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Abstract. We are interested in solving systems of conservation laws modeling multi-
phase fluid flows under the approximation of local thermodynamical equilibrium except at
very localized places. This equilibrium occurs for states on sheets of a stratified variety called
the “thermodynamical equilibrium variety”, obtained from thermodynamical laws. Strong
deviation from equilibrium occurs in shocks connecting adjacent sheets of this variety.

We assume that fluids may expand and we model the physical problem by a system of
equations where a velocity variable appears only in the flux terms, giving rise to a wave
with “infinite” characteristic speed. We develop a general theory for fundamental solutions
for this class of equations. We study all bifurcation loci, such as coincidence and inflection
locus and develop a systematic approach to solve problems described by similar equations.

For concreteness, we exhibit the bifurcation theory for a representative system with three
equations. We find the complete solution of the Riemann problem for two phase thermal
flow in porous media with two chemical species; to simplify the physics, the liquid phase
consists of a single chemical species. We give an example of steam and nitrogen injection
into a porous medium, with applications to geothermal energy recovery.

1. Introduction

We are interested in systems of conservation laws modeling flows in porous media with mass
conservation of each chemical species, under local thermodynamical equilibrium between
phases. These models are called compositional models in petroleum science, see [10], [14], [24].
These systems of conservation laws can be used for either thermal or isothermal compositional
models; in the former there is also an equation representing conservation of energy.

Such flows are modeled by systems of equations exhibiting a particular feature: a non-
constant unknown u appears in the flux terms only:

∂

∂t
G(V ) +

∂

∂x
uF (V ) = 0. (1.1)

The dependent variables in (1.1) are V ∈ Ω ⊂ Rm and u ∈ R. In the system of equations
(1.1) the fluids can exist in several physical phases. The assumption of thermodynamical
equilibrium restricts the variables to a stratified variety where the liquid and gaseous phases
can coexist. In [19], we give a rigorous definition of this stratified variety. In that paper, we
show how compositional models originate from systems of balance laws. We call each sheet
(together with its particular evolution system) a “phase configuration”. The equilibrium
variety is continuous and piecewise smooth; each sheet of the variety has its own variables
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V , its own system of conservation laws and its own interpretation. The unknowns V are
called the “primary variables” of the sheet. The vector-valued functions G and F are smooth
on each sheet, but only continuous at sheet junctions. Contrary to the classical Buckley-
Leverett theory for two-phase flow in porous media, in these systems the total volume is not
conserved, so the independent variable u representing volumetric flow rate is not constant in
space. An important result is that we can obtain u in terms of the primary variables, hence
the name “secondary variable” for u. We say that (V, u) lies in a phase configuration if V
lies in this phase configuration.

In (1.1), generically, we have saturation variables, thermodynamical variables and the
speed u. In our class of models, we assume that pressure variations are so small that they
do not affect gas volume; the latter varies due to temperature changes or mass transfer
between phases. These are realistic assumption for many flows in porous media, see [14].
Since the pressure is fixed, the main thermodynamical variables are the temperature T and
the compositions of each phase.

We aim at a systematic theory to solve Riemann problems associated to (1.1). We will
see that in such models rarefaction waves typically occur within each phase configuration.
We assume that there is very fast mass transfer in the infinitesimally thin space between
regions in adjacent phase configurations, so we propose shocks linking such configurations.
In [11], [12], [13], a general bifurcation theory for the Riemann solutions of conservation laws
was developed. Here, we generalize that theory for equations of type (1.1) possessing a
variable u only in the flux term.

In Theorem 1 we summarize the theory on the solution structure and show that, up to a
scaling, the Riemann solution can be obtained solely in terms of the primary variables; once
the rarefaction and shock waves are found in the spaces of primary variables, they determine
the secondary variable u, given either left or right Riemann data for u. In [23], the structure
of a single combustion wave in which the speed u changes was examined; here u may vary
in almost all waves.

In Section 2, we present the flow of nitrogen, steam and liquid water in a porous medium.
This is a representative and interesting example for the theory because it exhibits a non-
trivial stratified variety, as well as a new type of wave.

In Section 3, we generalize the Triple Shock Rule [11] and the Bethe-Wendroff theorem.
These results isolate resonances and bifurcations. In Section 3.2 we define shocks connecting
different configurations. In Section 4, we present the fundamental theorems for bifurcation
theory. In Section 5, we obtain the elementary waves in each phase configuration: shocks,
rarefactions or contact discontinuities. There exists rarefaction wave associated to evapo-
ration in the two-phase configuration. We intend to explain this strange wave in a future
paper.

In Section 6, we present the Riemann solution for the problem of geothermal energy
recovery at moderate temperatures. In Section 7, we draw the conclusions. In A, we present
the thermodynamical laws for the example.

2. Phase configurations in a specific model

Compositional models (1.1) in porous media are widely studied in Petroleum Engineering,
see [14]. They describe flows in porous media where mass transfer of chemicals between
phases, and possibly temperature changes need to be tracked. In [16], we have studied
injection of steam and water in several proportions into a porous medium containing steam
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(gaseous H2O), water (liquid H2O) or a mixture. The thermodynamics in [16] is very simple.
Here we consider the one-dimensional horizontal flow resulting the injection of steam and
nitrogen in a porous rock cylinder, see also [18]; the thermodynamics for this system is non-
trivial. We disregard gravity effects and heat conductivity; we assume that the pores in the
rock are fully filled with fluids (one of the fluids is gaseous). Different fluid phases do not
mix microscopically. Each saturation variable is the local fraction of the volume of a fluid
phase relative to the total volume of the fluid phases. The rock has constant porosity ϕ
and absolute permeability k (see A). We assume that the fluids are incompressible. This
is a good approximation for liquid water; for the gaseous mixture of steam and nitrogen we
assume that the gas density does not change due to pressure, but it is expansible and its
density is a function of the temperature only; in other words, we assume that the pressure
variations along the core are so small compared to the prevailing pressure that they do not
affect the physical properties of the gas phase. The recovery of geothermal energy is used as
an application of the model and theory developed in this paper.

2.1. The concrete model. The model used as example utilizes Darcy’s law for multiphase
flows, relating the pressure gradient in each fluid phase (water and gas) with its seepage
speed:

uw = −
kkrw

µw

∂p

∂x
, ug = −

kkrg

µg

∂p

∂x
. (2.1)

The water and gas relative permeability functions krw(sw) and krg(sg) are considered to be
functions of their respective saturations (see A); µw and µg are the viscosities of liquid and
gaseous phases. Since we are interested in large scale problems, with flow rate far from
zero we have disregarded capillarity effects (entailing equal pressures in all phases) as well
as diffusive effects. The “fractional flows” for water and steam are saturation-dependent
functions defined by:

fw =
krw/µw

krw/µw + krg/µg

, fg =
krg/µg

krw/µw + krg/µg

. (2.2)

The saturations sw and sg add to 1. By (2.2) the same is true for fw and fg. Using Darcy’s
law (2.1), the definitions (2.2) yield:

uw = ufw, ug = ufg, where u = uw + ug is the total or Darcy velocity. (2.3)

We write the equations of conservation of total mass of water (liquid and gaseous H2O)
and nitrogen (gaseous N2) as follows, [14]:

∂

∂t
ϕ (ρW sw + ρgwsg) +

∂

∂x
u (fwρW + ρgwfg) = 0. (2.4)

∂

∂t
ϕρgnsg +

∂

∂x
ufgρgn = 0, (2.5)

here ρW is the liquid water density, assumed to be constant, ρgw (ρgn) denote the concentra-
tion of vapor (nitrogen) in the gaseous phase (mass per unit gas volume).

To describe temperature variation, we formulate the energy conservation in terms of en-
thalpies, see [1], [2], as we ignore adiabatic compression and decompression effects. We
neglect longitudinal heat conduction and heat losses to the surrounding rock. We assume
also that the temperature T in water, solid and gas phases is the same. Thus the energy
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conservation is given by:

∂

∂t
ϕ
(

Ĥr +HWsw +Hgsg

)

+
∂

∂x
u
(

HWfw +Hgfg

)

= 0, (2.6)

here Ĥr = Hr/ϕ and Hr, HW and Hg are the rock, the liquid water and the gas enthalpies
per unit volume; their expressions can be found in Eq. (A.3).

The unknowns on the system are (subsets of) the variables T , sg, ψgw and u; the phase
configuration of the flow determines which unknowns are used, as explained in next sections.
The quantity ψgw represents the composition (molar fraction) of the vapor in the gaseous
phase; in Section 2.2.1, we derive the system of equations where ψgw is an unknown.

2.2. Phase configurations in the example. An innovative feature of our model deals
with phase transitions. In [7], Colombo et. al. studied a problem with phase transitions
in 2 × 2 systems of conservation laws. Their physical domain was formed by two disjoint
sub-domains, which were called phases by Colombo: they are phase configurations in our
nomenclature. The phase transition is the jump between states in different sub-domains.
Our theory is physically more realistic because it includes also infinitesimally small phase
transitions, as our sub-domains may be adjoining.

In this specific model, there are three main different phase configurations: a single-phase
liquid configuration, spl, in which pores contain only liquid water; a single-phase gaseous
configuration, spg, in which pores are filled with steam and nitrogen; and a two-phase
configuration, tp, in which pores are filled with a mixture of liquid water, gaseous nitrogen
and steam. In the latter case, the temperature is specified by the concentration of vapor in
the gas through Clausius-Clapeyron law, as we will see. We assume that each configuration
is in local thermodynamical equilibrium, so we can use Gibbs’ phase rule, fG = c − p + 2
represents Gibb’s number of thermodynamical degrees of freedom, c and p are the number
of chemical species and phases, respectively. As in our thermodynamical model the pressure
is fixed, the remaining number of thermodynamical degrees of freedom is f = fG − 1.

