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Abstract. In this paper, we describe block matrix algorithms for the iterative solution of
large scale linear-quadratic optimal control problems arising from the optimal control of parabolic
partial differential equations over a finite control horizon. We describe three iterative algorithms.
The first algorithm employs a CG method for solving a symmetric positive definite reduced linear
system involving only the unknown control variables. This system can be solved using the CG
method, but requires double iteration. The second algorithm is designed to avoid double iteration by
introducing an auxiliary variable. It yields a symmetric indefinite system and a positive definite block
preconditioner. The third algorithm uses a symmetric positive definite block diagonal preconditioner
for the saddle point system and is based on the parareal algorithm. Theoretical results show that
the preconditioned algorithm has optimal convergence properties and parallel scalability. Numerical
experiments are provided to confirm the theoretical results.
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1. Introduction. Let (t0, tf ) denote a time interval, let Ω ⊂ R2 be a convex
polygonal domain of size of order O(1) and let A be a coercive map from a Hilbert
space L2(to, tf ;Y ) to L2(to, tf ; Y ′), where Y = H1

0 (Ω) and Y ′ = H−1(Ω), i.e., the dual
of Y with respect to the pivot space H = L2(Ω). Denote the state variable space as
Y = {z ∈ L2(to, tf ; Y ) : zt ∈ L2(to, tf ;Y ′)}. It can be shown that Y ⊂ C0([to, tf ];H);
see [15]. Given yo ∈ H, we consider the following state equation on (t0, tf ) with z ∈ Y:

{
zt +Az = Bv for to < t < tf ,

z(0) = yo.
(1.1)

The distributed control v belongs to an admissible space U = L2(to, tf ; U), where in
our application U = L2(Ω), and B is an operator in L(U , L2(to, tf ;H)). It can be
shown that the problem (1.1) is well-posed, see [15], and we indicate the dependence
of z on v ∈ U using the notation z(v). Given the target functions ỹ in L2(to, tf ; H),
and the parameters q > 0, r > 0 and s ≥ 0, we shall employ the following cost
function which we associate with the state equation (1.1):

J(z(v), v) :=
q

2

∫ tf

t0

‖z(v)(t, ·)− ỹ(t, ·)‖2L2(Ω) dt +
r

2

∫ tf

t0

‖v(t, ·)‖2L2(Ω) dt

+
s

2
‖z(v)(tf , ·)− ỹ(tf , ·)‖2L2(Ω). (1.2)

For simplicity, we assume that yo ∈ Y and ỹ ∈ L2(to, tf ;Y ), and normalize q = 1.
The optimal control problem for equation (1.1) consists of finding a controller u ∈ U
which minimizes the cost function (1.2):

J(y, u) := min
v∈U

J(z(v), v). (1.3)

∗Instituto de Matemática Pura e Aplicada - IMPA, E. D. Castorina 110, 22460-320, Rio de Janeiro,
RJ, Brazil. (msarkis@impa.br, cschaer@fluid.impa.br, tmathew@poonithara.org). C. E. S. is cur-
rently at Universidad Nacional de Asunción, Politécnica, SL, Paraguay. This research was supported
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Since 0 < r (regularization parameter) and 0 ≤ q, s, the optimal control problem (1.3)
is well-posed (see [15]).

In this paper, we describe block matrix iterative algorithms for solving an “all
at once” discretization [5, 11, 12, 22, 23] of the optimal control problem (1.3). The
problem (1.3) seeks a control function u (optimal forcing term in the sense of the
cost function (1.2)), such that the solution z(v) to the parabolic equation closely
matches the given “tracking” function ỹ on the interval (to, tf ). We also require that
z(v)(tf , ·) be close to ỹ(tf , ·) by introducing the term s

2 ‖z(v)(tf , ·) − ỹ(tf , ·)‖2L2(Ω)

in the cost function. The constrained minimization problem (1.3) minimizes (1.2)
subject to the constraint (1.1), where the quadratic cost functional (1.2), is a square
norm of the difference between the solution to the parabolic equation and the tracking
function with appropriate regularization, while the linear constraint (1.1) is a parabolic
equation involving the state variable.

Our discussion is organized as follows. In § 2, we describe the finite dimensional
linear-quadratic optimal control problem obtained using an all at once discretization of
the control problem, where the spatial discretization is obtained by the finite element
method, and the temporal discretization by the θ-scheme. The discretization of the
functional is obtained by the finite element method [5, 6, 20]. This transforms the
optimal control problem into a large algebraic constrained minimization problem,
where optimality conditions yield a large saddle point system involving the state
variables y, the control variables u and the Lagrange multipliers p, see [2, 1, 3].

In § 3, we describe the algorithms. Using a reduction approach employed in
[21, 22], we obtain a symmetric positive definite reduced system for the unknown
control variables (with low dimension in realistic situations). We refer this algorithm
as ”the reduction to u algorithm” and a preconditioner is described. We prove that
the rate of convergence is independent of the spatial discretization parameter h. If
the parameter s = 0, the rate of convergence depends only on the parameter r. If
s > 0, we prove that the rate of convergence depends on the time parameter τ and the
parameter r (see expression (3.17)). As a result, the Preconditioned Conjugate Gra-
dient method (PCG) can be used to solve (3.1), but double iterations are required. To
overcome this drawback, we introduce an auxiliary variable resulting in a symmetric
indefinite ill-conditioned system on the auxiliary and control variables. For this ex-
panded system we employ a symmetric positive definite block diagonal preconditioner
[25]. We also prove that under the same conditions of the first preconditioner (s = 0),
this preconditioner is independent of the h and τ parameters when MINRES acceler-
ation is used. Results analogous to the first preconditioner are obtained if s 6= 0; see
Theorem 4.4.

In § 4, we present a saddle point preconditioner based on the parareal algorithm
[16, 19, 24, 8, 10, 26] and iterative shooting methods [12, 27, 4]. This preconditioner
yields a rate of convergence independent of the mesh size h with a dependence on τ .
If the parareal preconditioner is used as an approximate solver in the context of the
reduction to u algorithm, and enough number of parareal iterations is performed, then
the algorithm depends on τ for s = 0, and τ and r for s 6= 0. Finally, in § 5, numerical
tests confirm the theoretical results and show that the parareal preconditioner yields
scalability when the number of subdomains is increased.

2. The discretization and the saddle point system . To discretize the state
equation (1.1) in space, we apply the finite element method to its weak formulation
for each fixed t ∈ (to, tf ). We choose a quasi-uniform triangulation Th(Ω) of Ω, and
employ the P1 conforming finite element space Yh ⊂ Y for z(t, ·), and the P0 finite
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element space Uh ⊂ U for approximating v(t, ·). Let {φj}q̂
j=1 and {ψj}p̂

j=1 denote the
standard basis functions for Yh and Uh, respectively. Throughout the paper we use
the same notation z ∈ Yh and z ∈ Rq̂, or v ∈ Uh and v ∈ Rp̂, to denote both a finite
element function in space and its corresponding vector representation, and to indicate
their time dependence, we denote z and v, respectively.

