esx‖ < 1

and sup
x∈M
‖Df | Ecx‖ ‖(Df | Ecx)−1‖ ‖(Df | Eux )−1‖ < 1.

Moreover, f is dynamically coherent, meaning that there exist invariant foliations
W cs and W cu with C1 leaves tangent to the subbundles Es ⊕ Ec and Eu ⊕ Ec,
respectively, at every point. That is because A is dynamically coherent with smooth
invariant foliations; see Theorems 7.1 and 7.2 in [27]. Throughout, we take f to be
volume preserving and accessible and its center Lyapunov exponents to be equal.

Let x, y ∈ M be any two points in the same strong stable leaf. Then W c(x)
and W c(y) are contained in the same center stable leaf and the strong stable leaf
through every z ∈ W c(x) intersects W c(y) at exactly one point. This defines a
strong stable holonomy hsx,y : W c(x)→ W c(y) with hsx,y(x) = y. Moreover, hsx,y is
a C1 diffeomorphism. See [26, Appendix B]. Analogously, one constructs a strong
unstable holonomy hux,y : W c(x) → W c(y) for every x and y in the same strong
unstable leaf.

Proposition 8.4. There exists a conformal structure on the center leaves of f that
is continuous and invariant under the diffeomorphism, strong stable holonomies,
and strong unstable holonomies.

Proof. Let F : Ec → Ec be the restriction of the derivative Df to the center bundle
and P(F ) : P(Ec)→ P(Ec) be the projectivization of F . We think of F and P(F ) as
cocycles over the partially hyperbolic diffeomorphism f . The previous observations
ensure these are cocycles with holonomies, in the sense of [3]: the s-holonomies of
F and P(F ) are given by

DHs
x,y(x) : Ecx → Ecy and P(DHs

x,y(x)) : P(Ecx)→ P(Ecy),

for every x, y in the same strong stable leaf of f ; the u-holonomies are defined
analogously. Then, since f is accessible and the center Lyapunov exponents are
equal, we may apply [3, Theorem B] to conclude that any P(F )-invariant probability
measure η on P(Ec) projecting down to Lebesgue measure on M admits an su-
invariant continuous disintegration {ηx : x ∈ M} into conditional probabilities
along the fibers P(Ecx). Let η be fixed (arbitrarily).

The hypotheses on A imply that no eigenvalue is a root of unity, so D0A | Ec =
A | Ec is an irrational rotation. Every nearby diffeomorphism has a unique fixed
point near 0 ∈ M and, up to conjugating f with a small translation, we may
suppose it to sit at 0. Then the derivative of f along the center direction at 0 has
no periodic points with small period. In particular, η0 has no atoms of mass 1/2
or larger and then, by holonomy invariance and accessibility, the same is true for
every conditional probability ηx, x ∈ M . Then, by Douady, Earle [20, Section 2],
the conditional measure ηx determines a unique conformal structure on Ecx.1 By

1Recall that one can see PR2 as the boundary of the Poincaré half-plane H ⊂ PC2. The

construction of Douady-Earle associates to a probability measure µ on PR2 (with no atom of mass
1/2 or larger), a “conformal barycenter” z ∈ H so that µ 7→ z is continuous (with respect to

the weak-∗ topology on its domain) and equivariant with respect to conformal automorphisms of
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construction, this conformal structure depends continuously on the point x and
is invariant under strong stable holonomies, strong unstable holonomies, and the
diffeomorphism f itself. �

The next step is to upgrade this conformal structure to a translation structure,
that is, a system of local coordinates on each center leaf such that all coordinate
changes are translations.

Proposition 8.5. There exists a translation structure on the center leaves of f that
is continuous and invariant under strong stable and strong unstable holonomies.

