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Abstract.
A higher-order strongly nonlinear model is derived to describe the evolution of large amplitude internal waves

over arbitrary bathymetric variations in a two-layer system where the upper layer is shallow while the lower layer
is comparable to the characteristic wavelength. The new system of nonlinear evolution equations with variable
coefficients is a generalization of the deep configuration model proposed by Choi and Camassa (Journal of Fluid
Mechanics, 1999) and accounts for both a higher-order approximation to pressure coupling between the two layers
and the effects of rapidly-varying bottom variation. Motivated by thework of Rosales and Papanicolaou (Studies
Appl. Math., 1983), an averaging technique is applied to thesystem for weakly nonlinear long internal waves
propagating over periodic bottom topography. It is shown that the system reduces to an effective Intermediate Long
Wave (ILW) equation, in contrast to the KdV equation derivedfor the surface wave case.
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1. Introduction
Modeling internal waves is of great interest in the study of ocean and atmosphere dy-

namics. Large amplitude internal ocean waves, for example,are often observed in many
areas where the variation of temperature and salt concentration generates density stratifica-
tion. They can interact with bottom topography and submerged structures as well as surface
waves. In particular, in oil recovery in deep oceans, these highly nonlinear internal waves
can affect offshore operations and submerged structures. Another example, in the context of
atmosphere dynamics, is the effect on the topographic form drag which is of importance in
the study of pollution dispersion in an urban area.

Finding accurate reduced models is a first step toward betterunderstanding the charac-
teristics of large amplitude internal waves and developingefficient computational methods to
solve a wide range of practical problems in the ocean and the atmosphere. To describe the
nonlinear internal wave motions in water of great depth, various models have been proposed,
ranging from classical weakly nonlinear models such as the Intermediate Long Wave (ILW)
equation and the Benjamin-Ono (BO) equation [2, 9, 19, 20, 31] to high-order nonlinear mod-
els [4, 5, 6, 18, 23]. A strongly nonlinear long wave model of Choi and Camassa [6] for the
deep configuration that is known to approximate well large amplitude internal solitary waves
is of particular interest, but is valid only for the case of flat or slowly-varying bottom.

In this paper, for a two-layer fluid of finite depth, a higher-order nonlinear model is
derived to study the interaction of nonlinear internal waves with large amplitude bottom to-
pography that might vary rapidly over the characteristic length scale of internal waves. As
shown in Fig. 2.1, two layers of constant densities are bounded by a horizontal rigid lid at the
top and arbitrary topography at the bottom. The thickness ofthe lower layer is assumed to be
much greater than that of the upper layer, but is comparable to the characteristic wavelength.
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The new long wave model, accounting for higher-order nonlinear effects through a more ac-
curate pressure coupling between the two layers, describesthe evolution of the internal wave
elevation together with the mean (horizontal) water velocity for the upper layer. The effects
of rapidly-varying and steep topography are represented inthe model by variable coefficients
with the aid of the conformal mapping technique, as described in [29].

By using a multi-scale averaging strategy, Rosales and Papanicolaou [32] obtained an
effective KdV equation for weakly nonlinear and weakly dispersive long surface waves over
rapidly-varying and periodic bathymetry for which wave reflection is negligible. Other more
recent results can be found in the literature [8, 16], all containing effective KdV equations. In
the present work, the analysis is carried over for internal waves, with an additional technical
difficulty of expanding a singular integral operator acting on a multi-scale function. Under
the weakly nonlinear assumption, to leading order, it is shown that the higher-order model
can be reduced to an effective ILW equation when considering unidirectional internal waves
over rapidly-varying and periodic bathymetry.

We intend to use this higher-order model to study the interaction of internal waves with
bottom topography, including topics such as wave multiple-scattering, and related interesting
phenomena that arise. To mention a few, connected with our previous experience for surface
waves, we have the apparent diffusion of long waves interacting with a random topography
[10, 13, 14, 15, 24, 28], as well as the time reversal refocusing of pulses [11, 12, 25, 26],
viewed as a tool for waveform inversion. Namely, from the scattered wave field one can
reconstruct numerically the initial wave profile. Having the effective ILW model, for the
periodic case, is a very useful tool in validating new numerical methods designed to capture
long wave-microstructure interaction.

The paper is organized as follows. In Section 2, the physicalsetting is defined together
with a brief description of our previous results. In Section3, we introduce the higher-order,
depth-averaged, upper layer equations that are equivalentto the shallow water equations with
a leading-order dispersive term. Then, in Section 4, the lower layer pressure that brings
in information from the bathymetry is expanded to the next-order term, in comparison with
previous work. In Section 5, a new, higher-order, strongly nonlinear model is presented. Also
its weakly nonlinear version is given. A dispersive analysis compares the new models with
the (full) Euler equations. Finally, in Section 6, by considering a rapidly varying periodic
bathymetry, a multi-scale averaging theory is presented and an effective Intermediate Long
Wave (ILW) model is deduced. The conclusions are given in Section 7 while the appendix
contains a proof for expanding the singular integral operator.