A discretization in space of the continuous time linear-quadratic optimal control
problem will seek to minimize the following quadratic functional:

Jh(z, v) :=
1
2

∫ tf

to

(z − ỹ)T (t)Mh(z − ỹ)(t) dt +
r

2

∫ tf

to

vT (t)Rhv(t) dt

+
s

2
(z(tf )− ỹ(tf ))T Mh(z(tf )− ỹ(tf )) (2.1)

subject to the constraint that z satisfies the discrete equation of state:

Mhż + Ah z = Bhv, for to < t < tf ; and z(to) = yh
o . (2.2)

Here (z− ỹh)(t) and (z(tf )− ỹ(tf )) denote the tracking and the final error. Here
ỹh(t) and yh

0 belong to Yh and are approximations to ỹ(t) and yo (for instance, use
L2(Ω)-projections into Yh). The matrices Mh, Ah ∈ Rq̂×q̂, Bh ∈ Rq̂×p̂ and Rh ∈ Rp̂×p̂

have entries (Mh)ij := (φi, φj), (Ah)ij := (φi,Aφj), and (Bh)ij := (φi,Bψj) and
(Rh)ij := (ψi, ψj), where (·, ·) denotes the L2(Ω) inner product.

To obtain a temporal discretization of (2.1) and (2.2), we partition [to, tf ] into
l̂ equal sub-intervals with time step size τ = (tf − to)/l̂. We denote tl = to + l τ

for 0 ≤ l ≤ l̂. Associated with this partition, we assume that the state variable z is
continuous in [to, tf ] and linear in each sub-interval [tl−1, tl], 1 ≤ l ≤ l̂ with associated
basis functions {ϑl}l̂

l=0. Denoting zl ∈ Rq̂ as the nodal representation of z(tl), we

have z(t) =
∑l̂

l=0 zlϑl(t). The control variable v is assumed to be time discontinuous
and constant in each sub-interval (tl−1, tl) with basis functions {χl}l̂

l=1. Denoting

vl ∈ Rp̂ as the nodal representation of v(tl − (τ/2)), yields v(t) =
∑l̂

l=1 vlχl(t).
The corresponding discretization of the expression (2.1) yields:

Jτ
h (z,v) =

1
2

(z− ỹ)T K(z− ỹ) +
1
2

vT Gv + (z− ỹ)T g. (2.3)

The block vectors z := [zT
1 , . . . , zT

l̂
]T ∈ Rl̂q̂ and v := [vT

1 , . . . , vT
l̂
]T ∈ Rl̂p̂ denote the

state and control variables, respectively, at all the discrete times. The discrete target
is ỹ := [ỹT

1 , . . . , ỹT
l̂
]T ∈ Rl̂q̂ with target error el = (zl − ỹh

l ) for 0 ≤ l ≤ l̂. The

matrix K := Z + Γ with Z,Γ ∈ R(l̂q̂)×(l̂q̂). The matrix Γ = s diag(0, 0, ..., Mh) and
Z = Dτ⊗Mh, Dτ ∈ Rl̂×l̂ with entries (Dτ )ij :=

∫ tf

to
ϑi(t)ϑj(t)dt, for 1 ≤ i, j ≤ l̂, where

⊗ stands for the Kronecker product. The matrix G = rτIl̂ ⊗ Rh ∈ R(l̂p̂)×(l̂p̂), and
Il̂ ∈ Rl̂×l̂ is an identity matrix. The vector g = (gT

1 , 0T , . . . , 0T )T , where g1 = τ
6Mhe0.

Note that g1 does not necessarily vanish because it is not assumed that yh
0 = ỹh

0 .
Employing the θ-scheme discretization in time, the equation (2.2) takes the form:

F1zi+1 = F0 zi + τBhvi, for to < t < tf ; and z(to) = yh
o . (2.4)

where F0, F1 ∈ Rq̂×q̂ are (fixed) matrices given by F0 := Mh − (1 − θ)τAh and
F1 := Mh + θτAh. Using a full discretization in time, equation (2.2) has matrix form:

Ez + Nv = f , (2.5)
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where the input vector is f := [(F0y
h
0 )T , 0T , ..., 0T ]T ∈ Rl̂q̂. The block lower bidiagonal

matrix E ∈ R(l̂q̂)×(l̂q̂) is given by

E =




F1

−F0 F1

. . . . . .
−F0 F1


 , (2.6)

The block diagonal matrix N ∈ R(l̂q̂)×(l̂p̂) is given by N = −τIl̂⊗Bh. The Lagrangian
functional Lτ

h(z,v,q) for minimizing (2.3) subject to constraint (2.5) is:

Lτ
h(z,v,q) = Jτ

h (z,v) + qT (Ez + Nv − f). (2.7)

To obtain a discrete saddle point formulation of (2.7), we apply optimality conditions
for Lτ

h(·, ·, ·). This yields the symmetric indefinite linear system:



K 0 ET

0 G NT

E N 0







y
u
p


 =




Kỹ − g
0
f


 , (2.8)

where ỹ := [(ỹh
1 )T , . . . , (ỹh

l̂
)T ]T ∈ Rl̂q̂. Next, we study the condition number of EET ,

where E is the evolution matrix.
Theorem 2.1. Let Ah be a q̂ × q̂ symmetric positive definite matrix. Let λq for

1 ≤ q ≤ q̂ denote the generalized eigenvalues of matrix Ah with respect to Mh. Let
the evolution matrix E be defined by (2.5) with matrices F0 and F1 defined as:

F0 := Mh − (1− θ)τAh and F1 := Mh + θτAh, (2.9)

respectively. Then, for θ ≥ 1
2 , the scheme (2.4) will be stable for all τ > 0, while for

θ < 1
2 , it will be stable only if τ ≤ 2/ ((1− 2θ)ρmax). The following bound:

cond(EET ) ≤ 4 (1 + θτρmax)2

(τρmin)2
(2.10)

will hold, where ρmax := maxq |λq| and ρmin := minq |λq|.
Proof. Part 1 (stability condition). Consider the θ-scheme for equation (2.2)

given by:

zl+1 = Φ zl + τ F−1
1 Bh vl, (2.11)

where Φ ∈ Rq̂×q̂ is the marching matrix given by

Φ := (Mh + θτAh)−1(Mh − (1− θ)τAh). (2.12)

Consider Vh := [v1, ..., vq̂] and Λh := diag{λ1, ..., λq̂} as the generalized eigenvectors
and eigenvalues of Ah with respect to Mh, i.e., AhVh = MhVhΛh, with V −1

h MhVh = I.
Then the stability condition for (2.11) is given by

| (1 + θτλq)−1(1− (1− θ)τλq) |≤ 1 , (2.13)

or equivalently,
{

1− (1− θ)τλq ≤ 1 + θτλq

−1 + (1− θ)τλq ≤ 1 + θτλq.
(2.14)
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From (2.14), we obtain 0 ≤ τλq and τ(1−2θ)|λq| ≤ 2 since 0 < λq. In the case θ ≥ 1/2,
there is no restriction on τ , consequently the marching scheme is unconditionally
stable. On the other hand, if θ < 1/2 then 0 < (1− 2θ) and in order for the scheme
to be stable it is necessary that τ ≤ 2/ ((1− 2θ)ρmax), where ρmax = maxq |λq|. In
this case, the marching scheme is conditionally stable.