Proof. The idea is quite simple. As explained before, it is no restriction to suppose
that f(0) = 0. We will show in a moment that the center leaf W c(0) through the
fixed point is conformally equivalent to C. Then an arbitrary choice of a conformal
isomorphism determines a translation structure on W c(0), which we push around
by strong stable and strong unstable holonomies. More precisely, given any x ∈M
we choose an su-path γ = (0, x1, . . . , xn−1, x) connecting 0 to x and we endow
W c(x) with the translation structure transported from W c(0) through

hγ : W c(0)→W c(x), hγ = h∗nxn−1,x ◦ · · · ◦ h
∗i
xi−1,xi ◦ · · · ◦ h

∗1
0,x1

where ∗i ∈ {s, u}. The following lemma ensures that the definition does not depend
on the choice of the path γ:

Lemma 8.6. For any su-path γ = (0, x1, . . . , xn−1, x) with x ∈ W c(0), the holo-
nomy hγ : W c(0)→W c(0) is a translation for the chosen translation structure.

Before starting the proof of the lemma, let us recall some useful facts from [26,
Appendix B]. Let p : Rd → Td be the universal cover and F : Rd → Rd be the lift
of f that fixes the origin. Each f -invariant foliation W ∗, ∗ ∈ {s, cs, c, cu, u} lifts
to an F -invariant foliation Ŵ ∗ on Rd with embedded leaves, and p restricts to an
injective immersion on each leaf.

The leaves may be written in the form

Ŵ ∗(x̂) = x̂+ graph(γ∗x̂), with
γsx̂ : Es → Ecu γux̂ : Eu → Ecs

γcx̂ : Ec → Esu

γcsx̂ : Ecs → Eu γcux̂ : Ecu → Es.

This induces a natural parametrization

(38) E∗ 3 v 7→ x̂+ v + γ∗x̂(v)

of each leaf Ŵ ∗(x̂) in Rd and, composing with the projection p : Rd → Td, of
each leaf W ∗(x) in Td. The center leaves are uniformly close to the corresponding
subbundles: there is κ = κ(f) such that κ→ 0 when f → A and

(39) ‖γ∗x̂(v)‖ ≤ κ for all x̂ ∈ Rd, v ∈ E∗, and ∗ ∈ {cs, c, cu}.

In addition,

(40) ‖γ∗x̂(v)‖ ≤ κ‖v‖ for all x̂ ∈ Rd, v ∈ E∗, and ∗ ∈ {s, u}.

H (the real projective transformations). The stabilizer of z in PSL(2,R) is a maximal compact

subgroup, i.e., a conformal structure in R2. By projective equivariance, the conformal barycenter
construction extends canonically to the level of two-dimensional real vector spaces, so it can be
applied to Ec.
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Moreover, center leaves through nearby points are uniformly close to each other:
given ε > 0 and ∗ ∈ {cs, c, cu} there exists δ such that

(41) d(x̂, ŷ) ≤ δ implies sup{‖γ∗x̂(v)− γ∗ŷ(v)‖ : v ∈ E∗} ≤ ε.
This is easily read out from the expression of γ∗ in the proof of [26, Lemma B3].

Using that the leaves of the Ŵ c are graphs over Ec we get:

Lemma 8.7. W c(0) is conformally equivalent to C.

Proof. Fix an (R-linear) isomorphism C→ Ec. It defines in particular a conformal
structure on Ec, which can be used to define an alternative conformal structure
along the leaves of the central foliation Ŵ c: restricted to each Ŵ c(x), we declare
the projection on Ec along Esu (which is a C1 diffeomorphism) to be conformal.
It descends to an alternative conformal structure along the leaves of the central
foliation W c. Since p is injective along leaves, W c(0) is conformally equivalent to C
with respect to this alternative conformal structure. But both the original and the
alternative conformal structures are continuous, so the Beltrami coefficient which
relates both defines a continuous function on Td, which, by compactness, must be
bounded away from 1. So the original and the alternative conformal structures on
W c(0) are quasiconformally equivalent. This shows that W c(0) (with the original
conformal structure) is quasiconformally equivalent to C, and by the uniformization
theorem it must be actually conformally equivalent to C. �

For every x̂, ẑ ∈ Rd the strong stable leaf Ŵ s(x̂) intersects Ŵ cu(ẑ) at exactly
one point ŷ. Varying x̂ inside its center leaf this defines a homeomorphism

ĥsx̂,ŷ : Ŵ c(x̂)→ Ŵ c(ŷ)

that lifts the stable holonomy hsx,y : W c(x) → W c(y), x = p(x̂), y = p(ŷ). Lifts of
the unstable holonomies are constructed in the same way.

