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Abstract

We apply a modified subgradient algorithm (MSG) for solving the dual
of a nonlinear and nonconvex optimization problem. The dual scheme we
consider uses the sharp augmented Lagrangian. A desirable feature of this
method is primal convergence, which means that every accumulation point
of a primal sequence (which is automatically generated during the process),
is a primal solution. This feature is not true in general for available variants
of MSG. We propose here two new variants of MSG which enjoy both primal
and dual convergence, as long as the dual optimal set is nonempty. These
variants have a very simple choice for the stepsizes. Moreover, we also
establish primal convergence when the dual optimal set is empty. Finally,
our second variant of MSG converges in a finite number of steps.

Keywords. Nonsmooth optimization, nonconvex optimization, duality scheme, sharp
Lagrangian, Modified subgradient algorithm.

1 Introduction

Duality is a very useful tool in optimization. The duality theory obtained through the
ordinary (or classical) Lagrangian and its use for convex primal problems is well-known.
However, when the primal problem is not convex, a duality gap may exist when the ordi-
nary Lagrangian is used. This justifies the quest for other kinds of augmented Lagrangians,
which are able to provide algorithms for solving a broader family of constrained optimiza-
tion problems, including nonconvex ones. Recent literature has focused on dual problems
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constructed using augmented Lagrangian functions, where the augmenting functions are
nonnegative and satisfy either coercivity assumptions ([11, Section 11], [7]) or peak-at-
zero-type assumptions (see [13, 12, 4]).

A particular kind of such augmented Lagrangian functions is the sharp augmented La-
grangian, which has been recently studied for solving nonconvex and nonsmooth problems
in [5, 1, 3].

We analyze the duality scheme generated by the sharp augmented Lagragian, when
applied to nonsmooth and nonconvex problems. The dual problem is a nonsmoth convex
problem (i.e. maximization of a concave function), and we can therefore solve it using
the subgradient method or its variants. These methods (in general) converge slowly, but
on the other hand we obtain a search direction in the calculation of the dual function
with no extra cost, see Theorem 3.1(a). Gasimov in [5] proposed a modified subgradient
algorithm for the same problem we are considering here. A deflection in the parameter
ensures that the dual values are strictly increasing. This increasing property makes the
modified subgradient algorithm very attractive, since (non-modified) subgradient methods
in general do not have this property. Dual convergence results were obtained and numerical
experiments were presented to illustrate the efficiency of the algorithm. In [1] the results
of [5] were improved by relaxing the stepsize selection, and an example showing that the
algorithm may fail to achieve primal convergence was presented. An auxiliary sequence,
with an extra cost, was considered, and a primal convergence result was obtained for this
sequence. In [3] an inexact version of the algorithm is proposed and analyzed. Similar
results to those of the exact version were obtained. The applicability of these algorithms
(exact and inexact versions) is better when we know the primal optimal value or at least
a good estimate, see [1, Equations (16), (23) and Section 5.1] and also [3, Corollary
5.1]. In many problems even an approximate optimal value is both very hard to obtain
and expensive. Therefore, it is desirable to look for a different stepsize selection rule,
unrelated to the optimal value, and such that the convergence properties of the algorithm
are preserved. It is also important to ensure convergence of the primal sequence generated
by the algorithm.

In this paper we consider the same modified subgradient algorithm as [5, 1], but we
propose a very simple stepsize selection rule. With this rule we get rid of the dependence
on the optimal value. We obtain dual convergence results as in [5] and [1]. We also
show that our algorithm has the property that all accumulation points of the primal
sequence generated by the algorithm are primal solutions, and thus no auxiliary sequence
(as required in [1]) is needed. This primal convergence is ensured even if the dual optimal
set is empty. The latter result is very important, because, in general, it is impossible to
know “a priori” whether the dual problem has optimal solutions. We also show that if
there exists a dual solution, then it is possible to consider larger stepsizes, which ensure
that after a finite number of iterations of the algorithm both primal and dual optimal
solutions are reached. On the issue of finite convergence, see Remark 4.1 at the end of
Section 4.