Part 2 (estimation of cond(EET )). We shall diagonalize the blocks of EET :

EET =




F1F
T
1 −F1F

T
0

−F0F
T
1 F0F

T
0 + F1F

T
1 −F1F

T
0

−F0F
T
1 F0F

T
0 + F1F

T
1 −F1F

T
0

. . . . . . . . .
−F0F

T
1 F0F

T
0 + F1F

T
1




.

(2.15)
Notice that V −1

h MhVh = I and V −1
h M−1

h AhVh = Λh imply that F0 and F1 are
diagonalized by Vh, yielding Λ0 = V −1

h F0Vh = V −1
h (Mh − (1− θ)τAh)Vh and matrix

Λ1 = V −1
h F1Vh = V −1

h (Mh +θτAh)Vh. If VVVh := blockdiag(Vh, . . . , Vh), then the block
matrix VVV−1

h EETVVVh will have blocks which are diagonal matrices:

VVV−1
h EETVVVh =




Λ2
1 −Λ0Λ1

−Λ0Λ1 Λ2
0 + Λ2

1 −Λ1Λ0

−Λ0Λ1 Λ2
0 + Λ2

1 −Λ1Λ0

. . . . . . . . .
−Λ0Λ1 Λ2

0 + Λ2
1




. (2.16)

Next, we permute the rows and columns of the block tridiagonal matrix (2.16) using
a permutation matrix Π, so that Θ := Π(VVV−1

h EETVVVh)ΠT = blockdiag(Θ1, . . . , Θl̂)
where each block submatrix Θl is a tridiagonal matrix with entries:

Θl := (Π(VVV−1
h EETVVVh)ΠT )l =




a2
q −aqbq

−aqbq a2
q + b2

q −aqbq

−aqbq a2
q + b2

q −aqbq

. . . . . . . . .
−aqbq a2

q + b2
q




,

(2.17)
where bq := (1− (1− θ)τλq) and aq := (1 + θτλq). Let µ(Θl) denote an eigenvalue of
submatrix Θl (and hence also of Θ). Then, Gershgorin’s Theorem [7, 28] yields:

| µ(Θl)− a2
q |≤| aqbq | or | µ(Θl)− a2

q − b2
q | ≤ 2 | aqbq | (2.18)

Using condition (2.13), we guarantee stability when | bq |≤| aq | obtaining

µ(Θl) ≤ max
(
| aq | (| aq | + | bq |) , (| aq | + | bq |)2

)
≤ max 4 | aq |2 (2.19)

and

µ(Θl) ≥ min
((| aq |2 − | aq || bq |

)
, (| aq | − | bq |)2

)
≥ min (| aq | − | bq |)2 .(2.20)

An upper bound for µ(Θl) from (2.19) is given by µ(Θl) ≤ 4 (1 + θτρmax)2, where
ρmax = maxq |λq|. To obtain a lower bound for µ(Θl), from (2.20) we employ the
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notation ρmin := minq |λq| obtaining µ(Θl) ≥ (τρmin)2. Therefore, the condition
number of the matrix EET will satisfy the bound:

cond(EET ) ≤ 4
(

1 + θτρmax

τρmin

)2

. (2.21)

This completes the proof.
Remark 1. For finite element discretizations on a polygonal domain of size O(1), the
generalized eigenvalues λq will satisfy the bounds α1 ≤ |λq| ≤ α2h

−2. Then, using
(2.21) we obtain:

cond(EET ) ≈
(

1 + θτα2h
−2

τα1

)2

. (2.22)

Thus, the matrix EET will be ill-conditioned with a condition number that grows
as O(h−4) depending on τ and h. If the system (2.8) is solved using the Uzawa’s
method, it is necessary to solve −(EK−1ET +NG−1NT )p = f−Eŷ+EK−1g, where
the matrix S := (EK−1ET +NG−1NT ) is the Schur complement of the system (2.8)
with respect to the Lagrange multiplier p.

Next, we analyze the condition number of the matrix S. Notice that due to the
positive semi-definiteness of matrix Mh in (2.1), we obtain in the sense of quadratic
forms that K−1 = (Z + Γ)−1 ≤ Z−1 and apply it in the following estimate for the
condition number of the Schur complement S.

Lemma 2.2. Let the upper and lower bound for the singular values of EET be
given by 4(1+ θτρmax)2 and (τρmin)2, respectively. Let K = Z+Γ, and suppose that
the mass matrices Z, G, N, and Γ satisfy:

c1 τ yT y ≤ yT Zy ≤ c2 τ yT y (2.23)
c3 r τ hduT u ≤ uT Gu ≤ c4 r τ hduT u, (2.24)
c5 τ2 hd pT p ≤pT NNT p≤ c6 τ2 hd pT p and (2.25)

0 ≤ yT Γy ≤ c7 syT y, (2.26)

where the constants ci are independent of r, s, h and τ . Then, the condition number
of matrix S is bounded by:

cond(S) ≤
(

c4 r (c5 τ + c7 s)
c1 τ c3 r

) (
4 c3 r (1 + ρmax τ θ)2 + c6 τ2 c1

c4 r (τ ρmin)2 + c5 τ (c2 τ + c7 s)

)
, (2.27)

where S := EK−1ET + NG−1NT denotes the Schur complement.
Proof. Using the upper and lower bounds for K, EET , NNT and G we obtain:

Upper bound:

pT Sp = pT EK−1ET p + pT NG−1NT p (2.28)
≤ pT EZ−1ET p + pT NG−1NT p (2.29)

≤ 1
c1 τ

pT EET p +
1

c3 r τ hd
pT NNT p (2.30)

≤
(

4
c1 τ

(1 + τ θ ρmax)2 +
c6 τ2hd

c3 r τ hd

)
pT p (2.31)

=
(

4
c1 τ

(1 + τ θ ρmax)2 +
c6 τ

c3 r

)
pT p. (2.32)
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Lower bound:

pT Sp ≥ 1
(c2 τ + c7)

pT EET p +
1

c4 r τ hd
pT NNT p (2.33)

≥
(

(τ ρmin)2

(c2 τ + c7 s)
+

c5 τ2 hd

c4 r τ hd

)
pT p (2.34)

=
(

(τ ρmin)2

(c2 τ + c7 s)
+

c5 τ

c4 r

)
pT p. (2.35)

Therefore, the condition number of matrix S can be estimated by:

cond(S) ≤ c4 r (c5 τ + c7 s)
c1 τ c3 r

4 c3 r (1 + θτρmax )2 + c6 τ2 c1

c4 r (τ ρmin)2 + c5 τ (c2 τ + c7 s)
. (2.36)

Remark 2. The estimate given in (2.36) shows that matrix S is ill-conditioned.
Indeed, using that ci = O(1), the expression (2.36) reduces to:

cond(S) ≈
(

τ + s

τ

) (
r (1 + θτh−2)2 + τ2

rτ2 + τ2 + sτ

)
. (2.37)

Choosing θ = 1 and using the reasonable assumptions:

ch2 ≤ τ, r ≤ O(1)

yields that cond(S) ≈ O(rh−4).

