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Abstract. We consider a stochastic Darcy’s pressure equation whose coefficient is generated by
a white noise process on a Hilbert space employing the ordinary (rather than the Wick) product. A
weak form of this equation involves different spaces for the solution and test functions and we establish
a continuous inf-sup condition and well-posedness of the problem. We generalize the numerical
approximations proposed in Benth and Theting [Stochastic Anal. Appl., 20 (2002), pp. 1191–1223]
for Wick stochastic partial differential equations to the ordinary product stochastic pressure equation.
We establish discrete inf-sup conditions and provide a priori error estimates for a wide class of norms.
The proposed numerical approximation is based on Wiener-Chaos finite element methods and yields a
positive definite symmetric linear system. We also improve and generalize the approximation results
of Benth and Gjerde [Stochastics Stochastics Rep., 63 (1998), pp. 313–326] and Cao [ Stochastics, 78
(2006), pp. 179–187] when a (generalized) process is truncated by a finite Wiener-Chaos expansion.
Finally, we present numerical experiments to validate the results.
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1. Introduction. A system of stochastic partial differential equations which
models the two-phase flow in a porous medium arises in the mathematical modeling
of transport of pollutants in groundwater and oil recovery processes. This system is
composed of a transport equation for the saturation (the relative volume of one of the
two fluids) coupled with an equation for the velocity field (given by the Darcy’s Law
and the incompressibility condition of the flow). The randomness enters the problem
through the unknown properties of the rocks, especially the permeability tensor. In
this paper we deal with one of the equations derived from this system, specifically, we
consider an equation of the form:{

−∇x · (κ(x, ·)∇xu(x, ·)) = f(x, ·), for all x ∈ D
u(x, ·) = 0, for all x ∈ ∂D,(1.1)

where log κ(x, ·) is a Gaussian field and f is a (possible random) forcing term; see
Ghanem and Spanos [19], Babuška et al. [3, 2], Matthies and Kesse [29], Furtado and
Pereira [14], Roman and Sarkis [34], Schwab et al. [13], Xiu and Karniadakis [40],
and references therein. We emphasize that the assumption of the stochastic structure
of the permeability function κ(x, ·) is due to the lack of data and accuracy in the
measurements of the media. One approach that has been studied when the parame-
ters in the equation are not completely known is the replacement of the true values
of these parameters by some kind of average. By replacing the stochastic coefficient
κ(x, ·) in the equations by the average κ̄(x) we obtain some information about the
solution, but usually this information is not enough to make more precise predictions
of nonlinear functionals of the solution or to know what effect the small fluctuations
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in the parameter values actually have on the solution.

Another way to evaluate nonlinear functionals of the solution involves Monte
Carlo approximations. Briefly speaking, Monte Carlo approximations require know-
ing the solution, or approximations of the solution, for many paths or realizations
in the space of outcomes. In principle, if we know the distribution of the processes
modeling of the coefficients of the equation, we can simulate many trajectories of the
coefficients, and for each trajectory we can apply a finite element method (FEM)
to obtain an approximation of the solution for that particular realization. Then,
Monte Carlo approximations of a nonlinear functional g of the solution are of the
form E[g(û(x, ·))] ≈ 1

M

∑M
i=1 g(û

(a)(x, ωi)), where E denotes the expectation opera-
tor, M is the number of realizations, and û(a)(x, ωi) is a finite element approximation
of the solution at x for the ith-trajectory ωi. This procedure is however very time
consuming as it involves assembling and solving large linear systems as many times
as trajectories are simulated.

As alternatives to the Monte Carlo approach there are the methods that somehow
“separate” the stochastic part from the deterministic part have recently attracted the
attention of several researchers; see [1, 2, 3, 8, 13, 16, 17, 18, 19, 23, 24, 28, 29, 31,
30, 35, 39, 40]. To illustrate the advantage of these methods, let us suppose that the
solution of (1.1) can be represented as

û(x, ω) =
∑
α∈I

ûα(x)Yα(ω),(1.2)

where I is a countable index set and {Yα}α∈I is a collection of random variables with
known probability distributions. Let us say we have an approximation of the solution
of the form

û(x, ω) ≈ û(a)(x, ω) =
∑
α∈eI

û(a)
α (x)Yα(ω),(1.3)

where Ĩ is a finite index set with Ĩ ⊂ I. Assume that we have computed and
stored the deterministic functions {û(a)

α }α∈eI . Then, in order to approximate nonlinear
functionals of the solution, we can either use the expression for û(a) in (1.3) directly or
use a Monte Carlo method based on (1.3). Note that when a simulation is required, all
we need to do is to generate values for the random variables {Yα}α∈eI , and assemble
the solution according to (1.3). In this way, we need to solve a very large linear
system only once in order to compute the deterministic coefficients {û(a)

α }α∈eI . The
effectiveness of this procedure depends mainly on:

1. The kind of expansion used in (1.2) and (1.3). Usually a Wiener-Chaos
expansion is considered.

2. The finite dimensional problem involved in the computation of the coefficients
{û(a)

α }α∈ eJ in (1.3). Usually a Galerkin or Petrov-Galerkin type problem that
uses the original coefficient κ or an approximation of it, for instance, a trun-
cated Karhúnen-Loève or a Wiener-Chaos expansion is considered.

The Karhúnen-Loève (KL) expansion of a stochastic process with continuous co-
variance function is well-used in many engineering applications as an efficient tool to
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characterize and store the random process associated to the permeability or forcing
terms. Its usage comes from the fact that the truncated KL expansion is optimal in
the L2 sense since it minimizes the mean square error. An issue inherited in the KL
expansion is the possible excess of oscillations of the terms of the expansion near the
boundary ∂D. The KL expansion also requires the computation of the eigenvalues
and eigenfunctions of the covariance operator associated to κ or log κ; see [13, 35] and
references therein.

The approximation of solutions of partial differential equations based on Wiener-
Chaos expansion and white noise analysis has been considered in the literature; see
[11, 21, 22, 26] and references therein. The Wiener-Chaos expansion is the orthogonal
expansion, in terms of Fourier-Hermite stochastic polynomials, of random processes
defined in the white noise space. The underlying white noise space can be constructed
based on convolution kernels on L2(Rd) or on KL expansions on L2(D). Using these
constructions, analytical and algebraic properties can be explored to define norms and
to improve the complexity of the algorithms; see Section 7 for a unified description
in how to construct white noise spaces. The corresponding white noise analysis is
fundamental for establishing stochastic regularity results and approximation results.
We now refer to some of the works that have inspired this paper.

We mention Benth and Theting [5] and Theting [37] where they analyze the
stochastic pressure equation when the ordinary product is replaced by the Wick prod-
uct. These papers also consider other Wick stochastic partial differential equations.
They use the white noise calculus and propose an approximation by truncating the
Wiener-Chaos expansion of the solution. They present a priori error estimates based
on the work of Benth and Gjerde [4] on estimating errors when truncating a Wiener-
Chaos expansion. We also mention Cao [9] where the estimates in [4] are improved.
Roman and Sarkis [34] present and explain several features and advantages of using
white noise calculus as a natural framework for the study of the stochastic pressure
equation without replacing the ordinary product by the Wick product. They consider
a permeability process κ(x, ω;φ) = ρ0+eWφ(x,ω), where Wφ(x, ω) is the 1-dimensional
smoothed white noise process defined on the 1-dimensional white noise probability
space

(
S ′(Rd),B(S ′(Rd)), µ

)
; see Section 7.1.1 below. The constant ρ0 > 0 is added

to guarantee uniform ellipticity of the problem and a priori error estimates are not
provided.

In this paper, we consider ρ0 = 0 and the ordinary product in infinity dimen-
sions. We provide a priori error estimates for a class of smoothed white noise pro-
cesses Wφ(x, ω). We consider the white noise calculus constructed from a Hilbert
space and an operator in order to define adequate spaces for proving the existence
and uniqueness of the solution of the ordinary product stochastic pressure equation.
When formulating the weak version of the problem (1.1) we choose different spaces
for the solution and test functions in order to circumvent the uniform ellipticity. The
norms to define these spaces take into account the stochastic exponential decay (or
growth) of the functions and depend on the white noise probability space (which
depends on κ(x, ω)) and on the stochastic exponential behavior of the forcing term
f(x, ω). The well-posedness of the problem is then established via inf-sup techniques.
For the finite dimensional problem we also use different spaces for the solution and
the test functions, however, yielding a positive definite symmetric linear system. The
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well-posedness of the discrete problem is also established via discrete inf-sup tech-
niques. To derive the discrete inf-sup condition and a priori error estimates, we
consider norms of Hida-Kuo-Kondratiev-Streit type which depend on the choice of
sequence of weights; see Hida [20], Kuo [26], Holden et al. [22], Hida et al. [21], Da
Prato [11] and references therein. For some particular choices, these norms measure
the regularity of the process in the white noise probability space just as the Sobolev
norms measure regularity of functions on spatial variable. We also point out that a
we adopt a general setup which permits a unified analysis of several modeling choices
of smoothed white noise processes. For regularity results of the pressure equation for
this type of norms we refer to Theting [37] and [15].

We mention that a different approach to ours is considered in Babuška et al. [2].
By using Lp spaces for the probability space, they show the well-posedness for prob-
lems where the permeability coefficient is for instance a finite dimensional lognormal.
They consider a coefficient of the form of κ(x, ω) = ρ0 + e

PK
j=1 aj(x)Yj(ω), where ρ0

is a positive constant, and assume that each deterministic function aj is bounded in
D. Their theoretical results depend on ρ0 and on the value of

∑K
j=1 supx∈Daj(x)2.

Using our approach, we can consider the case ρ0 = 0 (without uniform elliptic-
ity) and infinity number of KL terms and the assumption required to show well-
posedness is supx∈D

∑∞
j=1 λ

2θ
j aj(x)2 < ∞. Here θ > 0 and {λj}∞j=1 is any sequence

with 1 < λ1 ≤ λ2 ≤ · · · and
∑∞

j=1 λ
−2θ
j <∞; see Theorem 3.1 below.

This paper is structured as follows. In Section 2 we introduce the white noise
calculus framework to be used in the rest of the paper. In Section 3 we introduce the
adequate spaces for the solution and test functions of the stochastic pressure equation
and establish its well-posedness. These spaces are characterized in Section 4 where
additional norms are introduced in order to measure the regularity in the ω variable.
Two examples of such norms are presented. In Section 5 we consider a Galerkin
approximation and deduce a priori error estimates. The resulting linear system is
studied in Section 6. Section 7 discusses some modeling choices and finally in Section
8 we present an one dimensional numerical experiments.

2. Framework: White Noise Analysis. Let H be a real separable Hilbert
space with inner product (·, ·)H and norm ‖ · ‖H . Let A be an operator on H such
that there exists an H-orthonormal basis {ηj}∞j=1 satisfying:

1) Aηj = λjηj , j = 1, 2, . . . .
2) 1 < λ1 ≤ λ2 ≤ · · · .
3)
∑∞

j=1 λ
−2θ
j <∞ for some constant θ > 0.