This paper is organized as follows. Section 2 contains some preliminary materials con-
cerning on sharp Lagrangian and strong duality. In Section 3 we present the algorithm, as
well as some basics results. In this section we also establish our main results, Theorem 3.3



and Theorem 3.4. In Section 4 we present a stepsize selection rule which ensures that the
sequence generated by the algorithm reaches dual primal solutions after a finite number
of iterations.

Our notation is the usual one: || - || is the Euclidean norm, (-,-) is the Euclidean scalar
product, Ry, = (0,00), Ry := [0,00), Ryoo = RU {400}, Rooo = RU{—-00}, R =
R_s U {o0}.

2 Preliminaries

We consider the nonlinear (primal) optimization problem
minimize f(z) s.t. z in K, h(z) =0, (P)

where f : R® — R, is lower semicontinuous, h : R* — R™ is continuous and K C R” is
compact. We consider the sharp Lagrangian (see [11, Section 11]):

L(z,y,0) == f(z) — (y, h(z)) + cl[h(2)].- (2.1)

Associated with the sharp Lagrangian we consider the dual function ¢ : R x Ry — R
defined by

q(y,c) = inf L(z,y,c)
and the dual augmented problem given by
maximize ¢(y,c) s.t (y,c) in R™ x R;. (D)

The sharp Lagrangian is a particular case of a more general family of Augmented La-
grangians proposed by Rockafellar and Wets in [11, Section 11]. Results on weak and
strong duality, saddle point properties, and exact penalty parameter were established in
[11, Section 11]. Further extensions of these augmented Lagrangians and their properties
have been studied, e.g., in [11, 12, 7, 8, 9, 13, 10]. For further use, we recall in this section
some of the existing results for augmented Lagrangians. The corresponding proofs can be
found in [11, 12, 7] and references therein.

We consider the following primal problem.
minimize p(z) s.t. z € R, (2.2)

where ¢ : R" — Ry, a proper, Isc function. A dualizing parameterization for ¢ is a
function ¢ : R* x R™ — R, such that ¢(z,0) = ¢(z) for all z € R". Following [11, Section
11], the augmented Lagrangian £: R" x R™ x R, — R is defined as
K(:v,y,c) = gll{f {¢($az) - (y,z) + CO’(Z)},
z m
where 0 : R™ — R, is a Isc and convex function such that

argmino(z) =0 and o(0) =0.
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The dual function 1 : R™ x R, — R induced by the augmented Lagrangian £ is defined
by
= inf / .
Y(y,c) = inf Uz,y,¢)
The dual problem is given by
maximize ¥(y,c) s.t. (y,c) € R™ x R;. (2.3)
Denote by m, and mg the optimal primal and dual values respectively.

The next definition was introduced in [11, Definition 1.16].

Definition 2.1 A function f : R® x R™ — R, is said to be level-bounded in z locally
uniform in z, if for all z € R™ and for all o € R, there exist an open neighborhood of Z,
V C R™ and a bounded set B C R*, such that

Lyf(la) :={z eR": f(z,2) <a} CB, forallzeV.

The following proposition summarizes some basic results concerning the primal problem
(2.2) and its dual (2.3).

Proposition 2.1 Consider the primal problem (2.2) and the dual augmented problem
(2.3). The following statements hold.

(i) The dual function 1 is a concave and upper semicontinuous function (usc).

(ii) If r > c then ¥(y,r) > ¥(y,c) for all y € R™. In particular, if (y,c) is a dual
optimal solution, then also (y,r) is a dual optimal solution.

Proof. Item (i) follows from the fact that ¢ is the infimum of affine functions. Item (ii) is
a consequence of the fact that o is nonnegative. O

i From now on we use the following notation: P,, D, are the primal and dual optimal
solution sets respectively, Mp and Mp are the optimal primal and dual values respectively.

The fact that in our approach the penalty parameter c is a dual variable, together with
the use of a sharp Lagrangian, has some interesting consequences on the structure of the
dual solution set D,, improving upon the result of Proposition 2.1(ii).

Proposition 2.2 Take (y*,c*) € Dy, p > 0, and define A, = {(y,¢) : ly —y*|| < p,c >
c* +p}. Then A, C D, for all p > 0.