2. Physical setting
We start with a two-fluid configuration. The coordinate system is positioned at the undis-

turbed interface between two layers. The displacement of the interface is denoted byη(x, t)
and we assume that it is smooth and has compact support. See Fig. 2.1. The density of each
inviscid, immiscible, incompressible and irrotational fluid is ρ1 for the upper fluid andρ2 for
the lower fluid. For a stable stratification, letρ2>ρ1. Similarly, (ui,wi) denote the velocity
components andpi the pressure, wherei =1,2. The upper layer is assumed to have a char-
acteristic thickness ofh1, much smaller than the characteristic wavelengthL at the interface.
Hence, the upper layer will be in the shallow water regime. Atthe lower layer, the irregular
bottom is described byz=h2(h(x/l)−1), h<1. The functionh can be discontinuous or even
multivalued. See, for example, Fig. 2.1 where a polygonal shaped topography is sketched.
Moreover, the characteristic depth for the lower layerh2 is comparable with the characteristic
wavelengthL, hence, characterizing an intermediate depth regime. Whena rapidly varying
bottom is taken into account, the horizontal length scale for bottom irregularitiesl is such that
h1< l≪L. In this work, subscriptsξ, x, z andt stand for partial derivatives with respect to
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F. 2.1.Two-fluid system configuration.

spatial coordinates and time.
Introducing the nondimensional dispersion parameterβ= (h1/L)2, it follows from the

shallowness of the upper layer thatO
(√
β
)

≪1. The physical variables regarding the upper
layer are nondimensionalized (with a tilde) as follows [6, 29]:

x= Lx̃, z=h1z̃, t=
L

U0
t̃, η=h1η̃,

p1= (ρ1U
2
0)p̃1, u1=U0ũ1, w1=

√

βU0w̃1,

whereU0=
√

gh1 is the characteristic shallow layer speed. In a weakly nonlinear theory,η is
usually scaled by a small characteristic amplitudea such thatα≡a/h1≪1. Notice that here
η is of the same order as the layer’s depth. This will lead to a strongly nonlinear model.

For the lower layer, the intermediate depth regime impliesh2/L=O(1) and, therefore,
the nondimensionalization should be different [6, 29]:

x= Lx̃, z= Lz̃, t=
L

U0
t̃, η=h1η̃,

p2= (ρ1U2
0)p̃2, u2=

√

βU0ũ2, w2=
√

βU0w̃2,

together with the velocity potencialφ=
√
βU0Lφ̃.

One starts with the Euler equations in both (upper and lower)layers, together with a rigid
lid condition at the top of the upper layer and an impermeability condition at the irregular
bottom topography. Also one has continuity conditions at the interface: namely, a kinematic
condition at the interface together with no pressure jumps.Considering the shallow water
regime for the upper layer together with potential theory for the lower layer, the following
reduced model arises from these Euler equations. This asymptotic reduction makes use of a
terrain-following horizontal coordinateξ [27] and was obtained in [29]:































ηt−
1

M(ξ)
[

(1−η)u]ξ =0,

ut+
1

M(ξ)
u uξ+

1
M(ξ)

(

1− ρ2

ρ1

)

ηξ =
√

β
ρ2

ρ1

1
M(ξ)

Th

[

(

(1−η)u)ξt
]

.

(2.1)

This is a variable coefficient Boussinesq-type system for the internal wave profileη and the
upper depth-averaged velocityu. The variable coefficient M(ξ) has information from the
topography, due to the conformal mapping of a flat strip onto the lower fluid domain [27, 29].
The map goes from (ξ,ζ) to (x,z) coordinates. Then, one can write the Jacobian along the
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undisturbed interface as|J|(ξ,0)=zζ(ξ,0)2≡M(ξ)2. As will be shown below, system (2.1) is
a dispersive model, where dispersion comes in through the term with a Hilbert transform on
a strip (of widthh) given by

Th[ f ](ξ)≡ 1
2h

?
f (ξ̃)coth

(

π

2h
(ξ̃−ξ)

)

dξ̃. (2.2)

The singular integral must be interpreted as a Cauchy principal value. If the bottom is flat,
M(ξ)=1 and we obtain the same system derived by Choi and Camassa [6]for the deep con-
figuration.

3. Higher-order upper layer equations We are interested in wave interaction with
large amplitude topographies. Therefore, our reduced model must be able to account for a
higher-order pressure coupling between the two layers. In other words, we want to investigate
when this higher-order term does indeed play a role in the dynamics. Hence, our goal in
this section is to improve the order of approximation of system (2.1) by computing a more
accurate approximation for the pressure term: instead of anorderβ approximation, we include
the next-order term ofO(β3/2).

We start with the layer-mean equations for the upper fluid ([34, 3, 6, 30]). For conve-
nience, they are repeated here:

ηt− ((1−η)u)x=0, (3.1)

ut+uux=−p1x+O(β2), (3.2)

wherep1x is the mean-layer value forp1x. For a better approximation ofp1x, we need to
expandp1(x,z, t) with one more term:p1(x,z, t)= p(0)

1 +βp
(1)
1 +O(β2), so its vertical derivative

is expanded asp1z(x,z, t)= p(0)
1z +βp

(1)
1z +O(β2). From the vertical (Euler) momentum equation,

we havep1z=−1−β(w1t+u1w1x+w1w1z). We clearly see theO(1) hydrostatic contribution
to the pressure (p(0)

1z =−1) together with a nonhydrostatic correctionp(1)
1z =−(w(0)

1t +u(0)
1 w(0)

1x +

w(0)
1 w(0)

1z ). Again continuity of pressure at the interface (p1= p2) enables the calculation of the
leading-order nonhydrostatic correction arising from thelower layer. After some manipula-
tions and asymptotics with the Euler equations along the upper layer, Choi and Camassa [6]
describe a pressure approximation in a compact format:p(1)