3. The reduced system for u. We shall now describe an algorithm to solve
the saddle point system (2.8) based on the solution of a reduced Schur complement
system for the control variable u. Solving the first and third block rows in (2.8) yield
p = −E−T Ky + E−T Kỹ − ET g and y = −E−1Nu + E−1f , respectively. System
(2.8) can then be reduced to the following Schur complement system for u:

(G + NT E−T KE−1N)u = b−NT E−T Kg, (3.1)

where b := NT E−T
(
KE−1f −Kỹ + g

)
. If G > 0, then (G + NT E−T KE−1N) is

symmetric and positive definite. In the next theorem, we show that matrix G is
spectrally equivalent to the matrix (G + NT E−T KE−1N).

Theorem 3.1. Let the matrices Z, G, N and Γ satisfy the bounds described in
(2.23) − (2.26). Let K = Z + Γ. Let the matrix E be such that the upper and lower
bounds for EET are given by 4(1 + θτρmax)2 and (τρmin)2, respectively. Then, there
exist µmin > 0 and µmax > 0, independent of h and u, such that:

µmin

(
uT Gu

) ≤ uT (NT E−T KE−1N)u ≤ µmax

(
uT Gu

)
(3.2)

and

uT Gu ≤ uT (G + NT E−T KE−1N)u ≤ (1 + µmax)uT Gu. (3.3)

where µmax = (c2 τ+c7 s) c6
(ρmin)2 c3 r τ and µmin = c1 c5 τ2

4 (1+τ ρmax θ)2 c4 r .
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Proof. We first prove expression (3.2). Using the upper and lower bounds for K,
EET , NNT and G we obtain:
Upper bound:

uT NT E−T KE−1Nu ≤ (c2 τ + c7 s)uT NT E−T E−1Nu (3.4)

≤ (c2 τ + c7 s)
(τ ρmin)2

uT NT Nu (3.5)

≤ (c2 τ + c7 s) c6 τ2 hd

(τ ρmin)2
uT u (3.6)

=
(c2 τ + c7 s)c6 hd

(ρmin)2
uT u (3.7)

≤ (c2 τ + c7 s) c6

(ρmin)2 c3 r τ
uT Gu (3.8)

= µmax uT Gu. (3.9)

Lower bound:

uT NT E−T KE−1Nu ≥ (c1 τ)uT NT E−T E−1Nu (3.10)

≥ c1 τ

4 (1 + τ ρmax θ)2
uT NT Nu (3.11)

≥ c1 c5 τ3 hd

4 (1 + τ ρmax θ)2
uT u (3.12)

≥ c1 c5 τ2

4 (1 + τ ρmax θ)2 c4 r
uT Gu (3.13)

= µmin uT Gu. (3.14)

Since µmin > 0 and µmax > 0 then uT (G + NT E−T KE−1N)u ≤ (1 + µmax)uT Gu
and uT Gu ≤ (1 + µmin)uT Gu ≤ uT (G + NT E−T KE−1N)u. Therefore:

uT Gu ≤ uT (G + NT E−T KE−1N)u ≤ (1 + µmax)uT Gu. (3.15)

This completes the proof.
First Algorithm. The Schur complement system (3.1) can be solved using a

CG (conjugate gradient) algorithm using G as a preconditioner. Since ρmin is O(1)
and ρmax is O(h−2), it is easy to see that, in Theorem 3.1:

µmin = O

(
h4

r

)
and µmax = O

(
1 + s/τ

r

)
. (3.16)

Hence, the rate of convergence of this algorithm will be independent of h, with a
condition number bound:

cond
(
G−1

(
G + NT E−T KE−1N

)) ≤ O

(
1 +

1 + s
τ

r

)
. (3.17)

This algorithm is simple to implement however has two drawbacks. It has inner and
outer iterations, and requires applications of E−1 (and E−T ) which are not directly
parallelizable.

Second Algorithm. Our second algorithm avoids double iterations. Define:

w := −E−T KE−1Nu.
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Then, the solution to system (3.1) can be obtained by solving the system:

H
[

w
u

]
:=

[
EK−1ET N
NT −G

] [
w
u

]
=

[
0
b

]
, (3.18)

which is symmetric and indefinite. The action of E−1 is required only in a pre-
computed step to assemble the right hand side input vector b.

Since system (3.18) is symmetric indefinite, it can be solved iteratively using the
MINRES algorithm with a positive definite preconditioner P := blockdiag(ẼK̃−1ẼT , G̃),
where the matrix Ẽ−T K̃Ẽ−1 is required to be spectrally equivalent to E−T KE−1 and
G̃ is a preconditioner for the matrix G. The following theorem estimates the con-
dition number of P−1H when Ẽ = E, K̃ = K and G̃ = G. In the next section we
consider Ẽ 6= E and use the parareal algorithm to establish an approximation En to
E (see Theorem 4.1). The case K̃ 6= K follows from Remark 6.

Theorem 3.2. Let the matrices Z, G, N, Γ and E with bounds described in the
Lemma 2.2. Let P := blockdiag(EK−1ET ,G) denote a block diagonal preconditioner
for the coefficient matrix H of system (3.18). Then, the condition number of the
preconditioned system satisfies the bound:

cond(P−1H) ≤ O

((
1 +

1 + s/τ

r

)1/2
)

. (3.19)

Proof. Since the preconditioner P is positive definite, we consider the generalized
eigenvalue problem given by:

[
EK−1ET N
NT −G

] [
w
u

]
= η

[
EK−1ET

G

] [
w
u

]
, (3.20)

We obtain the equations:

(η − 1)EK−1ET w = Nu and (η + 1)Gu = NT w. (3.21)

These equations yield NT E−T KE−1Nu = (η2− 1)Gu, where (η2− 1) is the general-
ized eigenvalue of NT E−T KE−1N with respect to G. Using Theorem 3.1, we obtain
bounds for η as follows:

max |η| ≤ (1 + ηmax)
1/2 = O

((
1 +

1 + s/τ

r

)1/2
)

(3.22)

min |η| ≥ (1 + ηmin)1/2 = O (1) . (3.23)

The desired result now follows, since:

cond(P−1H) ≤ max |η|
min |η| . (3.24)

This completes the proof.
Remark 3. Applying the matrix E to a vector is highly unstable, but applying E−1

is stable. The algorithms presented here do not require application of E or ET since:

P−1H =
[

I E−T KE−1N
G−1NT −I

]
. (3.25)
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4. Parareal approximation E−T
n K̂E−1

n . The parareal method is an iterative
method for solving a parabolic equation based on a decomposition of its temporal
domain [to, tf ] into k̂ coarse sub-intervals of length ∆T = (tf − to)/k̂, setting T0 = to
and Tk = to + k∆T for 1 ≤ k ≤ k̂, see [17]. It determines the solution at the times
Tk for 1 ≤ k ≤ k̂ by using a multiple-shooting technique which requires solving the
parabolic equation on each interval (Tk−1, Tk) in parallel. To speed up the multiple
shooting iteration, the residual equations are “preconditioned” by solving a “coarse”
time-grid discretization of the parabolic equation using the time step ∆T .