Proof. Take (y,c) € A,. By assumption ¢(y*, ¢*) = Mp. Therefore,

q(y,c) = if {f(z) = (h(2),y) +c[h(z)l]}
= inf {f(z) = (h(2),y") + [R()]] + (¢ = T)IR(2)]| = (h(2),y —y7)}
> inf{f(z) - (h(z),y") + [h@)ll + (c = " = lly = y"IDIIA ()1} (2.4)
> Inf{f(z) = (h(z),y") + " [h(@)ll + (c = " = p)|[A(=)lI}
> inf {f(x) = (h(z),y") + " |[h(2)]|} = ¢(y",c") = MDp,



using Cauchy-Schwarz inequality in the first inequality, the fact that ||y — y*|| < p in the
second one, and the fact that ¢ > ¢* + p in the third one. We conclude from (2.4) that
q(y,c) = Mp and so (y,c) € D,. O

Corollary 2.1 If (y*,c*) € D, then {(0,¢) : ¢ > c* + ||y*||} C D..

Proof. Follows from Proposition 2.2, taking p = ||y*||. O

The next theorem guarantees that there is no duality gap for the primal-dual pair
(2.2)-(2.3).

Theorem 2.1 Consider the primal problem (2.2) and its dual augmented problem (2.3).
Assume that the dualizing parameterization function ¢ : R* x R™ — R for the primal
function @ is proper, lsc and level bounded in z locally uniform in z. Suppose that there
ezxists some (y,r) € R™ x Ry, such that ¥ (y,r) > —oo. Then zero duality gap holds, i.e.
mp = Mg.

Proof. See for instance, [11, Theorem 11.59]. |

It is not difficult to see that the sharp Lagrangian is an augmented Lagrangian. For
z € R™, define Q(z) :== KN {z : h(z) = z}, where K and h are as in problem (P). Given
ACRY, 64 :R* - Ry is defined as d4(z) =0, if z € A;and d4(z) = oo otherwise. Let

ola) = { 19 200

oo  otherwise,

where f is as in problem (P). Consider now a dualizing parameterization function given
by ¢(z,2) = f(z) + dg(;)(x). It is easy to see that ¢(z,0) = ¢(z) for all z € R*. Using
also (2.1) and o := || - ||, we have that £(z,y,c) = 0k (z) + L(z,y,c) and q(y, c) = ¥(y, ¢).
Thus, since K is compact, it is easy to see that the hypotheses of Theorem 2.1 are verified.
In particular there is no duality gap between primal problem (P) and dual problem (D).
We give next some definitions.

Definition 2.2 Consider a concave function q: RP — R_,. The superdifferential of q at
yo € dom(q) :={y € R : ¢q(y) > —oo} is the set dq(yo) defined by

dq(yo) == {z € R? : q(y) < q(yo) + (2,4 —y0) Vy € RP}.

We mention that the set dg(yo) is called subdifferential in [1, 3, 5]. Since ¢(+) is concave,
we prefer our notation in order to avoid any confusion between the set above and the
subdifferential of a convex function, where the inequality is reversed.

iFrom now on we use the following notation: P,, D, are the primal and dual optimal
solution sets respectively, Mp and Mp are the optimal primal and dual values respectively,
Consider the following set

A(y,c) ={z € K CR": L(z,y,c) = q(y,c)}. (2.5)
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Note that A(y,c) = argmin zex L(z,y, c). Since K is compact, f is a lsc function and h is
a continuous function, we have that L(-,y, ¢) is a Isc function for all (y,c) € R™ xR}, and
A(y, c) is nonempty for all (y,c¢) € R™ x R;. Thus, we have that ¢(y,c) > —oo, for all
(y,c) € R™ xRy, and also Mp > —oco. In particular, since by Proposition 2.1(ii) the dual
function q is concave, we conclude also that ¢ is continuous (note that ¢ can be extended
in a natural way to R™ x R, preserving its concavity).

3 Algorithm 1

We state next our first version of the Modified Subgradient Algorithm (MSG-1).

Step 0. Choose (yo,cp) € R™ x Ry, and exogenous parameters, {€x} C Ry;. Also fix
B >n>0.Set k:=0.