A special family of holonomies is defined as follows. For each n ∈ Zd, let xn be
the unique point in Ŵu(n)∩Ŵ cs(0) and yn be the unique point in Ŵ s(xn)∩Ŵ c(0).
Let

t̂n : Ŵ c(n)→ Ŵ c(0), t̂n = ĥxn,yn ◦ ĥu0,xn
and tn : W c(0)→ W c(0) be its projection down to Td. By [26, Corollary 2.4], the
expression of these holonomy maps in the parametrization (38) has the form

(42) tn(v) = v + nc + φ(n, v),

where nc is the component of n in the direction of Ec and φ is close to zero,
uniformly on n and v ∈ Ec, if f is close to A. If n is non-zero then so is nc and
then, assuming f is close to A, this expression implies that tn has no fixed points.

Proof of Lemma 8.6. We use two different global coordinates z ∈ C and v ∈ Ec on
the center leaf W c(0): the former arises from the chosen uniformization C→W c(0),
whereas the latter corresponds to the parametrization (38). Accordingly, each
W c(0)→W c(0) may be viewed as a transformation in either C or Ec.

Since the conformal structure is holonomy invariant, hγ is a conformal automor-
phism, that is, an affine transformation hγ(z) = az+b. We want to show that a = 1.
We begin by showing that hγ displaces points by a bounded amount along the cen-
ter leaf. Given any x̂, ŷ ∈ Rd in the same strong stable leaf there exists C(x̂, ŷ) > 0
such that ‖ĥsx̂,ŷ(ξ) − ξ‖Rd ≤ C(x̂, ŷ) for every ξ ∈ Ŵ c(x̂). That is because center
leaves are at uniformly bounded distance from the direction of Ec and strong stable
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leaves are uniformly close to the direction of Es on compact parts; recall (39) and
(40). For the same reasons, we have an analogous estimate for strong unstable
holonomies. Consequently, there is C(γ) > 0 such that ‖ĥγ(ξ) − ξ‖Rd ≤ C(γ) for
every ξ ∈ Ŵ c(0). Since (38) is a bi-Lipschitz embedding, this translates to the
coordinate v:

(43) sup
v∈Ec

‖hγ(v)− v‖Ec <∞.

Now consider tn : W c(0)→W c(0) for any non-zero n ∈ Zd. As observed before,
tn has no fixed points if f is close enough to A. Hence, tn(z) = z+c for some c ∈ C
different from zero. Consider the map

φk = tkn ◦ hγ : W c(0)→W c(0) for k ≥ 1.

On the one hand, φk(z) = az+b+kc for every k. On the other hand, (42) and (43)
imply that that φk has no fixed points if k is large enough. This can only happen
if a = 1. So the proof of the lemma is complete. �

This ensures that the definition of the translation structure on every center leaf
is indeed well-defined. By construction, this structure is holonomy invariant and,
hence, continuous. This finishes the proof of Proposition 8.5. �

8.2. Continuous group actions. In the previous section we defined a translation
structure on the center leaves of f . This gives rise to an R2-action

T : R2 ×M →M, (v, x) 7→ Tv(x) = x+ v

where x+ v denotes the v-translate of x along its center leaf. Since the translation
structure is continuous and su-invariant, each Tv is a homeomorphism of M and
commutes with both strong stable and strong unstable holonomy.

Proposition 8.8. The closure G of {Tv : v ∈ R2} is a compact subgroup of the
group of homeomorphisms of M .

Lemma 8.9. For every ε > 0 there is δ > 0 such that given any x, z ∈ M with
d(x, z) ≤ δ there is some su-path γ such that hγ(x) belongs to the local central leaf
of z with d(hγ(x), z) ≤ ε and d(hγ(ξ), ξ) ≤ ε for every ξ ∈W c(x).