1z = (z−1)G1(x, t)+O(β), where
G1(x, t)=uxt+uuxx−uxux. Integrating the expression forp1 with respect toz from z=η(x, t),
differentiating once inx, and depth-averaging leads to

p1x=ηx+Px(x, t)−
β

η1

(

1
3
η3

1G1(x, t)

)

x

+O(β2), (3.3)

whereη1=1−η and P(x, t)= p1
(

x,η(x, t), t
)

= p2
(

x,η(x, t), t
)

. Substituting (3.3) in (3.2), we
have

ut+uux=−
(

ηx+Px(x, t)−
β

η1

(

1
3
η3

1G1(x, t)

)

x

)

+O(β2). (3.4)

One can establish the following interesting connection with well known water wave models
[6]. If the lower fluid layer is neglected andP is regarded as the external pressure applied to
the free surface, Eqs. (3.1) and (3.4) are the complete set ofevolution equations for surface
waves as derived by Su and Gardner [33] and independently by Green and Naghdi [17].
One should note that having the rigid lid at the top and the free surface (interface) below it,
the connection between models is established by reflecting the present one about the x-axis,
namely when gravity is considered reversed.
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4. Improved approximation for the pressure at the interface

Now we show how an orderO(β3/2) approximation arises forPx(x, t)=
(

p2
(

x,η(x, t), t
)

)

x
from the (lower layer) Euler equations. Theβ1/2 factor comes from the scaling in the lower
layer.

In nondimensional variables, the lower Bernoulli law at theinterface is

P(x, t)=−ρ2

ρ1

(

√

βφt+
β

2
(φ2

x+φ
2
z)+η+C(t)

)

∣

∣

∣

∣

∣

z=
√
β η(x,t)

.

By expanding in a Taylor series aboutz=0, we obtain that

P(x, t)=−ρ2

ρ1

[

η+
√

β
(

φt|z=0+
√

βη φtz|z=0

)

+
β

2

(

φ2
x

∣

∣

∣

z=0
+ φ2

z

∣

∣

∣

z=0

)

+C(t)
]

+O(β
3
2 ). (4.1)

From the kinematic condition

φz=ηt+
√

βηxφx, (4.2)

we have thatφz=ηt+O
(√
β
)

at z=
√
βη(x, t). It then follows thatφz|z=0=ηt+O

(√
β
)

and

φtz|z=0=ηtt+O
(√
β
)

. Substituting in (4.1) leads to

P(x, t)=−ρ2

ρ1

[

η+
√

β φt|z=0+βηηtt+
β

2

(

φ2
x

∣

∣

∣

z=0
+η2

t

)

+C(t)
]

+O(β
3
2 ).

Notice that all quantities are evaluated atz=0; therefore, takingx-derivatives, we obtain:

Px(x, t)=−
ρ2

ρ1

[

ηx+
√

β φtx|z=0+β

(

ηηtt+
1
2
η2

t +
1
2
φ2

x

∣

∣

∣

z=0

)

x

]

+O(β
3
2 ). (4.3)

In the previous work (c.f. (2.16) in [29]),Px(x, t) was computed only up to theO(
√
β) term,

so that it was enough to approximateφx|z=0 up to order
√
β. In the higher-order pressure

expression (4.3) this calculation can still be used to approximateφ2
x|z=0. We recall that in

[29], we were able to expressφx|z=0 in terms of the Hilbert transform on the stripTh[ f ](ξ),
whereh=h2/L. In other words we found that

φx|z=0≡φx
(

x(ξ,0),0, t
)

=
1

M(ξ)
Th

[

M(ξ̃)ηt
(

x(ξ̃,0), t
)

]

(ξ)+O
(
√

β
)

(4.4)

where the time independent metric coefficient M(ξ) is a smooth function [27, 29]. We also
call attention to the fact that by using the Hilbert transform we are keeping thefull dispersive
nature of the lower layer potential theory problem. This will become evident in the next
section.

In order to approximate theO(β1/2) term in (4.3), it becomes necessary to obtain a higher-
order approximation forφtx|z=0, namely up to orderβ, in contrast with (4.4). Again we can
restrict our analysis to a linear (lower layer) potential theory problem having an undisturbed
interface. There, the velocity potential satisfies an upperNeumann boundary condition (in
φz|z=0), which will be determined up to orderβ. This is done through the kinematic condition
at the free interface.

Taking the nonlinear kinematic condition (4.2) and subsituting the Taylor ex-
pansion φz

(

x,
√
βη

)

=φz(x,0)+
√
βηφzz(x,0)+O(β), we have φz(x,0)=ηt+

√
βηxφx(x,0)+√

βηφxx(x,0)+O(β), where the Laplace equation has been used. Then this is the same as

φz(x,0)=ηt+
√

β
(

ηφx(x,0)
)

x+O(β). (4.5)
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Substituting (4.4) in (4.5) and observing that along the undisturbed interface∂ξ =M(ξ)∂x, we
have that

φz(x,0)=ηt+

√
β

M(ξ)

(

η
1

M(ξ)
Th[M(ξ̃)ηt]

)

ξ

+O(β).

Also noting thatφζ(ξ,0)=M(ξ) φz(x(ξ,0),0) andTh[φζ(ξ,0)]=φξ(ξ,0), we arrive at

φx(x,0)=
1

M(ξ)
φξ(ξ,0)=

1
M(ξ)

Th















M(ξ̃)ηt+
√

β

(

η
1

M(ξ̃)
Th[M(ξ′)ηt]

)

ξ















+O(β).