For p > 0 let Sp := {ξ ∈ H; ‖ξ‖p <∞} where

‖ξ‖2p := ‖Apξ‖2H =
∞∑

j=1

λ2p
j (ξ, ηj)2H ,

and for p < 0 let Sp be defined as the dual space of S−p. It is easy to see that for
p < 0 we have ‖ · ‖p = ‖Ap · ‖H , i.e,

‖ξ‖2p =
∞∑

j=0

λ2p
j 〈ξ, ηj〉2 for all p < 0 and ξ ∈ Sp,
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and the duality pairing between Sp and S−p is an extension of the H inner product.
We also define

S := ∩p≥0Sp (with the projective limit topology)

and let S ′ be defined as the dual space of S, i.e., by considering the standard count-
ably Hilbert space constructed from (H,A); see Kuo [26] and Obata [32].

Let (S ′,B(S ′), µ) be the probability space with the sigma-field B(S ′) of Borel
subsets of S ′. The probability measure µ is given by the Bochner-Minlos theorem and
characterized by

Eµe
i〈·,ξ〉 :=

∫
S′
ei〈ω,ξ〉dµ(ω) = e−

1
2‖ξ‖

2
H , for all ξ ∈ S.(2.1)

Here, the pairing 〈ω, ξ〉 = ω(ξ) is the action of ω ∈ S ′ on ξ ∈ S, and Eµ denotes the
expectation with respect to the measure µ; see Obata [32, Chapter 1-3], Holden et al.
[22, Chapter 2], Hida [20, Chapter 3], Hida et al. [21], Kuo [26] and Berezanskĭı [6].
The measure µ is often called the (normalized) Gaussian measure on S ′ due to the
following remark:

Remark 2.1. Equation (2.1) says that: for any test function ξ ∈ S, the ran-
dom variable 〈·, ξ〉 is normally distributed with zero mean and variance ‖ξ‖2H . If
ξ1, . . . , ξj ∈ S are orthonormal in H then the random variables 〈·, ξ1〉, . . . , 〈·, ξj〉 are
independent and normally distributed with mean zero and variance equal to one; see
Holden et al. [22], Kuo [26] and Obata [32].

The following particular case of Fernique’s Theorem will be used throughout this
paper; see Shigekawa [36], Bogachev [7], Kuo [25], Da Prato [11] and Da Prato and
Zabczyk [12].

Lemma 2.2. We have∫
S′
es‖ω‖2−θdµ(ω) =


∏∞

j=1

(
1− 2s

λ2θ
j

)− 1
2

s <
λ2θ

1
2 ,

+∞ s ≥ λ2θ
1
2 .

Proof. Let s < λ2θ
1
2 . Note that ‖ω‖2−θ =

∑∞
j=1 λ

−2θ
j 〈ω, ηj〉2. Using the monotone

convergence theorem when s > 0 or the dominated convergence theorem when s < 0
we have ∫

S′
es‖ω‖2−θdµ(ω) = lim

J→∞

∫
S′
es

PJ
j=1 λ−2θ

j 〈ω,ηj〉2dµ(ω)

= lim
J→∞

J∏
j=1

1√
2π

∫
R
esλ−2θ

j y2
e−

1
2 y2

dy

= lim
J→∞

J∏
j=1

1√
2π

∫
R

exp

(
−1

2

(
1− 2s

λ2θ
j

)
y2

)
dy

=
∞∏

j=1

(
1− 2s

λ2θ
j

)− 1
2

.
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In view of the assumption
∑∞

j=1 λ
−2θ
j <∞, the infinite product above converges when

s <
λ2θ

1
2 and goes to +∞ when s approaches λ2θ

1
2 from below. Because the integral

above is monotonically increasing with respect to s, the lemma follows.

We note that if
∑∞

j=1 λ
−2θ
j <∞ then Lemma 2.2 implies that

∫
S′ ‖ω‖

2
−θdµ(ω) <

∞ which in turn implies that µ(S−θ) = 1. To see this, note that S ′ \ S−θ = {ω :
‖ω‖2−θ = ∞} and then µ(S ′ \ S−θ) > 0 would imply that

∫
S′
‖ω‖2−θdµ(ω) = ∞ which

gives a contradiction. Without further comments, we use that µ(S−θ) = 1 throughout
this paper.

We now define generalized stochastic processes w(ξ, ω) ∈ R, ξ ∈ S, ω ∈ S ′; see
Holden et al. [22].

Definition 2.3. The 1-dimensional or scalar white noise associated to H and
A is the map w : S × S ′ −→ R given by w(ξ, ω) = 〈ω, ξ〉 for ω ∈ S ′, ξ ∈ S. It is
not difficult to prove that when ξ ∈ H and we choose any ξn ∈ S such that ξn → ξ in
H, then 〈ω, ξ〉 := limn→+∞〈ω, ξn〉 exists in L2(µ), and is independent of the choice of
{ξn}∞n=1. Thus, the definition of white noise can be extended to functions in H. In
what follows we use the notation (L2) or (L2)0 for the space L2(µ). We always inter-
pret properties in the “almost everywhere” or “almost surely” or “almost all” sense,
therefore we will sometimes omit this interpretation to make notation and formula
less cumbersome.

We now restrict our considerations to the 1-dimensional smoothed white noise case.

Definition 2.4. Let D ⊂ Rd. Using the map w of Definition 2.3 we can construct
a stochastic process, called the smoothed white noise process Wφ(x, ω), as follows:

Wφ(x, ω) := w(φx, ω) = 〈ω, φx〉, x ∈ D, ω ∈ S ′,

where φx ∈ H for all x ∈ D. Examples of φx are given in Example 2.6 and Example
2.7 below, and in more detail in Section 7. We point out that the smoothed white
noise formalism unifies the analysis of stochastic process obtained via KL expansions
(see Section 7.2.3) or via convolution methods (see Section 7.2.1).

Remark 2.5. The terminology smoothed white noise comes from the fact that
the process {Wφ(x, ·)}x∈D has the following properties:

i) For each x ∈ D, Wφ(x, ·) is normally distributed with zero mean and variance
‖φx‖2H .

ii) For each x and x̂ ∈ D we have EµWφ(x, ·)Wφ(x̂, ·) = (φx, φx̂)H .

Example 2.6. We can take H = L2(R) and A = − d2

dx2 +x2 + 1. In this case the
eigenfunction ηj is the j-th Hermite function and λj = 2j; see Section 7.1 and (7.2).
Let D = [0, 1] and let φx(x̂) = φ(x̂ − x), x ∈ D and x̂ ∈ R, where the window φ can
be chosen such that the diameter of suppφ is the maximum distance which Wφ(x, ·)
and Wφ(x̂, ·) might be correlated; see Holden et al. [22].

Example 2.7. Let D ⊂ Rd and take H = L2(D) and A = Q−1, where
Q : L2(D) → L2(D) is the integral operator on (D×D) with kernel given by a covari-
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ance C(x, x̂). In this case, for x, x̂ ∈ D we define φx(x̂) =
∑∞

j=1 λj
−1/2ηj(x)ηj(x̂),

where λj and ηj are the eigenvalues and eigenfunctions of A. It is easy to see that
Eµ(Wφ(x, ·)Wφ(x̂, ·)) = C(x, x̂); see Section 7.2.3.

3. The Problem and Variational Formulation. Given φ : D → Sθ we con-
sider the following problem: For all ω ∈ S ′, find u(x, ω) such that{

−∇x · (κ(x, ω)∇xu(x, ω)) = f(x, ω), for all x ∈ D
u(x, ω) = 0, for all x ∈ ∂D,(3.1)

where

κ(x, ω) := eWφ(x,ω) = e〈ω,φx〉 x ∈ D,(3.2)

and the exponent Wφ(x, ω) is the 1-dimensional smoothed white noise process of Defi-
nition 2.4. Thus, κ is a log-normal random process. Observe that for different families
{φx ∈ Sθ}x∈D there exist a different permeability function κ(·, ·) associated to it, and
therefore, the solution u(·, ·) depends on φ.

To motivate the definition of the spaces for the solution of (3.1), observe that
since µ(S−θ) = 1 and φx ∈ Sθ for all x ∈ D, we can write

|〈ω, φx〉| ≤ ‖ω‖−θ sup
x∈D

‖φx‖θ ω-a.s. in S ′.

Denote Cθ = Cθ(φ) := supx∈D ‖φx‖θ. Then we have for all ε > 0

− ε
2
‖ω‖2−θ −

C2
θ

2ε
≤ −‖ω‖2−θCθ ≤ 〈ω, φx〉 ≤ ‖ω‖2−θCθ ≤

ε

2
‖ω‖2−θ +

C2
θ

2ε

and

κmin(ω) := e−
C2

θ
2ε e−

ε
2 |ω|

2
−θ ≤ κ(x, ω) ≤ e

C2
θ

2ε e
ε
2‖ω‖

2
−θ =: κmax(ω).(3.3)

We now motivate the definitions of the solution and test functions spaces. When
u(·, ω) is the weak solution of (3.1) for almost all ω ∈ S ′, then from the Lax-Millgram
Lemma we have

|u(·, ω)|2H1
0 (D) ≤

1
κmin(ω)2

‖f(·, ω)‖2H−1(D) = e
C2

θ
ε eε‖ω‖2−θ‖f(·, ω)‖2H−1(D).

Then for s ∈ R we can write

|u(·, ω)|2H1
0 (D)e

s‖ω‖2−θ ≤ e
C2

θ
ε ‖f(·, ω)‖2H−1(D)e

(s+ε)|ω|2−θ a.s. in S ′

and integrating both sides we obtain∫
S′
|u(·, ω)|2H1

0 (D)e
s‖ω‖2−θdµ(ω) ≤ e

C2
θ

ε

∫
S′
‖f(·, ω)‖2H−1(D)e

(s+ε)‖ω‖2−θdµ(ω).(3.4)

This last inequality gives us an idea of the spaces where we can seek the solution and
choose the test functions. For the solution space we use the left-hand side norm given
in (3.4), while for the test functions spaces we use the right-hand side dual norm in
(3.4).
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Define Um
s as the space of functions u : D × S ′ → R such that∫

S′
‖u(·, ω)‖2Hm(D)e

s‖ω‖2−θdµ(ω) < +∞(3.5)

with norm

‖u‖2Um
s

:=
∫
S′
‖u(·, ω)‖2Hm(D)e

s‖ω‖2−θdµ(ω)(3.6)

and seminorm

|u|2Um
s

:=
∫
S′
|u(·, ω)|2Hm(D)e

s‖ω‖2−θdµ(ω).(3.7)

Note that U0
0 = L2(D)⊗(L2)0 where (L2)0 = L2(S ′, µ(ω)) and in general we have

Um
s = Hm(D)⊗ (L2)s where

(L2)s := L2(S ′, es‖ω‖2−θdµ(ω))(3.8)

with norm ‖v‖2(L2)s
:=
∫
S′ |v(ω)|2es‖ω‖2−θdµ(ω). We also define Û1

s := H1
0 (D)⊗(L2)s ⊂

U1
s , i.e., the functions in U1

s which vanish on ∂D almost sure in ω. By using a Poincaré
inequality, the seminorm | · |U1

s
is a norm equivalent to ‖ · ‖U1

s
in Û1

s . Since the space
(L2)s+ε is the dual of (L2)−s−ε and the H−1(D) is the dual of H1

0 (D), we can identify
the dual space of Û1

−s−ε with U−1
s+ε where the duality pairing is given by

〈f, v〉 :=
∫
S′
〈f(·, ω), v(·, ω)〉H−1,H1dµ(ω) for all v ∈ Û1

−s−ε, f ∈ U−1
s+ε.(3.9)

Here 〈·, ·〉H−1,H1 denotes the duality pairing between H−1(D) and H1
0 (D).