2.2.1. Single-phase gaseous configuration - spg. There are two chemical species (N2 and
H2O) and one gaseous phase, i.e., c = 2 and p = 1, so the number of thermodynamical
degrees of freedom is f = 2: temperature and gas composition. The only other unknown is
u. We define the steam and nitrogen gas compositions ψgw and ψgn as follows, see [3], [18]:

ψgw = ρgw/ρgW (T ), ψgn = ρgn/ρgN (T ), with ψgw + ψgn = 1, (2.7)

where ρgW and ρgN are the densities of pure steam and pure nitrogen given by (A.8). We
assume that in the nitrogen and vapor there are no effects due to mixing so that the volumes
of the components are additive, hence Eq. (2.7.c).

Using Eqs. (2.7) we rewrite Eqs. (2.4)-(2.6) as follows:

∂

∂t
ϕρgWψgw +

∂

∂x
uρgWψgw = 0, (2.8)

∂

∂t
ϕρgNψgn +

∂

∂x
uρgNψgn = 0, (2.9)

∂

∂t
ϕ
(

Ĥr + ψgwρgWhgW + ψgnρgNhgN

)

+
∂

∂x
u
(

ψgwρgWhgW + ψgnρgNhgN

)

= 0; (2.10)

where hgW and hgN are the enthalpies per mass unit of pure steam and nitrogen, which are
functions of T given in (A.1)-(A.2). Since the liquid water saturation vanishes, the water
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enthalpy HW does not appear in the energy equation (2.10). For the gaseous phase enthalpy
Hg, we use (A.3.c) and ρgw, ρgn given by (2.7).

Remark 1. The spg configuration consists of a 2-Dimensional (2-D) set of triplets (sw =
0, T, ψgw). They form a sheet of the thermodynamical equilibrium stratified variety, where
ψgw ≤ Γ(T ), see (A.7.a), Fig. 2.1 and [3], [18], for

Γ(T ) ≡ ρgw(T )/ρgW (T ). (2.11)

Here, V = (T, ψgw) are the primary variables, sw = 0 and ψgn = 1 − ψgw.

Physical region

G

Single-phase liquid configuration

Single-phase gaseous configuration

Two-phase configuration

G

Figure 2.1. a) left: The physical region for the spg configuration of steam
and nitrogen is formed by the pairs (T, ψgw) satisfying ψgw ≤ Γ(T ). The solid
graph Γ(T ) represents the composition of a mixture of nitrogen and steam
in equilibrium with liquid water, see Remark 1. b) right: Phase space for
(sW , ψgw, T ) and phase configurations sheets: single phase liquid (spl), single
phase gaseous (spg), and the two-phase (tp) configurations. The union of the
sheets for spl, spg and tp sheets is the stratified variety.

2.2.2. Single-phase liquid configuration - spl. There is one chemical species (H2O) and one
phase, so f = 1 and the single thermodynamical degree of freedom is the temperature. The
liquid water does not expand and composition changes have no volumetric effects, so that
the total Darcy velocity u is independent of position. Eqs. (2.4), (2.5) are satisfied trivially.
As rock and liquid water have constant heat capacity, see (A.3.a) and (A.3.c), (2.6) reduces
to:

∂

∂t
T + λW

T

∂T

∂x
= 0, where λW

T =
uW

ϕ

CW

CW + Ĉr

, (2.12)

where we use uW to indicate that the velocity u is spatially constant in the spl region; here
CW is the water heat capacity and Ĉr is the rock heat capacity Cr divided by ϕ. All heat
capacities are in energy per unit mass.

The spl configuration consists of a 1-D set of triplets (sw = 1, T, ψgw(T )), see Fig. 2.1.
Here, V = T is the primary variable, sw = 0 and ψgw = Γ(T ). Actually ψgw is unnecessary,
however we specify it as in the tp configuration to ensure continuity of the equilibrium variety,
see Fig. 2.1.b.
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2.2.3. Two-phase configuration - tp. There are two chemical species (N2 and H2O), c = 2,
and two phases (liquid water and gas), p = 2; so f = 1 and the free thermodynamical variable
is temperature. The steam composition ψgw is prescribed as function of temperature, from
ψgw(T ) = Γ(T ), for Γ defined by (2.11). One obtains ψgn from Eq. (2.7.c).

The tp configuration consists of a 2-D set of triplets (sw, T, ψgw(T )), see Fig. 2.1. Here,
V = (sw, T ) are the primary variables and ψgw = Γ(T ).

Fig. 2.1.b shows the three phase configurations in the variables (T, ψgw, sw), i.e., the whole
equilibrium variety. As basic variable, we arbitrarily choose sw, not sg.

3. Theory of Riemann solutions for compositional flows

We are interested in the Riemann-Goursat problem associated to (1.1) with initial data
with initial and boundary data of the form:

{

(V, u)L, if x = 0, t ≥ 0,
(V, ·)R, if x > 0, t = 0.

(3.1)

The injection point is x = 0. If the characteristic speeds are positive, we may expect that this
problem can be regarded as a Riemann problem with initial data (V, u)L for x < 0 defined
by the injection boundary data at x = 0. We prove that in (3.1) one Darcy speed should
be provided as boundary data. The speed uL > 0 is specified at the injection point. In the
next sections we show that uR can be obtained in terms of uL and the primary variables.

Conservation laws with Riemann data exhibit self-similar solutions. In the plane (x, t), the
rarefactions are continuous solutions, while the shocks are the discontinuous ones. Despite
the absence of the unknown u in the accumulation terms, we will prove that the Riemann
solution associated to Eq. (1.1) still consists of a sequence of elementary waves, rarefactions
and shocks; for the classical definitions of these waves, see [8], [26]. In our problems the
rarefaction waves reside in individual sheets of the equilibrium variety, while shocks have left
and right states in single sheet or in contiguous sheets of the equilibrium variety.

3.1. Characteristic speeds. In each phase configuration, systems of conservation laws in
appropriate form must be used to find the characteristic speeds. If we assume that the
solution is sufficiently smooth, we differentiate all equations in (1.1) with respect to their
variables, obtaining systems of the form:

B
∂

∂t

(

V
u

)

+ A
∂

∂x

(

V
u

)

= 0, (3.2)

where the matrices B(V ) and A(V ) are the derivatives of G(V ) and uF (V ) with respect
to the primary variables V and to u. Since G(V ) does not depend on u, the last column
in the matrix B is zero. For the pair of primary and secondary variables W = (V, u), the
characteristic values λi := λi(W ) and vectors r

i := r
i(W ), (where i is the family label;

characteristic values increase with i):

Ar
i = λiBr

i, where λi is obtained by solving det(A− λiB) = 0. (3.3)

Similarly the left eigenvectors ℓ
i = (ℓi1, ℓ

i
2, ℓ

i
3) satisfy:

ℓ
iA = λi

ℓ
iB, for the same λi. (3.4)

Remark. Here we derive the formulae for a general 3×3 system because it is the smallest
non-trivial system of type (1.1); it will be used in the tp configuration. For such a system,
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generically the right and left eigenvectors have three components, corresponding to the two
primary variables and to the secondary variable.

Hereafter, the word “eigenvector” means “right eigenvector”. The following lemma char-
acterizes the eigenpairs, see [17]; for another derivation, see [6].

Lemma 1. Assume that u 6= 0 and that the flux vector F (V ) does not vanish for any V . For
each eigenvalue λ the corresponding right and left eigenvectors in the generalized eigenvalue
problem (3.3) have the form:

λ = uϑ(V ), r = (g1(V ), g2(V ), ug3(V ))T and ℓ = (ℓ1(V ), ℓ2(V ), ℓ3(V )), (3.5)

where ϑ, gl and ℓl (for l = 1, 2, 3) are functions of V only. Moreover, there are at most 2
eigenvalues and eigenvectors associated to this problem with 3 equations.

In [17], we generalize Lemma 1 for n equations.
For any ϑ ∈ R, let us define the following 3 × 2 matrix:

C(V ;ϑ) =
∂F

∂V
(V ) − ϑ

∂G

∂V
(V ); (3.6)

we also define the following 3 × 3 matrix, where F (V ) is the flux column vector:

A− λB =
(

uC(V ;λ/u)
∣

∣

∣
F (V )

)

. (3.7)

Proof of Lemma 1: The eigenvalues λ of (3.7) are the roots of det(A− λB) = 0. Since
u 6= 0, we divide the first 2 columns of (3.7) by u and set ϑ = λ/u, obtaining the characteristic
equation:

det
(

C(V ;ϑ)
∣

∣

∣
F (V )

)

= 0. (3.8)

Since Eq. (3.8) depends on V only, the rescaled eigenvalues ϑ are functions of V , i.e.,
ϑ = ϑ(V ). Clearly the eigenvalues λ have the form (3.5.a).

The eigenvectors are solutions of (A − λB)r = 0, or
(

uC(V ;ϑ)
∣

∣

∣
F (V )

)

r = 0. For each

V there is a neighborhood B in which Fk 6= 0 for some k ∈ {1, 2, 3}, so:

r3 = u
1

Fk(V )

2
∑

l=1

Cklrl, with Ckl = Ckl(V ;ϑ(V )), (3.9)

where Ckl is the (k, l) element of C(V ;ϑ) and r = (r1, r2, r3)
T . By suitable compactness

arguments we can extend the result (3.9) for all V ∈ Ω.
Substituting r3 given by Eq. (3.9) into (A− λB)r = 0, we obtain a linear system in the

unknowns rl for l = 1, 2. We can cancel u in this system, showing that the rl for l = 1, 2
depend on V only. So (3.5.b) follows from (3.9).