From

φtx(x,0)=
1

M(ξ)
Th















M(ξ̃)ηt+
√

β

(

η
1

M(ξ̃)
Th[M(ξ′)ηt]

)

ξ















t

+O(β),

together with (3.1),ηtt =
(

(1−η)u)xt=
(

(1−η)u)ξt/M(ξ), we have

√

β φtx|z=0=

√
β

M(ξ)
Th

[

(

(1−η)u)ξt
]

+
β

M(ξ)
Th

[

η

M(ξ̃)
Th

[

(

(1−η)u)ξ
]

]

ξt

+O(β
3
2 ),

which is the higher-order expression we were seeking. Note that the Hilbert transform iterate
is the (new) correction term. It is our future goal to understand the role of thisO(β) term in
the internal wave/topography dynamics.

Summarizing, the higher-order pressure term connecting the top and lower layer is

Px(x, t)=−
ρ2

ρ1

















ηx+

√
β

M(ξ)
Th

[

(

(1−η)u)ξt
]

+
β

M(ξ)
Th

[

η

M(ξ)
Th

[

(

(1−η)u)ξ
]

]

ξt

+

β

2M(ξ)















{

1
M(ξ)

Th

[

(

(1−η)u)ξ
]

}2












ξ

+
β

M(ξ)

(

ηηtt+
1
2
η2

t

)

















+O(β
3
2 ).

This additional order of approximation is compatible with the nonhydrostatic/weakly
dispersive correction added to the upper shallow water layer model (c.f.O(β) term in (3.4)).
It is also relevant to comment that compositions of the Hilbert operatorTh arises not only in
this case, but also in the fully dispersive Boussinesq modelobtained by Matsuno [22], Artiles
and Nachbin [1] or Craig and Sulem [7] for surface gravity waves. In these references the
authors were expanding Dirichlet-to-Neumann (DtN) operators about the undisturbed free
surface.

In the next section, we perform a Fourier dispersion analysis of these models.

5. The higher-order strongly nonlinear model
Consider system (3.1) and (3.4) in curvilinear coordinates



































ηt =
1

M(ξ)
(

(1−η)u)ξ ,

ut+
1

M(ξ)
uuξ=−

1
M(ξ)

ηξ+
β

(1−η)
1

3M(ξ)
(

(1−η)3G1
)

ξ−Px+O(β2),

whereG1 in curvilinear coordinates reads,

G1(ξ, t)=
1

M(ξ)
uξt+

u
M(ξ)

(

1
M(ξ)

uξ

)

ξ

− 1
M(ξ)2

uξuξ.
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With the higher-order pressure, the strongly nonlinear model becomes






























































































ηt =
1

M(ξ)
(

(1−η)u)ξ,

ut+
1

M(ξ)
uuξ+

1
M(ξ)

(

1− ρ2

ρ1

)

ηξ =
ρ2

ρ1

√
β

M(ξ)
Th

[

(1−η)u]ξt+

β

1−η
1

3M(ξ)

(

(1−η)3G1

)

ξ
+
ρ2

ρ1

β

M(ξ)













η
(

(1−η)u)ξt
M(ξ)

+
1
2
(

(1−η)u)2ξ












ξ

+

β

M(ξ)
ρ2

ρ1
Th

[

η

M(ξ)
Th

[

(1−η)u]ξ
]

ξt

+
β

2M(ξ)
ρ2

ρ1















{

1
M(ξ)

Th

[

(

(1−η)u)ξ
]

}2












ξ

+O(β
3
2 ).

For the weakly nonlinear regime introduceη∗, u∗ such thatη=αη∗, u=αu∗, with α=O
(√
β
)

,
a typical scaling used for solitary waves. After dropping the asterisks, we have







































ηt =
1

M(ξ)
[

(1−αη)u]ξ,

ut+
α

M(ξ)
uuξ+

ρ1−ρ2

M(ξ)ρ1
ηξ =
ρ2

ρ1

√
β

M(ξ)
Th

[

(1−αη)u]ξt+
β

3M(ξ)

(

uξt
M(ξ)

)

ξ

+O(β
3
2 ).

(5.1)

When the linear dispersive termβ3M(ξ)

(

1
M(ξ) uξt

)

ξ
is omitted from the higher-orderweakly

nonlinear model, it has exactly the same form as the lower-orderstrongly nonlinear model
(2.1). This might imply that the weakly nonlinear higher-order model should be a good model
for moderate amplitude internal waves. Namely, one can workwith a simple system of equa-
tion and capture accurately the dynamics of waves of moderate amplitude. One of our future
goals is to study numerically the regime of validity of the above statements. Furthermore,
by having this additional term, that arises fromG1 (in the upper layer modeling), the phase
speeds from this higher-order model become substantially more accurate when compared to
the exact linear dispersion relation, which is very important in time reversal experiments.
This will be shown in the next Subsection. In conclusion, theweakly nonlinear higher-order
model might have a large domain of validity, yet to be thoroughly explored in the near future.

5.1. Dispersion relation for the higher-order model
Consider the improved model linearized about the undisturbed, flat bottom, state:































ηt =uξ,

ut+

(

1− ρ2

ρ1

)

ηξ =
ρ2

ρ1

√

βTh[u]ξt+
β

3
uξξt.

