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Abstract. We introduce a family of algebraic curves over Fq2n (for an odd n) and show that

they are maximal. When n = 3, our curve coincides with the Fq6 -maximal curve that has

been found by Giulietti and Korchmáros recently. Their curve (i.e., the case n = 3) is the first

example of a maximal curve proven not to be covered by the Hermitian curve.

1. Introduction

Consider a nonsingular, geometrically irreducible projective curve (a curve for short) X over
the finite field F` of cardinality `. We say that X is F`-maximal if its number of rational points
over F` reaches the Hasse-Weil upper bound

|X (F`)| = `+ 1 + 2g(X )
√
` ,

where g(X ) is the genus of X . Here the cardinality ` of the finite field will always be a square.
A curve Y is said to be a cover of X over F` if there exists a surjective map ϕ : Y → X ,

where ϕ and both curves are defined over F`. By Serre’s result (see [7]), a curve covered by
an F`-maximal curve is also F`-maximal. There have been extensive studies on maximal curves
(see for instance [2, 3, 4]) and most of the known examples have been shown to be subcovers of
the Hermitian curve H, which is defined over F` by

H : Y
√

` + Y = X1+
√

`.

This led to the question whether every maximal curve is a subcover of the Hermitian curve
or not. In [5], the first and third author illustrated a maximal curve over F272 which is not a
Galois subcover of the Hermitian curve over the same finite field. Very recently, Giulietti and
Korchmáros introduced a new example of a maximal curve and they showed that their curve is
not covered by the Hermitian curve (see [6]). Their curve is defined over F`, where ` = q6 for
some prime power q (cf. Equation (2.2)).

In the present article we introduce a family of maximal curves over F` with ` = q2n for a
prime power q and an odd integer n ≥ 3 (cf. Equation (2.1)). The member with n = 3 of
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2 MAXIMAL CURVES

this family coincides with the curve of Giulietti and Korchmáros (see Remark 2.1). Our proof
for maximality is quite different from theirs. While they use results from higher dimensional
algebraic geometry (curves on Hermitian varieties), we give a more elementary proof. The main
ingredients of our proof are some polynomial identities (cf. Lemmas 2.3 and 2.5) and a certain
subcover whose maximality was previously shown by Abdón, Bezerra and Quoos (see [1] and
also [5]). We remark here that if n is odd and n > 3, we do not know whether our curves are
covered by the Hermitian curve or not.

Throughout this article, we denote by q a power of a prime number.

2. A Family of Maximal Curves

Let n be an odd positive integer. We consider the curve Cn over Fq2n defined by the following
equations:

(2.1) Cn :
Xq +X = Y q+1

Y q2 − Y = Z
qn+1
q+1

Remark 2.1. In [6], Giulietti and Korchmáros introduced the first example of a maximal curve
that is not covered by the Hermitian curve. This curve is defined over Fq6 by the equations

(2.2) C′ :
Xq +X = Y q+1

Y h(X) = Z
q3+1
q+1 ,

where

h(X) =
Xq2 −X
Xq +X

.

Note that the first equation of (2.2) implies that

Y q2−1 = (Xq +X)q−1 =
Xq2

+Xq

Xq +X
= h(X) + 1.

Hence, we have

Y q2 − Y = Y (Y q2−1 − 1) = Y h(X).

This shows that C′ = C3, i.e. the Giulietti-Korchmáros curve is a special case of the curves
defined by (2.1).

Note that the first equation in (2.1) defines a maximal curve over Fq2n since it is the equation
of the Hermitian curve over Fq2 and n is odd. The curve defined by the second equation, on the
other hand, was shown to be maximal for n = 3 in [5]. Recently, Abdón et al. noticed that this
equation defines a maximal curve over Fq2n for any odd n (see [1]). So, Cn is a fibre product of
two maximal curves over Fq2n and our main result in this article will be that Cn itself is maximal
over Fq2n . For this purpose, we first compute the genus of Cn.

In the following, P1 denotes the projective line.
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Proposition 2.2. Consider the covering of curves Cn −→ Xn −→ P1 over Fq2n, where Cn is
defined as in (2.1) and Xn is defined by the second equation in (2.1). Then we have

g(Xn) =
(q − 1)(qn − q)

2
,

g(Cn) =
(q − 1)(qn+1 + qn − q2)

2
.