Step 1 (Subproblem and Stopping Criterion)
a) Find zy € A(yg, ck),

b) if h(xr) = 0 stop,

c) if h(zg) # 0, go to Step 2.

Step 2 (Stepsizes selection and Update of Dual Variable)
Mk := min{n, [|h(zk)||}, Bk = max{B,||h(zk)||}, and choose sy in [ng, Bx],

Ykt1 = Yk — skh(zk),
k1 := cg + (e + sp)||h(zx) |-
Set kK =k + 1 and go to Step 1.

Note that [n, 8] C [k, Bk]- In particular, if we consider =  then we see that constant
stepsizes (sx = 7, for all k) can be considered. The parameter ¢; (which “modifies” the
classical subgradient step) was proposed by Gasimov in [5]. It ensures that the dual values
are strictly increasing. It is well known that pure subgradient methods (i.e., when ¢, = 0)
in general do not have this property. This is a special characteristic of this modified
subgradient algorithm. The stepsize selection rule given above has not been considered
in [5, 1, 6, 3]. In all these references, some knowledge of the optimal value is required
(see, for instance [3, Corollary 5.1]). The next theorem establishes the relation between
the minimization implicit in A(y,c) and the superdifferential dq(y,c). This result can be
found in [3]. However, we prove it here for the sake of completeness.

Theorem 3.1 The following results hold for MSG-1.
a) If & € A(j),¢), then (=h(Z), [|h(£)[]) € Oq(7,¢).

b) If e = agsg, (g > 0), with {ax} bounded, then MSG-1 generates a dual bounded
sequence {(yg, cr)} if and only if S sgllh(zs)]| < +oo.

c¢) If MSG-1 stops at iteration k, then xy is an optimal primal solution, and (yx,ck) is an



optimal dual solution.

Proof.
a) For all (y,c) € R™ x R, , we have
a(y,¢) = min{f(z) - (h(z),y) + c|()Il}
f(@) = (h(2),y) + cl|h(@)] (3.1)
= f(&) — (h(2),9) + ellR(@)]| + (=h(2),y — §) + (c = O)[|h(2)].-

Using that Z € A(9,¢) in (3.1), we obtain

IA

q(y,c) < q(9,¢) + (=h(2),y — 9) + (c— &) [|h(2)]|
= q(9,€) + ((=h(2), |r(@)]]), (y,c) — (§,¢))-
That is, (—h(z), |A(Z)]) € dq(F, ¢).

b) Since {a} is bounded, the equivalence follows from the expressions:

k k
g1 — voll <Y Ny — w5l = sjllh(z;)ll, (3.2)
=0 =0
k k
Chir—co =Y cir1—ci=» (o +1)sj|[h(z;)]- (3.3)
=0 J=0

c) If MSG-1 stops at iteration k, then h(xy) = 0. Therefore by Theorem 2.1 we have that
Mp = Mp < f(zr) = f(zr) — (Yk, 0) + ckl|0]] = q(yk, cx) < Mp,

which implies that Mp = q(yk,cx), and f(zx) = Mp. That is to say, xp is an optimal
primal solution, and (yk,cx) is an optimal dual solution. The theorem is proved. O

The following theorem describes an advantage of MSG-1 over the classical subgradient
method, namely the monotonic improvement of the dual values.

Theorem 3.2 Let {(yg,cx)} be the sequence generated by MSG-1. If (yg,ck) is not a dual
solution, then q(Yg+1,ck+1) > q(Yk, ck)-

Proof. The proof of this result is given in [5, Theorem 7]. Even though the assumptions
in [5] include continuity of f, only lower semicontinuity is required in the proof. O

Remark 3.1 We mention that the results in Theorems 3.1, 3.2 do not depend on the
choice of the stepsize sg.



3.1 Convergence results

(From now on we assume that h(zy) # 0 for all k£, which means that the algorithm
produces an infinite primal-dual sequence.

The next result provides an estimate which is essential for proving our main result. We
will use in the sequel the following notation: g := q(yk,ck), § := Mp.