Proof. By transversality of the stable, unstable, and center directions, one can find
δ > 0 such that for any x and z with d(x, z) ≤ δ there exists two-legs su-paths
γ = (x, y, ζ) with ζ in the local central leaf of z. Clearly, we may always choose γ
such that y is in the strong unstable leaf through x and ζ is in the strong stable
leaf through y. Moreover, the lengths of the legs and the distance from z to ζ can
be made uniformly small by reducing δ. Then both hux,y : W c(x) → W c(y) and
hsy,z′ : W c(y)→W c(z) are uniformly close to the identity, meaning that

sup
ξ∈W c(x)

d(hux,y(ξ), ξ) and sup
η∈W c(x)

d(hsy,ζ(η), η)

are small. That is because the center leaves are uniformly close to each other and
strong (stable or unstable) leaves are uniformly transverse to the direction of Ec

on compact parts; recall (41) and (40). In particular, hγ = hsy,ζ ◦ hux,y is uniformly
ε-close to the identity and ζ = hγ(x) is ε-close to z, as stated. �

Lemma 8.10. For every ε > 0 there exists δ > 0 such that, given any p ∈M and
any u ∈ R2, if d(Tu(p), p) ≤ δ then d(Tu(x), x) ≤ ε for every x ∈M .
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Proof. Given ε > 0 take δ > 0 as in Lemma 8.9. Then there exists some su-path γ
such that hγ : W c(p)→W c(p) satisfies

(44)
hγ(Tu(p)) belongs to the local center leaf of p and d(hγ(Tu(p)), p) ≤ ε
and d(hγ(ξ), ξ) ≤ ε for all x ∈W c(p).

Before proceeding, let us observe that translations are uniformly Lipschitz on center
leaves: there exists κ > 0 such that

d(Tv(x), Tv(y)) ≤ κd(x, y) for any v ∈ R2 and x, y in the same local center leaf.

Indeed, translations are isometries relative to the flat metric defined on the center
leaves by the translation structure. Since this flat metric is continuous on the whole
compact M , it must be uniformly equivalent to the one obtained by restricting to
center leaves the Riemannian structure of M . This gives the claim. Now, any point
q ∈W c(p) may be written as q = Tv(p) for some v ∈ R2. Then,

d(Tu(q), q) ≤ d(Tu(q), hγ(Tu(q))) + d(hγ(Tu+v(p), Tv(p)).

The first term on the right is ≤ ε, by the last part of (44). As for the second term,
since the translation structure is holonomy invariant,

d(hγ(Tu+v(p)), Tv(p)) = d(Tv(hγ(Tu(p))), Tv(p)) ≤ κd(hγ(Tu(p)), p) ≤ κε.
This proves that d(Tu(q), q) ≤ (1 + κ)ε for all q ∈ W c(p). Since W c(p) is dense in
M , this gives the desired estimate (up to an irrelevant factor of 1 + κ). �

Corollary 8.11. For every ε > 0 there is ρ > 0 such that for every v ∈ R2 there
exists w ∈ R2 with ‖w‖ ≤ ρ and d(Tv(x), Tw(x)) ≤ ε for all x ∈M .

Proof. Given ε > 0, let δ > 0 be as given by Lemma 8.10. Since W c(0) is dense in
M , there exists ρ > 0 such that {Tw(0) : ‖w‖ ≤ ρ} is δ-dense in M . Then, given
any v ∈ R2 we can find w ∈ R2 such that ‖w‖ ≤ ρ and d(Tv(0), Tw(0)) ≤ δ. By
Lemma 8.10, with u = v−w and p = Tw(0), it follows that d(Tv(x), Tw(x)) ≤ ε for
all x ∈M . This proves the corollary. �

Proof of Proposition 8.8. Let (vn)n be any sequence in R2. We want to show that
the sequence (Tvn)n has some convergent subsequence. Taking ε = 2−k, k ≥ 1
in Corollary 8.11, we find ρk > 0 and for each n ≥ 1 we find wk,n ∈ R2 with
‖wk,n‖ ≤ ρk and

(45) d(Tvn(x), Twk,n(x)) ≤ 2−k for every x ∈M.