Proof. Set the coordinates on the three curves as (X,Y, Z), (Y,Z) and Y respectively so that
Xn is viewed as a Kummer cover of P1 and Cn is viewed as an Artin-Schreier cover of Xn. The
only ramified points in Xn −→ P1 are the points Y ∈ Fq2 and the pole of Y . All of these points
are totally ramified (cf. [8, Proposition III.7.3]). Hence by Riemann-Hurwitz formula, we have

2g(Xn)− 2 = −2
qn + 1
q + 1

+ (q2 + 1)
(
qn + 1
q + 1

− 1
)
.

A simple manipulation yields the genus formula for Xn.
In the covering Cn −→ Xn, the only ramification occurs at the common pole P∞ of Y and Z.

We have

mP∞ := −(q + 1)vP∞(Y ) = (q + 1)
(
qn + 1
q + 1

)
= qn + 1, (cf. [8, Proposition III.7.10]).

Hence the different exponent at this point is (q − 1)(qn + 2) and we obtain

2g(Cn)− 2 = ((q − 1)(qn − q)− 2)q + (q − 1)(qn + 2).

From the last equation the result follows easily. �

In order to compute the number of rational points on Cn, we will need some polynomial
identities.

Lemma 2.3. Let n = 2k + 1 ≥ 1 be an odd positive integer and S := Y q2 − Y ∈ F[Y ], where
char F = p and q is a power of p. Then we have the following:

k∑
i=1

Sqn+q2i
= Y qn+2+qn+1 − Y qn+2+q2 − Y qn+1+qn

+ Y qn+q2

k∑
i=0

S1+q2i+1
= Y qn+2+q2 − Y qn+2+1 − Y q2+q + Y q+1

Proof. We prove both equations by induction. For n = 1, both identities hold trivially. Assume
the validity of the equations for n− 2 = 2(k − 1) + 1. For the first equation we have

k∑
i=1

Sqn+q2i
= Sqn+q2

+
(
Sqn−2+q2

+ · · ·+ Sqn−2+qn−3
)q2

=
(
Y qn+2+q4 − Y qn+2+q2 − Y qn+q4

+ Y qn+q2
)

+(
Y qn+qn−1 − Y qn+q2 − Y qn−1+qn−2

+ Y qn−2+q2
)q2

(by induction)

= Y qn+2+qn+1 − Y qn+2+q2 − Y qn+1+qn
+ Y qn+q2

.
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Similarly, we have the following for the second identity:

k∑
i=0

S1+q2i+1
= S1+qn

+
(
S1+qn−2

+ · · ·+ S1+q
)

=
(
Y qn+2+q2 − Y qn+2+1 − Y qn+q2

+ Y qn+1
)

+(
Y qn+q2 − Y qn+1 − Y q2+q + Y q+1

)
(by induction)

= Y qn+2+q2 − Y qn+2+1 − Y q2+q + Y q+1.

�

We state the following simple observation without a proof.

Lemma 2.4. If i, j are integers with i 6≡ j mod 2, then (q + 1) divides (qi + qj).

In the following, we obtain another nontrivial polynomial identity which plays a key role in
showing that the curve Cn is maximal.

Lemma 2.5. Let n > 1 be an odd integer of the form n = 3m + r for some r ∈ {0, 1, 2} and
m ≥ 1. Let q be a power of a prime p and define the following polynomials in F[Y ], where
char F = p:

T := Y q+1 S := Y q2 − Y Tn := T
qn+q2

q+1 − T q + T

Bn := T qn−1 − T qn−2
+ · · · − T q + T Qn :=

m−1∑
j=0

(−1)r+j
(
Sq+1

)qr+3j

Then, we have

(2.3) Bn −Qn − Tn = Pn,

where Pn is a polynomial in F[Sq+1] with coefficients in {0, 1,−1}.

Proof. Let U := T
q3+1
q+1 and note that Sq+1 = T q2 − T q + T − U . The proof will be given by

induction on n. We start with the initial values 3, 5, 7 for each value of n modulo 3.
(n = 3) In this case B3 − Sq+1 − T3 = −Sq+1.
(n = 5) We have

B5 − (Sq+1)q2 − T5 = U q2 − T
q5+q2

q+1

= Y q5+q2 − Y q5+q2

= 0.