In this section we formulate a preconditioner En for E based on n Richardson
iterations of the parareal algorithm. Using En, an application of E−T

n K̂E−1
n to a

vector s ∈ R(l̂q̂)×(l̂q̂) can be computed in three steps. Step 1, apply E−1
n s :→ ẑn using

n applications of the parareal method (described below). Step 2, multiply K̂ẑn :→ t̂n

(see below). And Step 3, apply E−T
n t̂n :→ xn, i.e., the transpose of Step 1.

To describe En, we define fine and coarse propagators F and G as follows. The
local solution at Tk is defined by marching from Tk−1 to Tk the θ-scheme on the
fine triangulation τ with an initial data Zk−1 at Tk−1. Let m̂ = (Tk − Tk−1)/τ and
jk−1 = Tk−1−T0

τ . It is easy to see that:

F1 Zk = F Zk−1 + Sk, (4.1)

where F := (F0F
−1
1 )m̂−1F0 ∈ Rq̂×q̂, Sk :=

∑m̂
m=1

(
F0F

−1
1

)m̂−m
sjk−1+m, Z0 = 0.

Imposing continuity F1 Zk − F Zk−1 − Sk = 0 at time Tk, for 1 ≤ k ≤ k̂, yields:

CZ :=




F1

−F F1

. . . . . .
−F F1







Z1

Z2

...
Zk̂


 =




S1

S2

...
Sk̂


 := S. (4.2)

The coarse solution at Tk with initial data Zk−1 ∈ Rq̂ at Tk−1 is obtained by applying
one coarse time step of the backward Euler method F∆

1 Zk = GZk−1 where matrix
F∆

1 := (Mh + Ah∆T ) and G := Mh ∈ Rq̂×q̂. In the parareal algorithm, the following
coarse propagator based on G is employed to precondition system (4.2) via:




Zi+1
1

Zi+1
2
...

Zn+1

k̂


 =




Zi
1

Zi
2
...

Zi
k̂


 +







F∆
1

−G F∆
1

. . . . . .
−G F∆

1







−1 


Ri
1

Ri
2
...

Ri
k̂


 , (4.3)

for 0 ≤ i ≤ n − 1, where the residual Ri := [Ri
1
T
, ..., Ri

k̂

T ]T ∈ Rk̂q̂ in (4.2) is defined

as Ri := S−CZi, where Zi := [Zi
1
T
, ..., Zi

k̂

T ]T ∈ Rk̂q̂, and Z0 := [0T , ..., 0T ]T .
We can now define ẑn := E−1

n s. Let ẑn be the nodal representation of a piecewise
linear function ẑn in time with respect to the fine triangulation τ on [to, tf ], and
continuous inside of each coarse sub-interval [Tk−1, Tk], i.e., the function ẑn can be
discontinuous across the coarse points Tk, 1 ≤ k ≤ k̂ − 1, therefore, ẑn ∈ R(l̂+k̂−1)q̂.
On each sub-interval [Tk−1, Tk], ẑn is defined marching from Tk−1 to Tk the θ-scheme
using fine time steps τ and initial data Zn

k−1 at Tk−1.
The matrix matrix K̂ := Ẑ + Γ̂ with Ẑ, Γ̂ ∈ R((l̂+k̂−1)q̂)×((l̂+k̂−1)q̂). The matrix

Γ̂ = s diag(0, 0, ..., Mh) and Ẑ = D̂τ ⊗ Mh, D̂τ := blockdiag(D̂1
τ , . . . , D̂k̂

τ ), and the
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D̂1
τ ∈ R(m̂q̂)×(m̂q̂) and D̂k

τ ∈ R((m̂+1)q̂)×((m̂+1)q̂) for 2 ≤ k ≤ k̂, are the time mass
matrices associated to the sub-intervals [Tk−1, Tk], Note that K can be obtained by
subassembling K̂ and (l̂ + k̂ − 1)q̂ = m̂q̂ + (k̂ − 1)(m̂ + 1)q̂.
Remark 4. In the following, we shall express using matrix notation, the parareal
algorithm described in the preceding. For convenience, we consider only unique values
for the solution at the coarse times Tk, although the jumps can be computed using the
evolution matrix. In matrix form, the parareal method to solve Ey = s corresponds to
a Schur complement based Richardson iteration. We partition y =

(
yT

I ,yT
B

)T where

yI = (y(1)T

I , . . . ,y(k̂)T

I )T and y(k)
I = (yT

(k−1)m̂+1, . . . , y
T
km̂−1)

T are sub-vectors of y at
the times tj = j τ in (Tk−1, Tk), while yB = (yT

m̂, . . . , yT
k̂m̂

)T denotes sub-vectors of y
at the times T1, . . . , Tk̂. This block partitions system Ey = s:

[
EII EIB

EBI EBB

] [
yI

yB

]
=

[
sI

sB

]
, (4.4)

where EII = blockdiag(E(1)
II , . . . ,E(k̂)

II ) is a block diagonal matrix, with E(k)
II denoting

an evolution submatrix of E on (Tk−1, Tk). The matrices EIB , EBI and EBB are also
submatrices of E, corresponding to the indices B and I. Elimination of yI yields a
Schur complement system CyB = (sB − EBIE−1

II sI), where the Schur complement
matrix C = (EBB − EBIE−1

II EIB) can be shown to be block lower bidiagonal, as
expressed below, where F := (F0F

−1
1 )m̂−1F0. In the parareal method, the following

preconditioner C0 is also employed for C, where F∆
1 = (Mh + ∆T Ah):

C ≡




F1

−F F1

. . . . . .
−F F1


 and C0 ≡




F∆
1

−G F∆
1

. . . . . .
−G F∆

1


 . (4.5)

It can be shown that ρ(I − C−1
0 C) < 1 yielding a convergent iteration for the Schur

complement system. The parareal preconditioner En for E corresponds to applying n
Richardson iterations based on the Schur complement system. To compute the action
of x = E−1

n s, in step 1 solve EIIwI = sI . In step 2, apply n iterations of the iteration
wi+1

B = wi
B + C−1

0 (sB −EBIwI −Cwi
B) starting with w0

B = 0. Define xB = wn
B . In

step 3, compute the update xI = E−1
II (sI −EIBxB).