In order to determine ℓ = (ℓ1, ℓ2, ℓ3), we impose ℓ ·
(

uC(V ;ϑ)
∣

∣

∣
F (V )

)

= 0, so that ℓ

solves the following system of three equations:

uC1lℓ1 + uC2lℓ2 + uC3lℓ3 = 0, for l = 1, 2, (3.10)

F1ℓ1 + F2ℓ2 + F3ℓ3 = 0. (3.11)

We divide Eqs. (3.10) by u and we obtain a system with coefficients that depend only on
the variables V , leading to (3.5.c). �
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Following the classical construction for fixed (i) and using (3.5.b), we define locally the
integral curves in W = (V, u) space as solutions of:

(

dV

dξ
,
du

dξ

)

= r, i.e,
dV1

dξ
= g1(V ),

dV2

dξ
= g2(V ) and

du

dξ
= ug3(V ); (3.12)

if the parametrization by ξ is chosen to satisfy:

ξ = λ(W (ξ)), so that ∇λ(W (ξ)) · r(W (ξ)) = 1, (3.13)

and ξ, λ increase together, the integral curve defines a rarefaction curve. A rarefaction
curve W (ξ) parametrizes a rarefaction wave in the (x, t) plane, provided:

ξ = x/t = λ(W (x/t)). (3.14)

Lemma 2. Assume that ∇λ · r(V ) 6= 0 and r3(V ) 6= 0. Generically, there exists a normal-
ization for the eigenvector r in terms of V and u−, so that (3.13.b) is true.

Proof: Assume that λ is a eigenvalue with geometric multiplicity 1. Since r3 6= 0, then
g3 6= 0, we solve (3.3.a) to obtain an eigenvector r of form (3.5.b), with:

g1(V ) = α1(V )g3(V ), g2(V ) = α2(V )g3(V ), where (3.15)

α1 =
C21F1 − C11F2

C22C11 − C12C21
and α2 =

C12F1 − C22F2

C22C11 − C12C21
. (3.16)

See (3.9.b) for the definition of Ckl. If λ has geometric multiplicity two, we can obtain the
same result with minor modifications.

Using the form of λ given in (3.5.a) and (3.15), we see that imposing ∇λ · r = 1 is
equivalent to:

(

u
∂ϑ

∂V1
, u

∂ϑ

∂V2
, ϑ

)

· (α1(V )g3(V ), α2(V )g3(V ), ug3(V )) = 1, or

uβ(V )g3(V ) = 1, where β(V ) =
∂ϑ

∂V1

α1 +
∂ϑ

∂V2

α2 + ϑ. (3.17)

Differentiating (3.17.a) with respect to ξ along an integral curve, we obtain:

du

dξ
β(V )g3(V ) + u

(

∇V β(V ) ·
dV

dξ

)

g3(V ) + uβ(V )

(

∇V g3(V ) ·
dV

dξ

)

= 0, (3.18)

where ∇V is the gradient with respect to the variables V .
Using (3.12) for the derivatives and then (3.15), we can rewrite (3.18) as:

u
(

g3βg3 + (∇V β · (α1g3, α2g3)) g3 + β (∇V g3 · (α1g3, α2g3))
)

= 0. (3.19)

From (3.17), we have that uβ(V )g3(V ) 6= 0, so we divide (3.19) by uβg2
3 obtaining:

α1
∂ ln(βg3)

∂V1
+ α2

∂ ln(βg3)

∂V2
= −1, (3.20)

which is a linear PDE for βg3, with initial condition given by:

(βg3) (V −) = 1/u−. (3.21)

We can solve the linear PDE (3.20) by using the method of characteristics. Since ∇λ ·
r(V (−)) 6= 0, the initial data are prescribed along a non-characteristic curve.
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We obtain the characteristic curve in (V1, V2) space parametrized by ς:

dV1

dς
= α1(V ),

dV2

dς
= α2(V ),

d ln(βg3)

dς
= −1, where V (ς = 0) = V −, (3.22)

and satisfying (3.21). Notice from (3.12) and (3.15) that this characteristic curve is the
projection of the integral curve in the space (V1, V2).

Because α1 and α2 do not vanish simultaneously, so we can solve (3.22.a, b) in the space
(V1, V2), obtaining V (ς, V −) = (V1 (ς, V −) , V2 (ς, V −)). Using the initial condition (3.21),
from Eq. (3.22.c), g3(V ) is written as:

g3(V ) =
1

u−β
exp

(

−(ς − ς−)
)

. (3.23)

Then g1 and g2 are obtained from (3.15). To complete the proof of Lemma, we need to prove
that g1, g2 and g3 defined by Eqs. (3.15) and (3.23) yield ∇λ · r = 1.

Since r3(V ) 6= 0, we can obtain a eigenvector r, such that (3.12) becomes (3.22.a), (3.22.b)
and du/dξ = u.(Notice that here ξ becomes ς.) From the latter equations, u can be written
as:

u = u− exp
(

ς − ς−
)

. (3.24)

From Eq. (3.17) notice that ∇λ · r = uβ(V )g3(V ). Using g3 from (3.23) and u from Eq.
(3.24), we obtain ∇λ · r = 1, so the Lemma is proved. �

Lemma 2 is stated similarly for dimension n > 3. Using Lemma 2, we have:

Proposition 1. Assume that near W− = (V −, u−) the eigenvector r associated to a certain
family forms a vector field. We calculate the primary variables V on the rarefaction curve
from V −, as functions of V and W− only, i.e., first we calculate the integral curve in the
primary variables by solving (3.12.b)-(3.12.c) in the classical way to obtain V (ξ) satisfying
V (ξ−) = V − with ξ− = λ(W−) = x−/t−, and then we complete the calculation for the
secondary variable u in terms of V (ξ) from:

u(ξ) = u−exp(γ(ξ)), with γ(ξ) =

∫ ξ

ξ−
g3(V (η))dη, (3.25)

where g3 is obtained as r3/u, see (3.5.b); u = u− for ξ = ξ−.

Proof: Using (3.12) and (3.13) with gl(V ) = rl for l = 1, 2 we obtain V independently of
u by solving the system of ordinary differential equations (3.12.b),(3.12.c), for ξ− = λ(W−)
and V (ξ−) = V −.

After obtaining V (ξ), we use the expression for the last component of r in (3.5.b) to solve
du/dξ = ug3, yielding (3.25). Lemma 1 asserts that λ has the form uϑ(V ), so using Eqs.
(3.13) and (3.25), we obtain ξ implicitly as:

ξ = u−ϑ(V (ξ))exp(γ(ξ)). (3.26)

Since ξ depends only on u− and V on integral curves, the proof is complete. �

Definition 1. Only the first 2 coordinates of the eigenvectors are pertinent to define the
integral curves in the space of primary variables V . Therefore, for stating and proving the
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generalized Bethe-Wendroff Theorem in Section 4, it is useful to define for any i-family the
following quantities that do not depend on u:

r̃
i = (ri

1, r
i
2), ℓ̃

i
= (ℓi1, ℓ

i
2) and λ̃i,+(V +) := λi(W

+)/u+. (3.27)

Proposition 2. Assume that u− 6= 0, so we can perform the change of variables:

ξ = x/t −→ ξ̃ = x/
(

u−t
)

. (3.28)

Any rarefaction wave in (1.1) can be written in the space of variables (χ, t), where χ = x/u−,
i.e., in these space-time coordinates the rarefaction wave projected on the space of primary
variables is independent of u.

Proof: Performing the change of variable (x, t) −→ (χ, t), we rewrite (3.2) as:

B
∂

∂t

(

V
u

)

+
1

u−
A
∂

∂χ

(

V
u

)

= 0. (3.29)

To obtain the characteristic speeds and vector, we need to solve:

Ar̂
i = u−λ̂iBr̂

i where λ̂i is obtained by solving det(A− u−λ̂iB) = 0. (3.30)

From (3.3) and (3.30), we know that λ̂i and r̂
i satisfy:

λ̂i = λi/u− and r̂
i = r

i. (3.31)

The rarefaction wave is obtained by solving:
(

dV1

dξ̃
,
dV2

dξ̃
,
du

dξ̃

)

= (g1, g2, ug3), for ξ̃ =
χ

t
= λ̂(W (ξ̃)), V (u−ξ̃−) = V −, (3.32)

From Eqs. (3.5.a), (3.31.b) and (3.32.b), it follows that:

ξ̃− = ϑ(V (ξ̃−)). (3.33)

Solving the ODE for du/dξ̃ in (3.32.a) and using (3.3.a) and (3.31.a), we obtain:

ξ̃ = χ/t = λ̂(W (ξ̃)) = ϑ(Ṽ (ξ̃))exp(γ(ξ̃)), for γ(ξ̃) =

∫ u−ξ̃

u−ξ̃−
g3(V (η))dη. (3.34)

Thus in the (χ, t) space, the ODE’s for V1 and V2 in (3.32) do not depend on u, so the
rarefaction curve does not depend on u. The speed keeps the form (3.25). �

Remark. A rarefaction wave connecting adjoining sheets of the stratified variety occurs
occasionally; such a connection can happen only when there is equality between characteristic
speeds of the rarefaction curve branches at the left and right sheets. Such a rarefaction curve
should be continuous; however generically its derivative is discontinuous at the boundary
between the sheets.