(n = 7) We have

B7 − (Sq+1)q4
+ (Sq+1)q − T7 = U q4 − U q − T

q7+q2

q+1 + T q

= Y q7+q4 − Y q7+q2 − Y q4+q + Y q2+q.
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We claim that the last polynomial expression, P7(Y ), can be written as a polynomial in Sq+1.
Note that

P7(Y ) =
(
Y q2 − Y

)q2 (
Y q6 − Y

)q

= Sq2
(
Sq4

+ Sq2
+ S

)q

= Sq2−1
(
Sq5+1 + Sq3+1 + Sq+1

)
,

and the last expression is a polynomial in Sq+1. Hence, (2.3) also holds in this case.
Now, assume the validity of Equation (2.3) for all odd integers less than n and consider the

differences

(2.4) Bn −Qn − Tn =


U qn−3 − · · · − U q3

+ U − T
qn+q2

q+1 + T q − T , if n ≡ 0 mod 3

U qn−3 − · · ·+ U q4 − U q − T
qn+q2

q+1 + T q , if n ≡ 1 mod 3

U qn−3 − · · · − U q5
+ U q2 − T

qn+q2

q+1 , if n ≡ 2 mod 3

Note that the preceding odd integer with the same residue modulo 3 as n is n− 6. By induction
hypothesis, we have that

Bn−6 −Qn−6 − Tn−6 = Pn−6

is a polynomial in Sq+1. We also have:

(2.5) Pn−6 =


U qn−9 − · · · − U q3

+ U − T
qn−6+q2

q+1 + T q − T , if n ≡ 0 mod 3

U qn−9 − · · ·+ U q4 − U q − T
qn−6+q2

q+1 + T q , if n ≡ 1 mod 3

U qn−9 − · · · − U q5
+ U q2 − T

qn−6+q2

q+1 , if n ≡ 2 mod 3

Combining (2.4) and (2.5), it is enough to prove that the expression below

An(Y ) = U qn−3 − U qn−6 − T
qn+q2

q+1 + T
qn−6+q2

q+1

= Y qn+qn−3 − Y qn−3+qn−6 − Y qn+q2
+ Y qn−6+q2

is a polynomial in Sq+1 (for any n). We have

An(Y ) = Y qn−3
(
Y qn − Y qn−6

)
− Y q2

(
Y qn − Y qn−6

)
=

(
Y qn − Y qn−6

)(
Y qn−3 − Y q2

)
=

(
Y q6 − Y

)qn−6 (
Y qn−5 − Y

)q2

.
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Note that if n ≡ 0, 1, 2 (mod 3), then n− 5 ≡ 4, 2, 0 (mod 6), respectively. Hence we have

Y qn−5 − Y =

(
Y q6 − Y

)qn−11

+
(
Y q6 − Y

)qn−17

+ · · ·+
(
Y q6 − Y

)q4

+ (Y q4 − Y ) , if n ≡ 0 mod 3(
Y q6 − Y

)qn−11

+
(
Y q6 − Y

)qn−17

+ · · ·+
(
Y q6 − Y

)q2

+ (Y q2 − Y ) , if n ≡ 1 mod 3(
Y q6 − Y

)qn−11

+
(
Y q6 − Y

)qn−17

+ · · ·+
(
Y q6 − Y

)
, if n ≡ 2 mod 3

Since Y q6−Y = Sq4
+Sq2

+S and n is odd, this means that
(
Y qn−5 − Y

)q2

only involves terms

of the form Sqj
with j even. On the other hand(

Y q6 − Y
)qn−6

= Sqn−2
+ Sqn−4

+ Sqn−6
,

i.e. it contains terms Sqi
with i odd. Therefore, the product An(Y ) is a combination of terms

Sqi+qj
, where i 6≡ j mod 2. Hence, An(Y ) is a polynomial in Sq+1 by Lemma 2.4. �

We are now ready to prove the main result of this article.

