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Abstract.

A higher-order strongly nonlinear model is derived to désethe evolution of large amplitude internal waves
over arbitrary bathymetric variations in a two-layer systeshere the upper layer is shallow while the lower layer
is comparable to the characteristic wavelength. The newesy®f nonlinear evolution equations with variable
codficients is a generalization of the deep configuration modapg@sed by Choi and Camassa (Journal of Fluid
Mechanics, 1999) and accounts for both a higher-order appadion to pressure coupling between the two layers
and the &ects of rapidly-varying bottom variation. Motivated by therk of Rosales and Papanicolaou (Studies
Appl. Math., 1983), an averaging technique is applied tosstem for weakly nonlinear long internal waves
propagating over periodic bottom topography. It is showat the system reduces to affieetive Intermediate Long
Wave (ILW) equation, in contrast to the KdV equation derifedthe surface wave case.

Key words. Internal waves, Inhomogeneous media, Asymptotic thedfgclive media.

1. Introduction

Modeling internal waves is of great interest in the study céan and atmosphere dy-
namics. Large amplitude internal ocean waves, for exangrkeoften observed in many
areas where the variation of temperature and salt condEmtrgenerates density stratifica-
tion. They can interact with bottom topography and submesjrictures as well as surface
waves. In particular, in oil recovery in deep oceans, theghly nonlinear internal waves
can dfect dfshore operations and submerged structures. Another egamphe context of
atmosphere dynamics, is th&ext on the topographic form drag which is of importance in
the study of pollution dispersion in an urban area.

Finding accurate reduced models is a first step toward bettgerstanding the charac-
teristics of large amplitude internal waves and develojgtfigient computational methods to
solve a wide range of practical problems in the ocean andtthesphere. To describe the
nonlinear internal wave motions in water of great depthiotes models have been proposed,
ranging from classical weakly nonlinear models such asrkeriediate Long Wave (ILW)
equation and the Benjamin-Ono (BO) equation [2, 9, 19, 2DidBdigh-order nonlinear mod-
els [4, 5, 6, 18, 23]. A strongly nonlinear long wave model dfoCand Camassa [6] for the
deep configuration that is known to approximate well larg@ltode internal solitary waves
is of particular interest, but is valid only for the case of tha slowly-varying bottom.

In this paper, for a two-layer fluid of finite depth, a higheder nonlinear model is
derived to study the interaction of nonlinear internal waweth large amplitude bottom to-
pography that might vary rapidly over the characteristioglén scale of internal waves. As
shown in Fig. 2.1, two layers of constant densities are bedry a horizontal rigid lid at the
top and arbitrary topography at the bottom. The thicknesh@fower layer is assumed to be
much greater than that of the upper layer, but is comparalitest characteristic wavelength.
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2 Higher-order internal wave model

The new long wave model, accounting for higher-order n@dirgfects through a more ac-
curate pressure coupling between the two layers, desdtileessolution of the internal wave
elevation together with the mean (horizontal) water velofor the upper layer. Theftects
of rapidly-varying and steep topography are representégdmodel by variable cdcients
with the aid of the conformal mapping technique, as desdrib§29].

By using a multi-scale averaging strategy, Rosales andrifagaou [32] obtained an
effective KdV equation for weakly nonlinear and weakly dispardong surface waves over
rapidly-varying and periodic bathymetry for which wave egfiion is negligible. Other more
recent results can be found in the literature [8, 16], alltadring dfective KAV equations. In
the present work, the analysis is carried over for interraleg, with an additional technical
difficulty of expanding a singular integral operator acting onwdtinscale function. Under
the weakly nonlinear assumption, to leading order, it isnghthat the higher-order model
can be reduced to arffective ILW equation when considering unidirectional imigrwaves
over rapidly-varying and periodic bathymetry.

We intend to use this higher-order model to study the inteva®f internal waves with
bottom topography, including topics such as wave multgadattering, and related interesting
phenomena that arise. To mention a few, connected with awiqurs experience for surface
waves, we have the apparenffdsion of long waves interacting with a random topography
[10, 13, 14, 15, 24, 28], as well as the time reversal refogusif pulses [11, 12, 25, 26],
viewed as a tool for waveform inversion. Namely, from thetsrad wave field one can
reconstruct numerically the initial wave profile. Havingethtective ILW model, for the
periodic case, is a very useful tool in validating new nurcedrmethods designed to capture
long wave-microstructure interaction.