3.2. Shock waves. Shocks are certain discontinuities in the solution of the PDE’s. The
discontinuities are the pairs (W−;W+) such that the function H = H(W−;W+) defined as:

H := v
(

G+ −G−
)

− u+F+ + u−F−, (3.35)

vanishes. Here W− = (V −, u−) and W+ = (V +, u+) are the states on the left and right sides
of the discontinuity; v = v(W−,W+) is the discontinuity propagation speed; G− = G−(V −),
(G+ = G+(V +)) and F− = F−(V −), (F+ = F+(V +)) are the accumulation and fluxes at the
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left (right) of the discontinuity. When the states (−) and (+) lie in the same phase configura-
tion, the conserved quantities, accumulations and fluxes arise from a system of conservation
laws in a single sheet; while if these states (−) and (+) lie in different configurations, the
conserved quantities, accumulations and fluxes arise from different systems of conservation
laws, defined in two sheets, so they have different expressions. For shocks contained in a sin-
gle sheet, usually the velocity u varies and the formulae have the same form as the formulae
describing shocks between sheets.

For a fixed W− = (V −, u−) the Rankine-Hugoniot curve (RH curve) parametrizes the
discontinuous solutions of Eqs. (2.4)-(2.6); it consists of the W+ = (V +, u+) that satisfy
H(W−;W+) := 0. We specify the state (V −, u−) on the left hand side, but at the right u+

cannot be specified, and we will see that it is obtained from the condition H(W−;W+) = 0.
We denote the RH curve starting at the state W− by RH(W−).

In this work we assume an extension of hyperbolicity, namely, except on the certain curves
in state space where eigenvalues coincide, the system (1.1) is hyperbolic in the primary
variables, i.e., there exists a basis of characteristic vectors for each state V , see [17]. Also,
only connected branches of the RH curve are considered (i.e., branches that contain the (−)
state), see [17]. Thus we use the following criterion due to Liu, [21], [22], to define admissible
discontinuities, or shocks:

Definition 2. For a fixed W−, we call a shock curve each connected part {W} formed by
the W+ in the RH(W−), such that v(W−,W+) < v(W−,W ), where W ∈ RH(W−) between
W− and W+. In (x, t) space, each point of the shock curve represents a shock wave. The
shock curve parametrizes the (+) states of admissible shocks between the fixed (−) and (+)
states.

3.2.1. Properties of the Rankine-Hugoniot curve. For a fixed W− = (V −, u−) in a configu-
ration, the RH curve, or RH(W−), is obtained setting (3.35) to zero, i.e., for k = 1, 2, 3:

v[Gk] = u+F+
k − u−F−

k , (3.36)

where [Gk] = G+
k − G−

k , G±
k = G±

k (V ±) and F±
k = F±

k (V ±). We rewrite Eq. (3.36) as a
linear system:





[G1] −F+
1 F−

1

[G2] −F+
2 F−

2

[G3] −F+
3 F−

3









v
u+

u−



 = 0. (3.37)

We define the unordered pairs K = {{2, 1}, {1, 3}, {3, 2}}. We utilize the notation:

Ykj = F+
k F

−
j − F+

j F
−
k , X+

kj = F+
k [Gj] − F+

j [Gk] and X−
kj = F−

k [Gj ] − F−
j [Gk]. (3.38)

For a non-trivial solution of the system (3.37), the determinant of the matrix in Eq. (3.37)
must vanish; this yields another form of the Rankine-Hugoniot curve denoted by RH(V −),
namely for each V − it the set of V + satisfying HV (V −, V +) = 0 with:

HV := [G1]Y32 + [G2]Y13 + [G3]Y21. (3.39)

Generically, RH(V −) is a 1-D structure, see B, independently of the number of equations,
see [17].

There are two primary variables in V + for the spg and the tp, so in both cases RH(V −)
consists of the union of two curves through V −, see [17]. In the spl there is only one scalar
equation with the temperature as the primary variable, so RH(T−) is the whole physical
range of the temperature axis.
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Solving the system (3.37), we obtain u+ and v as functions of V −, V + and u−:

u+ = u−
X−

kj

X+
kj

, u+ = u−
∑

{p,q}∈K
X−

pqX
+
pq

∑

{p,q}∈K

(

X+
pq

)2 , v = u−
Yjk

X+
kj

, (3.40)

for any {k, j} ∈ K. Eq. (3.40.b) is obtained from (3.40.a). It is useful for numerical
calculations; there is a similar expression for v. Of course, Eqs. (3.40.a) and (3.40.c) are
valid if the corresponding denominators are non-zero, while (3.40.b) requires that just one
term in the denominator is non-zero. In [17] we give the definition of regular RH curve: for
such a locus (3.40.b) is well defined if V + 6= V −, because we assume that for each V in the
primary variable space there is a {k, j} ∈ K such that the inequality X−

kj 6= 0 is satisfied.

Remark. In the definitions that follow, all wave structures can be obtained in the space
of primary variables V . Using u+ = u+(V −, u−;V +) and v := v(V −, u−;V +), we define:

Z(V −;V +) =
u+

u−
, ṽ−(V −;V +) :=

v

u−
and ṽ+(V −;V +) :=

v

u−Z(V −;V +)
. (3.41)

Lemma 3. Assume that u− is positive and that all RH curves are regular. If the Darcy speed
u− is modified while V − and V + are kept fixed, the Darcy speed u+ as well as the shock waves
are rescaled in the (x, t) plane, while the values of V are preserved in the rescaled shocks.

Proof: Performing the change of variable (x, t) −→ (χ, t) in H = 0, for χ = x/u− and H
given by (3.35), we obtain:

v

u−
(G+ −G−) =

u+

u−
F+ − F−. (3.42)

The result follows from the relationships in (3.41), because Z and ṽ− depend only on the
primary variables V . �

3.3. Wave Sequences and Riemann Solutions. In the Riemann solution, we distinguish
different states W and V by a subindex between parenthesis to avoid confusion with vector
components. The left and right states are indicated only by the subindex L and R and the
(−) and (+) states by the superscript − and +.

A Riemann solution is a sequence of elementary waves wk (shocks and rarefactions) and
states W(k) = (V, u)(k) for k = 1, · · · , m, with increasing wave speeds. We will see that we
can determine the Riemann solution in the space of primary variables V , without taking
into account the secondary variable u. The values of the latter variable along the Riemann
solutions are fully determined by the values of the primary variables supplemented by a
boundary condition on u. From Prop. 2 and Lemma 3, a minor modification of the proof of
Lemma 3 yields, see [17]:

Theorem 1. Assume that uL is positive and that the hypotheses of Lemma 3 hold. If the
Darcy speed uL in the initial data (3.1) is modified while VL and VR are kept fixed in the
Riemann problem for (1.1), the Darcy speed uR as well as the Riemann solutions are rescaled
in the sense that the solution in the (x/uL, t) plane does not change with uL, i.e., the values
of V in the wave sequence are preserved. Then:

uR = uL

̺1
∏

l=1

exp(γl)

̺2
∏

m=1

Zm, (3.43)
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We could specify uR instead of uL; a formula similar to (3.43) is valid. In the Proposition
above, Zm is given by (3.41.a) for the m-th shock wave. Similarly γl is given by (3.25.b) for
ξ = ξ+ computed along the l-th rarefaction curve. The integers ̺1 and ̺2 are the number
of shock and rarefaction waves, respectively.

Remark. Theorem 1 says that the Riemann solution can be obtained in each phase
configuration first in the primary variables V. Then the Darcy speed can be obtained at any
point of the space (V, u) in terms of V and uL by an equation analogous to Eq. (3.43).
Because of this fact, we omit the speed u in the figures.

4. Bifurcation theory for Riemann solutions

Riemann solutions bifurcate non-trivially for general systems of conservation laws that
violate the hypotheses of Lax Theorem, see [11], [12], [13].

4.1. Fundamental theorems for bifurcation theory. We recall an important theorem
for bifurcation of Riemann problems for systems of conservation laws of standard form, the
Triple Shock Rule [11]:

Proposition 3. For systems of conservation laws ∂G(V )/∂t+∂F (V )/∂x = 0, consider three
states V M , V + and V −. Assume that V − ∈ RH(V +), V M ∈ RH(V −) and V + ∈ RH(V M),
with speeds v+,−, v−,M and vM,+. Then, either:

(1) v+,− = vM,− = v+,M ; or
(2) G(V +) −G(V −) and G(V +) −G(V M) are linearly dependent.