Theorem 2.6. For each odd positive integer n, the curve Cn over Fq2n defined in (2.1) is
maximal.

Proof. Let us consider the coverings Cn −→ Xn −→ P1 as in Proposition 2.2. For Cn and Xn to
be maximal, their number of Fq2n-rational points must satisfy the following equalities (by the
genus formulae in Proposition 2.2):

|Xn(Fq2n)| = q2n + 1 + (q − 1)(qn − q)qn = q2n+1 − qn+2 + qn+1 + 1,(2.6)

|Cn(Fq2n)| = q2n + 1 + (q − 1)(qn+1 + qn − q2)qn = q2n+2 − qn+3 + qn+2 + 1.(2.7)

We know the maximality of Xn by the work of Abdón et al. ([1, Theorem 1]); i.e., we know that
(2.6) holds. Hence, for Cn to be maximal we must have

|Cn(Fq2n)| = 1 + q ·
(
|Xn(Fq2n)| − 1

)
,

where q is the degree of the covering Cn −→ Xn. It is clear that the point at infinity on Xn is
totally ramified. So, we will show that every other Fq2n-rational point of Xn splits completely
in Cn.

Note that if (α, β, γ) is an Fq2n-rational point of Cn, then (α+ δ, β, γ) is also an Fq2n-rational
point for any δ ∈ Fq2 ⊂ Fq2n with Trq2/q(δ) = δq + δ = 0. So, we will prove the claim if we can
show:

(2.8) If (α, β, γ) is on Cn with β, γ ∈ Fq2n , then α also lies in Fq2n .

We will think of the polynomials introduced in Lemma 2.5 as functions on (X,Y, Z) =
(α, β, γ). Hence, T = βq+1, S = βq2 − β, Tn = Tn(βq+1), Bn = Bn(βq+1) and Qn = Qn(Sq+1).
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By the first defining equation of Cn, we have

Bqn

n −Bn =
2n−1∑
i=0

(−1)i+1T qi
= Xq2n −X.

Hence

(2.9) X = α ∈ Fq2n ⇐⇒ Bn(βq+1) ∈ Fqn .

Observe that if Y = 0, then Xq +X = 0 and the roots of this equation clearly lie in Fq2 ⊂ Fq2n .
So, we can assume that Y 6= 0. Suppose S = βq2 − β = 0. This means that Y = β ∈ Fq2 and
hence βq+1 ∈ Fq. In this case, solutions X = α of Xq + X = βq+1 lie in Fq2 ⊂ Fq2n , i.e. (2.8)
holds. So, we may only consider S 6= 0 in the rest of the proof.

By Hilbert’s Theorem 90 and the second defining equation of Cn, we have that Y = β is in
Fq2n if and only if

Trq2n/q2(S) = S + Sq2
+ · · ·+ Sq2(n−1)

= 0.

Multiplying both sides of the last equation by Sqn
, we obtain

(2.10) S1+qn
+ Sq2+qn

+ · · ·+ Sq2(n−1)+qn
= 0.

Since Z = γ ∈ Fq2n , we have that its norm γqn+1 = Sq+1 lies in Fqn . Therefore, by Lemma 2.4,
Sqj+1 ∈ Fqn for any odd integer j and we have

Sqn+j+qn
=
(
Sqj+1

)qn

= Sqj+1.

Hence, (2.10) can be written as

0 =
(
Sq2+qn

+ Sq4+qn
+ · · ·+ Sqn−1+qn

)
+
(
S1+q + S1+q3

+ · · ·+ S1+qn
)

= −βqn+2+1 + βqn+2+qn+1 − βqn+1+qn
+ βqn+q2 − βq2+q + βq+1 (by Lemma 2.3)

= −
(
βqn+q2 − βq2+q + βq+1

)qn

+
(
βqn+q2 − βq2+q + βq+1

)
= −Tn(βq+1)qn

+ Tn(βq+1).

We know by Lemma 2.5 that
Bn = Qn + Pn + Tn,

where Qn, Pn are polynomials in Sq+1 ∈ Fqn with coefficients in {0, 1,−1}. We showed above
that Tn(βq+1) ∈ Fqn . Hence Bn(βq+1) ∈ Fqn , which finishes the proof by (2.9). �
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