By eliminatingη and then lettingu=Aei(kx−ωt) andTh[eikx] = i coth
(

kh2
L

)

eikx, we obtain the
dispersion relation

ω2=

(

ρ2

ρ1
−1

)

k2

(1+ β3k2)+ ρ2

ρ1

√
βkcoth

(

kh2
L

) . (5.2)

Observe that we have bounded phase speeds withω2

k2 →0 ask→∞. The same is true for the
reduced model (2.1) [29]:

ω2=

(

ρ2

ρ1
−1

)

k2

1+ ρ2

ρ1
k
√
βcoth

(

kh2
L

) , (5.3)
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F. 5.1. (a) Phase velocities forρ1=1, ρ2=2, h1=1, h2=2, β=0.01. Solid line: full phase velocity, Dotted
line: phase velocity for the higher-order model, dashed line: phase velocity for the lower order model; (b) Detail
from (a).

The full dispersion relation, in dimensional form,

ω2
f =

g(ρ2−ρ1)k2

ρ1kcoth(kh1)+ρ2kcoth(kh2)
, (5.4)

arises from the linearized Euler equations [21, 6]. In orderto compare the reduced models’
dispersion relations, we rewrite (5.2) and (5.3) in dimensional form. The dispersion relation
(5.3) becomes

ω2
r =

g(ρ2−ρ1)k2

ρ1

h1
+ρ2kcoth(kh2)

.

As already stated in [6], the reduced model (2.1) has its upper layer in the shallow water (long
wave) regime, which is clearly seen through the limitρ1kcoth(kh1)→ ρ1

h1
, askh1→0.

On the other hand, relation (5.2) in dimensional form is

ω2
h=

g(ρ2−ρ1)k2

(

ρ1

h1
+ 1

3h1ρ1k2
)

+ρ2kcoth(kh2)
.

Notice that both approaches are fully dispersive regardingthe bottom layer since the second
hyperbolic cotangent is completely retained. This is due tothe Hilbert transform on the strip.
For the improved shallow water (upper layer) regime (kh1 near zero), we now obtain the
next-order term from the full dispersion relation, namely that

ρ1

h1
kh1coth(kh1)=

ρ1

h1

(

1+
(kh1)2

3
+O

(

(kh1)4
)

)

,

and consequentlyω2
f =ω

2
h+O

(

(kh1)4
)

, while ω2
f =ω

2
r +O

(

(kh1)2
)

. See also Fig. 5.1, where
the phase speeds of each of these models are compared. The inclusion of the higher-order
pressure term has improved the accuracy of the phase speed over a much wider wavenumber
band. This is very important in reflection-transmission problems, as shown by Muñoz and
Nachbin [26].
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6. Effective equations in a periodic medium
In this section, we present an asymptotic (averaging) theory for the propagation of in-

ternal waves over large amplitude rapidly-varying periodic bottom topographies. It is well
known that in this regime wave reflection is negligible [32].Hence, one can write an unidi-
rectional multiscaleansatzfor the internal waves. As in [32, 16, 7], we consider a weakly
non-linear and weakly dispersive regime, with the diverse scales and regimes ordered by a
small parameterǫ≪1. In the above references, effective Korteweg-de Vries (KdV) equa-
tions were obtained for the free surface wave dynamics. Herewe consider the higher-order
model (5.1) for weakly nonlinear and weakly dispersive internal waves. Representing the
topography, one has the metric termM(ξ)=m(ξ/

√
ǫ), wherem(·) is a 2π-periodic function.

Furthermore, the non-linearity and dispersive parametersare scaled as follows:α= κǫ and
β= (δǫ)2, whereκ andδ are constants. Instead of a KdV-type equation, here the leading order
effective equation will be of an Intermediate Long Wave-type, which reduces to a Benjamin-
Ono-type, when the lower layer is infinitely deep.

6.1. Multi-scale expansions
We look for special asymptotic solutions representing traveling waves. We use theansatz

η(t,ξ)=η0(τ,χ,z)+
√
ǫη1(τ,χ,z)+ǫη2(τ,χ,z)+ · · · , (6.1a)

u(t,ξ)=u0(τ,χ,z)+
√
ǫu1(τ,χ,z)+ǫu2(τ,χ,z)+ · · · , (6.1b)

whereτ= ǫt, χ= ξ−vt, z= ξ√
ǫ
, and all the functions are 2π-periodic inz. We note that the

propagation velocityv is an unknown constant.
To obtain the corresponding hierarchy of equations, we proceed as customary by using

the multi-scale expansions for the unknowns given above andthe corresponding expansions
of the involved operators. For differentiation operations, these expansions correspond to the
chain rule, i.e.∂t→−v∂χ+ǫ∂τ, ∂ξ→ ǫ−1/2∂z+∂χ, but for the non-local operatorTh we use
the following result (see the appendix for a proof). Consider f ǫ (ξ)=g(ξ, ξ√

ǫ
), whereg is 2π-

periodic in the second variable and sufficiently regular. Then, asǫ→0, we have the expansion

∂ξTh[ f ǫ (·)](ξ)=∂ξTh[〈g(·, ·)〉](ξ)+ {

(ǫ−1/2∂z+∂ξ)Hper[g(ξ, ·)](z)}z= ξ√
ǫ

+O(ǫ1/2), (6.2)

where〈·〉 andHper[·] represent, respectively, averaging over the fast variable z, and the stan-
dard Hilbert transform of a 2π-periodic function.