The paper is organized as follows. In Section 2, the physietiing is defined together
with a brief description of our previous results. In Sect&rwe introduce the higher-order,
depth-averaged, upper layer equations that are equivaléme shallow water equations with
a leading-order dispersive term. Then, in Section 4, thestolayer pressure that brings
in information from the bathymetry is expanded to the nextteo term, in comparison with
previous work. In Section 5, a new, higher-order, strongiglimear model is presented. Also
its weakly nonlinear version is given. A dispersive anaysdimpares the new models with
the (full) Euler equations. Finally, in Section 6, by coresidg a rapidly varying periodic
bathymetry, a multi-scale averaging theory is presentetiaandtective Intermediate Long
Wave (ILW) model is deduced. The conclusions are given irti®&ec7 while the appendix
contains a proof for expanding the singular integral opmerat

2. Physical setting

We start with a two-fluid configuration. The coordinate sysie positioned at the undis-
turbed interface between two layers. The displacementefrterface is denoted by(x,t)
and we assume that it is smooth and has compact support. &e& Ei The density of each
inviscid, immiscible, incompressible and irrotationaldus p; for the upper fluid ang, for
the lower fluid. For a stable stratification, |et>p1. Similarly, (uj,w;) denote the velocity
components ang the pressure, wherie=1,2. The upper layer is assumed to have a char-
acteristic thickness di;, much smaller than the characteristic wavelerigtt the interface.
Hence, the upper layer will be in the shallow water regimeth&t lower layer, the irregular
bottom is described by=h,(h(x/I)-1), h< 1. The functiorh can be discontinuous or even
multivalued. See, for example, Fig. 2.1 where a polygonapsh topography is sketched.
Moreover, the characteristic depth for the lower lalggis comparable with the characteristic
wavelengthL, hence, characterizing an intermediate depth regime. Vdhmpidly varying
bottom is taken into account, the horizontal length scal®étom irregularitied is such that
h; <l < L. In this work, subscriptg, x, zandt stand for partial derivatives with respect to



Ailin Ruiz de Zarate, Daniel G. Alfaro Vigo, André Nacibiand Wooyoung Choi 3

: () "

ha

Fic. 2.1. Two-fluid system configuration.

spatial coordinates and time.

Introducing the nondimensional dispersion paramgteh;/L)?, it follows from the
shallowness of the upper layer tk@(\/ﬁ) < 1. The physical variables regarding the upper
layer are nondimensionalized (with a tilde) as follows [8]:2

L .
X= L)?, Z= h12, t=—1t, n= h17~7,
Uo
p1=(p1U3) Pr. ug = Ugly, Wy = \BUoW,

whereUg = \/ﬁ is the characteristic shallow layer speed. In a weakly meali theoryy is
usually scaled by a small characteristic amplitadaich thatr=a/h; < 1. Notice that here
n is of the same order as the layer’s depth. This will lead tod@sfly nonlinear model.

For the lower layer, the intermediate depth regime impligd = O(1) and, therefore,
the nondimensionalization should befdrent [6, 29]:

L.

X=LX, z=127 t=—1, n=ha1,
Uo

P2 = (01Ug) o, Uz = yBUolh, Wa = BUo\z,

together with the velocity potencial= vBUoLd.

One starts with the Euler equations in both (upper and lolaggrs, together with a rigid
lid condition at the top of the upper layer and an imperméghilondition at the irregular
bottom topography. Also one has continuity conditions atittterface: namely, a kinematic
condition at the interface together with no pressure jumpensidering the shallow water
regime for the upper layer together with potential theonytfee lower layer, the following
reduced model arises from these Euler equations. This asyimpeduction makes use of a
terrain-following horizontal coordinate[27] and was obtained in [29]:

L
M)

RS AV W Sy
“‘*W“L‘“W(l'a)%‘ A 1M(§)Th[((1 D

M [(1-n)ul, =0,

2.1)

This is a variable ca@icient Boussinesg-type system for the internal wave prgféed the
upper depth-averaged velocity The variable coficient M(¢) has information from the
topography, due to the conformal mapping of a flat strip onedower fluid domain [27, 29].
The map goes from&(¢) to (x,2) coordinates. Then, one can write the Jacobian along the
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undisturbed interface d3|(¢,0)=z(£,0)2= M(¢)2. As will be shown below, system (2.1) is
a dispersive model, where dispersion comes in through thewsath a Hilbert transform on
a strip (of widthh) given by

T = 55 T 1@ cot( 3. E-9) . 22)

The singular integral must be interpreted as a Cauchy atsialue. If the bottom is flat,
M(£) = 1 and we obtain the same system derived by Choi and Camasiea {b¢ deep con-
figuration.