We define the bilinear form a : Û1
s × Û1

−s+ε → R by

a(u, v) :=
∫

D×S′
κ(x, ω)∇u(x, ω)∇v(x, ω)dxdµ(ω),(3.10)

and let Ta : Û1
s → U−1

s−ε be the linear operator defined by

a(u, v) = 〈Tau, v〉 for all u ∈ Û1
s , v ∈ Û1

−s+ε.

We will show in the next theorem that Ta is a continuous operator. We also define
the domain D̂1

s ⊂ Û1
s by

D̂1
s := {u ∈ Û1

s : sup
v∈bU1

−s−ε\{0}

a(u, v)
|v|U1

−s−ε

<∞},

i.e., the u ∈ Û1
s such that Tau ∈ U−1

s+ε. We note that D̂1
s is not empty since we will

show in the next theorem that Û1
s+2ε ⊂ D̂1

s .

The weak formulation of problem (3.1) is introduced as follows:{
Find û ∈ D̂1

s ⊂ Û1
s such that

a(û, v) = 〈f, v〉 for all v ∈ Û1
−s−ε,

(3.11)
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where the duality pairing between f ∈ U−1
s+ε and v ∈ Û−s−ε is given by

〈f, v〉 =
∫

D×S′
〈f(·, ω), v(·, ω)〉H−1,H1dµ(ω).

Theorem 3.1 (Well-posedness). Let ε > 0 and φ : D → Sθ with Cθ :=
supx∈D ‖φx‖θ <∞. Then the following results follow:

1) The bilinear form a : Û1
s × Û1

−s+ε → R is continuous and we have

a(u, v) ≤ e
C2

θ
2ε |u|U1

s
|v|U1

−s+ε
for all u ∈ Û1

s , v ∈ Û1
−s+ε.

2) The bilinear form a satisfies the following inf-sup condition:

inf
u∈bU1

s \{0}
sup

v∈bU1
−s−ε\{0}

a(u, v)
|u|U1

s
|v|U1

−s−ε

≥ e−
C2

θ
2ε .(3.12)

3) For any v ∈ Û1
−s−ε \ {0} there exists u(v) ∈ Û1

s+2ε such that a(u, v) 6= 0.
4) For any f ∈ U−1

s+ε ⊂ U−1
s−ε there exists a unique solution û ∈ D̂1

s ⊂ Û1
s of

problem (3.11) and

‖û‖U1
s
≤ Ce

C2
θ

2ε ‖f‖U−1
s+ε
,(3.13)

where C is the Poincaré inequality constant which is independent of ε, s and θ.

Proof of 1). From (3.3) we have

a(u, v) =
∫

D×S′
κ(x, ω)∇u(x, ω)∇v(x, ω)dxdµ(ω)

≤ e
C2

θ
2ε

∫
S′
e

ε
2 |ω|

2
−θ |u(·, ω)|H1

0 (D)|v(·, ω)|H1
0 (D)dµ(ω) ≤ e

C2
θ

2ε |u|U1
s
|v|U1

−s+ε
.

Proof of 2). Given u ∈ Û1
s \ {0} define

vr(x, ω) :=
{
u(x, ω)e(s+

ε
2 )‖ω‖2−θ , if ‖ω‖−θ ≤ r

0, if ‖ω‖−θ > r.

Denote B(r) := {ω ∈ S ′ : ‖ω‖−θ ≤ r}. From (3.3) we see that

a(u, vr) =
∫

D×B(r)

κ(x, ω)|∇u(x, ω)|2e(s+ ε
2 )‖ω‖2−θdxdµ(ω)

≤ e
C2

θ
2ε

∫
D×B(r)

|∇u(x, ω)|2e(s+ε)‖ω‖2−θdxdµ(ω)

≤ e
C2

θ
2ε eεr2

∫
D×B(r)

|∇u(x, ω)|2es‖ω‖2−θdxdµ(ω) ≤ e
C2

θ
2ε +εr2

|u|2U1
s
<∞,

and therefore, a(u, vr) is well defined for all r. We also have

|vr|2U1
−s−ε

=
∫

D×B(r)

|∇u(x, ω)|2e2(s+ ε
2 )‖ω‖2−θe−(s+ε)‖ω‖2−θdxdµ(ω)

=
∫

D×B(r)

|∇u(x, ω)|2es‖ω‖2−θdxdµ(ω) ≤ |u|2U1
s
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and using (3.3) we obtain

a(u, vr) =
∫

D×B(r)

κ(x, ω)|∇u(x, ω)|2e(s+ ε
2 )‖ω‖2−θdxdµ(ω)

≥ e−
C2

θ
2ε

∫
D×B(r)

e−
ε
2‖ω‖

2
−θ |∇u(x, ω)|2e(s+ ε

2 )‖ω‖2−θdxdµ(ω)

= e−
C2

θ
2ε

∫
D×B(r)

|∇u(x, ω)|2es‖ω‖2−θdxdµ(ω).

For any arbitrary small δ > 0, take rδ > 0 sufficiently large such that∫
D×B(rδ)

|∇u(x, ω)|2es‖ω‖2−θdxdµ(ω) ≥ (1− δ)|u|2U1
s
.

We obtain a(u, vrδ
) ≥ (1− δ)e−

C2
θ

2ε |u|2U1
s

and then

sup
v∈U1

−s−ε

a(u, v)
|v|U1

−s−ε

≥ a(u, vrδ
)

|vrδ
|U1
−s−ε

≥ (1− δ)e−
C2

θ
2ε

|u|2U1
s

|u|U1
s

= (1− δ)e−
C2

θ
2ε |u|U1

s
.

Because δ > 0 is arbitrary, we conclude that the inf-sup condition (3.12) holds.

Proof of 3). Given v ∈ Û1
−s−ε \ {0} we can take ur defined by

ur(x, ω) :=
{
v(x, ω)e(−s− ε

2 )‖ω‖2−θ , ‖ω‖−θ ≤ r
0, ‖ω‖−θ > r.

Note that

|ur|2U1
s+2ε

=
∫

D×B(r)

|∇v(x, ω)|2e2(−s− ε
2 )‖ω‖2−θe(s+2ε)‖ω‖2−θdxdµ(ω)

≤ e2εr2
∫

D×B(r)

|∇v(x, ω)|2e(−s−ε)‖ω‖2−θdxdµ(ω) ≤ e2εr2
|v|2U1

−s−ε
<∞.

By taking r̄ large enough we obtain

a(ur̄, v) ≥ e−
C2

θ
2ε

∫
D×B(r̄)

e−
ε
2‖ω‖

2
−θ |∇v(x, ω)|2e(−s− ε

2 )‖ω‖2−θdxdµ(ω) > 0.(3.14)

Proof of 4). Let Ta : Û1
s → U−1

s−ε be the linear continuous operator defined by

a(u, v) = 〈Tau, v〉 for all u ∈ Û1
s , v ∈ Û1

−s+ε

and let R(Ta) be the range of Ta. Now we show that the subspace R(Ta) ∩ U−1
s+ε

is closed in U−1
s+ε. Indeed, let {un} ⊂ Û1

s be a sequence such that the sequence
{Taun} ⊂ U−1

s+ε converges to f in U−1
s+ε. From the inf-sup (3.12), for all integers m and

n we have

|um − un|U1
s
≤ e

C2
θ

2ε sup
v∈bU1

−s−ε\{0}

a(um − un, v)
|v|U1

−s−ε

≤ e
C2

θ
2ε sup

v∈bU1
−s−ε\{0}

〈Ta(um − un), v〉
|v|U1

−s−ε

≤ e
C2

θ
2ε ‖Ta(um − un)‖U−1

s+ε
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which implies that {un} is a Cauchy sequence in Û1
s , and hence has a limit u ∈ Û1

s .
By continuity we have Tau = f , hence f ∈ R(Ta), and since f ∈ U−1

s+ε we have
f ∈ R(Ta) ∩ U−1

s+ε. Hence, we have shown that R(Ta) ∩ U−1
s+ε is closed in U−1

s+ε.
Now we show R(Ta)∩U−1

s+ε = U−1
s+ε. Since R(Ta)∩U−1

s+ε is closed in U−1
s+ε, assume

by contradiction that there exists v ∈ (U−1
s+ε)

∗ = Û1
−s−ε such that v 6= 0 and 〈f, v〉 = 0

for all f ∈ R(Ta) ∩ U−1
s+ε. With ur̄ introduced in 3) above, we have from (3.3)

〈Taur̄, z〉 = a(ur̄, z) ≤ e
C2

θ
2ε |ur̄|U1

s+2ε
|z|U1

−s−ε
for all z ∈ Û1

−s−ε

which implies that Taur̄ ∈ (Û1
−s−ε)

∗ = U−1
s+ε. Taking f = Taur̄ implies a(ur̂, v) =

〈Taur̄, v〉 = 0, and using (3.14) we conclude that v = 0 which gives a contradiction,
hence R(Ta) ∩ U−1

s+ε = U−1
s+ε. Thus, the problem (3.11) has a unique solution in Û1

s

when the right-hand side f ∈ U−1
s+ε, i.e., a unique solution in D̂1

s ⊂ Û1
s . Now (3.13)

follows directly from the inf-sup condition (3.12). �

Remark 3.2. From Theorem 3.1, when f ∈ U−1
0 then for every s < 0 (take

ε = −s) the solution u ∈ Û1
s . In order to u ∈ Û1

0 we need f ∈ U−1
ε for some ε > 0.

When the right-hand side f is given by a finite sum of Fourier-Hermite polynomials
we have the solution u ∈ Û1

s for every s satisfying s < λ2θ
1
2 ; see Definition 4.1 and

Lemma 4.2. We also note that for the case s = 0, the formulation (3.11) can be
formalized with û, v̂ ∈ Û1

0 , however, using the inner product (L2)ε.

Remark 3.3. It is easy to see that when κ(x, ω) =: ρ0 + eWφ(x,ω) and ρ0 > 0, the
Theorem 3.1 can be slightly modified to establish the well-posedness of the problem:{

Find û ∈ D̂1
s ⊂ Û1

s such that
a(û, v) = 〈f, v〉 for all v ∈ Û1

−s

(3.15)

with the stabilty

‖û‖U1
s
≤ C

ρ
‖f‖U−1

s
.