6.2. Effective evolution equation
The hierarchy of equations starts at orderǫ−1/2. We have that

η0,z=0, (6.3a)

u0,z=0. (6.3b)

Thus,η0=η0(τ,χ) andu0=u0(τ,χ), that is the leading-order terms do not depend on the fast
variablez. Our goal is to write closed effective equations for the leading-order wave elevation
η0(τ,χ).

At orderǫ0, one gets

−vm(z)η0,χ−u0,χ=u1,z (6.4a)

−vm(z)u0,χ−
(

ρ2

ρ1
−1

)

η0,χ=

(

ρ2

ρ1
−1

)

η1,z. (6.4b)
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After averaging over a period inz, we arrive at

v〈m〉η0,χ+u0,χ=0, (6.5a)

v〈m〉u0,χ+

(

ρ2

ρ1
−1

)

η0,χ=0. (6.5b)

To assure the existence of non-trivial solutions, one needsthat

det

(

v〈m〉 1
(

ρ2

ρ1
−1

)

v〈m〉

)

=0,

that is

v2=

ρ2

ρ1
−1

〈m〉2 . (6.6)

As a consequence, we obtain thatu0(τ,χ)=−v〈m〉η0(τ,χ). To leading order (due to the
invariance inχ) η0 andu0 are right-travelling waves, as expected.

Introducing the notation, ¯u= 〈u(·)〉, ũ(z)=u(z)− ū for 2π-periodic functions inz, subtract-
ing (6.4) and (6.5), and integrating overzwe get that

η̃1=−
v

ρ2

ρ1
−1
η0,χb(z) (6.7a)

ũ1=−vu0,χb(z) (6.7b)

whereb(z) solvesdb(z)/dz= m̃(z) with the additional condition〈b〉=0.
The equations of orderǫ1/2 read as

−vm(z)η1,χ−u1,χ=u2,z−κ(η0u0)z=u2,z (6.8a)

−vm(z)u1,χ−
(

ρ2

ρ1
−1

)

η1,χ=

(

ρ2

ρ1
−1

)

η2,z−
κ

2
(u2

0)z−vδ
ρ2

ρ1
Hper[u0]χz=

(

ρ2

ρ1
−1

)

η2,z. (6.8b)

After averaging inz, using (6.7), and noting that〈m(z)b(z)〉=0, we get

v〈m〉η̄1,χ+ ū1,χ=0, (6.9a)

v〈m〉ū1,χ+

(

ρ2

ρ1
−1

)

η̄1,χ=0, (6.9b)

which are compatible when ¯u1,χ=−v〈m〉η̄1,χ. Proceeding by integration as before we obtain

η̃2=
v2

ρ2

ρ1
−1
η0,χχm1(z)+

v
ρ2

ρ1
−1

u0,χχb1(z)−
v

ρ2

ρ1
−1

ū1,χb(z) (6.10a)

ũ2=
v2

ρ2

ρ1
−1

u0,χχm1(z)+vη0,χχb1(z)−vη̄1,χb(z) (6.10b)

wheredb1(z)/dz=b(z) with 〈b1〉=0, anddm1(z)/dz=m(z)b(z) with 〈m1〉=0.
Next, at orderǫ, we have the equations

−vm(z)η2,χ−u2,χ+m(z)η0,τ+κ(η0u0)χ= [u3−κ(η0u1+u0η1)]z, (6.11a)

−vm(z)u2,χ−
(

ρ2

ρ1
−1

)

η2,χ+m(z)u0,τ+
κ

2
(u2

0)χ= [

(

ρ2

ρ1
−1

)

η3−κu0u1]z−vδ
ρ2

ρ1
Th[u0,χχ]

−vδ
ρ2

ρ1
Hper[u1,χ]z−

vδ
3

[
u0,χz

m(z)
]

z. (6.11b)
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Averaging with respect toz, we get that

v〈m〉η̄2,χ+ ū2,χ= 〈m〉η0,τ+κ(η0u0)χ−v〈m̃η̃2,χ〉, (6.12a)

v〈m〉ū2,χ+

(

ρ2

ρ1
−1

)

η̄2,χ= 〈m〉u0,τ+
κ

2
(u2

0)χ−v〈m̃ũ2,χ〉+vδ
ρ2

ρ1
Th[u0,χχ]. (6.12b)

It is easy to establish that〈m̃η̃2,χ〉= 〈m̃ũ2,χ〉=0. Furthermore, since (6.12) are linear in ¯η2,χ,
ū2,χ with an associated singular matrix, a non-trivial solutionexists when the compatibility
condition

(

ρ2

ρ1
−1

)

{〈m〉η0,τ+κ(η0u0)χ
}−v〈m〉{〈m〉u0,τ+

κ

2
(u2

0)χ+vδ
ρ2

ρ1
Th[u0,χχ]

}

=0,

is satisfied. Finally, after some straightforward calculations, we get the following equation
for the leading-order interface elevationη0,

η0,τ−
3κv
4

(η2
0)χ+

ρ2

ρ1

δv
2〈m〉Th[η0,χχ] =0. (6.13)

We can rewrite this equation in thet, ξ coordinates, after plugging back the parameters
α andβ, as

η0,t+vη0,ξ−
3αv
4

(η2
0)ξ+

ρ2

ρ1

√
βv

2〈m〉Th[η0,ξξ] =0. (6.14)