3. Higher-order upper layer equations We are interested in wave interaction with
large amplitude topographies. Therefore, our reduced mmodst be able to account for a
higher-order pressure coupling between the two layerstharavords, we want to investigate
when this higher-order term does indeed play a role in theadyins. Hence, our goal in
this section is to improve the order of approximation of eyst(2.1) by computing a more
accurate approximation for the pressure term: instead of@erg3 approximation, we include
the next-order term o®(8%?).

We start with the layer-mean equations for the upper fluid,(8 6, 30]). For conve-
nience, they are repeated here:

n—((1-nu)x=0, (3.1)

Ut + Ul = —Pr+ O(8), (3.2)

whereps, is the mean-layer value fqui,. For a better approximation @i, we need to
expandps(x,z,t) with one more termpy(x,zt) = p +8p{Y + O(8?), so its vertical derivative
is expanded ap1,(X,zt) = p(lg) +,8p(112) +0O(B?). From the vertical (Euler) momentum equation,
we havep;, = —1—B(wi; + UiWix +W1W1,). We clearly see th€©(1) hydrostatic contribution
to the pressurefl? = —1) together with a nonhydrostatic correctipf} = — (W + u®w® +
wWOW). Again continuity of pressure at the interfaqe € p,) enables the calculation of the
leading-order nonhydrostatic correction arising from kbwer layer. After some manipula-
tions and asymptotics with the Euler equations along theeufgyer, Choi and Camassa [6]
describe a pressure approximation in a compact forrp%f:: (z-1)G1(x,t) + O(B), where
G1(X,t) = g + Ulyx— UxUy. INntegrating the expression f@q with respect ta from z=n(x,t),
differentiating once irx, and depth-averaging leads to

P Px) - £ 3iGatx) +02 33)

whereni =1-n and P(x,t) = p1(X,n(x,t),t) = p2(x,7(%,t),t). Substituting (3.3) in (3.2), we
have

Ut + Ul = — (Ux+ Py(x,t) — % (%nfGl(x,t)) )+ o(B?). (3.4)

X
One can establish the following interesting connectiomwiell known water wave models
[6]. If the lower fluid layer is neglected arfélis regarded as the external pressure applied to
the free surface, Egs. (3.1) and (3.4) are the complete satabfition equations for surface
waves as derived by Su and Gardner [33] and independentlyrbgrGand Naghdi [17].
One should note that having the rigid lid at the top and the fw@rface (interface) below it,
the connection between models is established by refledimgtesent one about the x-axis,
namely when gravity is considered reversed.
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4. Improved approximation for the pressure at the interface
Now we show how an orded(5%?) approximation arises faPy(x,t) = (pz(x,n(x,t),t))
X

from the (lower layer) Euler equations. TB&? factor comes from the scaling in the lower
layer.
In nondimensional variables, the lower Bernoulli law at itherface is

__p2 gzeet
P(x.1) = r1 (\'/B(ﬁt * 2(¢X +42) +77+C(t)) 2=\B n(xt)

By expanding in a Taylor series abas# 0, we obtain that

PO Y=~ [n+ VB(¢tlzo+ VBN ¢tz|z=o)+§(¢§|zzo+ 92),.0) +C(t)] +0(B%).  (4.1)
From the kinematic condition

pz=mt+ \/an¢x, 4.2)

we have that, = +O( VB) at z= VBn(x.t). It then follows thate,|,o=m+O( vB) and
¢tel—0 =1+ O( VB). Substituting in (4.1) leads to

POC) = =22 1+ B o+ + 5 (48], o)+ CL0 |+ OB

Notice that all quantities are evaluatedzatO; therefore, taking-derivatives, we obtain:

Px(x,t) = —p

1, ] 3
nx+ \/_¢tx|z_o+ﬁ(7ﬁ7tt+ 277t +5 ¢>2<|Z_ ) +0(B2). (4.3)

In the previous work (c.f. (2.16) in [29]R«(x,t) was computed only up to tHe(+/B) term,
so that it was enough to approximagg|,_, up to order+/B. In the higher-order pressure
expression (4.3) this calculation can still be used to apprate ¢2|,-o. We recall that in
[29], we were able to express|,_o in terms of the Hilbert transform on the stiify[ f](£),
whereh=h,/L. In other words we found that

B0 = 6:(X(€.0,0.0 = - =T MBm(E 0).0|(&) + O VB) (4.4)

M(f)
where the time independent metric goa@ent M(¢) is a smooth function [27, 29]. We also
call attention to the fact that by using the Hilbert trangfave are keeping thiaill dispersive
nature of the lower layer potential theory problem. ThislWwicome evident in the next
section.