Here C is the Poincaré inequality constant which is independent of s and θ, and D̂1
s

is the subspace of u ∈ Û1
s such that Tau ∈ U−1

s . Additionaly, the discrete formulation
and the a priori error estimates that we establish on the following sections can also
be easily modified to avoid the dependence on ε.

Remark 3.4. If Ũ ⊂ Û1
s+ε ⊂ Û1

s for some ε > 0, then the pair of spaces Ũ and Ṽ ,

where Ṽ is defined by Ṽ :=
{
ue(s+

ε
2 )‖·‖2−θ ;u ∈ Ũ

}
, also satisfies the inf-sup condition.

This will be useful when constructing finite element spaces in Section 5; see Remark
5.1.

4. Characterization of the Spaces (L2)s and Um
s . In the following we char-

acterize the space (L2)s defined in (3.8), and note that this is enough for characterizing
the tensor product space Um

s = Hm(D)⊗ (L2)s.

We need to consider multi-index of arbitrary length. To simplify the notation, we
regard multi-indices as elements of the space (NN

0 )c of all sequences α = (α1, α2, . . .)
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with elements αj ∈ N0 = N ∪ {0} and with compact support, i.e., with only finitely
many αj 6= 0. We write J = (NN

0 )c. Given α ∈ J define the order and length of α,
denoted by d(α) and |α| respectively, by

d(α) := max {j : αj 6= 0}(4.1)

and

|α| := α1 + α2 + . . .+ αd(α).

We also introduce the r-Hermite polynomials, hr2,n, where r > 0 and n = 0, 1, 2, . . . .
These polynomials can be defined by the generating function identity

etx− 1
2 r2t2 =

∞∑
n=0

tn

n!
hr2,n(x).(4.2)

When r2 = 1 we denote h1,n simply by hn. The r-Hermite polynomials hr2,n are an
orthogonal basis for L2(R, e−

1
2r2 x2

dx) and satisfy hr2,n(x) = rnh1,n(x/r).

For s < λ2θ
1
2 define σj = σj(s) :=

(
1− 2s

λ2θ
j

)− 1
2
, j = 1, 2, . . . , and for α ∈ J let

σα = σα(s) :=
d(α)∏
j=1

σ
αj

j (s)

and

σ∗ = σ∗(s) :=
∫
S′
es‖ω‖2−θdµ(ω).(4.3)

From Lemma 2.2, σ∗ =
∏∞

j=1 σj < ∞ when s <
λ2θ

1
2 . Now we define the σ(s)-

Fourier-Hermite polynomials.
Definition 4.1. Given s <

λ2θ
1
2 , α = (α1, α2, . . .) ∈ J and σ = σ(s) =

(σ1, σ2, . . .), define

Hσ2,α(ω) :=
1

√
σ∗

d(α)∏
j=1

hσ2
j ,αj

(〈ω, ηj〉) ω ∈ S ′.

We now state the Wiener-Chaos expansion lemma; see Da Prato [11], Hida [20],
Holden et al. [22], Hida et al. [21] and Obata [32]. For completeness we include the
proof of the orthogonality of the σ(s)-Fourier-Hermite polynomials.

Lemma 4.2. When s < λ2θ
1
2 , the σ(s)-Fourier-Hermite polynomials are orthogonal

in (L2)s. Moreover,

‖Hσ2(s),α‖2(L2)s
= α!σ(s)2α.

In addition, every polynomial in ω belongs to (L2)s and every u ∈ (L2)s can be
represented as a Wiener-Chaos expansion

u =
∑
α∈J

uα,sHσ(s)2,α
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with ‖u‖2(L2)s
=
∑

α∈J α!σ(s)2αu2
α,s.

Proof. Take α,β ∈ J and let M = max{d(α), d(β)}. Note that the random
variables

M∏
j=1

hσ2
j ,αj

(〈·, ηj〉)hσ2
j ,βj

(〈·, ηj〉)esλ−2θ
j 〈·,ηj〉 and

∞∏
j=M+1

esλ−2θ
j 〈·,ηj〉

are independent (see Remark 2.1). Then

1
σ∗

∫
S′
Hσ2,α(ω)Hσ2β(ω)es‖ω‖2−θdµ(ω)

=
∫
S′

∞∏
j=1

hσ2
j ,αj

(〈·, ηj〉)hσ2
j ,βj

(〈·, ηj〉)
esλ−2θ

j 〈·,ηj〉

σj(s)
dµ

=
∫
S′

M∏
j=1

hσ2
j ,αj

(〈·, ηj〉)hσ2
j ,βj

(〈·, ηj〉)
esλ−2θ

j 〈·,ηj〉

σj(s)
dµ

∫
S′

∞∏
j=M+1

esλ−2θ
j 〈·,ηj〉

σj(s)
dµ

=
M∏

j=1

σ
2αj

j αj !δαj ,βj
= α!σ2αδα,β.

In (L2)s with s < λ2θ
1
2 we introduce the system of Hilbert norms

||u||2p;ρ,s :=
∑
α∈J

ρ(α, p)2α!σ(s)2αu2
α,s,(4.4)

where u =
∑

α∈J uα,sHσ(s)2,α. We assume that ρ(α, q) ≥ ρ(α, p) > 0 and ρ(α, 0) = 1
for all q > p ≥ 0 and α ∈ J . Usually, the weights ρ(α, s) are the eigenvalues of some
nonnegative operator in (L2)s with the σ(s)-Fourier-Hermite polynomials as eigen-
functions; see Benth and Gjerde [4], Holden et al. [22], Hida et al. [21], Obata [32],
Kuo [26], Bogachev [7], Cochran et. al. [10] and Benth and Theting [5].

For p > 0 define the spaces (Sp)ρ,s by

(Sp)ρ,s := {v ∈ (L2)s : ‖v‖p;ρ,s <∞}.(4.5)

For p < 0 define (Sp)ρ,s as the dual space of (S−p)ρ,s. We have (S0)ρ,s = (L2)s and
the inclusion (Sq)ρ,s ⊂ (Sp)ρ,s holds for all q > p.

Let N,K ∈ N0 and define

J N,K := {α ∈ J : d(α) ≤ K, and, |α| ≤ N}(4.6)

and

PN,K := span
{
Hσ(s)2,α : α ∈ J N,K

}
= span


d(α)∏
j=1

〈ω, ηj〉αj : α ∈ J N,K

 ,

i.e., PN,K consists of polynomials in 〈ω, η1〉, . . . , 〈ω, ηK〉 of total degree at most N .
Let QN,K

s be the orthogonal projection on PN,K in the (L2)s-norm. This projection



14 J. GALVIS AND M. SARKIS

is equivalent to the procedure of truncating the expansion in terms of σ(s)-Fourier-
Hermite polynomials by eliminating the coefficients corresponding to multi-indices
outside J N,K . We also define the RK approximation of (L2)s by

PK := span
{
Hσ(s)2,α : d(α) ≤ K

}
and denote by QK

s the orthogonal projection on PK in the (L2)s-norm.

We have the following approximation results:
Lemma 4.3. Assume that s < λ2θ

1
2 . Then for all v ∈ (Sq)ρ,s and p < q we have

‖v −QN,K
s v‖2p;ρ,s ≤M2

1 ‖QK
s v −QN,K

s v‖2q;ρ,s +M2
2 ‖v −QK

s v‖2q;ρ,s

with

M1 = M1(ρ, p, q) := max
d(α)≤K,|α|>N

ρ(α, p)
ρ(α, q)

(4.7)

and

M2 = M2(ρ, p, q) := max
d(α)>K

ρ(α, p)
ρ(α, q)

.(4.8)

Proof. Fix s < λ2θ
1
2 and note that QN,K

s v =
∑

α∈J N,K vα,sHσ2,α. Then recalling
the definition of J N,K in (4.6) we see that

||v −QN,K
s v||2p;ρ,s =

∑
α 6∈J N,K

ρ(α, p)2α!σ(s)2αv2
α,s

=
∑

α 6∈J N,K

ρ(α, q)2α!σ(s)2αv2
α,s

ρ(α, p)2

ρ(α, q)2

=
∑

d(α)≤K,|α|>N

ρ(α, q)2α!σ(s)2αv2
α,s

ρ(α, p)2

ρ(α, q)2
+

∑
d(α)>K

ρ(α, q)2α!σ(s)2αv2
α,s

ρ(α, p)2

ρ(α, q)2

≤
(

max
d(α)≤K,|α|>N

ρ(α, p)2

ρ(α, q)2

)
‖QK

s v −QN,K
s v‖2q;ρ,s +(

max
d(α)>K

ρ(α, p)2

ρ(α, q)2

)
‖v −QK

s v‖2q;ρ,s

≤M2
1 ‖QK

s v −QN,K
s v‖2q;ρ,s +M2

2 ‖v −QK
s v‖2q;ρ,s,

where M1 and M2 are defined in (4.7) and (4.8), respectively.
Corollary 4.4. Assume that s < λ2θ

1
2 . Then for all v ∈ (Sq)ρ,s and p < q we

have

‖v −QN,K
s v‖p;ρ,s ≤ max {M1,M2} ‖v‖q;ρ,s

with M1 and M2 defined in (4.7) and (4.8), respectively.
If v ∈ (Sq)ρ,s is of finite dimensional noise type, i.e., is such that

v =
∑

d(α)≤K

vα,sHσ(s)2,α(ω),
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then for all p < q

‖v −QN,K
s v‖p;ρ,s ≤M1(ρ, p, q)‖v‖q;ρ,s.

Proof. From (4.4) and the definition of the (L2)s orthogonal projections QK
s and

QN,K
s we see that

‖QK
s v −QN,K

s v‖2q;ρ,s + ‖v −QK
s v‖2q;ρ,s = ‖v −QN,K

s v‖2q;ρ,s ≤ ‖v‖2q;ρ,s

which together with Lemma 4.3 give the first inequality. The second inequality fol-
lows from Lemma 4.3 after noting that if v is of finite dimensional noise type, then,
QK

s v = v.

Several examples of weights ρ(α, p) can be considered. We next mention two
examples.

Example 4.5 (See Cao [9], Benth and Gjerde [4], Holden et al. [22], Kuo [26]
and Obata [32]). Take ν ∈ [0, 1) and

ρ(α, p)2 = (α!)νλ2pα, α ∈ J .(4.9)

Here we use the notation λβ =
∏d(β)

j=1 λ
βj

j for any β ∈ J . Note that we can write

||u||2p;ρ,s = ||Γ⊗,ν(A)pu||2(L2)s
=
∫
S′
|Γ⊗,ν(A)pu(ω)|2es‖ω‖2−θdµ(ω),

where Γ⊗,ν(A) is the operator defined by Γ⊗,ν(A)Hσ2,α = (α!)νλαHσ2,α. Note also
that Γ⊗,0(Ap) = Γ⊗,0(A)p. In the case of ν = 0 and s = 0, Γ⊗,0(A) is called the
Second Quantization of A; see Hida et al. [21].