In the following result, we assume that parameter θ = 1.
Theorem 4.1. For any s ∈ R(l̂q̂)×(l̂q̂) and ε ∈ (0, 1/2), we have:

γmin

(
E−1s,KE−1s

) ≤
(
E−1

n s, K̂E−1
n s

)
≤ γmax

(
E−1s,KE−1s

)
,

where




γmax(ε) := min
(
(1 + ρ2

n(tf−to)
τε + 2ε)/(1− 2ε), (1 + τρ2

ne2(tf−to)maxq(λq)

4ε + 2ε)/(1− 2ε)
)

γmin(ε) := max
(
(1− ρ2

n(tf−to)
τε − 2ε)/(1 + 2ε), (1− τρ2

ne2(tf−to)maxq(λq)

4ε − 2ε)/(1 + 2ε)
)

.

(4.6)

Proof. Let Vh := [v1, ..., vq̂] and Λh := diag{λ1, ..., λq̂] be the generalized eigenvec-
tors and eigenvalues of Ah with respect to Mh, i.e., Ah = MhVhΛhV −1

h . Let z := E−1s
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with z(t) =
∑q̂

q=1 αq(t)vq, and ẑn := E−1
n s with ẑn(t) =

∑q̂
q=1 αn

q (t)vq. We note that
αn

q might be discontinuous across the Tk. Then:

(E−1s,KE−1s) = ‖z‖2L2(to,tf ;L2(Ω)) + s‖z(tf )‖2L2(Ω) =
q̂∑

q=1

‖αq‖2L2(to,tf ) + s|αq(tf )|2,

(E−1
n s, K̂E−1

n s) = ‖ẑn‖2L2(to,tf ;L2(Ω)) + s‖ẑ(tf )n‖2L2(Ω)=
q̂∑

q=1

‖αn
q ‖2L2(to,tf ) + s|αn

q (tf )|2.

First part (Estimation of ‖αn
q ‖2). For estimating ‖αn

q ‖2 we have

‖αn
q ‖2L2(to,tf ) =

(
αn

q − αq, α
n
q + αq

)
L2(to,tf )

+ ‖αq‖2L2(to,tf )

≤ 1
4ε
‖αn

q − αq‖2L2(to,tf ) + ε‖αn
q + αq‖2L2(to,tf ) + ‖αq‖2L2(to,tf )

≤ 1
4ε
‖αn

q − αq‖2L2(to,tf ) + 2ε‖αn
q ‖2L2(to,tf ) + (1 + 2ε)‖αq‖2L2(to,tf ),

which reduces to:

(1− 2ε)‖αn
q ‖2L2(to,tf ) ≤ (1 + 2ε)‖αq‖2L2(to,tf ) +

1
4ε
‖αn

q − αq‖2L2(to,tf ). (4.7)

For each tl ∈ [Tk−1, Tk] we have:

|αn
q (tl)− αq(tl)| =

(
(1 + τλq)−1

)(tl−Tk−1)/τ |αn
q (Tk−1)− αq(Tk−1)|,

and since λq > 0 implies
(
(1 + τλq)−1

)(tl−Tk−1)/τ ≤ 1, we obtain:

‖αn
q − αq‖2L2(Tk−1,Tk) ≤ ∆T |αn

q (Tk−1)− αq(Tk−1)|2.
Hence:

(1− 2ε)‖αn
q ‖2L2(to,tf ) ≤ (1 + 2ε)‖αq‖2L2(to,tf ) +

tf − to
4ε

max
0≤k≤k̂

|αn
q (Tk)− αq(Tk)|2.

Using the Lemma 4.3 (see below) with αq(T0) = 0 and initial guess α0
q(Tk) = 0, and

using

max
0≤k≤k̂

|αq(Tk)|2 = |αq(Tk′)|2 ≤ 4
τ

min
β
‖αq(Tk′) + βt‖2L2(Tk′ ,Tk′+τ)

we obtain:

max
0≤k≤k̂

|αn
q (Tk)− αq(Tk)|2 ≤ ρ2

n max
0≤k≤k̂

|αq(Tk)|2 ≤ 4ρ2
n

τ
‖αq‖2L2(to,tf ),

and the upper bound follows as:

‖αn
q ‖2L2(to,tf ) ≤ (1 +

ρ2
n(tf − to)

τε
+ 2ε)/(1− 2ε)‖αq‖2L2(to,tf ). (4.8)

The lower bound for ‖αn
q ‖2 follows similarly and given by

‖αn
q ‖2L2(to,tf ) ≤ (1− ρ2

n(tf − to)
τε

− 2ε)/(1 + 2ε)‖αq‖2L2(to,tf ). (4.9)
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Second part (Estimation of |αn
q (tf )|2). A similar expression to (4.7) holds, i.e.:

(1− 2ε)|αn
q (tf )|2 ≤ (1 + 2ε)|αq(tf )|2 +

1
4ε
|αq(tf )− αn

q (tf )|2. (4.10)

Notice that, from the Lemma 4.3, we have

|αq(tf )− αn
q (tf )| ≤ max

1≤k≤k̂
|αq(Tk)− αn

q (Tk)| ≤ ρn max
1≤k≤k̂

|αq(Tk)|,

where α0
q(Tk) = 0 for all k. Defining max0≤k≤k̂ |αq(Tk)| = |αq(Tk′)| and noting that:

αq(tf ) = e−(tf−Tk′ )λqαq(Tk′) ≥ e−(tf−to)λq

τ
αq(Tk′) =

e−(tf−to)λq

τ
max

0≤k≤k̂
|αq(Tk)|,

we have

max
1≤k≤k̂

|αq(Tk)|2 ≤ τe2(tf−to) maxq(λq)|αq(tf )|2,

obtaining:

(1− 2ε)|αn
q (tf )|2 ≤

(
1 + 2ε +

τρ2
ne2(tf−to)λq

4ε

)
|αq(tf )|2. (4.11)

The lower bound for |αn
q (tf )| follows similarly and it is given by

(1 + 2ε)|αn
q (tf )|2 ≤

(
1− 2ε− τρ2

ne2(tf−to)λq

4ε

)
|αq(tf )|2. (4.12)

Combining expression (4.8) and (4.11), and (4.9) and (4.12), yields the upper and
lower bounds (4.6).

Remark 5. Performing straightforward computations we obtain:

γmax = inf
ε∈(0,1/2)

(γmax(ε)) = min


1 +

4√
1 + τ

ρ2
n(tf−to) − 1

, 1 +
4√

1 + 4

τρ2
ne2(tf−to)maxq(λq) − 1


 ,

(4.13)
and

γmin = sup
ε∈(0,1/2)

(γmin(ε)) = max


1 +

−4√
1 + τ

ρ2
n(tf−to) + 1

, 1 +
−4√

1 + 4

τρ2
ne2(tf−to)maxq(λq) + 1


 .