In order to approximate th@(8Y/?) termin (4.3), it becomes necessary to obtain a higher-
order approximation fogl,—o, N@amely up to ordes, in contrast with (4.4). Again we can
restrict our analysis to a linear (lower layer) potentiadhy problem having an undisturbed
interface. There, the velocity potential satisfies an upywmann boundary condition (in
é4,-0), which will be determined up to ordgr This is done through the kinematic condition
at the free interface.

Taking the nonlinear kinematic condition (4.2) and sulisity the Taylor ex-

pansion ¢Z(X’ \/377) = ¢2(X,0)+ VBndzAx,0)+ O(B), we have ¢,(x,0)=n+ VBnxpx(x.0)+
VBndxx(%,0)+ O(B), where the Laplace equation has been used. Then this is theaam

¢2(X,0) =1t + VB1¢x(% 0)), + O(B). (4.5)
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Substituting (4.4) in (4.5) and observing that along theistodbed interfacé; = M(£)0x, we
have that

$2(X,0) =1+ h[M(f)nt]) +0(B).

el
M) \"M()
Also noting thai (¢,0)= M(&) ¢-(x(¢,0),0) andT[¢,(£,0)] = ¢(£,0), we arrive at

$x(%.0) = —7=0:(£,0)= +0(B).

Th[wl(f)m VB ( urh[M(fm])

M(f) M(¢) M(£)

From

Pix(%.0)= ——=Th[M(&’ )m]) +0(B).

M(E)Th[M(f)Tth\/_( T
together with (3.1)y¢ = ((L-n)u),, = ((1—n)u)§t/M(§), we have
T 7h|(@-nu)|
£t

__B 7|
VB dudo= 10 M@ ME)

which is the higher-order expression we were seeking. Natethe Hilbert transform iterate
is the (new) correction term. It is our future goal to undanst the role of thigD(8) term in
the internal wav#opography dynamics.

Summarizing, the higher-order pressure term connectiagap and lower layer is

&l

Ta|(L-mu).|+ +0(8%),

VB
Px(x.t) = [ x+ W'?)Th [((1_’7)U)§t]

B 1 2 1 ,
2M(§)[{W7h[((l_n)u)§]}] M(g)(nmw )]+0(5 ).

This additional order of approximation is compatible witietnonhydrostatjeveakly
dispersive correction added to the upper shallow water lmael (c.f. O(B) term in (3.4)).
It is also relevant to comment that compositions of the Hillbbperator7, arises not only in
this case, but also in the fully dispersive Boussinesq mobilined by Matsuno [22], Artiles
and Nachbin [1] or Craig and Sulem [7] for surface gravity eswv In these references the
authors were expanding Dirichlet-to-Neumann (DtN) opmragbout the undisturbed free
surface.

In the next section, we perform a Fourier dispersion anslgbthese models.

M(f) [W(Th[((l U)U)g:] §t+

5. The higher-order strongly nonlinear model
Consider system (3.1) and (3.4) in curvilinear coordinates

= ((1-nu),,

M (f)

Ly ! p
M@ M@ - n)3M(§)

whereG; in curvilinear coordinates reads,

((1-1)%Gy1), ~ Px+0(8?),

u ( 1 u) 1
M(f) ME \ME ), ME?