Corollary 4.6. Assume that s < λ2θ
1
2 and consider the weights ρ defined in

(4.9). Then for every p < q we have

‖v −QN,K
s v‖p;ρ,s ≤ max

{
1

λN+1
1

,
1

λK+1

}q−p

‖v‖q;ρ,s.

Proof. Recalling that 1 < λ1 ≤ λ2 ≤ . . . , we see that for all q > p,

M1(ρ, p, q) = max
d(α)≤K,|α|>N

d(α)∏
i=1

1

λ
αi(q−p)
i

=
1

λ
(N+1)(q−p)
1

and

M2(ρ, p, q) = max
d(α)>K

d(α)∏
i=1

1

λ
αi(q−p)
i

=
1

λ
(q−p)
K+1

,

and the lemma follows.
Remark 4.7. We note that Corollary 4.6 is valid for any choice of the sequence

{λj}∞j=1 with 1 < λ1 ≤ λ2 ≤ . . . such that
∑∞

j=1 λ
−2θ
j < ∞; see Section 7.1.1. For

instance, Corollary 4.6 applied to the sequence {λj = 2j}∞j=1 with θ = 1 (s < 2) gives
for all p ∈ R and t > 0,

‖v −QN,K
s v‖p;ρ,s ≤

1
2t

max
{

1
2tN

,
1

(K + 1)t

}
‖v‖p+t;ρ,s.
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Benth and Gjerde [4] and Cao [9] consider the norms of Example 4.5 with weights
ρ defined in (4.9) for the special case s = 0 and the sequence {λj = 2j}∞j=1. They
derive approximation estimates valid only for p < 0 and t > 1. Using our notation,
Theorem 2 in Cao [9], which substantially improves the result of Benth and Gjerde
[4], reads as follows: Let p < 0 and assume that t > 1. Then for any v ∈ (Sp+t)ρ,0

‖v −QN,K
s v‖p;ρ,0 ≤

√
B(t)

1
2tN

+A(t)
1

Kt−1
‖v‖p+t;ρ,0,(4.10)

where

A(t) = e
2

t−1
t

t− 1
and B(t) = e

1
2t−1(t−1)

1
2t(t− 1)

.

It is easy to see that

1
2t

max
{

1
2tN

,
1

(K + 1)t

}
≤ 1

2t
√
B(t)

√
B(t)

1
2tN

+A(t)
1

Kt−1

and then our estimate is sharper that the one given in [9] and moreover, is valid for
all p ∈ R and t > 0.

Example 4.8 (See Bogachev [7], Da Prato [11], Hida et al. [21], Malliavin [27],
Shigekawa [36]). Given a multi-index α we denote 〈α, λ〉 :=

∑d(α)
i=1 αiλi. As an

alternative to the weights ρ introduced in Example 4.5 we can define

ρ(α, p)2 = 1 + 〈α, λ〉2p, p > 0, and ρ(α, 0) = 1, α ∈ J .(4.11)

In this case we can write

||u||2p;ρ,s = ||u||2(L2)s
+ ||Γ⊕(A)pu||2(L2)s

=
∫
S′

(
|u(ω)|2 + |Γ⊕(A)pu(ω)|2

)
es‖ω‖2−θdµ(ω),

where Γ⊕(A) is the operator defined by Γ⊕(A)Hσ2,α = 〈α, λ〉Hσ2,α. Note also that
in this case Γ(Ap) 6= Γ(A)p. It is easy to see that ||Γ⊕(A)p · ||2(L2)s

is a norm in
the space of function in (L2)s with u0 = 0 in its σ(s)-Fourier-Hermite expansion.
This seminorm can be computed using directional derivatives in the ω variable; see
Da Prato [11].

Corollary 4.9. Assume that s < λ2θ
1
2 and consider ρ defined in (4.11). Then

for every p < q we have

‖v −QN,K
s v‖p;ρ,s ≤ max

{
1

1 + (N + 1)λ1
,

1
1 + λK+1

}q−p

‖v‖q;ρ,s.

Proof. Recalling that 1 < λ1 ≤ λ2 ≤ . . . , we have for all q > p,

M1(ρ, p, q) = max
d(α)≤K,|α|>N

1(
1 +

∑d(α)
i=1 αiλi

)q−p =
1

(1 + (N + 1)λ1)
q−p

and

M2(ρ, p, q) = max
d(α)>K

1(
1 +

∑d(α)
i=1 αiλi

)q−p =
1

(1 + λK+1)
q−p .
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This finishes the proof.

In this section we have only considered results associated to (L2)s. The corre-
sponding tensor product norm for u ∈ Um

s := Hm(D) ⊗ (L2)s with s <
λ2θ

1
2 is given

by

‖u‖2Um
s

=
∑
α∈J

α!σ(s)2α‖uα,s‖2Hm(D),

where u =
∑

α∈J uα,sHσ(s)2,α with uα,s ∈ Hm(D) for all α ∈ J .
Norms ‖ · ‖p;ρ,s and spaces (Sp)ρ,s ⊂ (L2)s defined in (4.4) and (4.5) can also be

extended to tensor products. The corresponding norms for the tensor product spaces
Um

p;ρ,s := Hm(D)⊗ (Sp)ρ,s are defined by

||u||2
Um

p;ρ,s
:=
∑
α∈J

ρ(α, p)2α!σ(s)2α‖uα,s‖2Hm(D),(4.12)

and the seminorm is

|u|2
Um

p;ρ,s
:=
∑
α∈J

ρ(α, p)2α!σ(s)2α|uα,s|2Hm(D).(4.13)

We have the important remark:

Remark 4.10. Lemma 4.3 and Corollaries 4.4, 4.6 and 4.9 extend trivially to
the tensor product norm and seminorm defined in (4.12) and (4.13).

5. The Galerkin Approximation and a Priori Error Estimates. Recall
that when s <

λ2θ
1
2 , polynomials in ω belong to (L2)s. Let Xh

0 (D) ⊂ H1
0 (D) be the

finite element space of piecewise linear and continuous functions with respect to a
triangulation of D. For N,K ∈ N0 and h > 0 define the following discrete spaces:

XN,K,h
s := Xh

0 (D)⊗ PN,K ⊂ Û1
s ⊂ U1

s(5.1)

and

YN,K,h
s :=

{
v : v(x, ω) = ṽ(x, ω)e(s+

ε
2 )‖ΠKω‖2−θ , ṽ ∈ XN,K,h

s

}
⊂ Û1

−(s+ε),(5.2)

where ΠK is the (H-orthogonal) projection on the span{η1, . . . , ηK} and represented
as

ΠKω :=
K∑

j=1

〈ω, ηj〉ηj , for all ω ∈ S ′.(5.3)

Remark 5.1. Note that have defined YN,K,h
s in (5.2) by multiplying ṽ(x, ω) by

the weight e(s+
ε
2 )‖ΠKω‖2−θ rather than by e(s+

ε
2 )‖ω‖2−θ (see Remark 3.4). This is done

in order to avoid computations of infinite series when assembling the resulting linear
system; see Section 6. We note also that for the Remark 3.4 case would require the
assumption s+ ε < λ2θ

1 /2 in order to establish the discrete inf-sup condition.
The discrete version of problem (3.11) is introduced as:{

Find ûN,K,h
s ∈ XN,K,h

s such that
a(ûN,K,h

s , v) = 〈f, v〉 for all v ∈ YN,K,h
s .

(5.4)
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Remark 5.2. Observe that the above Galerkin approximation ûN,K,h
s satisfies a

variational equation with the original permeability κ defined in (3.2).
Note that the functions in XN,K,h

s depend only on the 〈ω, ηj〉, j = 1, . . . ,K, and
not on the 〈ω, ηj〉, j = K + 1, . . . . Therefore, for all u ∈ XN,K,h

s and v ∈ YN,K,h
s , i.e.,

v(x, ω) = ṽ(x, ω)e(s+
ε
2 )‖ΠKω‖2−θ with ṽ ∈ XN,K,h

s and ΠK defined in (5.3), we have

a(u, v) =
∫

D×S′
e〈ω,φx〉∇u(x, ω)∇ṽ(x, ω)e(s+

ε
2 )‖ΠKω‖2−θdxdµ(ω)

=
∫

D×S′
e

P∞
j=1(φx,ηj)〈ω,ηj〉∇u(x, ω)∇ṽ(x, ω)e(s+

ε
2 )‖ΠKω‖2−θdxdµ(ω)

=
∫

D

e
1
2

P∞
j=K+1 aj(x)2

∫
S′
e

PK
j=1 aj(x)〈·,ηj〉∇u∇ṽe(s+ ε

2 )‖ΠK ·‖2−θdµ(ω)dx(5.5)

=
∫

D

e
1
2 (‖φx‖2H−

PK
j=1 aj(x)2)

∫
S′
e

PK
j=1 aj(x)〈·,ηj〉∇u∇ṽe(s+ ε

2 )‖ΠK ·‖2−θdµ(ω)dx,

where we have used the formula
∫

R e
aj(x)yj 1√

2π
e−

y2
j
2 dyj = e

aj(x)2

2 and the notation

aj(x) := (φx, ηj)H .(5.6)

We have the following result:

Lemma 5.3. Let ε > 0 and s ∈ R such that s < λ2θ
1
2 and −s − ε <

λ2θ
K+1
2 .

The bilinear form “a” and the spaces (XN,K,h
s ,YN,K,h

s ) satisfy the following discrete
inf-sup condition:

inf
u∈XN,K,h

s \{0}
sup

v∈YN,K,h
s \{0}

a(u, v)
|u|U1

s
|v|U1

−(s+ε)

≥ e−
C2

θ
2ε∏∞

j=K+1 σj(−s− ε)
.(5.7)

Proof. Let u ∈ XN,K,h
s \ {0}. If v(x, ω) := u(x, ω)e(s+

ε
2 )‖ΠKω‖2−θ then v ∈ YN,K,h

s

and

|v|2U1
−(s+ε)

=
∫

D×S′
|∇u(x, ω)|2e2(s+ ε

2 )‖ΠKω‖2−θe−(s+ε)‖ω‖2−θdxdµ(ω)

=
∫

D×S′
|∇u(x, ω)|2e2(s+ ε

2 )‖ΠKω‖2−θe−(s+ε)(‖ΠKω‖2−θ+‖(I−ΠK)ω‖2−θ)dxdµ(ω).

As in Lemma 2.2, for −(s+ ε) < λ2θ
K+1
2 , we have∫

S′
e−(s+ε)‖(I−ΠK)ω‖2−θdµ(ω) =

∞∏
j=K+1

σj(−s− ε) <∞.