Lemma 3.1 The following estimate is satisfied for all k > 1,

k-1

max{qo + () _ ajs;llh(z;) I Ih(ze)ll, £ (2x) = (yo, h(zx))} < g (3.4)
j=0

k—1
Proof. Tt is easy to see that y, = yo — Z sjh(z;) . Therefore we have
Jj=0

k-1 k-1

(W W) = (o, hlr)) =Y s5(ha;), hl@r)) < (o, hlzx)) + Y sjllh(zy) 11 a(zi)]],

j=0 7=0

using Cauchy-Schwarz inequality. Hence

k—1
k= fzx) = (s hxe)) + cellh(@r) | > ) — (o, hlzx)) + (cx — Y sllhlas) DA ().
§=0
(3.5)
On the other hand, a simple manipulation in (3.3) gives
k—1 k—1
ok — Y sillb@)ll = co+ Y agsjllhlz;)]- (3.6)
§=0 §=0
Using (3.6) in (3.5) we obtain
k—1
g > flzk) = {yo, h(ax)) + collh(@) | + Y ajsillala)[1h(zr)l
=0
k-1 ’
> qo+ Y ajsillh(z;) 1 A(zg)]-
j=0
The result follows easily from these two last inequalities. O

Lemma 3.2 Consider the sequence {(yk,cx)} generated by MSG-1. If {cx} is bounded
then {yx} is bounded. If the dual optimal set is nonempty, the converse of the last statement
also holds.



Proof. The first statement follows directly from (3.2) and (3.3). For proving the second
statement, suppose that {yy} is bounded and take a dual solution (g, ¢). The supergradient
inequality yields

q(9,) < q(yk,cx) — (h(wr), ¥ — yx) + (€ — c) || (zx)]],

and therefore -
q(yk, cx) — q(y; €)
I €70l

using Cauchy Schwarz inequality. Since (7, ¢) is a dual solution we get that

Ck +llye — 9l + ¢,

o < llye — 7l + 2.

Therefore, since {yx} is bounded, we conclude that {cx} is bounded. The result follows.
a

Next, we establish convergence for a stepsize which is more general than the one used
in Step 2 of MSG-1. Indeed, we prove convergence for sy € [n, S|, where B > Bx. More
precisely, we make the following assumption.

(Aj) : There exist k > 0 such that

2(7 — qx)

W =: Bk fOI' all k > l%

Mk < sk < Br +

Remark 3.2 At least from the theoretical point of view, the step (A1) is an improvement
over the stepsizes used in [5, 1]. Indeed, the step (A1) ensures primal and dual convergence,
while in [1, 5] only dual convergence results hold, and primal convergence is proved only
for an auxiliary primal sequence in [1]. In fact in [1, Example 1], the authors presented a
problem for which the MSG-1 with their stepsize selection rule produces a primal sequence
which does not converge to a primal solution. We will see later on that the step (A;) forces
the primal sequence to converge to a feasible point (see Theorem 3.3). The dual optimal
value considered in Assumption (A7) is just for enlarging the interval where the stepsizes
can be chosen. It is clear that the interval [ng, 8] considered at iteration k in Step 2 of
MSG-1, is contained in the interval [n, 8], and si can be chosen in [n, B3] without the
knowledge of the dual optimal value.

i From now on we take €, = agsy for all k, where {ay} C (0, ) for some a > 0. Next
we establish our main convergence results.

Theorem 3.3 If the dual optimal set is nonempty then the following statements hold.

i) Algorithm MSG-1 generates a bounded dual sequence.
it) {h(zk)} converges to zero and {qix} converges to .
i1i) All accumulation points of {(yk,ck)} are dual solutions.

iv) All accumulation points of {zy} are primal solutions.



Proof. For proving (%), note that if {cx} is bounded then {(yk,cx)} is bounded by Lemma
3.2. Thus it suffices to prove that {cx} is bounded. Suppose, for the sake of contradiction,
that {cx} is unbounded. By monotonicity of {c;} we have that

lim ¢ = o0. (3.7)
k—o0

Observe that by continuity of & and compactness of K, we have that supy, [[h(zx)| := b <
00, in particular {8} is bounded. Consider ﬁ such that £ < B for all k. Take k as in

Assumption (A;). In view of (3.7), there exists kg > k such that ¢; > &+ — ﬂb , for all
k > ko. Take (y,¢) € D,. For all kK > ky we can write