Gi(é0) = UgUg.
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With the higher-order pressure, the strongly nonlinear eib@comes

m= ( ) = ((1-n)u),,

1 1 P2 p2 B
VTGS M(f)(l pl)”"‘ @

B p2 B n((1- U)U)gt 1 2

£ (@), le(f)( M@ *5((1‘")“)f)§+

B_p2 n _B p2ff_ 1 _ ’ 3
T g T ]f} 2M@ 1 ({ g @0 ]§+ow )

For the weakly nonlinear regime introdugg u* such thaty = a7, u=au’, with o= O(B),
a typical scaling used for solitary waves. After dropping #sterisks, we have

n= M(g)[(l an)ul,,
(5.1)
pL—p2 P2 VB _ B
Ut GG M@ o T MLt 3M(§)(M(§)) +O(p)

When the linear dispersive ter 6 ( M%f) Ugt)g is omitted from the higher-ordeveakly

nonlinear model, it has exactly the same form as the lower-ostiengly nonlinear model
(2.1). This might imply that the weakly nonlinear higheder model should be a good model
for moderate amplitude internal waves. Namely, one can wittk a simple system of equa-
tion and capture accurately the dynamics of waves of modamaplitude. One of our future
goals is to study numerically the regime of validity of theoab statements. Furthermore,
by having this additional term, that arises fr@na (in the upper layer modeling), the phase
speeds from this higher-order model become substantialieraccurate when compared to
the exact linear dispersion relation, which is very impotta time reversal experiments.
This will be shown in the next Subsection. In conclusion,weakly nonlinear higher-order
model might have a large domain of validity, yet to be thotdy@xplored in the near future.

5.1. Dispersion relation for the higher-order model
Consider the improved model linearized about the undigtrfiat bottom, state:

e =Ug,

02 02 B
U+|1l-— =—=+/BTh[u = Uggt.
t+( pl)ﬂf pl\/l§ hlUlet + 3 Usen

By eliminatingy and then lettingi= Ad®“) and 77,[€"*] =icoth( X[ )&, we obtain the
dispersion relation

2_ (ﬁ_i_l)kz

© (1+5K2)+ 2 \Bkeoth(4e)’

(5.2)

Observe that we have bounded phase speeds‘fgv'rtho ask — co. The same is true for the
reduced model (2.1) [29]:
22 _1)K?
w2 — (Pl )

1+f)—jk\/Bcoth(%)’

(5.3)
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Fic. 5.1. (a) Phase velocities fgr1 =1, p2=2, hy =1, hp=2, $=0.01. Solid line: full phase velocity, Dotted
line: phase velocity for the higher-order model, dashed:liphase velocity for the lower order model; (b) Detail
from (a).

The full dispersion relation, in dimensional form,

W2 = d(p2—p1)K?
I pikcothkhy) + pokcothkhy)”’

(5.4)

arises from the linearized Euler equations [21, 6]. In otdezompare the reduced models’
dispersion relations, we rewrite (5.2) and (5.3) in dimenai form. The dispersion relation
(5.3) becomes

2_ d(o2—p1)k?
' ﬁ—i +pokcothkhy)

As already stated in [6], the reduced model (2.1) has its uipger in the shallow water (long
wave) regime, which is clearly seen through the limikcothkh,) — ﬁ—i askh; — 0.
On the other hand, relation (5.2) in dimensional form is

d(p2—p1)K?
(% + %hlplkz) +pokcothkhy)

2 _
wh—

Notice that both approaches are fully dispersive regarthiegoottom layer since the second
hyperbolic cotangent is completely retained. This is dutaéoHilbert transform on the strip.
For the improved shallow water (upper layer) reginkéy(near zero), we now obtain the
next-order term from the full dispersion relation, namédgit

pP1 _p1 (kh1)2 4
h—lkhlcothQ(hl) =h (1+ =t O((khy)*)).

and consequenty? = w? +O((khy)*), while w? = w?+O((khy)?). See also Fig. 5.1, where
the phase speeds of each of these models are compared. Tuwmonof the higher-order

pressure term has improved the accuracy of the phase speed owch wider wavenumber
band. This is very important in reflection-transmissionljpemns, as shown by Mufioz and
Nachbin [26].
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6. Effective equationsin a periodic medium

In this section, we present an asymptotic (averaging) thémrthe propagation of in-
ternal waves over large amplitude rapidly-varying periobottom topographies. It is well
known that in this regime wave reflection is negligible [3Blence, one can write an unidi-
rectional multiscalensatzfor the internal waves. As in [32, 16, 7], we consider a weakly
non-linear and weakly dispersive regime, with the diverssless and regimes ordered by a
small parametee < 1. In the above referencesffective Korteweg-de Vries (KdV) equa-
tions were obtained for the free surface wave dynamics. Mereonsider the higher-order
model (5.1) for weakly nonlinear and weakly dispersive iing waves. Representing the
topography, one has the metric teih(¢) = m(&/ Ve), wherem(-) is a 2r-periodic function.
Furthermore, the non-linearity and dispersive parameiegsscaled as followsy = ke and
B=(6€)?, wherex ands are constants. Instead of a KdV-type equation, here théngadder
effective equation will be of an Intermediate Long Wave-typkiol reduces to a Benjamin-
Ono-type, when the lower layer is infinitely deep.