(4.14)
Considering (tf − to) = O(1) and defining $(h) :=

√
e2(tf−to)maxq(λq) then for small

values of ρn we have

γmax ≈ min
(

1 + 4ρn
1√
τ

, 1 + 2
√

$ρn

√
τ

)
. (4.15)

since maxq(λq) = O(h−2).
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Lemma 4.2. Let the matrices Z, G, N, Γ and E satisfy the bounds described in
Lemma 2.2. Let K = Z + Γ and K̂ = Ẑ + Γ̂. Then,

uT
(
NT E−T

n K̂E−1
n N

)
u ≤ (µmaxγmax)uT Gu, (4.16)

where µmax and γmax are given in (3.2) and (4.13), respectively. In terms of the
parameters r, s, h and τ , it will hold that:

µmaxγmax = O

(
1 + s/τ

r
γmax

)
. (4.17)

Proof. Using Theorems 4.1 and 3.1, we obtain:

uT
(
NT E−T

n K̂E−1
n N

)
u ≤ γmaxuT

(
NT E−T KE−1N

)
u

≤ γmaxµmaxuT Gu. (4.18)

Combining (4.18) with (3.16) yields the expression (4.17).
Remark 6. Considering s = 0 and taking h constant, then $ is a constant. Conse-
quently, for r constant, we obtain µmaxγmax = O (γmax) and 4ρn/

√
τ ≤ 2ρn

√
τ , hence

γmax = (1 + 4ρn
1√
τ
) in (4.15).

Next, decompose Zk =
∑q̂

q=1 αq(Tk)vq and Zn
k =

∑q̂
q=1 αn

q (Tk)vq, and denote
ζn
q (Tk) := αq(Tk) − αn

q (Tk). The convergence of the parareal algorithm for systems
follows from the next lemma which is an extension of the results presented in [9].

Lemma 4.3. Let ∆T = (tf − to)/k̂ and Tk = to + k∆T for 0 ≤ k ≤ k̂. Then,

max
1≤k≤k̂

|αq(Tk)− αn
q (Tk)| ≤ ρn max

1≤k≤k̂
|αq(Tk)− α0

q(Tk)|,

where ρn := sup0<β<1

(
e1−1/β − β

)n 1
n!

∣∣∣ dn−1

dβn−1

(
1−βk̂−1

1−β

)∣∣∣ ≤ 0.2984256075n.

Proof. Using Theorem 2 from [9] we obtain:

ζn
q =

(
(1 + τλq)

−∆T/τ − βq

)
T (βq)ζn−1

q , (4.19)

where βq := (1 + λq∆T )−1 and T (β) :=
{

βj−i−1 if j > i, 0 otherwise
}

is a
Toeplitz matrix of size k̂. Applying (4.19) recursively we obtain:

max
1≤k≤k̂

|ζn
q | ≤ ρq

n max
1≤k≤k̂

|ζ0
q |,

where:

ρq
n :=

∥∥∥
(
(1 + τλq)

−∆T/τ − βq

)n

T n(βq)
∥∥∥

L∞
. (4.20)

Since λq > 0 and βq ≤ (1 + τλq)
−∆T/τ ≤ e−λq∆T , we obtain

| (1 + τλq)
−∆T/τ − βq| ≤ |e−λq∆T − βq| = |e1−1/βq − βq|,

which yields:

ρq
n ≤ |e1−1/βq − βq|n‖T n(βq)‖L∞ ≤ sup

0<β<1
|e1−1/β − β|n‖T n(β)‖L∞ .

By considering ‖T n(β)‖∞ ≤ ‖T (β)‖n
∞ =

∣∣∣ 1−βk̂−1

1−β

∣∣∣
n

, a simpler upper bound for ρn

can be obtained:
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sup0<β<1

∣∣e1−1/β − β
∣∣n

∣∣∣1−βk̂−1

1−β

∣∣∣
n

≤
(
sup0<β<1

e1−1/β−β
1−β

)n

≈ 0.2984256075n,

and the maximum β∗ is attained around 0.3528865, independently of n and k̂ (β∗
presents slight variation for 1 ≤ n and 6 ≤ k̂, cases of practical interest).

Third Algorithm. Our third algorithm employs the block diagonal matrix:

P̃ =
[

EnK̂−1ET
n

G

]
(4.21)

as a preconditioner for (3.18) and solves it using MINRES. The next theorem estimates
the condition number when the matrix (4.21) is used as a preconditioner.

Theorem 4.4. Let the matrices Z, G, N, Γ and E satisfy the bounds described in
Lemma 2.2. Let P̃ := blockdiag(EnK̂−1ET

n ,G) denote a block diagonal preconditioner
for the coefficient matrix H of system (3.18). Let the bounds for matrix EnK̂−1ET

n

presented in Lemma 4.1. Then, the condition number of the preconditioned system
will satisfy the bound:

cond(P̃−1H) ≤ O

((
1 +

1 + s/τ

r

)1/2
)

max (γmax, 1)
min (γmin, 1)

, (4.22)

where γmax and γmin are defined in (4.13) and (4.14), respectively.
Proof. To obtain an upper bound consider that P̃−1/2HP̃−1/2 is symmetric, then

max |η
(
P̃−1H

)
| = max |η

(
P̃−1/2HP̃−1/2

)
| = ‖|P̃−1/2HP̃−1/2‖|2 (4.23)

= sup
v 6=0

(
vT P̃−1/2HP̃−1/2v

vT v

)
(4.24)

≤ sup
v 6=0

(
vT Hv
vT Pv

)
sup
v 6=0

(
vT Pv
vT P̃v

)
(4.25)

≤ max |η (
P−1H

) |max (γmax, 1) (4.26)
(4.27)

Analogously, using min |η
(
P̃−1/2HP̃−1/2

)
| = |||

(
P̃−1/2HP̃−1/2

)
|||2, a lower bound

is obtained:

min |η
(
P̃−1/2HP̃−1/2

)
| ≥ min |η

(
P̃−1/2HP̃−1/2

)
min (γmin, 1) (4.28)

and consequently,

cond(P̃−1H) ≤ O

((
1 +

1 + s/τ

r

)1/2
)

max (γmax, 1)
min (γmin, 1)

. (4.29)

Remark 7. A generalization of Theorem 4.4 for matrices Go and EnK̂−1
n ET

n (spec-
trally equivalent to G and EK−1ET respectively) follows directly from [13, 14].

5. Numerical Experiments. In this section, we consider the numerical solu-
tion of an optimal control problem involving the 1D-heat equation. In this case, the
constraints are given by:

zt − zxx = v, 0 < x < 1, t > 0
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Table 5.1
Number of CG iterations for Algorithm 1. The parameters are s = 0 (s = 1), q = 1, r = 0.0001,

tf = 1, h = 1/m̂ and τ = 1/l̂.

m̂ \ l̂ 32 64 128 256 512

32 36 (41) 38 (44) 40 (46) 40 (47) 40 (48)
64 36 (41) 38 (44) 40 (46) 40 (47) 40 (48)
128 36 (41) 38 (44) 40 (46) 40 (47) 40 (48)
256 36 (41) 38 (44) 40 (46) 40 (47) 40 (48)
512 36 (41) 38 (44) 40 (46) 40 (47) 40 (48)

with boundary conditions z(t, 0) = 0 and z(t, 1) = 0 for t ≥ 0, and with initial data
z(0, x) = 0 for x ∈ [0, 1], and with the performance function ỹ = x(1 − x)e−x for
all t ∈ [0, 1]. Following [18], we take q = 1 and r = 0.0001. The backward Euler
discretization (θ = 1) is considered in the numerical experiments. As a stopping
criteria for the iterative solvers, we take ‖rk‖/‖r0‖ ≤ 10−9 where rk is the residual
at each iteration k.