Instead of the Triple Shock Rule, for (1.1) the Quadruple Shock Rule holds:

Proposition 4. Assume that there are two phase configurations labelled by I and II, with a
common boundary. Consider four states: (V −, u−) in I, (V +, u+) in II; (V M , uM), (V ∗, u∗)
free to be in I and II. Assume that the RH condition is satisfied by the following pairs of
states:

(i) (V −, u−) and (V +, u+) with speed v−,+,
(ii) (V −, u−) and (V M , uM) with speed v−,M ,
(iii) (V M , uM) and (V ∗, u∗) with speed vM,∗,

such that two speeds coincide, i.e., at least one of the following equalities is satisfied:

either v−,+ = v−,M or v−,+ = vM,∗ or v−,M = v−,+. (4.1)

If the following conditions (a) to (c) are satisfied:
(a) G(V +) −G(V −) and G(V ∗) −G(V M) are linearly independent (LI);
(b) V + and V ∗ have one component Vk with coinciding values;
(c) ∂HV /∂Vj 6= 0 for all j 6= k for all V ∈ RH(V M), see Eq. (3.39);

then:

(1) V ∗ = V +;

(2) u∗ = u+;

(3) all three speeds are equal: v−,+ = v−,M = vM,∗. (4.2)
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Proof: The RH conditions (3.35) for (V −, u−)-(V +, u+), (V −, u−)-(V M , uM) and (V M , uM)-
(V ∗, u∗) are respectively:

v−,+(G+ −G−) = u+F+ − u−F−, (4.3)

v−,M(GM −G−) = uMFM − u−F−, (4.4)

vM,∗(G∗ −GM) = u∗F ∗ − uMFM . (4.5)

Assume now that Eq. (4.1.a) is satisfied. Substituting v−,+ = v−,M = v in Eqs. (4.3) and
(4.4) and subtracting the resulting equations, we obtain:

v(G+ −GM) = u+F+ − uMFM . (4.6)

Notice that Eqs. (4.6) and (4.5) define implicitly the RH curve by HV (V M ;V +) = 0 in the
variables V M and V +. Since the RH curve depends solely on V M and the accumulation and
flux functions, we obtain that both RH curves defined by Eqs. (4.6) and (4.5) coincide. From
the condition (b) the states V + and V ∗ have a coinciding coordinate Vk. From the conditions
(a) and (c), the implicit function theorem ensures that we can write the components Vj in
terms of Vk. Thus there exists a single V with component Vk satisfying (4.5) and (4.6), so
V ∗ and V + are equal.

Now from Eq. (3.40.b), we notice for a fixed u− that the Darcy and shock speeds depend
solely on V − and V +. From Eqs. (4.5) and (4.6), we can see that the (−) and (+) states
are the same for each expression and that they define the same RH curve, so u∗ = u+ and
Eq. (4.2) is satisfied.

The other cases are proved similarly. �

Another important bifurcation theorem for Riemann solutions is the Bethe-Wendroff Theo-
rem, see [27]. We extend this result for the velocity-dependent system (1.1), including shocks
connecting different sheets of the stratified variety, obtaining the generalized Bethe-Wendroff
Theorem; its proof is given in Appendix C.1.

Proposition 5. Assume that F and G are C2. Let (W+;W−; v) be a shock between different
phase configurations. Assume that ℓ

i(V +) · [G] 6= 0 and that for all W ∈ RH(W ) with W
between W− and W+ the inequality ∇λ(W ) · r(W ) 6= 0 is satisfied. Then v has a critical
point at W+ (and ṽ+(V −;V +) has a critical point at V +), if and only if:

ṽ+(V −;V +) = λ̃i,+(V +) for i = 1 or 2, (4.7)

where λ̃i,+(V ) is given by Eq. (3.27) and ṽ+(V −;V +) by (3.41). In this case the tangent to
the RH curve in the space {W} is the characteristic vector r

i at W+; similarly in the space
{V } the tangent to the RH curve is r̃

i at V +.

4.2. Bifurcation loci. Assume that in no RH curve there are no higher-order degeneracies
(described inB). For conservation laws standard form, there are loci which induce topological
change in the Riemann solution, such as: secondary bifurcation, coincidence, double contact,
inflection, hysteresis and interior boundary contact, see [12], [13]. For our class of problems,
such loci also exist and are equally important.

4.2.1. Secondary bifurcation locus. This locus is defined in the space W = (V, u) for con-
servation laws (1.1), however we will see that it suffices to study it in the space of primary
variables V . The RH curve for a fixed V − is obtained implicitly by HV (V −;V +) = 0, where
HV : R4 −→ R, is given in Eq. (3.39) and V + are primary variables. At some pairs (V −, V +)
for fixed V −, this implicit expression fails to define a curve for V +. Following [12], we call the
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set of points V + where there is potential for failure the secondary bifurcation locus in V ;
(we recall that V + = V − is the primary bifurcation). From the implicit function theorem,
for each (−) state, it consists of the (+) states such that:

HV (V −;V +) = 0 and
∂HV

∂V +
j

= 0, for j = 1 and 2. (4.8)

The following theorem yields an equivalent expression for the secondary bifurcation, which
is remarkably similar to the expression for standard conservation laws. This Proposition is
proved for n = 3 in Appendix C.2.

Proposition 6. Let the dimension of V be 3, and let the system (1.1) be hyperbolic in a
neighborhood of V +. A state V + ∈ RH(V −) belongs to the secondary bifurcation locus for
the family i if:

ṽ+(V −;V +) = λ̃i,+(V +) and ℓ
i(V +) · [G] = 0. (4.9)

Remark. The secondary bifurcation locus in the space W is a ruled surface in u. In
other words, the RH curve for a fixed W− is obtained implicitly by HV (V −;V +) = 0 and in
addition to conditions (4.8) we have ∂HV /∂u

+ = 0, which is trivially satisfied because the
RH curve, Eq. (3.39), depends only on V .

4.2.2. Inflection locus and coincidence locus. The rarefaction curves are useful to construct
rarefaction waves where the characteristic speed varies monotonically, see [8], [12], [21]; the
inflection locus is the curve where the monotonicity fails, thus rarefaction curves stop at this
curve. Any state W = (V, u) on the inflection locus satisfies ∇λi(W ) · ri(W ) = 0. However,
the Darcy speed can be isolated in this equality; indeed, in the space of primary variables,
the inflection locus of family i, for i = 1, 2, consists of the states V satisfying the equation:

∇V λ̃
i(V ) · r̃i(V ) = −λ̃i(V )g3(V ); (4.10)

this equality is equivalent to β(V ) = 0 in Eq. (3.17).
There are two important types of speed coincidence: coincidence between eigenvalues and

coincidence between eigenvalues and shock speeds. For example, the coincidence between
eigenvalues for a system of form (1.1) with two eigenvalues is λ1(W ) = λ2(W ), or ϑ1(V ) =
ϑ2(V ) in terms of primary variables.

Similarly we can define other important bifurcation loci in the space of primary variables
V : double contact locus, interior boundary contact (extension of the boundary), left or right
characteristic shocks and hysteresis, see [17]. See [11], [13] for the definition of these loci for
conservation laws in the classical form.

5. Elementary waves for the nitrogen-steam model

The elementary waves are the basic ingredients in the Riemann solution. In the previous
section we obtained some important results to construct the solution and proved that we can
obtain it in the space of primary variables. Thus in the sections that follow, we summarize
the structures for the Riemann solution in the space of primary variables only. We utilize
the software MATLAB to draw all curves and solutions.

The theory developed in this paper has applications in a class of problems with two phases
and two chemical species. We study properties associated to bifurcation of rarefaction waves
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for the class of equations of type (1.1) modeling two phases and two chemical species with
mass transfer between phases. The matrix A− λB defined in (3.7) has the general form:





a11θs a12θ + ua11
∂f

∂T
a13 + fa11

a21θs a22θ + ua21
∂f

∂T
a23 + fa21

a31θs a32θ + ua31
∂f

∂T
+ ub32 − λc32 a33 + fa31



 . (5.1)

In the most important applications the variables are temperature and saturation or gas
composition. So our unknowns in the system are denoted by T and s. Then in (5.1), aij are
functions of T for all i, j; b32 and c32 are constants and θs and θ are:

θs = u
∂f

∂s
− λϕ, θ = uf − λϕs. (5.2)

Remark. In the spg we substitute s by ψgw and f by ψgw.

After some algebra, we obtain the following:

Lemma 4. The matrix A− λB of form (5.1) has two eigenvalues of the form:

λs =
u

ϕ

∂f

∂s
, and λe =

u

ϕ

fΦ(T ) + ξ1
sΦ(T ) + ξ2

, with eigenvectors rs and re. (5.3)

Here ξ1(T ) = −b32a11D and ξ2(T ) = −c32a11D, with D = D(T ) = a13a21 − a23a11;
Φ(T ) = (a22a11 − a12a21) (a23a31 − a33a21)−D (a22a31 − a32a22). Notice that the eigenvector
associated to λs is rs = (1, 0, 0). This line field has Buckley-Leverett type, as it is associated
to changes in saturation with constant temperature.

Remark The temperature T does not change along Buckley-Leverett waves. Under our
assumption all entries aij of (5.1) depend only on T . Thus the waves associated to the
eingenpair (λe, re) are called tie lines, see [9], [10], as on these waves the phase compositions
are constant.

Remark 2. Substituting the eigenvalue λe in Eq. (3.3.a), we obtain that when θ defined in
(5.2.b) vanishes re satisfies:

re = (r1
e , r

2
e , r

3
e) = (∂f/∂T ,−θs/u, 0) (5.4)

The set of points Cs,e where λs = λe is called the coincidence locus. Another structure is
the set of states Is,e satisfying the equality:

f(s, T )

s
=
ξ1(T )

ξ2(T )
. (5.5)

A similar structured appeared in [4], where it was called HISW. The difference between the
HISW and Is,e is the presence of two chemical species in the left state of the latter, while
there was only one chemical species in the former.

Remark Substituting λe given by (5.3.b) in θ given by Eq. (5.2.b) and using (5.5), we
obtain that θ = 0 on Is,e.

We have the following results:

Lemma 5. On the coincidence locus Cs,e, the derivative ∂λe/∂s vanishes. Moreover the
eigenvector re coincides with rs.
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Proof: Differentiating λe from (5.3) with respect to s we have ∂λe/∂s =

u

ϕ

(∂f/∂s) Φ (sΦ + ξ2) − (fΦ + ξ1)Φ

(sΦ + ξ2)2
=

Φ

sΦ + ξ2

(

u

ϕ

∂f

∂s
− λe

)

=
Φ

sΦ + ξ2
(λe − λs) (5.6)

On Cs,e, we have λs = λe, so ∂λe/∂λs = 0. Since the eigenvalues coincide, re = rs = (1, 0, 0)
and the result follows. �

Remark. For L ∈ Cs,e, the RH(L) curve has two branches associated to λs and λe, which
have the same tangent re at the initial state L.