Analogous computation holds for
∫

S′
es‖(I−ΠK)ω‖2−θdµ(ω) when s < λ2θ

K+1
2 . Then,

|v|2U1
−(s+ε)

=
∞∏

j=K+1

σj(−s− ε)
∫

D×S′
|∇u(x, ω)|2es‖ΠKω‖2−θdxdµ(ω)
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=

∏∞
j=K+1 σj(−s− ε)∏∞

j=K+1 σj(s)

∫
D×S′

|∇u(x, ω)|2es‖ω‖2−θdxdµ(ω)

=

∏∞
j=K+1 σj(−s− ε)∏∞

j=K+1 σj(s)
|u|2U1

s
,

and from (5.5) and the fact that e
1
2

P∞
j=K+1 aj(x)2 ≥ 1, we have

a(u, v) ≥
∫

D×S′
e

PK
j=1 aj(x)〈ω,ηj〉|∇u(x, ω)|2e(s+ ε

2 )‖ΠKω‖2−θdxdµ(ω)

≥ e−
C2

θ
2ε

∫
D×S′

e−
ε
2 |ΠKω|2−θ |∇u(x, ω)|2e(s+ ε

2 )‖ΠKω‖2−θdxdµ(ω)

= e−
C2

θ
2ε

∫
D×S′

|∇u(x, ω)|2es‖ΠKω‖2−θdxdµ(ω)

=
1∏∞

j=K+1 σj(s)
e−

C2
θ

2ε |u|2U1
s
.

Hence,

a(u, v)
|v|U1

−(s+ε)

≥
1Q∞

j=K+1 σj(s)Q∞
j=K+1 σj(−s−ε))Q∞

j=K+1 σj(s)

e−
C2

θ
2ε

|u|2U1
s

|u|U1
s

≥ e−
C2

θ
2ε∏∞

j=K+1 σj(−s− ε)
|u|U1

s
.

We conclude that the discrete inf-sup condition holds.

Lemma 5.4. For v =
∑

α∈J vα,sHσ2(s),α ∈ Û1
s∩Um

s , let vh =
∑

α∈J vh
α,sHσ2(s),α

where vh
α,s is the Clement finite element interpolation of vα,s on the space Xh

0 (D).
Then

‖v − vh‖U1
s
≤ Ĉh`−1‖v‖U`

s
, ` = 1, 2,

where the constant Ĉ is independent of s and h.

Using the tensor product norm (4.12) we can easily deduce the following a priori
error estimates:

Lemma 5.5. Let s ∈ R and ε > 0 such that s + 2ε < λ2θ
1
2 and −s − ε <

λ2θ
K+1
2 .

Then the following estimate holds:

|û− ûN,K,h
s |U1

s
≤

1 + e
C2

θ
ε

∞∏
j=K+1

σj(−s− ε)

 inf
z∈XN,K,h

s

|û− z|U1
s+2ε

.(5.8)

Moreover, for all q > 0

|û− ûN,K,h
s |U1

s
≤

C∗(s, ε)
{

max {M1(ρ, 0, q),M2(ρ, 0, q)} |û|U1
q;ρ,s+2ε

+ Ĉh`−1‖û‖U`
s+2ε

}
,

where C∗(s, ε) = 1+e
C2

θ
ε

∏∞
j=K+1 σj(−s− ε), M1 and M2 are defined in Theorem 4.4,

and Ĉ is the constant of Lemma 5.4.
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Proof. First note that for all v ∈ YN,K,h
s we have

a(û− ûN,K,h
s , v) = 0,

and therefore, for all z ∈ XN,K,h
s

a(ûN,K,h
s − z, v) = a(û− z, v).

Using the continuity 2) in Theorem 3.1, with s+ 2ε instead of s, we obtain

a(ûN,K,h
s − z, v) ≤ e

C2
θ

2ε |û− z|U1
s+2ε

|v|U1
−s−ε

.

From the discrete inf-sup of Lemma 5.3 we have

|û− ûN,K,h
s |U1

s
≤ |û− z|U1

s
+ |ûN,K,h

s − z|U1
s

≤ |û− z|U1
s

+ e
C2

θ
2ε

∞∏
j=K+1

σj(−s− ε) sup
v∈YN,K,h

s \{0}

a(ûN,K,h
s − z, v)
|v|U1

−s−ε

≤ |û− z|U1
s

+ e
C2

θ
2ε e

C2
θ

2ε

∞∏
j=K+1

σj(−s− ε)|û− z|U1
s+2ε

≤

1 + e
C2

θ
ε

∞∏
j=K+1

σj(−s− ε)

 |û− z|U1
s+2ε

which gives (5.8). Now we bound the second term of (5.8). This can be done as
follows: take the polynomial z = ζh

N,K ∈ XN,K,h
s where ζN,K = (Id⊗QN,K

s+2ε)û. Note

that polynomials in ω are in (L2)s+2ε since s + 2ε < λ2θ
1
2 , therefore, ζN,K ∈ Û1

s+2ε is
well defined. We have

|û− ζh
N,K |U1

s+2ε
≤ |û− ζN,K |U1

s+2ε
+ |ζN,K − ζh

N,K |U1
s+2ε

.(5.9)

Apply Theorem 4.4 (see Remark 4.10) with p = 0 and q > 0 to obtain

|û− ζN,K |U1
s+2ε

= |û− ζN,K |U1
0;ρ,s+2ε

≤ max {M1(ρ, 0, q),M2(ρ, 0, q)} |û|U1
q;ρ,s+2ε

.(5.10)

From Lemma 5.4 we have

|ζN,K − ζh
N,K |U1

s+2ε
≤ Ch`−1‖û‖U`

s+2ε
.(5.11)

Inserting (5.10) and (5.11) into (5.9) the lemma follows.

The following result follows from Corollary 4.6.

Theorem 5.6. Consider the weights ρ defined in (4.9). Under the assumptions
of Lemma 5.5 we have for all q > 0 that

|û− ûN,K,h
s |U1

s
≤

C∗(s, ε)
{

max
{ 1
λN+1

1

,
1

λK+1

}q

|û|U1
q;ρ,s+2ε

+ Ĉh`−1‖û‖U`
s+2ε

}
,
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where C∗(s, ε) = 1 + e
C2

θ
ε

∏∞
j=K+1 σj(−s− ε) and Ĉ is the constant of Lemma 5.4.

From Corollary 4.9 we have the following a priori error estimate:

Theorem 5.7. Consider the weights ρ defined in (4.11). Under the assumptions
of lemma 5.5 we have for all q > 0 that

|û− ûN,K,h
s |U1

s
≤

C∗(s, ε)
{

max
{

1
1+(N+1)λ1

, 1
1+λK+1

}q

|û|U1
q;ρ,s+2ε

+ Ĉh`−1‖û‖U`
s+2ε

}
,

where C∗(s, ε) = 1 + e
C2

θ
ε

∏∞
j=K+1 σj(−s− ε) and Ĉ is the constant of Lemma 5.4.

6. The Resulting Linear System. We now analyze the properties of the re-
sulting linear system for the discrete spaces XN,K,h

s ⊂ Û1
s and YN,K,h

s ⊂ Û1
−(s+ε)

defined in (5.1) and (5.2), respectively.

From (5.5), we see that for all functions u ∈ XN,K,h
s and v ∈ YN,K,h

s , i.e., v(x, ω) =
ṽ(x, ω)e(s+

ε
2 )‖ΠKω‖2−θ with ṽ ∈ XN,K,h

s and ΠK defined in (5.3), we have

a(u, v) =
∫

D

κ̂K(x)
∫
S′
e

PK
j=1 aj(x)〈ω,ηj〉∇u(x, ω)∇ṽ(x, ω)e(s+

ε
2 )‖ΠKω‖2−θdµ(ω)dx,(6.1)

where

κ̂K(x) := e
1
2 (‖φx‖2H−

PK
j=1 aj(x)2).(6.2)

For every u ∈ XN,K,h
s we introduce the function u : D × RK → R such that

u(x, 〈ω, η1〉, . . . , 〈ω, ηj〉) := u(x, ω), for all ω ∈ S ′,

and denote XN,K,h
s := {u : u ∈ XN,K,h

s }. We also introduce

κK(x, y) := e
PK

j=1 aj(x)yj , DK := diag(λ−θ
1 , . . . , λ−θ

K )

and define the bilinear form a by

a(u, ṽ) := a(u, v), for all u, ṽ ∈ XN,K,h
s .(6.3)

Here v(x, ω) = ṽ(x, ω)e(s+
ε
2 )‖ΠKω‖2−θ . With this notation and using (6.1) we have

a(u, ṽ) =
∫

D

κ̂K(x)
∫

RK

κK(x, y)∇xu(x, y)∇xṽ(x, y)e(s+
ε
2 )|DKy|2dµK(y)dx,(6.4)

where µK denotes the standard Gaussian measure in RK .

To simplify notation we set σ̌ = σ(s + ε
2 ), i.e., let σ̌j = σj(s + ε

2 ), j = 1, 2, . . . .
Let {ψ`}L

`=1 be the standard hat basis functions for Xh
0 (D), then, the collection{

Ψ`,σ̌2,α : Ψ`,σ̌2,α(x, y) = ψ`(x)H σ̌2,α(y), ` = 1, . . . , L; α ∈ J N,K
}

is a basis of XN,K,h
s .
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Denote by {A(`,α),(m,β)} the matrix associated to the bilinear form a defined in
(6.3). From (6.4) we have

A(`,α),(m,β) =

=
∫

D

κ̂K(x)
∫

RK

κK(x, y)Ψ`,σ̌2,α(x, y)Ψm,σ̌2,β(x, y)e(s+
ε
2 )|DKy|2dµK(y)dx(6.5)

=
∫

D

κ̂K(x)κ?
K,α,β(x)∇ψ`(x)∇ψk(x)dx,(6.6)

where we have defined

κ?
K,α,β(x) :=

∫
RK

κK(x, y)H σ̌2,α(y)H σ̌2,β(y)e(s+
ε
2 )|DKy|2dµK(y).(6.7)

Now we compute the integral in (6.7). From the definition of the σ̌-Fourier-Hermite
polynomials we see that

κ?
K,α,β(x) =

K∏
j=1

∫
R
hσ̌2

j ,αj
(yj)hσ̌2

j ,βj
(yj)eaj(x)yje(s+

ε
2 )λ−2θ

j y2
j dµ1

=
K∏

j=1

σ̌j

∫
R
hσ̌2

j ,αj
(yj)hσ̌2

j ,βj
(yj)eaj(x)yj

e
− 1

2σ̌2
j

y2
j

√
2πσ̌j

dyj

=
K∏

j=1

σ̌jκ
?(x;αj , βj),(6.8)

where

κ?(x;αj , βj) :=
∫

R
hσ̌2

j ,αj
(yj)hσ̌2

j ,βj
(yj)eaj(x)yj

e
− 1

2σ̌2
j

y2
j

√
2πσ̌j

dyj .