19— yrs1ll” = 19 — (g — seh(zp)|?
= Ny — wll® + spllh(@e)1* + 25%(y — yr, h(ar)) (3.8)
< NG = yill® + spllh(ze)1* + 28k [gx — G+ 1A (z)]1(€ — cx)]
using the update of the dual variables in the first equality, and the supergradient inequality

in the inequality. Rearranging the right-hand side of the expression above, and using
Assumption (A1), we obtain

17 = ye41ll® < 19 — well® + sklsellh(ze)||? + 2(qk — @)] + 2sk]|h(zk)||(€ — cx)
< |17 — yill® + seBellh(zk)|1* + 2sk||h(zk)]| (€ — ck)

(3.9)
= Ny = wll” + sell (@) | (Bell ()] + 2¢ — 2¢)
< N7 — yell® + skl (k)| (Bb + 22 — 2¢y),
using the definition of b in the last inequality. Therefore,
19 — yk+1l® < 19 — will® + sl (@)1 (Bb + 2¢ — 2c). (3.10)

The expression between parentheses in (3.10) is negative by definition of ky. Hence, we
obtain

vkt — 9l < llye — 9l < llyro — 9ll, forall & > ko. (3.11)

Thus, {yx} is bounded, and by Lemma 3.2 we conclude that {(yg,cx)} is bounded, in
contradiction with (3.7), and hence (¢) holds. Moreover, we have that ), si||h(z)| < oo,
by Theorem 3.1(b). In particular {sg||h(z)||} goes to zero. On the other hand, by the
first inequality in Assumption (A1) we have that

skllh(zr)| > mel|h(zk)|| > 0 for all k > k, (3.12)

where 7 = min{7, ||h(zx)||}. Hence we obtain from (3.12) that {h(zy)} converges to zero.
We are going to prove (i) and (iv) simultaneously. Since {z}} C K and K is compact,
{zx} is bounded. Take an accumulation point Z of {zy}. Suppose that {zy,} converges to
z. By lower semi-continuity of f and Lemma 3.1, we obtain

J J
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using also the fact that {h(zy;)} converges to zero. On the other hand, by continuity of h
we have that h(Z) = 0. Therefore, we conclude from (3.13) that Z is a primal solution. In
particular, all inequalities in (3.13) are equalities and then liminfgy, = ¢. Since {gx} is
increasing by Theorem 3.2, we get that {g,} converges to g, and we have thus proved (i)
and (#v). For proving (i), take a subsequence {(y;,c,)}; converging for some (§,¢). By
upper-semicontinuity of g (Proposition 2.1(i)), we get

q(9,¢) > limsupq(yx;, cx;) = lim gy, =,
j

using the fact that {gx} converges to g by (i¢). Hence we have that (9, ¢) is a dual solution.

This proves (iii), and the theorem follows. O

Theorem 3.3 presents convergence results for the primal and dual sequences generated by
Algorithm MSG-1 assuming the existence of an optimal dual solution. The next theorem
ensures convergence of the primal sequence generated by MSG-1 even when the dual
solution set is empty. This is very important, because in general, it is not possible to
know “a priori” whether the dual solution set is nomempty. Also, in our dual formulation,
which includes the penalty parameter ¢ as a dual variable, optimal dual solutions exist
only when the problem admits exact penalization (cf. Remark 4.1 in Section 4), and many
problems of interest fail to enjoy this property.

Theorem 3.4 Assume that €, = s and & := iléfak > 0. Then {h(z)} converges to

zero and {qx} converges to q. Moreover, all accumulation points of the primal sequence
{zk} are primal solutions.