To state the next result, we define Ie, the inflection locus associated to (λe, re):

Ie = {(s, T ) such that ∇λe · re = 0}. (5.7)

Lemma 6. The loci Cs,e and Is,e are contained in Ie.

Proof: The inflection Ie is given by equality ∇λe · re = 0. Now:

∇λe · re =
∂λe

∂s
r1
e +

∂λe

∂T
r2
e +

∂λe

∂u
r3
e . (5.8)

From Remark 2 and Lemma 5, we see that r3
e = 0 on Cs,e and Is,e, then Eq. (5.8) reduces

to:

∇λe · re =
∂λe

∂s
r1
e +

∂λe

∂T
r2
e . (5.9)

From Lemma 5 we have ∇λe · re = 0 on Cs,e, so that Cs,e is contained in Ie.
To prove that Is,e is contained in Ie, we calculate ∂λe/∂T for (s, T ) on Is,e:

∂λe

∂T
=

Φ

sΦ + ξ2

∂f

∂T
+

1

(sΦ + ξ2)2
(Φ′ (ξ2f − sξ1) + Φ(sξ′1Φ − ξ′2f) + ξ′1ξ2 − ξ1ξ

′
2) , (5.10)

where ′ indicates derivatives with respect to T . Using (5.5) and ξ′i = ξi (a
′
11/a11)−ξi (D

′/D),
Eq. (5.10) reduces to:

∂λe

∂T
=

Φ

sΦ + ξ2

∂f

∂T
, (5.11)

Substituting (5.6), (5.11) in Eq. (5.9) and using (5.4) we have:

∇λe · re =
Φ

sΦ + ξ2
(λs − λe)

∂f

∂T
−

Φ

sΦ + ξ2

∂f

∂T
θs = 0. (5.12)

�

5.1. Elementary waves in the single-phase gaseous configuration. The spg configu-
ration in Section 2.2.1 is described by (2.8)-(2.10).

1. Rarefaction waves. There are two eigenvalues and eigenvectors. The first eigenvalue
is labeled as λc, because the composition ψgw changes but the speed u and the temperature
are constant along the corresponding wave; the eigenpair is given by:

λc = uc/φ, rc = (1, 0, 0)T , (5.13)

which corresponds to fluid transport; this wave is actually a contact discontinuity with
constant uc.
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The other eigenpair is labelled as (λT , rT ), because the temperature changes on the cor-
responding rarefaction waves; on this wave u changes and the composition ψgw is constant;
it is given by:

λT =
(

1 − ĈrT/F
)

u/ϕ and rT = (0,F, uĈr). (5.14)

Here F := F(T ) = TψgwρgWh
′

gW + TψgnρgNh
′

gN + TĈr. The temperature-dependent func-

tions ρgW , ρgN , h′gW , h′gN and the constant Ĉr are positive; ψgw and ψgn are non-negative,
so F(T ) is positive and λT < λc in the physical range.

2. Inflection locus for thermal waves. The gaseous thermal inflection locus, IT consist of
(ψgw, T ) in spg satisfying ∇λT · rT = 0 (or equivalently, Eq. (4.10)).

We plot the physical region and IT in Fig. 5.1.a, showing the signs of ∇λT · rT . We plot
the horizontal rarefaction lines associated to λc, (5.13), and the vertical rarefaction lines
associated to λT , (5.14), in Fig. 5.1.b.

LlT Tgr <0

LlT Tgr >0

LlT Tgr <0

LlT Tgr >0

Figure 5.1. a)-left: The single-phase gaseous configuration, the curve Γ and
the inflection locus IT . b)-right: Rarefaction curves. The horizontal rarefac-
tion curves are associated to λT ; we indicate with an arrow the direction of
increasing speed. The vertical lines are contact discontinuity lines associated
to λc, in which ψgw changes, T and u are constant; λc is constant in each curve.

3. Shock waves. The RH curve is obtained from Eq. HV (V −, V +) = 0 given by (3.39).
The wave associated to λc is a contact discontinuity.

The thermal shock occurs with ψgw constant; the shock and Darcy speeds are obtained
by using Eqs. (3.40), see [17] for the actual expression. The thermal shocks and rarefaction
curves are contained in the horizontal lines in Fig. 5.1.b.

5.2. Elementary waves in the single-phase liquid configuration. For the spl given in
Section 2.2.2, Eq. (2.12) is linear, so a single wave is associated to λW

T , given by (2.12.b).
This wave is a contact discontinuity and there are no genuine rarefaction or shock waves.

5.3. Elementary waves in the two-phase configuration. The tp configuration is de-
scribed in Section 2.2.3.

1. Rarefaction waves. We have two waves. The first one is an isothermal wave, defined
by the Buckley-Leverett (BL) characteristic speed and characteristic vector:

λs =
u

ϕ

∂fg

∂sg

, rs = (1, 0, 0)T , (5.15)
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On the corresponding rarefaction curve T and u are constant, only the saturation sg changes,
hence the subscript s.

The other eigenpair corresponds to an evaporation wave, where the temperature, satura-
tion and speed change; it is denoted by (λe, re), see [17].

In Fig. 5.3 we see that in the region where λs > λe, temperature, gas saturation and u
increase along the rarefaction wave, while in the region where λs < λe temperature and u
increase and the gas saturation decreases. This is an evaporation wave, hence the subscript
e in λe, re.

2. Shock waves. For V − fixed, the RH curve defined by HV (V −, V +) = 0, with HV given
by (3.39). For the isothermal branch of the RH curve the shock speed is

v =
u−

ϕ

fw(s+
w, T ) − fw(s−w , T )

s+
w − s−w

.

On this wave, the Darcy speed is constant. This is the BL shock; for a fixed V −, the RH
and rarefaction curves of saturation waves lie on the same vertical lines in Fig. 5.3. The
other branch of the RH is a condensation shock, drawn in Fig. 5.4.

lI

II

l

l

l

l

l

D

l l tr 0

D

l tr 0

andand

and

Ie

Figure 5.2. a)-left: Coincidence locus Cs,e. Relative sizes of λs and λe in a
sheet of the tp state space. The almost horizontal coincidence locus λe = λs

is not drawn in scale, because it is very close to the axis Sg = 0. b)-right:
A zoom of the region below the lower coincidence locus. In both figures, all
curves form Ie, subdividing the tp configuration in four parts; the locus Ie is
the defined satisfying Eq. (5.16.b), the point P is the intersection of Ie with
the boundary of the TS plane at the water boiling temperature.

From Lemma 6 and Eq. (5.5) we know that the states satisfying

λe = λs or
fg

sg

=
CW

CW + Ĉr

(5.16)

lie on the inflection locus Ie. Moreover, one can prove that the states in Ie satisfy one or
the other equation in (5.16). Thus a stronger version of Lemma 6 holds:

Lemma 7. In the tp configuration, Lemma 6 is stronger: Ie = Cs,e

⋃

Ie.



20 LAMBERT AND MARCHESIN

Cs,e

Ic

Cs,e

Ie

Figure 5.3. a)-left: The rarefaction curves projected in the (T, sg) plane.
The thin curve without arrows is Cs,e. The bold curve Ic is an invariant curve
for the rarefaction field, namely the integral curve through P of Fig. 5.2.b.
b)-right: The rarefaction curves in the regions III and IV shown in the Fig.
5.2.b. The arrows indicate the direction of increasing speed.
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Figure 5.4. a)-left: The RH curves projected in the (T, sg) plane for the
marked (−) states: (320, 0.6), (370, 0.1), (370, 0.5) and (370, 0.8). The vertical
line is the isothermal wave: BL shock and rarefaction. The other branch is
the condensation wave. b)- right: The region shown in Fig. 5.2.b is a zoom
of the bottom of 5.2.a. Each RH curve is formed by a non-isothermal curve
and a vertical line which is the isothermal BL of the RH curve. For the state
(336, 0.04) the Rankine-Hugoniot curve reduces to the isothermal line only.

6. The Riemann solution for geothermal energy recovery

We present an example of Riemann solution for the specific model of Section 2. Other
examples are found in [17]. We consider the injection of a two-phase mixture of water, steam
and nitrogen into a rock containing superheated steam (ψR = 1) at a temperature TR > T b.
The injection boundary condition and initial data are:

{

(sg, ψ(T ), T, u)
L

if x = 0 (the injection point), with uL > 0,
(sg = 1, 1, T, ·)

R
if x > 0

(6.1)

In the tp configuration the inflection locus Ie consist of two curves, which divide the tp
configuration space into 4 regions, labeled as I, II, III and IV , see Fig. 5.2.
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In the spg configuration, we fix the right state R. We can subdivide each of the regions
I − IV in subregions L1-L6 with the property that follows: for any L in a given subregion
the Riemann problems with data L and R of form (6.1) have the same sequence of waves,
see Figs. 6.1 and 6.2.a. The corresponding Riemann solutions are described in Section 6.2,
where we give the solution only for VL ∈ L3 and L4. In the section that follows we indicate
the Riemann solution in the space of variables V . In that section, we use some results of
[16] to obtain the Riemann solution.

L

2

3

L

L

Ie

Figure 6.1. a)-left: The 3 subregions in I and II for a Riemann data of
form (6.1). The region L4 lies below E1. b)-right: Zoom of regions II to IV .
Each curve is explained in Section 6.1. The locus Ie satisfies (5.16.b); it is an
invariant curve for shock and rarefaction curves.