Since (wk,n)n is bounded, for every k ≥ 1, we may use a diagonal argument to
find a sequence (nj)j → ∞ such that wk = limj wk,nj exists for every k ≥ 1. The
triangle inequality gives

d(Twk,nj (x), Twl,nj (x)) ≤ 2−k + 2−l for all j, k, l ≥ 1, and x ∈M .

Taking the limit as j → ∞, we get d(Twk(x), Twl(x)) ≤ 2−k + 2−l for all k, l ≥ 1,
and x ∈ M . That implies (Twk)k is a Cauchy sequence, relative to the uniform
norm. Let T be the limit. It is clear that T is a homeomorphism of M : the inverse
is the limit of (T−wk)k. Moreover, (45) implies that Tvnj also converges to T . This
proves the proposition. �

Lemma 8.12. The action of G on M is commutative, transitive, and free. Con-
sequently, the map G 3 φ 7→ φ(0) ∈M is a homeomorphism.
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Proof. The first claim is clear: since the R2-action is commutative, so is its closure.
The second claim is also easy: since the orbits of the R2-action coincide with the
center leaves, and these are dense in M , the action of the closure G is transitive
in M . Finally, Lemma 8.10 implies that if an element of G has some fixed point
then it must be the identity. This means that the action is free. As for the last
claim in the lemma, transitivity implies φ 7→ φ(0) is onto, and freeness implies it is
injective. Thus, it is a homeomorphism, as claimed. �

Let Mf denote the torus Td endowed with the group structure transported from
G via the homeomorphism in Lemma 8.12: the group operation corresponds to the
composition in G. In the sequel we think of M as the torus Td endowed with the
standard group structure.

Lemma 8.13. The diffeomorphism f is a a group automorphism of Mf . Moreover,
f : Mf →Mf is conjugate to A : M →M by some group isomorphism M →Mf .

Proof. We begin by noting that the holonomy map hγ : W c(x)→W c(y) associated
to any su-path γ = (x, . . . , y) extends to a homeomorphism of Td, namely, the
unique element φx,y of G that maps x to y. Indeed, hγ(ξ) = φx,y(ξ) for every
ξ ∈ W c(x), because the equality holds for ξ = x and both maps commute with all
translations. This correspondence γ 7→ φx,y is a representation of the groupoid of
su-paths in the group G: concatenation ∗ of su-paths corresponds to composition
of the associated homeomorphisms of Td. It is clear that this representation is
surjective. We have f ◦ φx,y = φf(x), f(y) ◦ f for every x and y, because f ◦ hγ =
hf(γ) ◦ f for any su-path γ. Thus, since f(0) = 0,

f(x+ y) = f ◦ φ0,y(x) = φ0,f(y)(f(x)) = f(x) + f(y)

for any x, y ∈Mf . This proves the first claim.
To prove the second one it suffices to show that the lift f̂ : M̂f → M̂f of f to

the universal cover is conjugate to A. Since f is an automorphism of Mf the lift is
determined by its action on the fiber O of the fixed point 0. Given any homology
class [γ] ∈ H1(M,Z) consider a representative γ through the fixed point 0 ∈ Mf

and let γ̂ be the its lift starting at 0 ∈ M̂f . The map

ψ : H1(M,Z)→ O, ψ([γ]) = endpoint of γ̂

is a group isomorphism (accessibility ensures surjectivity). Moreover, ψ([f(γ)])
coincides with f̂(ψ([γ])) for every [γ]. In other words, the isomorphism ψ conjugates
f̂ to the action of f on the homology, that is, to A. This completes the proof. �

The strong stable, strong unstable, and center foliations of A : M → M are
dynamically defined, and so they are preserved by the conjugacy in Lemma 8.13. It
follows that f has an su-foliation W su whose leaves are subfoliated by strong stable
leaves and by strong unstable leaves. That implies that f is not accessible, contra-
dicting the hypotheses. This contradiction completes the proof of Theorem 8.1.

8.3. Integrable case. By Rodriguez-Hertz [26], any non-accessible volume pre-
serving diffeomorphism f in a neighborhood of A is conjugate to A by some home-
omorphism H. Our goal is to show that H preserves the volume on M . This will
prove Proposition 8.2.