Proof. By monotonicity of the sequence {cy}, either it goes to infinite, or it converges to
some é. In the second case, we have that {cx} is bounded, therefore by Lemma 3.2 we get
that {(yk,ck)} is also bounded. Hence repeating the proof of Theorem 3.3 (i7), (i7i) and
(1v) we get that the dual solution set is nonempty (observe that in Theorem 3.3 we use
the nonemptiness of the dual solution set just for ensuring the boundedness of the dual
sequence). Thus, in this case (i.e., when {cj} is bounded) the theorem is proved. So we
just need to consider the case in which {c;} goes to infinite. In this case, by Theorem
3.1(b), Z sj|lh(z;)|| = oco. On the other hand, by Lemma 3.1 we obtain that
J

k-1 k—1
a | Y silla@) | 1@l < | D ajsjlih(@)] | 1h@)l < g —g0 <7 —gqo.  (3.14)
j=0 Jj=0

Note that ¢ < oo and Zs]-Hh(xj)H = 00. Therefore we conclude that {h(xy)} converges

j
to zero. The proof of the remaining statements follows the same steps as in (7i) and (iv)

of Theorem 3.3. |
Remark 3.3 Theorem 3.4 ensures that MSG-1 generates a primal sequence converging to

the primal solution set, in the sense that all its accumulation points are primal solutions.
Note that our results hold without differentiability or convexity assumptions.
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The following corollary establishes the equivalence between the boundedness of the dual
sequence and the existence of dual solutions. A similar result was obtained in [1, 3].

Corollary 3.1 Consider a dual sequence {(yg,ck)} generated by Algorithm MSG-1. This
sequence is bounded if and only if the dual optimal set is nonempty.

Proof. If the dual optimal set is nonempty, then Theorem 3.3 (i) ensures that {(yx,ck)} is
bounded. For proving the converse statement, we just note that in the proof of Theorem
3.3, we only use the existence of a dual solution for ensuring boundedness of the dual
sequence. Thus, if we assume that the dual sequence is bounded, we can repeat the proof
of Theorem 3.3(i7) and (i%i), and prove that the dual optimal set is nonempty. The result
follows. O

In Theorem 3.3 we proved that all accumulation points of the dual sequence {(yg,ck)}
generated by MSG-1 are optimal solutions. Since the dual problem is convex and we are
applying a subgradient method, we should expect convergence of the whole sequence. The
next proposition establishes this result.

Proposition 3.1 Consider the dual sequence {(yk,ck)} generated by MSG-1, and assume
that e, = agsk and 0 < oy < a < oo. If D, is nonempty, then {(yg,cx)} converges to a
dual solution.

Proof. Since D, is nonempty, it follows from Theorem 3.3 that {(yk,cx)} is bounded. In
particular {yx} and {c;} are bounded. Take an accumulation point (y,c) of {(yk,ck)}. It
follows that (g, ¢) belongs to D, (Theorem 3.3(7i7)). Since {cg} is increasing and bounded,
it converges to ¢. Therefore we just need to prove that {yx} converges to g. Consider a
subsequence {yj; }; converging to §. Using the same calculations as in (3.10), we obtain

17— yesall® < NF — vell® + Bsellh(ze)|l, (3.15)

where 3 := b+ 2¢, with b and /3 as in the proof of Theorem 3.3. On the other hand, since
{(yk,cx)} is bounded, we have that ) si||h(zg)|| < 0o, by Theorem 3.1. Therefore, given
an arbitrary € > 0, there exists kg sufficiently large such that

> sl < oz

k>ko

Since {y; }; converges to y, there exists jo such that kj, > ko and |yx, — g|I> < § for all
J > jo. Using (3.15) we obtain, for all & > kjq,

k—1

17 = well® <117 = iy, I* + 8 Y sill ()]l < e (3.16)
I=kjq

Since € is arbitrary, we conclude that {y,} converges to §. Therefore {(yk,cx)} converges
to (g,¢), and the proposition follows. O
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4 Algorithm 2

In this section we present and analyze algorithm MSG-2. This algorithm has a stepsize
which ensures finite termination, as long as there exist dual solutions.

Step 0. Choose (yo,co) € R™ x Ry, and exogenous parameters {ex} C Ry, . Also fix
B>17>0. Set k :=0.

Step 1 (Subproblem and Stopping Criterion)
a) Find z € A(yk, ck),

b) if h(zy) = 0 stop,

c) if h(zy) # 0, go to Step 2.

Step 2 (Step-size Choice and Update of Dual Variables)

g = MT)”, B = Hh(%)ﬂ’ and choose sy € [nk, Bk,
Ye+1 = Yk — Skh(zk),

k1 1= ¢k + (e + sg)||P(zk) |-

Set k =k + 1 and go to Step 1.