6.1. Multi-scale expansions
We look for special asymptotic solutions representingdliag waves. We use thensatz

)’](t,f) = UO(T’X’ Z) + \/ET]]_(T,X,Z) + 6772(7-’)(’ Z) teeey (61a)
u(t,&) = uo(t, x,2) + Veur(t,x,2) + els(t,x,2) +---, (6.1b)

wheret=et, y=£—Vt, z= % and all the functions aren2periodic inz. We note that the
propagation velocity is an unknown constant.

To obtain the corresponding hierarchy of equations, we ggdas customary by using
the multi-scale expansions for the unknowns given abovetlamdorresponding expansions
of the involved operators. Forfligrentiation operations, these expansions corresponato th
chain rule, i.e.d; — —Vd, + €8, d; — € ¥%0,+ 0, but for the non-local operatdf, we use

the following result (see the appendix for a proof). Consitiés) = g(f,%), whereg is 2r-
periodic in the second variable andisciently regular. Then, as— 0, we have the expansion
OeTHI T ()I(€) = BThI(GC, NI(E) +{(€ 202+ 0e) Hped 9(€,))(D) o . +O(€7),  (6.2)

Ve

where(-) andHped -] represent, respectively, averaging over the fast vagiabdnd the stan-
dard Hilbert transform of az2periodic function.

6.2. Effective evolution equation
The hierarchy of equations starts at ordeY?. We have that

7]0,2 = 09 (638.)
Uo2=0. (6.3b)

Thus,no =no(r,x) andug = Ug(t,x), that is the leading-order terms do not depend on the fast
variablez. Our goal is to write closedffective equations for the leading-order wave elevation

1mo(T.x)-
At ordere®, one gets

—Vm(2)no0,, — Uo, = U1z (6.4a)

—vm(2)Uo, — (Z—j - 1) Moy = (g—j - 1)7;1,2. (6.4b)
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After averaging over a period iy we arrive at

V(Mo +Uo, =0, (6.5a)
V(Mg + (g—j - 1) Mo =0. (6.5b)

To assure the existence of non-trivial solutions, one néeats

de [( vimy 1 )_ 0
(2-1) wm)™ ™
that is
P2 _
V=2 6.6
(2 (6.6)
As a consequence, we obtain thiatr, y) = —v(mno(t,x). To leading order (due to the
invariance iny) no andug are right-travelling waves, as expected.
Introducing the notatiorny=(u(-)), ti(2) = u(z) — u for 2r-periodic functions irg, subtract-
ing (6.4) and (6.5), and integrating ovawe get that

A\
n= —,E—_J_UO,Xb(Z) (6.73)
pP1

Uy = -V, b(2) (6.7b)

whereb(2) solvesdh(z)/dz= (z) with the additional conditiokb) =0.
The equations of order/? read as

—V”(Z)Ul,;( —Upy=Uxz— K(’]OUO)Z =Uy; (688)
K
s =2 =1y =22 - 1) w02 Hpalbl =2 -1z (6.8
p1 p1 2 p1 P1
After averaging irg, using (6.7), and noting thém(z)b(z)) =0, we get

V(myn, +Ug, =0, (6.9a)
V(M) + (’2 - 1) Ty =0, (6.9b)

pP1

which are compatible whe, , = -v(m)n1 . Proceeding by integration as before we obtain

2

~ V \'% vV

2= ,2—_1770,;()(”11(2) + p_z—_luo,)()(bl(z) - p_z—_lul,)(b(z) (6.10a)
p1 p1 P1

N V2 _

U= g — U0,y M1(2) + V10,4, 01(2) — Vi1, b(2) (6.10b)

pP1

wheredby(2)/dz=b(z) with (b;) =0, anddmy(2)/dz= m(2)b(2) with {my)=0.
Next, at ordek, we have the equations

—vmM(2)nz,, — Uz, + M(21n0,- + k(10Uo), = [Uz — «(170U1 + Uon1)] 2, (6.11a)