From the generating function identity (4.2) one can easily deduce

hσ̌2
j ,αj

(t)hσ̌2
j ,βj

(t) =
min{αj ,βj}∑

m=0

m!
(
αj

m

)(
βj

m

)
σ̌2m

j hσ̌2
j ,αj+βj−2m(t)

and

eaj(x)t = e
1
2 σ̌2

j aj(x)2
∞∑

m=0

1
m!
aj(x)mhσ̌2

j ,m(t).

Then, we have

κ?(x;αj , βj) = e
1
2 σ̌2

j aj(x)2
min{αj ,βj}∑

m=0

m!
(
αj

m

)(
βj

m

)
aj(x)αj+βj−2mσ̌

2(αj+βj−m)
j .(6.9)

Summarizing, the A(`,α),(m,β) defined in (6.5) can be easily computed using (6.6),
(6.2) and (6.7). This computation is reduced to the finite product in (6.8) where each
factor is given by (6.9). For the proper computation of ‖φx‖H , see Section 7.2.
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Denote by {g`,α} the load vector. Each entry is given by

g`,α =
∫

D×S′
f(x, ω)ψ`(x)

d(α)∏
j=1

hσ̌2
j ,αj

(〈ω, ηj〉)e(s+
ε
2 )‖ΠKω‖2−θdxdµ(ω).

The integral with respect the ω variable is exactly the computation of the α−th
coefficient of the expansion of f(x, ·) in terms of σ(s+ ε

2 )-Fourier-Hermite polynomials.
In particular if f does not depend on ω we have g`,α = 0 when α 6= 0.

Remark 6.1. It is easy to see that the matrix {A(`,α),(m,β)} associated to the
bilinear form a is symmetric and positive definite. It is a square block matrix of
dimension

(
K+N

K

)
where each block (α,β) is the usual finite element matrix of the

discretization of a second order equation with coefficient given by κ̂(x)κ?
K(x;α,β)

where bK is defined in (6.2) and κ?
K is defined in (6.7) and computed using (6.8)

and (6.9). This corresponds to a discretization of a coupled system of second order
equations. The resulting system is a very large sparse linear system of total dimension
being

(
K+N

K

)
times the dimension of a deterministic finite element problem. In the

numerical experiment of Section 8 we solve this system using a preconditioned con-
jugate gradient method with a block diagonal preconditioner. More efficient ways of
solving this huge linear system will be object of study in a future work.

Remark 6.2. Recall that we have set σ̌j = σj(s + ε
2 ). The coefficients obtained

from solving the resulting linear system are the coefficients of the numerical solution in
terms of σ(s+ ε

2 )-Fourier-Hermite polynomials basis. We can represent this solution
in terms of the σ(s)-Fourier-Hermite polynomials basis using the following formula
easily deduced from the generating function identity (4.2):

Ĥσ̌2,α(ω) =
∑

γ≤α/2

α!
γ!(α− 2γ)!

(
σ2 − σ̌2

2

)γ

Ĥσ2,α−2γ(ω),

where

Ĥσ2,α(ω) :=
d(α)∏
j=1

hσ2
j ,αj

(〈ω, ηj〉); ω ∈ S ′.

Note that this formula can also be used to deduce the expansion of the right-hand side
term f in σ(s+ ε

2 )-Fourier-Hermite polynomials when f is given in terms of another
Fourier-Hermite polynomials basis.

7. On the Choice of H, A and φx. Several choices for the Hilbert space H
and the operator A are possible. We mention three possible choices of (H,A, φx). We
will first review some known results.

7.1. Known Results.

7.1.1. The Schwartz Space and the Operator − d2

dx2 + x2 + 1. Consider the
densely defined differential operator

A1 = − d2

dx2
+ x2 + 1.(7.1)

We have an L2(R) orthonormal system of eigenfunctions of A1 which are the Hermite
functions

en(x) :=
1√√

π(n− 1)!
e−

1
2 x2

hn−1(
√

2x), n = 1, 2, . . . ,(7.2)
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where hn is the nth degree Hermite polynomial. We have A1en = (2n)en, n = 1, 2, . . . .

The family of tensors products

en := e(n1,...,nd) := en1 ⊗ . . .⊗ end
, n = (n1, . . . , nd) ∈ Nd

forms an orthonormal basis for L2(Rd). Let n(j) = (n(j)
1 , . . . , n

(j)
d ) be the j-th multi-

index in some fixed ordering of all d-dimensional multi-indices n = (n1, . . . , nd) ∈ Nd.
We assume this ordering has the property that

i < j =⇒
d∏

k=1

(2n(i)
k ) ≤

d∏
k=1

(2n(j)
k ).(7.3)

Now define

ηj := en(j) = e
n

(j)
1
⊗ . . .⊗ e

n
(j)
d

, j = 1, 2, . . . .(7.4)

We have A⊗d
1 ηj = λjηj where

λj :=
d∏

k=1

(2n(j)
k ), j = 1, 2, . . . .(7.5)

Note that n(1) = (1, . . . , 1) ∈ Rd, λ1 = 2d and that 1 < λ1 ≤ λ2 ≤ . . . .

For the next result, see Holden et al. [22, Lemma 2.3.3].
Lemma 7.1 (Zhang). With d(α) defined in (4.1) we have that

∑
α∈J

d(α)∏
k=1

(2k)−qαk <∞

if and only if q > 1.
Corollary 7.2. For {λj}∞j=1 defined in (7.5) we have that

∑∞
j=1 λ

−q
j < ∞ for

all q > 1.
Proof. For α ∈ J define NZ(α) := #{j : αj 6= 0}. Observe that

∞∑
j=1

λ−q
j =

∑
n∈Nd

d∏
k=1

(2nk)−q =
∑

NZ(α)≤d

d(α)∏
k=1

(2k)−qαk <
∑
α∈J

d(α)∏
k=1

(2k)−qαk <∞,

where d(α) is defined in (4.1) and d is the dimension of Rd.

7.1.2. The covariance integral operator on L2(D) and the Mercer’s the-
orem. Consider the covariance operator Q : L2(D) → L2(D) associated to W (x, ω),
i.e., the integral operator with kernel the symmetric positive function C(x, x̂) =
EµW (x, ·)W (x̂, ·). Let us assume that this kernel is square integrable and symmetric.
Then the operator Q is a compact operator in L2(D) and let {µj}∞j=1 and {ζj}∞j=1

denote its eigenvalues and eigenfunctions. We have
∑

j µ
2
j <∞.

We recall that from Mercer’s theorem (see Riesz and Sz.-Nagy [33]) we can write

C(x, x̂) =
∞∑

j=1

µjζj(x)ζj(x̂).(7.6)

For results on the decay of the eigenvalues, see Frauenfelder et al. [13, Proposition
2.3, 2.5 and 2.6].
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7.2. Three modeling choices. With the notation and review of Section 7.1 we
now mention three modeling choices.

7.2.1. First choice. The first modeling choice we propose is:
1) The Hilbert space H = L2(Rd).
2) The operator A = A⊗d

1 with the sequence {λj}∞j=1 in (7.5) and the eigenfunc-
tions {ηj}∞j=1 in (7.4).

3) For all x ∈ D we define φx(x̂) := φ(x̂− x), x̂ ∈ Rd, where φ ∈ L2(Rd).
From Corollary 7.2 we can take any θ > 1

2 (independent of the dimension d). We
have that ‖φx‖H = ‖φ(· − x)‖L2(Rd) = ‖φ‖L2(Rd). In order to verify the assumption
of Theorem 3.1 it is enough to take φ ∈ Sθ. The functions aj defined in (5.6) are
aj(x) = (φ(· − x), ηj) and in general can be computed using numerical integration.
Typically, we only need to compute aj(x) for some chosen quadrature points on each
triangle of a triangulation of D. In explicit applications the test function or window
φ can be chosen such that the diameter of the support of φ is the maximal distance
within which Wφ(x1, ·) and Wφ(x2, ·) are correlated; see Holden et al. [22]. We also
recall that the map x 7→ φx may be chosen to match covariance function; see Roman
and Sarkis [34].

It is easy to see that this choice implies that S = S(Rd) is the Schwartz space
of rapidly decreasing functions and then S ′ = S ′(Rd) is the space of tempered distri-
butions. The triplet (S ′(Rd),B(S ′(Rd)), µ) is called 1-dimensional white noise prob-
ability space. The smoothed white noise of Definition 2.3 is called the 1-dimensional
d-parameter smoothed white noise. In Section 8 we present numerical experiments
using this setup for the case d = 1.

7.2.2. Second choice. The second modeling choice we propose is:
1) The Hilbert space H = L2(Rd).
2) The operator A = A⊗d

1 with the sequence {λj}∞j=1 in (7.5) and the eigenfunc-
tions {ηj}∞j=1 in (7.4).

3) For all x ∈ D and x̂ ∈ Rd, φx(x̂) =
∑∞

j=1 aj(x)ηj(x̂) and aj(x) := √
µjζj(x),

where {µj}∞j=1 and {ζj}∞j=1 are the eigenvalues and eigenfunctions of the
operator Q introduced in Section 7.1.2.

From (7.6) we see that C(x, x̂) =
∑∞

j=1 aj(x)aj(x̂) = (φx, φx̂)H , x, x̂ ∈ D. Note
also that ‖φx‖2H = ‖φx‖2L2(Rd) = C(x, x) and

‖φx‖2θ =
∞∑

j=1

λ2θ
j µjζj(x)2, for all x ∈ D.

The assumption φx ∈ Sθ for all x ∈ D must be checked in each case and the conver-
gence of the series depends on the decay of the eigenvalues and on the L∞(D)-norm of
the eigenfunctions which in turn depend on the regularity of the function C(x, x̂); see
Frauenfelder et al. [13, Proposition 2.3, 2.5 and 2.6]. For the numerical computation
of the eigenfunctions and eigenvalues of Q, see Todor [38] and also Frauenfelder et al.
[13]. We also note that φx defined in 3) above can be used with any choice of Hilbert
space H and operator A. A possible choice is the one described next and which can
be viewed as a generalization of the Karhúnen-Loève expansion.

7.2.3. Third choice. The third modeling choice we propose is:
1) The Hilbert space H = L2(D).
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2) A = Q−1 with λj := 1
µj

, j = 1, 2, . . . , and ηj := ζj , j = 1, 2, . . . , where the
µj and ζj are the eigenvalues and eigenfunctions of the integral operator Q.

3) For all x, x̂ ∈ D, φx(x̂) =
∑∞

j=1 aj(x)ηj(x̂) where aj(x) := √
µjζj(x).

According to Section 7.1.2 we can take any θ ≥ 1. In this case the expansion of
W (x, ω) in terms of σ(s)-Fourier-Hermite polynomials coincides with its Karhúnen-
Loève expansion for the case s = 0. We mention that in order to make calculations,
such as writing the expansion of the right-hand side f(x, ω) in terms of σ(s)-Fourier-
Hermite polynomials, we need to know the eigenfunctions of Q. We have ‖φx‖2H =
‖φx‖2L2(D) = C(x, x) and the assumption φx ∈ Sθ for all x ∈ D must be checked for
each particular problem. Observe also that ‖φx‖2θ =

∑∞
j=1

1

µ2θ−1
j

ζj(x)2 for all x ∈ D.