6.1. Subdivision of tp. We obtain the curves that bound the subregions Lk: for E1, see
Fig. 6.1; for E2, see Fig. 6.1.a; for E3, see Fig. 6.1.a.

The evaporation wave speed λe for states in L2 and L3 in the tp is larger than the thermal
wave speed λT in the spg. Requiring geometrical compatibility in the wave sequence, there
is no thermal wave (rarefaction or shock) after the evaporation shock in the spg, i.e., all
shocks from L2, L3 to spg reach states (ψgw, TR).

1. Curve E2. This curve consists of the states V − in the tp where the characteristic
speed λe(V

−) equals the shock speed vBG(V −;V +) for V + = (TR, ψgw) in the spg. E2 is an
extension of the physical boundary. Here ψgw is obtained numerically.

2. Curve E1. We find the Riemann solution for left states in I or II. To satisfy the
geometrical compatibility, we choose first the slowest possible wave. In II, this is the evap-
oration rarefaction wave, which is used to connect states from lower to higher temperatures,
see Sec. 5.3. This can be done until the characteristic speed at its rightmost state E2 equals
the speed of the shock between configurations.

We define E1 as the evaporation rarefaction curve that crosses E2 at the boiling temper-
ature. Notice that for left states in II above E1, the evaporation curve always crosses E2,
while for states below E1 the evaporation curve never crosses E2.

For states below E1 the evaporation curve reaches the boundary of tp, which represents
pure steam at boiling temperature.

3. Curve E3. For states V − above E2, the evaporation speed is larger than vBG(V −;V +),
for V + = (TR, ψgw); in Figs. 5.2.a and 6.2.a we show the relative sizes of vBG, λe and λs.
When sg tends to 1 the BL shock speed is zero, so there are curves vBL = vBG, vBL = vT
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and vBG = vT . From Prop. 4, we obtain a bifurcation curve E3 where vT = vBL = vBG. For
states above this curve, the BL shock is slower than vBG and vT , so there is no direct shock
between the tp and the spg configurations.

5

6

C

5

BLE

Ie

L

L

Figure 6.2. a)-left: Subregions L5 and L6. CBLE is the coincidence curve
vb

g,w = λe. For states in L5, we have that vb
g,w < λe; for states in L6, we have

that vb
g,w > λe. b)-right: The relevant curves for the Riemann solution for the

left states in the tp configuration.

6.2. The Riemann solution. The notation VL = (sg, T )
L

in the tp, VR = (1, T )R in the
spg will be used. All the variables for the intermediate states are written out. The states
are labelled by 1, 2, and so on. We use the following nomenclature: evaporation rarefaction
RE ; BL shock SBL and rarefaction RBL; shock SBG between the tp and the spg regions;
compositional contact discontinuity SC ; the vaporization shock SV S from the boiling region
(in the tp configuration, for T = T b) to the steam region (in the spg configuration, for
ψgw = 1), both defined in [16].

1. VL in L4. There is a RE from VL up to V(1) = (sL, T
b) in the spg, where T b is the

boiling temperature. For this state there is no nitrogen so ψgw = 1. The solution after the
intermediate state V(1) was found in [16]: there is a RBL up to V(2) = (s†, T b) in the spg; s†

is obtained implicitly from λ(s†) = vV S, where vV S is the shock speed of SV S. We use the
notation for wave sequences established in Section 3.3. The solution consists of the waves
Re, RBL and SV S with sequence:

VL
Re−→ V(1)

RBL−−→ V(2)
SV S−−→ VR. (6.2)

VL in L3. There is a RE from VL up to V(1) = (s∗, T ∗) in the tp, satisfying λe(V(1)) =
vBL(V(1);V(2)), with V(2) = (ψgw, TR) in the spg. We have determined ψgw in Section 6.1(1).
Finally, there is a compositional contact discontinuity at temperature TR with speed vC from
V(2) to VR. The solution consists of the waves RE , SBG and SC with sequence:

VL
Re−→ V(1)

SBG−−→ V(2)
SC−→ VR. (6.3)
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Figure 6.3. Riemann solutions in phase space, omitting the surface shown
in Fig. 2.1. a) left: Solution (6.2) for VL ∈ L4. b) right: Solution (6.3) for
VL ∈ L3. The numbers 1 and 2 indicate the intermediate states V in the wave
sequence.

7. Summary

We have described the Riemann solutions for the injection of a nitrogen/steam/water
mixture into a porous rock filled with steam above the boiling temperature. The set of
solutions depends L1-continuously on the Riemann data.

We have extended the known bifurcation theory to 3×3 systems of conservation laws with
an unknown velocity u appearing only in the flux term; these systems represent multiphase
multicomponent flow under thermodynamical equilibrium. This equilibrium occurs on a
stratified variety in state space.
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Appendix A. Physical quantities; symbols and values

The steam enthalpy hgW [J/kg] as a function of temperature is approximated by

hgW (T ) = −2.20269 × 107 + 3.65317 × 105T − 2.25837 × 103T 2 + 7.3742T 3

− 1.33437 × 10−2T 4 + 1.26913 × 10−5T 5 − 4.9688 × 10−9T 6 − hw. (A.1)

The nitrogen enthalpy hgN [J/kg] as a function of temperature is approximated by

hgN (T ) = 975.0T + 0.0935T 2 − 0.476 × 10−7T 3 − hgN . (A.2)

The constants hw and hgN are chosen so that hw (T ), hgN (T ) vanish at a reference temper-
ature T = 293K. In the range [290K, 500K], hgW and hgN are almost linear.

The rock enthalpy Hr, Ĥr, water and gaseous enthalpies per mass unit HW and Hg are
are given by:

Hr = Cr(T − T̄ ), Ĥr = Hr/ϕ, HW = ρWhw and Hg = ρgwhgW + ρgnhgN . (A.3)
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The temperature dependent liquid water viscosity µw [Pas] is approximated by

µw = −0.0123274 +
27.1038

T
−

23527.5

T 2
+

1.01425× 107

T 3
−

2.17342 × 109

T 4
+

1.86935 × 1011

T 5
.

(A.4)
We assume that that the viscosity of the gas is independent of the composition.

µg = 1. 826 4 × 10−5
(

T/T b
)0.6

. (A.5)

The water saturation pressure as a function of temperature is given as

psat = 103( − 175.776 + 2.29272T − 0.0113953T 2 + 0.000026278T 3

− 0.0000000273726T 4 + 1.13816 × 10−11T 5)2 (A.6)

The graph of this function looks like a growing parabola.
From the ideal gas law, the corresponding concentrations ρgw(T ), ρgn(T ) are:

ρgw(T ) = MW psat/ (RT ) , ρgn(T ) = MN

(

pat − psat
)

/ (RT ) , (A.7)

where the gas constant R = 8.31[J/mol/K]. The pure phase densities are:

ρgW (T ) = MWpat/ (RT ) , ρgN(T ) = MNpat/ (RT ) . (A.8)

Here MW and MN are the nitrogen and water molar masses.
The relative permeability functions krw and krg are considered to be quadratic functions

of their respective reduced saturations, i.e.

krw =

{

0.5
(

sw−swc

1−swc−sgr

)2

0
, krg =

{

0.95
(

sg−sgr

1−swc−sgr

)2

1

for swc ≤ sw ≤ 1,
for sw < swc.

(A.9)

Table 2, Summary of physical parameters and variables

Physical quantity Symbol Value Unit
Water, steam relative permeabilities krw, krg Eq. (A.9) . [m3/m3]
Pressure pat 1.0135 × 105. [Pa]
Water saturation pressure psat Eq. (A.6). [Pa]
Water, gaseous phase velocity uw, ug Eq. (2.1) . [m3/(m2s)]
Total Darcy velocity u uw + ug, Eq. (2.3) . [m3/(m2s)]
Rock and water heat capacities Cr and CW 2.029 × 106 and 4.018 × 106. [J/(m3 K)]
Connate water saturation swc 0.15. [m3/m3]
Boiling and reference temperatures T b Tref 373.15K, 293K. [K]
Water, gaseous phase viscosity µw, µg Eq. (A.4) , Eq. (A.5) . [Pa s]
Steam and nitrogen densities ρgw, ρgn Eq. (A.7.a), (A.7.b). [kg/m3]
Constant water density ρW 998.2. [kg/m3]
Nitrogen and water molar masses MN , MW 0.28, 0.18 [kg/mol]
Rock porosity ϕ 0.38. [m3/m3]

Appendix B. Higher order degeneracies of the RH Curve

Theorem 1 is valid if the denominator of Eqs. (3.43) is non-zero for some {k, j} ∈ K (more
generically it is necessary that (3.40.a), (3.40.c) is non-zero for some {k, j} ∈ K). So it is
necessary to study the behavior of the solution when X+

kj = 0 for all {k, j} ∈ K. For a fixed
pair {k′, j′} ∈ K.



26 LAMBERT AND MARCHESIN

It is easy to prove that:

Lemma 8. Let {V −, V +} satisfy HV (V −;V +) = 0, where HV is given by Eq. (3.39). If
X+

k′j′ = 0, then one of following conditions is satisfied:

(i) Yk′j′ = 0 or (ii) X+
12 = X+

31 = X+
23 = 0. (B.1)

From this Lemma it follows immediately that:

Corollary 1. Let {V −, V +} satisfy HV (V −;V +) = 0. If X+
kj = X+

k′j′ = 0 for two index pairs

{k, j} and {k′, j′} in K, then it vanishes for all pairs.