K
Uz, = 2 1)+ + 508 =2 = 1) ot -6 T

2 Vo Up,
—Vé‘;}_(]‘{per[ulx]z_ - _XZ
1

3 [m(z)]z. (6.11b)
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Averaging with respect ta, we get that
V(M772,, + Uz, = {M)10, + K(170Uo),, — VMij2,, ), (6.12a)
_ _ K ~ o~
(M, + (Z—i - 1)772,)( =(MUg -+ E(ug)x — (i, ) +v6f)—i7’h[uom]. (6.12b)

It is easy to establish thaf,, ) = (fMl,,)=0. Furthermore, since (6.12) are linearrj,,
Uz, With an associated singular matrix, a non-trivial solutexists when the compatibility
condition

K
(& - 1){<m>770,'r +k(10Uo), } — M{{Mhug ¢ + = (Ud),, + V5'L£'Th[uo,)()(] f=
p1 2 p1
is satisfied. Finally, after some straightforward caldolas, we get the following equation

for the leading-order interface elevatigg,

_BLV( 2) 4 p2 oV
ox =g Vo™ [ 2(my

We can rewrite this equation in theé coordinates, after plugging back the parameters
a andg, as

Thlnox] =0. (6.13)

02 BV

o1 2(m) 5, —~Tnlnog] =0. (6.14)
This is anintermediate Long Wave equati(lth) analogous to those considered in the liter-
ature for the case of a flat bottom [6, 19, 20]. Actually, aligk coincide when we sgh) =1.
Furthermore, within the same order of approximation, we redily get a regularized ver-
sion of (6.14)

1ot +Viog — (770)5

3av
Mot + Vo — ( o)f— Thlnoal = (6.15)

p2 VB
p1 2(m)
The influence of the bottom appears in theetive ILW equation only through the average
metric codficient, which also is presentin= (my™* /(o2 —p1)/p1. In the limit whereh — oo,
one gets from (6.14) the Benjamim-Ono equation (BO) and f(6rh5) the regularized BO
equation. Of course, in this case, the bottom is not felt amgrybut it indicates the connection
between these important equations. It is also worth ndjitiat (6.14) and (6.15) admit a
one parameter family of solitary wave solutions.

7. Conclusions

We derived a higher-order, strongly nonlinear, one-diname Boussinesq-type model
for the evolution of internal waves in a two-layer systemeBlystem has variable dhieients
expressing large changes in the bathymetry. The presenites dfigher-order term, in the
pressure coupling between layers, will be further invegg concerning the interaction of
internal waves and large amplitude bathymetric variatidriige bathymetry has an arbitrary,
not necessarily smooth, profile.

A simpler model is considered, namely a weakly nonlineahbrigprder system, and
shown to have very good dispersive properties. It was alstiest through an averaging anal-
ysis, for internal waves in the presence of large amplitualgidly varying, periodic bathyme-
tries. The averaging strategy leads to #ieetive ILW equation.

Models with a higher-order pressure approximation are theative of ongoing research
and future numerical experimentation, in particular, hgwsolitary waves travel over a disor-
dered topography. A future goal is the careful study of reggrwhere the apparenttlision
and time-reversal of internal waves can be observed [1012,115].
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Appendix A. Multi-scale expansion of the non-local operator.
In this appendix, we present an asymptotic expansion imvglthe Hilbert operator on
a strip of widthh

FRGE JC dké (i cothk)) f (K), (A.1)
where the Fourier transforrhis given as
F() = = ik
f(k)_zﬂfdfe f(&).

Let f€(¢) =9(¢, %), whereg is 2r-periodic in the second variable. Our aim is to obtain a
multi-scale expansion fai; 7h[ f<(-)](£) ase — 0. We have the following result.
ProposiTion A.1. Let f€(£) =g(¢, \»/ig) be such that for p 3/2, s>3/2+q, g>0,

f dk > (L+K)TIMPI(FG) (kM) < oo.
mz0
The (full) Fourier transform(# g) of the function ¢,2) is given by

1 RN
F k,m:—fdf dze'®™ Mg 7),  keR, meZ.
(FOkm = | d& | 9.2
Then, as — 0, we have the following asymptotic expansion

DeTHLE (&) = DTnl(G( DIE) +{(€720,+ D) Hperl 9, (D) L) (AD)

where(-) represents the mean value oRa-periodic function, andJ(¢) = O(e%?), uniformly

in &. AlsoHpel ] is the Hilbert transform folr-periodic functions.