This is anIntermediate Long Wave equation(ILW) analogous to those considered in the liter-
ature for the case of a flat bottom [6, 19, 20]. Actually, all these coincide when we set〈m〉=1.
Furthermore, within the same order of approximation, we canreadily get a regularized ver-
sion of (6.14)

η0,t+vη0,ξ−
3αv
4

(η2
0)ξ−

ρ2

ρ1

√
β

2〈m〉Th[η0,ξt] =0. (6.15)

The influence of the bottom appears in the effective ILW equation only through the average
metric coefficient, which also is present inv= 〈m〉−1

√

(ρ2−ρ1)/ρ1. In the limit whereh→∞,
one gets from (6.14) the Benjamim-Ono equation (BO) and from(6.15) the regularized BO
equation. Of course, in this case, the bottom is not felt anymore, but it indicates the connection
between these important equations. It is also worth noticing that (6.14) and (6.15) admit a
one parameter family of solitary wave solutions.

7. Conclusions
We derived a higher-order, strongly nonlinear, one-dimensional Boussinesq-type model

for the evolution of internal waves in a two-layer system. The system has variable coefficients
expressing large changes in the bathymetry. The presence ofthe higher-order term, in the
pressure coupling between layers, will be further investigated concerning the interaction of
internal waves and large amplitude bathymetric variations. The bathymetry has an arbitrary,
not necessarily smooth, profile.

A simpler model is considered, namely a weakly nonlinear higher-order system, and
shown to have very good dispersive properties. It was also studied through an averaging anal-
ysis, for internal waves in the presence of large amplitude,rapidly varying, periodic bathyme-
tries. The averaging strategy leads to an effective ILW equation.

Models with a higher-order pressure approximation are the objective of ongoing research
and future numerical experimentation, in particular, having solitary waves travel over a disor-
dered topography. A future goal is the careful study of regimes where the apparent diffusion
and time-reversal of internal waves can be observed [10, 11,12, 15].
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Appendix A. Multi-scale expansion of the non-local operator.
In this appendix, we present an asymptotic expansion involving the Hilbert operator on

a strip of widthh

Th[ f ](ξ)=
?

dkeikξ(i coth(hk)
)

f̂ (k), (A.1)

where the Fourier transform̂f is given as

f̂ (k)=
1
2π

∫

dξe−ikξ f (ξ).

Let f ǫ (ξ)=g(ξ, ξ√
ǫ
), whereg is 2π-periodic in the second variable. Our aim is to obtain a

multi-scale expansion for∂ξTh[ f ǫ(·)](ξ) asǫ→0. We have the following result.
P A.1. Let fǫ (ξ)=g(ξ, ξ√

ǫ
) be such that for p>3/2, s>3/2+q, q>0,

∫

dk
∑

m,0

(1+k2)s|m|2p|(F g)(k,m)|2<∞.

The (full) Fourier transform(F g) of the function g(ξ,z) is given by

(F g)(k,m)=
1

(2π)2

∫

dξ
∫ 2π

0
dze−i(kξ+mz)g(ξ,z), k∈R, m∈Z.

Then, asǫ→0, we have the following asymptotic expansion

∂ξTh[ f ǫ (·)](ξ)=∂ξTh[〈g(·, ·)〉](ξ)+
{

(ǫ−1/2∂z+∂ξ)Hper[g(ξ, ·)](z)
}

z= ξ√
ǫ

+ rǫ (ξ), (A.2)

where〈·〉 represents the mean value of a2π-periodic function, and rǫ (ξ)=O(ǫq/2), uniformly
in ξ. AlsoHper[·] is the Hilbert transform for2π-periodic functions.
We note that in the context of calculating the effective evolution equation, we requireq≥1.

Proof. Using the Fourier representation

g(ξ,z)=
∫

dk
∑

m∈Z
ei(kξ+mz)(F g)(k,m),

together with equation (A.1), we get that

∂ξTh[ f ǫ (·)](ξ)=
∫

dk
∑

m∈Z
ei(k+ m√

ǫ
)ξ i(k+

m
√
ǫ

)i coth[h(k+
m
√
ǫ

)](F g)(k,m)

=∂ξTh[〈g(·, ·)〉](ξ)+
∫

dk
∑

m,0

ei(k+ m√
ǫ
)ξ i(k+

m
√
ǫ

)

× i coth[h(k+
m
√
ǫ

)](Fg)(k,m).

Recall that for the periodic functionf (z), the Hilbert transform is given as

Hper[ f (·)](z)=
∑

m,0

eimz(i sgn(m)
)

f̂ (m),

where f̂ (m) represents the Fourier coefficients of f (z). Consequently, to establish the result,
one needs to estimate

rǫ (ξ)=
∫

dk
∑

m,0

ei(k+ m√
ǫ
)ξ i(k+

m
√
ǫ

)i

{

coth[h(k+
m
√
ǫ

)]−sgn(m)

}

(F g)(k,m). (A.3)
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First, fix a such that 0<a<1 and consider that|k| ≤ ǫ−a/2. For m,0 andǫ <1, small
enough, we have that|k+ m√

ǫ
|> 1

2
√
ǫ

and sgn(m)=sgn(k+ m√
ǫ
). Consequently, we get that

|coth[h(k+ m√
ǫ
)]−sgn(m)|<c1exp(− h

2
√
ǫ
), and the low frequency part of the integral (A.3)

(using the cutoff frequencyǫ−a/2) can be readily estimated. In fact, we can decompose that
integral into two integrals, which correspond to the two terms of the factork+ m√

ǫ
in (A.3).