Observe that the only difference between MSG-1 and MSG-2 is the choice of £ and 7.

Theorem 4.1 Suppose that the dual solution set is nonempty. Consider the MSG-2 al-
gorithm. Choose €x = a8y, with {ax} C (0,a) for some o > 0. Then there exists k > 0
such that h(zg) = 0, i.e. MSG-2 stops at the k-th iteration. In particular zj and (yg,cg)
are primal and dual optimal solutions respectively.

Proof. We prove first that the dual sequence is bounded. If ¢, < g + ¢ for all k, then
{yk} is also bounded by Lemma 3.2. Assuming, for the sake of contradiction, that {cg} is
unbounded, we can repeat the same calculations as in (3.8), (observing that ¢x < ), to
get

17 — yk+1 1> < |17 — will® + sllh(z)]|(Be ||k (zk) || + 22 — 2¢)

) (4.1)
= 17 — wkll® + sllh(z) 1(B + 2€ — 2¢4).

Since {c;} is increasing, there exists ko such that ¢, > g + ¢ for all £ > ky. Using this
estimate in (4.1), we obtain, for all k& > ky,

15— yerall” < 117 — yill®- (4.2)

(From (4.2) we obtain that {y;} is bounded. Thus, {(yk,ck)} is bounded by Lemma 3.2,
contradicting the supposed unboundedness of {ci}. Hence, the dual sequence is bounded.
Let us prove now that the algorithm has finite termination. If this is not true, we must
have h(zy) # 0 for all k£ (note that the algorithm stops at k if and only if h(zg) = 0).
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Using the fact that the sequence {ci} is bounded and the definition of the stepsize, we
can write

o0 o o0 o
00 > lim Ck_COZZ(Ck+1_Ck ZGk"‘Sk |h(zk)] Z skllh(zr)| ZZﬁZOO,
e k=0 k=0 k= k=0

which entails a contradiction. Thus there exists k such that h(z;) = 0. In view of Remark
3.1, the result follows by Theorem 3.1(c). i

Remark 4.1 A finitely convergent algorithm for nonsmooth and nonconvex problems
might seem too good to be true, but the point here is that the assumption of existence of
optimal dual solutions is stronger than it looks at first sight. Observe that we have included
the penalty parameter ¢ among the dual variables, and hence the existence of optimal dual
solutions implies in particular the existence of an optimal penalty parameter c*. It is easy
to verify that any c larger than such a ¢* turns out to be an exact penalty parameter, in
the sense of [11, Section 11]. Thus, in our formulation, if optimal dual solutions exist then
the problem admits exact penalization. In such a setting, for achieving finite convergence
it is enough to have a stepsize selection rule wich allows c; to attain arbitrarily large
values. In fact, after establishing that the sequence {yx} is bounded, as is the case for
both Algorithm 1 and 2, Proposition 2.2 provides an alternative argument for the finite
convergence of Algorithm 2, assuming existence of a dual solution (y*,c*): if p is such
that ||lyx — y*|| < p for all k, then any pair (y,c) with ||y — y*|| < p, ¢ > ¢* + p belongs
to D, by Proposition 2.2, and hence we get (yx,cx) € Dy as soon as ¢x > ¢* + p. Once
such a value of k is reached, z; will be an optimal primal solution, because, as commented
above, the fact that zj belongs to A(yg,ck), as prescribed in Step 1(a) of Algorithm 2

is equivalent to saying that xj is an exact minimizer of L(-,yg,cx) on K. It should be
emphasized, however, that attempting to circunvent the dual updating by guessing the
“right” values of ¢* and p (assuming that it is known in advance that the problem admits
exact penalization), does not seem to be in general a good strategy: quite likely one
will overshoot the value of the parameters, and then suffer the consequences, in terms of
numerical instability, of a too large penalty parameter (of course, this comment applies to
any penalty method in the presence of exact penalization; not just to ours). A sensible
gradual increase of the penalty parameter, like the updating of ¢; in Algorithm 2, is likely
to give rise to a better numerical behavior. See also the discussion in [2] on the comparison
of the actual numerical behavior of a dual updating similar to ours with a classical penalty
method.
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