We note that in the context of calculating thieetive evolution equation, we requige- 1.
Proof. Using the Fourier representation

oe2)= [ dkY, & micrgem),
meZ
together with equation (A.1), we get that

A THl FE()(&) = f dk et Kigk+ %)icoth[h(m %)](Tg)(k,m)
mezZ

ik M m
~OTQE M@+ [ kY e Peiger )
f 2 Ve
xi cothf(k+ —=)](Fg) (k. m).
Ve
Recall that for the periodic functiof(z), the Hilbert transform is given as

Hpe f()1(D = > €™ (i sgnm) f(m),
mz0

where f(m) represents the Fourier ciieients off(2). Consequently, to establish the result,
one needs to estimate

r(&)= f dk ) &€ ik + %)i {coth[h(k+ %)} —sgn(n)}(ffg)(k, m. (A3

mz0
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First, fix a such that Gca<1 and consider thak| <e 2. Form=0 ande<1, small
enough, we have thdk+ %|> Z—f/g and sgnif) =sgnk+ %). Consequently, we get that

|cothfh(k+ %)] —sgn¢n)|<clexp(—%g), and the low frequency part of the integral (A.3)

(using the cutff frequencye#?) can be readily estimated. In fact, we can decompose that
integral into two integrals, which correspond to the twortsrof the factok + % in (A.3).

We present here the estimate for one of these integrals hEarther one, we proceed in
a similar way. Using the Cauchy-Schwarz inequality, we betfollowing estimate

—a/2

l1(e)=| f dky e gt I coth[h(k+7>] sgni)}(7g)(k.m)|

mz0

\—;e p(——) f dkmzﬂm(?g)(k )
C1

1
<Lept-5) [ d Y AR

1/2
< et —)f D e l>(1+k2)51)

«([ dkzo|m|2p1(1+k2>51|(?g)(k,m)|2)

If both integrals in the last inequality above are finite rthge) — 0 faster than any power of
€ ase — 0. For the first integral factor to be finite, it is necessamtiy >3/2 ands; > 1/2.
The second factor is finite by hypothesis. Thus, taking p ands; = s, namely, taking the
same bounds as in the proposition’s statement, one geths (Bat O(e%?) ase — 0.

Now, we have to estimate the high frequency part of integhaB), Observe that the
function cothf) is bounded in any set not containing a neighborhood of Olentéar the
origin the functionxcoth(x) —» 1 asx— 0. Consequently, there are constagits 1/h, c3>1
such that

|(k+ %){coth[h(k+ %)] —sgn(m)}| < c+ ca(Ik+ I%I), keRmeZ.  (A4)

Thus, we need to estimate the three high frequency integoatesponding to each term in
the right-hand-side of the inequality above.

We proceed to estimate one of these integrals, namely théhatg@roduces the most
restrictive bound ors. The other integrals can be dealt with in a similar way. Assumitially
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thatp,>3/2,s,>1/2, then we have the following estimates

m
I2(e) = dk ) (c3|—=I(Fg)(k,m)]
{Ik|>e2/2} mZ;tO | \/E|
C3 1 5
<— dkd ——— |mP(1+ KD %/2(F km
Ve Jiea2) mZ#O|m|PZ‘1|k|52| 172 (1+ k)= (7 g) (k. m)l

C3 1 1/2
<— dk Y ———+——
\/E(f;kpea/z, ;0 e )

x( [ aky, me (L g m?

m#0
C, © dk\1/2 1 1/2
Sé(ffa/zkz_&) (;O|m|2(pz—1))

x( [[aiy, mee e km)

mz0

< ¢y elambiey2y( f dk > ImPP(L+ )= (F )k m)P) .
mz0

)1/2

)1/2

This last integral is finite by hypothesis, so we require #(@t,—1)/4-1/2=q/2 (i.e.
S =1/2+(q+1)/a). Then one gets thds(e) = O(e¥?) ase— 0. However, as a function of
a, $(a) mapsae (0,1) onto (32+0q, ). Therefore, having imposed earlier tfeat (0, 1), the
desired estimat&(e) = O(e¥?) will be always achieved onc® = s> 3/2+0. The value of
is connected t@ and therefore depends on the regularity of the funcgion
O
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