8. Numerical Experiments. In this section we present numerical experiments
with D = [0, 1], H = L2(R), and A = A1 defined in (7.1) and we take θ = 1. In this
case the eigenfunction of A correspond to the Hermite functions

ηj(x) =
1√√

π(j − 1)!
e−

1
2 x2

hj−1(
√

2x), j = 1, 2, . . . ,

where hj is the jth degree Hermite polynomial. Also, since λ2θ
1 = 2 for θ = 1, Lemma

2.2 becomes

∫
S′
es‖ω‖2−θdµ(ω) =



( √
2

π
√
−s

sinh
(

π
√
−s√
2

))− 1
2
, s < 0

1, s = 0( √
2

π
√

s
sin
(

π
√

s√
2

))− 1
2
, 0 < s < 2

+∞, s ≥ 2,

therefore, we can construct the general σ(s)-Fourier-Hermite polynomials for s < 2;
see Lemma 4.2. We consider the modeling choice described in Section 7.2.1, i.e.,
φx(·) = φ(· − x). To avoid numerical integration errors in the computation of the
functions aj(x) in (5.6), we choose the function φ as

φ(x) = e−
1
2 x2

(8.1)

since explicit calculations can be performed, and therefore, the norm of the discrete
errors can be calculated.

In order to compute the discretization errors, let û and f be given by

û(x, ω) =
x(1− x)

2
e−〈ω,φx〉(8.2)

and

f(x, ω) = 1− 1− 2x
2

〈ω, φ′x〉+
x(1− x)

2
〈ω, φ′′x〉(8.3)

= 1 +
∞∑

j=0

(
x(1− x)

2
a′j(x)

)′
〈ω, ηj〉.(8.4)

It is easy to see that û in (8.2) is the exact solution of the problem (3.1) or (3.11)
with right-hand side f given by (8.3).

It is easy to see, by using the generating function identity (4.2) and direct calcu-
lations, that the following results hold:

Lemma 8.1. For φ, û and f defined in (8.1), (8.2) and (8.3), respectively, we
have
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1) ‖φ‖2L2(R) =
√
π and ‖φ′‖2L2(R) =

√
π

2 .

2) aj(x) := (φx, ηj) =
√ √

π
2j−1(j−1)!x

j−1e−
1
4 x2

.
3) The process f belongs to U−1

s for all s < 2.
4) û(x, ω) =

∑
α∈J ûα(x)Hα(ω) ∈ Û1

s for all s < 2 where

ûα(x) = e
1
2‖φ‖

2
L2(R)

(−1)|α|x(1− x)aα(x)
α!

with

aα(x) =
d(α)∏
j=1

aj(x)αj =

d(α)∏
j=1

√
cj

x
Pd(α)

j=1 (j−1)αje−
1
4 |α|x

2
(8.5)

where cj =
√

π
2j−1(j−1)! for j = 1, . . . .

5) û(x, ω) =
∑

α∈J uα,s(x)Hσ(s)2,α where

ûα,s(x) = e
1
2

P∞
j=1 σj(s)

2aj(x)2 (−1)|α|x(1− x)aα(x)
α!

with aα defined as before.

6) |û|2U1
0

=
(

1
12 +

‖φ′‖2
L2(R)

120

)
e
2‖φ‖2

L2(R) .

7) C(x, x̂) = Eµ〈·, φx〉〈·, φx̂〉 =
√
πe−

1
4 (x−x̂)2 .

Remark 8.2. The norm ‖û‖
U1

q;ρ,s
is finite if we use the weight of Example 4.5

with ν = 0. Using (8.5) and the approximation (j − 1)! ∼
√

2π(j − 1)( j−1
e )j−1 we

can see that there are constants C and C1 such that

‖aα‖2H1
0 (0,1) ≤ C

d(α)∏
i=1

cj ≤ C1

d(α)∏
i=1

(
e√

2(j − 1)2j−1(j − 1)j−1

)αj

and then, we obtain

∑
α∈J

α!λ2qα
‖aα‖2H1

0 (0,1)

(α!)2
≤ C1

∑
α∈J

d(α)∏
i=1

1
αj !

(
22qej2q√

2(j − 1)2j−1(j − 1)j−1

)αj

= C1 exp

e22q

√
2

∞∑
j=1

j2q

2j−1
√
j − 1(j − 1)j−1

 <∞.

The sum above is the leading term in the computation of the norm ‖û‖
U1

q;ρ,s
with the

weight ρ defined in Example 4.5, ν = 0 and using the expansion in 5) of Lemma 8.1
above.

Throughout this section, we solve the discrete problem (5.4) with s = 0 to obtain

ûN,K,h(x, ω) =
∑

α∈J N,K

ûN,K,h
α (x)Hα(ω).

In Table 8.1 we show the seminorm error |û− ûN,K,h|U1
0

for ε = 1/2 and h = 1/32.
Note that the condition s+ 2ε < λ2θ

1 /2 of Lemma 5.5 is satisfied. We recall that this
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seminorm involves the computation of |ûα − ûN,K,h
α |2H1(D) for all α ∈ J N,K , and the

computation of |ûα|2H1(D) for all α ∈ J \J N,K . In this table we see clearly the decay
of the errors with respect to N and K.

We now analyze further the previous decay. Define the a-energy norm

|û− ûN,K,h|a := a(û− ûN,K,h, û− ûN,K,h)
1
2 .

In Table 8.2, we present errors in the seminorm | · |U1
0

and in the a-energy norm | · |a.
Here h = 1/16, 1/32, ε = 1/2 and K = N = k for several values of k. The second
row of Table 8.2 shows the number of Wiener-Chaos terms. The third row shows the
U1

0− interpolation error and the rate of convergence (in parenthesis) when we truncate
the degree and the length of the polynomials. We can see a faster convergence rate
when we increase k. This is somehow expected since q can be taken as large as we
wish in Theorem 5.6; see Remark 8.2. The fourth row shows the error between the
discrete and the exact solutions in the U1

0 seminorm for h = 1/16 and a line below for
h = 1/32; we also show the rate of convergence (in parenthesis) for h = 1/16. The
decay now is not as fast as in the third row. This deterioration is due to the large
value of eCθ/ε that appears in the a priori error estimate in Lemma 5.5. The larger
this constant is, the larger k must be for observing a fast decay behavior. In order
to minimize the effect of this constant, in the fifth row we measure the error in the
a-energy norm and we observe the fast decay. In Table 8.3, we test the case ε = 0.
This case shows clearly a slower decay in the a-energy norm for higher values of k than
for the case ε = 1

2 . This explains the necessity of using ε > 0 in order to guarantee the
ellipticity of the continuous problem. We note the case ε = 1/2 shows a slightly better
approximation, also in the U1

0 seminorm, than ε = 0 for small values of k. Finally, in
Figure 8.1 we show the approximations of the mean value of the solution for different
values of ε. We observe that for larger ε values we obtain a better approximation of
the mean value of the solution. Here we note, however, that when ε increase above
ε = 1

2 the error in the | · |U1
0

norm deteriorates. Recall that the error in the | · |U1
0

norm
includes the H1

0 (0, 1) error on the approximation of all coefficients ûα, α ∈ J .

K ↓ N → 1 2 3 4 5 6
1 1.6153 1.4358 1.2512 1.1108 1.0293 0.9918
2 1.5970 1.3575 1.0672 0.7948 0.5896 0.4670
3 1.5942 1.3446 1.0340 0.7299 0.4814 0.3084
4 1.5938 1.3429 1.0296 0.7214 0.4669 0.2849
5 1.5938 1.3426 1.0291 0.7206 0.4659 *

Table 8.1
Total error in the seminorm | · |U1

0
. Here h = 1/32, ε = 1

2
.

9. Conclusions and Final Comments. We consider the white noise calcu-
lus constructed from a Hilbert space and an operator in order to describe the white
noise probability space and to study the pressure equation with stochastic coeffi-
cients and forcing terms. By introducing appropriate spaces for the solution and test
functions for the weak formulation of the problem, we prove the continuous inf-sup
condition and establish existence and uniqueness of the solution of the problem. Fi-
nite dimensional discretizations are introduced for this problem which are based on
finite element methods, truncated Wiener-Chaos expansions and exponential stochas-
tic functions. By introducing appropriate discrete spaces and norms (Sobolev for the



WIENER-CHAOS FINITE ELEMENTS 29

k 0 1 2 3 4 5`K+N
K

´
1 2 6 20 70 252

|û − QN,K û|U1
0

1.6284 1.3761 0.9767 0.6162 0.3570 0.1920

(1.18) (1.41) (1.59) (1.73) (1.86)

|û − ûN,K,h|U1
0

1.7292 1.6157 1.3590 1.0375 0.7281 0.4626

1.7291 1.6153 1.3575 1.0340 0.7214 0.4659
(1.07) (1.18) (1.31) (1.43) (1.55)

|û − ûN,K,h|a 0.4319 0.3691 0.2598 0.1573 0.0836 0.0454
0.4318 0.3688 0.2589 0.1552 0.0790 0.0279

(1.17) (1.42) (1.67) (1.96) (2.83)

Table 8.2
Errors for K = N = k, h = 1/16, 1/32 and ε = 1

2
. For h = 1/32 we have added in parenthesis

the reduction factor, when passing to next value of k, corresponding to the projection and finite
element error in the seminorm | · |U1

0
and the finite element error in the a-energy norm.

k 0 1 2 3 4 5

|û − ûN,K,h|U1
0

1.7292 1.6072 1.3454 1.0249 0.7202 0.4746

1.7291 1.6067 1.3439 1.0213 0.7133 0.4626
(1.08) (1.2) (1.33) (1.43) (1.54)

|û − ûN,K,h|a 0.4319 0.3661 0.2611 0.1659 0.0971 0.0533
0.4318 0.3658 0.2602 0.1639 0.0932 0.0454

(1.18) (1.41) (1.59) (1.76) (2.05)

Table 8.3
Errors for K = N = k, h = 1/16, 1/32 and ε = 0. For h = 1/32 we have added in parenthesis

the reduction factor, when passing to next value of k, corresponding to the projection and finite
element error in the seminorm | · |U1

0
and the finite element error in the a-energy norm.

spatial component and Hida-Kuo-Kondratiev-Streit type for the stochastic compo-
nents) we establish existence and uniqueness of the solution and provide a priori error
estimates. Finally, we choose a particular model to numerically validate the proposed
discretizations.
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[3] I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of
stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800–
825.

[4] F. E. Benth and J. Gjerde, Convergence rates for finite element approximations of stochastic
partial differential equations, Stochastics Stochastics Rep., 63 (1998), pp. 313–326.

[5] F. E. Benth and T. G. Theting, Some regularity results for the stochastic pressure equation
of Wick-type, Stochastic Anal. Appl., 20 (2002), pp. 1191–1223.
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