Clearly, H conjugates the strong stable, strong unstable, and center foliations
of f to the corresponding invariant foliations of A. Moreover, the accessibility
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classes of f form an invariant foliation W su by smooth submanifolds tangent to
the subbundle Ec ⊕ Eu, and [26] also proves that this foliation is conjugate to the
su-foliation of A by some C1 diffeomorphism. Consequently, the su-foliation W su

is C1. Since Ec is the symplectic orthogonal of Esu = Es ⊕Eu, it follows that the
center foliation W c of f is also C1.

Lemma 8.14. Let ω be a non-degenerate continuous 2-form on a manifold M such
that

∫
∂A
ω = 0 for every C1 embedded image A of [−1, 1]3. Let F1 and F2 be C1

transverse foliations of M whose tangent spaces are ω-orthogonal to each other at
every point. Then the restriction of ω to the leaves of F2 is invariant under the
holonomy maps of F1.

Proof. We want to prove that if x and y are nearby points in the same F1-leaf and
h denotes the projection along F1-leaves from a neighborhood of x inside F2

x to a
neighborhood of y inside F2

y then

(46) Dh(x)∗
(
ω(x) | TxF2 × TxF2

)
=
(
ω(y) | TyF2 × TyF2

)
.

Let I = [−1, 1] and denote x̂ = (−1, 0, 0) and ŷ = (1, 0, 0). Given any linearly
independent vectors v, w ∈ TxF2 consider a C1 embedding ψ : I3 →M such that

• ψ(x̂) = x and ψ(ŷ) = y
• Dψ(x̂) · ({0} × R2) coincides with the plane generated by v and w
• every ψ({a} × I2), with a ∈ I is contained in some F2-leaf
• every ψ(I × {b} × {c}), with b, c ∈ I is contained in some F1-leaf.

Let ωψ denote the pull-back of ω under ψ. Observe that the pull-back of the
holonomy h under ψ is just the trivial projection {−1} × I2 → {1} × I2. So, to
prove (46) it suffices to show that

(47) ωψ(x̂) | {0} × R2 = ωψ(ŷ) | {0} × R2

for every x, y, u, v, and any choice of ψ. To this end, observe that the hypothesis
of the lemma implies

(48)
∫
∂
(
I×(εI)2

) ωψ = 0 for every ε > 0, where εI = [−ε, ε].

By construction, every Dψ(ξ) maps R2×{0} either to a line, or to a plane Vξ that
intersects both the tangent space to F1

ψ(ξ) and the tangent space to F2
ψ(ξ). Since

the two tangent spaces are ω-orthogonal, it follows that ω(ψ) vanishes on Vξ. This
means that ωψ(ξ) | R2×{0} = 0 at every ξ ∈ I3. Analogously, ωψ(ξ) | R×{0}×R =
0 at every ξ ∈ I3. Thus, (48) may be rewritten as

(49)
∫
{−1}×(εI)2

ωψ | {0} × R2 =
∫
{1}×(εI)2

ωψ | {0} × R2 for every ε > 0.

Taking the limit as ε goes to 0 we get (47). This proves the lemma. �

Let ω be the symplectic form on M . From Lemma 8.14 we get that the restriction
of ω to center leaves is invariant under the holonomy maps of the su-foliation, and
then so is the family η of measures defined by ω on center leaves. Then the push-
forward H∗η is a family of measures on the center leaves of A invariant under the su-
holonomy maps of A. By unique ergodicity of irrational foliations on the torus, H∗η
must coincide, up to scaling, with the family of Lebesgue measures on the center
leaves. This implies that the homeomorphism H has a continuous Jacobian along
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every center leaf. Exchanging the roles of the center and su-foliations throughout
this argument we get that H has a continuous Jacobian along su-leaves as well.
Since these foliations are C1, it follows that H : M →M is absolutely continuous.
Thus, the push-forward H∗m of the normalized volume measure in M is an A-
invariant measure absolutely continuous with respect to m. Since A is ergodic, H∗m
must coincide with m. This finishes the proof of Proposition 8.2 and Theorem I.
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