Proposition 7. If X+
kj = 0 for all {k, j} ∈ K and (F+

1 , F
+
2 , F

+
3 ) 6= 0, we obtain:

[Gl] = ̺1F
+
l and F−

l = ̺2F
+
l , for l = 1, 2, 3. (B.2)

where ̺1 and ̺2 are constants depending on [G], F− and F+, which are given in the proof
of this Proposition. Moreover, for Z defined in (3.41.a), the shock speed v satisfies:

v = u−
Z(V −;V +) − ̺2

̺1
. (B.3)

Proof: Let u− > 0. Since X+
kj = 0 for all {k, j} ∈ K, it follows that:

X+
23e1 + X+

31e2 + X+
12e3 = 0, (B.4)

where el for l = 1, 2, 3 is the canonical basis for R3. Eq. (B.4) can be written as:

(F+
1 , F

+
2 , F

+
3 ) × ([G1], [G2], [G3]) = 0, (B.5)

where × represents the outer product. Since Eq. (B.5) is satisfied, it follows that [G] is
parallel to F+, so there is a constant ̺1 so Eq. (B.2.a) is satisfied. Substituting [G] = ̺1F

+

into the RH condition (3.35), we obtain, for l = 1, 2, 3:

v̺1F
+
l = u+F+

l − u−F−
l , (B.6)

If F−
l = 0 for some l = 1, 2, 3, so v = u+/̺1. If F−

l 6= 0 for all l = 1, 2, 3, multiplying
Eq. (B.6) for l = 1 by F−

2 and (B.6) for l = 2 by −F−
1 and adding, it follows that

vϕ̺1Y12 = u+Y12. Let us assume temporarily that Y12 6= 0, so Eq. (B.6) yields v = u+/̺1.
Substituting v = u+/̺1 into Eq. (B.6) we obtain u−F−

1 = 0. Since F−
1 6= 0 generically, it

follows that u− = 0, which is false. So Y12 = 0.
Similar calculations show that Y12 = Y23 = Y31 = 0, so there exists a constant ̺2 such

that F− = ̺2F
+. Eq. (B.3) can be obtained by substituting [G] = ̺1F

+ and F− = ̺2F
+

in the RH condition (3.35). �

With some modifications, we can prove that Proposition 7 is valid for all n > 3.

Remark If (F+
1 , F

+
2 , F

+
3 ) = 0 and ([G1], [G2], [G3]) 6= 0, it is easy to prove for l = 1, 2, 3

that:
F−

l = ρ3[Gl] and v = u−ρ3, (B.7)

where ρ3 is a constant that depends on [G] and F−.

Corollary 2. The states {V −, V +} satisfying the RH condition (3.35) for which X+
kj = 0

for all {k, j} ∈ K, satisfy also:

Ykj = 0, ∀ {k, j} ∈ K. (B.8)

We notice that the system (B.8) has always the trivial solution V + = V −.
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Appendix C. Proof of the Bethe-Wendroff extension and characterization

of the secondary bifurcation.

C.1. Proof of Prop. 5. Assuming that the RH curve can be parametrized by ζ in a
neighborhood of (V +, u+), so that (V (ζ+), u(ζ+)) = (V +, u+); we can write the RH condition
as:

v(G(V (ζ)) −G−) = u(ζ)F (V (ζ)) − u−F−, (C.1)

where v := v(ζ). Differentiating (C.1) with respect to ζ we obtain:

dv

dζ
(G(V (ζ)) −G−) + v

∂G(V (ζ))

∂W

dW

dζ
=
∂ (u(ζ)F (V (ζ)))

∂W

dW

dζ
, (C.2)

Setting ζ = ζ+, such that (V (ζ+), u(ζ+)) = (V +, u+) = W (ζ+) = W+, Eq. (C.2) yields:

[G]
dv

dζ
+ v

∂G

∂W

dW

dζ
=
∂ (uF )

∂W

dW

dζ
, (C.3)

where W = (V, u) and [G] = G+ − G−. Assume first that (4.7) is satisfied. Notice that if

ṽ+(V −, V +) = λ̃+, then for (V +, u = u+), we have λ = u+λ̃+ and v(V −, u−;V +) = λ(V +, u+)

(we dropped the family index i). Substituting λ = u+λ̃+ and v(V −, u−;V +) = λ(V +, u+)
in (C.3) we obtain at (+) = (V +, u+) the expression (C.3) with v := uλ/u. Let ℓ the left

eigenvector associated to λ̃+ at (V +, u+) ; taking the inner product of (C.3) with ℓ, we
obtain:

ℓ · [G]
dv

dζ
+ ℓ ·

(

u
λ

u

∂G

∂W
−
∂ (uF )

∂W

)

dW

dζ
= 0. (C.4)

Since ℓ is an eigenvector associated to λ, the second term of (C.4) is zero and:

ℓ · [G]
dv

dζ
= 0.

Since by hypothesis ℓ · [G] 6= 0, we obtain that dv/dζ = 0 and the shock speed is critical.
On other hand, assume that v has an extremum, so dv/dζ = 0 and Eq. (C.3) reduces to:

v
∂G

∂W

dW

dζ
=
∂ (uF )

∂W

dW

dζ
, or

(

∂ (uF )

∂W
− v

∂G

∂W

)

dW

dζ
= 0. (C.5)

Notice that dW/dζ is parallel to the eigenvector r at W+. If W has n+ 1 components, the
first n components of the vector dW/dζ and of the eigenvector r̃

i at V + are proportional.
The converse it is true, because Eq. (C.5) has a solution if, only if,

v(V −, u−;V +) = λ(V +, u+) so ṽ+(V −;V +) = λ̃+(V +).

�

C.2. Proof of Prop. 6. The proof given below is valid for the case n = 3.
We drop the family index i. Assume that (4.8) is satisfied, where the ∂HV /∂V

+
j for

j = 1, 2 are:
(

F− ×
∂F+

∂V +
j

)

[G]T + (Y32,Y13,Y21)

(

∂G+

∂V +
j

)T

,
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where × is the outer product. Rearranging the terms, we can rewrite ∂HV /∂V
+
j as:

∂HV

∂V +
j

=
(

X−
32,X

−
13,X

−
21

)

(

∂F+

∂V +
j

)T

+ (Y32,Y13,Y21)

(

∂G+

∂V +
j

)T

. (C.6)

Recall that λ+ = u+λ̃+, so ∂W (uF ) − λ∂WG at (V +, u+) is:





u+C1,1(V
+; λ̃+) u+C1,2(V

+; λ̃+) F+
1

u+C2,1(V
+; λ̃+) u+C2,2(V

+; λ̃+) F+
2

u+C3,1(V
+; λ̃+) u+C3,2(V

+; λ̃+) F+
3



 . (C.7)

Setting ṽ+(V −;V +) = λ̃+(V +) in (C.7) and assuming that X−
kj 6= 0 for all {k, j} ∈ K, we

use Eqs. (3.40.a) and (3.41) to write an equivalent but convenient expression for ṽ+ in each
matrix element, we can rewrite matrix (C.7) as:





u+C1,1(V
+; Y32) u+C1,2(V

+; Y32) F+
1

u+C2,1(V
+; Y13) u+C2,2(V

+; Y13) F+
2

u+C3,1(V
+; Y21) u+C3,2(V

+; Y21) F+
3



 , where Ykj =
Ykj

Xkj

. (C.8)

Since ∂HV /∂V
+
j = 0 for j = 1, 2, from Eq. (C.6), it follows that for ℓ given by

ℓ =
(

X−
32, X−

13, X−
21

)

, (C.9)

the inner products of columns 1 and 2 of (C.8) by ℓ are zero. Since at (V −, V +) the expression
HV (V −) vanishes, after some calculations we obtain that ℓ · (F+

1 , F
+
2 , F

+
3 ) = 0, so that ℓ is

a left eigenvector of the system. Since the system (1.1) is hyperbolic in the region around
W+, there is only one left eigenvector associated to this eigenvalue, thus all left eigenvectors
of (C.8) with λ(V +) = v(V −, V +) are parallel to ℓ. Notice that ℓ · ([G1], [G2], [G3]) = 0,
because this equality satisfies the RH condition HV = 0, with HV given by (3.39).

If X−
k′j′ = 0 for a pair {k′, j′} ∈ K, using Lemma 8, the relationships Y−

k′j′ = 0 or
(

X−
32,X

−
13,X

−
21

)

= (0, 0, 0) follow; the latter implies that ℓ
i(V +) · [G] = 0.

In other hand, if there exists a X−
kj 6= 0 for some {k, j} ∈ K (for concreteness we set k = 1

and j = 3; the other cases can be proved similarly), we have X−
13 6= 0 and the matrix (C.8)

has the form (akj) for k, j = 1, 2, 3, where:

(a11, a12, a13) =
(

u+C1,1(V
+; Y13), u

+C1,2(V
+; Y13), F

+
1

)

;

Substituting ℓ in (C.9) by the following vector:

ℓ =
(

0, F−
1 [G3] − F−

3 [G1], F−
2 [G1] − F−

1 [G2]
)

, (C.10)

it is easy to prove that ℓ lies in the kernel of the transpose of the matrix (C.8).
Assume that X−

kj = 0 for all {k, j} ∈ K. Since ℓ is a left eigenvector of the matrix

(C.8) it follows that ℓ · (F+
1 , F

+
2 , F

+
3 ) = 0. From Eq. (B.2.a) in Proposition 7, we see that

([G1], [G2], [G3]) = ρ1(F
+
1 , F

+
2 , F

+
3 ) for any constant ρ1 ∈ R, so:

ℓ · [G] = ℓ · (ρ1F
+) = ρ1ℓ · F

+ = 0.
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The converse can be proved similarly by reversing the order of the calculations. �
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