We present here the estimate for one of these integrals. For the other one, we proceed in
a similar way. Using the Cauchy-Schwarz inequality, we get the following estimate

I1(ǫ)=
∣

∣

∣

∫ ǫ−a/2

−ǫ−a/2
dk

∑

m,0

ei(k+ m√
ǫ
)ξ im
√
ǫ

i
{

coth[h(k+
m
√
ǫ

)]−sgn(m)
}

(F g)(k,m)
∣

∣

∣

≤ c1√
ǫ

exp(− h

2
√
ǫ

)
∫ ǫ−a/2

−ǫ−a/2
dk

∑

m,0

|m(F g)(k,m)|

≤ c1√
ǫ

exp(− h

2
√
ǫ

)
∫

dk
∑

m,0

1
|m|p1−1(1+k2)s1/2

|m|p1(1+k2)s1/2(F g)(k,m)|

≤ c1√
ǫ

exp(− h

2
√
ǫ

)
(

∫

dk
∑

m,0

1
|m|2(p1−1)(1+k2)s1

)1/2

×
(

∫

dk
∑

m,0

|m|2p1(1+k2)s1|(F g)(k,m)|2
)1/2
.

If both integrals in the last inequality above are finite, then I1(ǫ)→0 faster than any power of
ǫ asǫ→0. For the first integral factor to be finite, it is necessary that p1>3/2 ands1>1/2.
The second factor is finite by hypothesis. Thus, takingp1= p ands1= s, namely, taking the
same bounds as in the proposition’s statement, one gets thatI1(ǫ)≤O(ǫq/2) asǫ→0.

Now, we have to estimate the high frequency part of integral (A.3). Observe that the
function coth(x) is bounded in any set not containing a neighborhood of 0, while near the
origin the functionxcoth(x)→1 asx→0. Consequently, there are constantsc2>1/h, c3>1
such that

∣

∣

∣(k+
m
√
ǫ

)
{

coth[h(k+
m
√
ǫ

)]−sgn(m)
}

∣

∣

∣≤c2+c3
(|k|+

∣

∣

∣

m
√
ǫ

∣

∣

∣

)

, k∈R,m∈Z. (A.4)

Thus, we need to estimate the three high frequency integralscorresponding to each term in
the right-hand-side of the inequality above.

We proceed to estimate one of these integrals, namely the onethat produces the most
restrictive bound ons. The other integrals can be dealt with in a similar way. Assume initially
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that p2>3/2, s2>1/2, then we have the following estimates

I2(ǫ)=
∫

{|k|>ǫ−a/2}
dk

∑

m,0

(

c3

∣

∣

∣

m
√
ǫ

∣

∣

∣

) |(F g)(k,m)|

≤ c3√
ǫ

∫

{|k|>ǫ−a/2}
dk

∑

m,0

1
|m|p2−1|k|s2

|m|p2(1+k2)s2/2(F g)(k,m)|

≤ c3√
ǫ

(

∫

{|k|>ǫ−a/2}
dk

∑

m,0

1
|m|2(p2−1)|k|2s2

)1/2

×
(

∫

dk
∑

m,0

|m|2p2(1+k2)s2|(F g)(k,m)|2
)1/2

≤
c′3√
ǫ

(

∫ ∞

ǫ−a/2

dk
k2s2

)1/2(∑

m,0

1
|m|2(p2−1)

)1/2

×
(

∫

dk
∑

m,0

|m|2p2(1+k2)s2|(F g)(k,m)|2
)1/2

≤c′′3 ǫ
[a(2s2−1)/4−1/2]

(

∫

dk
∑

m,0

|m|2p2(1+k2)s2|(F g)(k,m)|2
)1/2
.

This last integral is finite by hypothesis, so we require thata(2s2−1)/4−1/2=q/2 (i.e.
s2=1/2+ (q+1)/a). Then one gets thatI2(ǫ)=O(ǫq/2) asǫ→0. However, as a function of
a, s2(a) mapsa∈ (0,1) onto (3/2+q,∞). Therefore, having imposed earlier thata∈ (0,1), the
desired estimateI2(ǫ)=O(ǫq/2) will be always achieved onces2= s>3/2+q. The value ofa
is connected tosand therefore depends on the regularity of the functiong.
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[30] A. Ruiz de Zárate. A reduced model for internal waves interacting with submarine structures at intermediate

depth. PhD Thesis, IMPA, (2007).
http://www.preprint.impa.br/FullText/008 Thu Feb 7 16 25 14 BRDT 2008/serieC 55A.pdf.

[31] H. Ono. Algebraic solitary waves in stratified fluids. J.of the Phys. Soc. of Japan. 39:1082–1091 (1975).
[32] R. R. Rosales and G. C. Papanicolaou. Gravity waves in a channel with a rough bottom. Stud. Appl. Math.

68:89–102 (1983).
[33] C. H. Su and C. S. Gardner. Korteweg-de Vries Equation and Generalizations. III. Derivation of the Korteweg-

de Vries Equation and Burgers Equation. J. of Math. Phys. 10:536–539 (1969).
[34] T. Y. Wu. Long waves in ocean and coastal waters. J. of theEng. Mech. Div. ASCE. 107:501–522 (1981).