Table 5.2
Number of CG iterations for Algorithm 1 for different values of τ and s. The parameters are:

space discretization h = 1/32, q = 1, r = 0.0001, tf = 1.

l̂ \ s 0 1 10 100

32 36 41 50 68
64 38 44 52 73
128 40 46 57 83
256 40 47 62 89
512 40 48 64 96

Table 5.3
Condition number of the preconditioned matrix of Algorithm 1. The parameters are q = 1,

r = 0.0001, tf = 1, h = 1/32 and τ = 1/64

r \ s 104 102 1 10−2 0

10−2 4.9 104 5.0 102 6.2 1.9 1.9
10−4 4.7 106 4.8 104 5.2 102 93 93
10−6 4.2 108 4.8 106 5.1 104 9.2 103 9.1 103

Algorithm 1: Reduction to u. We consider matrix G as a preconditioner for
system (3.1) and use the PCG method to solve the resulting preconditioned system.
For the case where s = 0 and in parenthesis s = 1, Table 5.1 presents the number of
iterations for different time and space meshes. As predicted by the theory in Section
3, see (3.16), the number of iterations remains constant as h is refined. Table 5.1
also shows that the number of iterations deteriorates very weakly when the time
discretization τ gets finer. As expected from the analysis, this deterioration is more
noticeable for larger s, (see Tables 5.1 and 5.2). Table 5.3 shows that the condition
number estimates in Section 3 (see the expression (3.17)) are sharp for different values
of parameters r and s.

Algorithm 2. Table 5.6 presents the number of iterations required to solve
system (3.18) using MINRES acceleration when both time and space grid sizes are
refined. As predicted from the analysis, see (3.19), as the space grid is refined, the



BLOCK PRECONDITIONERS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS 17

Table 5.4
Values of µmaxγmax when τ is refined.

Parameters h = 1/10, ∆T = 1/20 and s = 0.

n \ l̂ 200 400 800 1600
n = 1 0.864415 1.449299 2.473734 4.371709
n = 2 0.070835 0.097852 0.136802 0.193845
n = 3 0.007760 0.010765 0.015141 0.021165
n = 4 0.000865 0.001224 0.001715 0.002397

Parameters h = 1/10, ∆T = 1/20 and s = 0.01.

n \ l̂ 200 400 800 1600
n = 1 0.864419 1.449305 2.473744 4.371725
n = 2 0.070852 0.097885 0.136851 0.193918
n = 3 0.007784 0.010800 0.015180 0.021208
n = 4 0.000869 0.001229 0.001721 0.002436

Parameters h = 1/10, ∆T = 1/20 and s = 1.

n \ l̂ 200 400 800 1600
n = 1 3.779956 6.866334 12.933472 24.992363
n = 2 0.226120 0.333472 0.500244 0.768025
n = 3 0.024360 0.034622 0.049315 0.070448
n = 4 0.002846 0.004026 0.005699 0.008069

Table 5.5
Values of µmaxγmax for τ = 1/800 and s = 0/1/10/100. Parameters h = 1/10, ∆T = 1/20.

n \ s 0 1 10 100
n = 2 0.136802 0.500244 2.239858 16.307768
n = 3 0.015141 0.049315 0.157836 0.581009
n = 4 0.001715 0.005699 0.017459 0.056029

number of iterations remains bounded. As before, for larger s, a deterioration in the
number of iterations is observed.

Algorithm 3: parareal preconditioner. Table 5.7 lists the number of MIN-
RES iterations as ∆T/τ is varied while τ remains as a constant. We choose n = 2.
The number of iterations for the MINRES basically remains constant when h is re-
fined and k̂ is increased, and so the results indicate scalability. Table 5.8 lists the
number of MINRES iterations for n = 2 and τ = 1/512 for different values of ∆T/τ .
It indicates optimal order of convergence.

Sharpness of the bound in Lemma 4.2. Table 5.4 lists the value of µmaxγmax,
see (4.17 for different values of τ , n (where n = 7 is in practice equivalent to an exact
solver) and considering s = 0. The results in Table 5.4 for µmaxγmax confirm the
sharp dependence with respect to τ since it increases by a

√
2 factor when τ is refined

by half and indicate that the method is scalable if “n” is kept constant, see Remark
6. Similar behavior if s 6= 0 but constant. If s is increased, the values of µmaxγmax

deteriorates, as expected in the expression (4.17) (see Table 5.5).

6. Conclusion. In this paper we have described three approaches for iteratively
solving a linear quadratic parabolic optimal control problem. The first method is
based on the CG solution of a Schur complement system. This is obtained by reducing
the saddle point system to the system associated with the control variable. This
method is simple to implement but requires double iteration. The second method
avoids double iteration by introducing an auxiliary variable. The resulting system is
symmetric and indefinite, so that MINRES can be used. The structure of this method
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Table 5.6
Number of MINRES iterations for algorithm 2. Parameter are s = 0 (s = 1), q = 1, r = 0.0001,

tf = 1, h = 1/m̂ and τ = 1/l̂.

m̂ \ l̂ 32 64 128 256 512

32 56 (60) 58 (62) 60 (64) 60 (66) 60 (68)
64 56 (60) 58 (62) 60 (64) 60 (66) 60 (68)
128 56 (60) 58 (62) 60 (64) 60 (66) 60 (68)
256 56 (60) 58 (62) 60 (64) 60 (66) 60 (68)
512 56 (60) 58 (62) 60 (64) 60 (66) 60 (68)

Table 5.7
MINRES iterations using the Parareal algorithm with n = 2 as preconditioner. Parameters

r = 0.001/0.0001/0.00001 and τ = 1/512.

k̂ 8 16 32 64
∆T/τ 64 32 16 8
h = 1/16 32 / 62 / 136 32 / 62 / 136 32 / 60 / 132 32 / 60 / 132
h = 1/32 32 / 62 / 136 32 / 62 / 136 32 / 62 / 132 32 / 60 / 132
h = 1/64 32 / 62 / 136 32 / 62 / 136 32 / 62 / 132 32 / 60 / 132

also allows parallel block preconditioners. The preconditioners described yield a rate
of convergence independent of the time and space parameters (under the specific choice
of r and s). In the third method, a preconditioner based on the parareal algorithm is
also presented which yields a rate of convergence for the MINRES constant when the
spatial grid is refined and the number of subdomains is increased.
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