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Abstract

Small amplitude shocks involving a state with complex characteris-
tic speeds arise in mixed-type systems of two or more conservation laws.
We study such shocks in detail in the generic case, when they appear
near the codimension-1 elliptic boundary. Then we classify all exceptional
codimension-2 states on smooth parts of the elliptic boundary. Asymp-
totic formulae describing shock curves near regular and exceptional states
are derived. The type of singularity at the exceptional point depends on
the second and third derivatives of the flux function. The main applica-
tion is understanding the structure of small amplitude Riemann solutions
where one of the initial states lies in the elliptic region.

Keywords: mixed-type system of conservation laws; shock wave; elliptic
region; Riemann problem; singularity; exceptional point.

1 Introduction

Shock waves are responsible for the mathematical interest of the theory of non-
linear conservation laws. When only strictly hyperbolic states (i.e., all char-
acteristic speeds are real and distinct) are involved and under additional tech-
nical hypotheses, shock waves are usually extremely stable and well behaved,
see e.g. [25]. A number of models studied recently contain elliptic regions, see
[3, 4, 5, 12, 15, 22, 23] and the review in [19]. In these models, some stable shock
waves typically contain points near the boundary of the elliptic region. Hugoniot
curves near regular points of elliptic boundaries were studied in [12] for a specific
system with nonhomogeneous quadratic flux, and in [14] for equations reduced
to normal form. Related Riemann solutions were discussed in [5, 7, 12, 21].

In this work, we study shock curves for systems of m conservation laws in the
neighborhood of the elliptic boundary, which is defined as the surface where two
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characteristic speeds coincide. The local structure of shock waves is described
near regular and exceptional states of the elliptic boundary. Here the exceptional
states are the points on the elliptic boundary where the eigenvector is tangent
to the boundary. Exceptional points typically exist on the boundaries of elliptic
regions, for example, in systems with nonhomogeneous quadratic fluxes. The
structure of shock wave is very special near exceptional points. Note that the
structure of rarefaction waves is also singular near exceptional points, as shown
in [16].

In this paper, the classification of exceptional points according to the local
behavior of shock curves is given. Explicit formulae providing qualitative and
quantitative description of shock curve singularities are derived. These formulae
use eigenvectors and associated vectors of coincident characteristic speeds as
well as the derivatives up to third order of the flux function at the point of the
elliptic boundary. The importance of the third derivative of the flux function
is remarkable at exceptional states. As a result, the quadratic approximation
of the flux function is insufficient for local analysis of shock curves near such
states.

Our method is based on the Liapunov–Schmidt reduction of Rankine–Hugoniot
equation written in a specific (“blow-up”) coordinate system. This coordinate
system is similar to that used for constructing the wave manifold in [13]. The
Lax conditions for shocks are checked by using bifurcation theory of multiple
eigenvalues [24].

The paper is organized as follows. Section 2 contains general information
on shock waves. Section 3 studies shock waves with states near regular points
of the elliptic boundary. In Section 4, a similar analysis is carried out near
exceptional points of the elliptic boundary. Section 5 gives a numerical example
of a Riemann solution with one initial state inside the elliptic region. The paper
ends with a short Discussion.

2 Shock waves in conservation laws

Let us consider a system of m conservation laws in one space dimension x:

∂U

∂t
+

∂F (U)
∂x

= 0, (1)

where U(x, t) ∈ Rm is a vector of conserved quantities, and F ∈ Rm is a flux
function smoothly dependent on U . Let A(U) = ∂F/∂U be the m×m Jacobian
matrix of the flux function F (U). Then the system is (strictly) hyperbolic
at U if all the eigenvalues of the matrix A(U) are real (and distinct). The
elliptic region consists of the points U where the matrix A(U) possesses complex
eigenvalues. In the region of strict hyperbolicity, we list the eigenvalues of A(U)
(characteristic speeds) in increasing order as λ1(U) < λ2(U) < · · · < λm(U).

A shock wave is a discontinuity in a (weak) solution of system (1) at x =
xs(t). It consists of a left state U− = lim

x→xs(t)−0
U(x, t) and a right state U+ =
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lim
x→xs(t)+0

U(x, t); the shock speed is σ = dxs/dt. The left and right states and

the speed of the shock must satisfy the Rankine–Hugoniot condition

F (U+)− F (U−) = σ(U+ − U−), (2)

following from the requirement that the shock is a weak solution of (1) [25]. We
will consider as admissible the shocks satisfying the extended Lax conditions

1-shock : σ < Re λ1(U−), Reλ1(U+) < σ < Re λ2(U+);

...
k-shock : Re λk−1(U−) < σ < Reλk(U−), Re λk(U+) < σ < Reλk+1(U+);

...
m-shock : Re λm−1(U−) < σ < Re λm(U−), Re λm(U+) < σ,

(3)
where the integer k denotes shock family number. For states U± in the hyper-
bolic region (when the characteristic speeds are real), inequalities (3) are the
classical Lax conditions. They are sufficient for stability of small shocks un-
der some additional technical conditions, see e.g. [25]. When at least one of the
states U± lies in the elliptic region (when the characteristic speeds are complex),
inequalities (3) extend the Lax condition for the case of conservation laws with
vanishing diffusion of the form

∂U

∂t
+

∂F (U)
∂x

= ε
∂2U

∂x2
, ε → +0. (4)

Under conditions (3), if a traveling wave in (4) exists for a shock wave with
certain left and right states U±, then the traveling wave generically exists for
shocks under small perturbations of left and right states satisfying (2). Examples
show that inequalities (3) are not sufficient for the stability of the traveling
wave [6, 10]. In this paper, we use extended Lax admissibility conditions in a
formal way without checking stability.

For fixed U−, equation (2) determines a set of curves in state space U+; we
will call them the Hugoniot curve. It is known that, for U− lying in the region
of strict hyperbolicity, there are m Hugoniot curves passing through U−; each
curve is tangent to the eigenvector of the matrix A(U−) at U−.

3 Shock curves near the elliptic boundary

In this paper, we study small-amplitude shocks with states near the boundary of
the elliptic region. Consider a point U0 on the elliptic boundary. In the generic
case, two real eigenvalues (characteristic speeds) λk and λk+1 coincide at U0

forming a 2 × 2 Jordan block [1]. We denote A0 = A(U0) and σ0 = λk(U0) =
λk+1(U0). Then there is a real eigenvector r0 and a generalized eigenvector
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(associated vector) r1 satisfying the Jordan chain equations

A0r0 = σ0r0, A0r1 = σ0r1 + r0. (5)

The generalized eigenvector r1 can be chosen to be orthogonal to r0, so we
assume that

r0 · r0 = 1, r0 · r1 = 0, (6)

where the dot denotes the standard inner product in Rm (generally ‖r1‖ 6= 1).
In addition to the (right) vectors r0, r1, we define the left eigenvector l0 and
generalized eigenvector l1 as (both l0 and l1 are row-vectors)

l0A0 = σ0l0, l1A0 = σ0l1 + l0, (7)

l0r1 = 1, l1r1 = 0. (8)

The normalization conditions (8) define uniquely l0 and l1 for given r0, r1.
Furthermore, these vectors satisfy the relations (see e.g. [24])

l0r0 = 0, l1r0 = l0r1 = 1. (9)

For small shocks near the elliptic boundary, we can write

U− = U0 + u, U+ = U0 + u + ξe, σ = σ0 + ε. (10)

Here u ∈ Rm, ξ ∈ R, and ε ∈ R are small, and the direction vector e ∈ Rm

has unit norm ‖e‖ = 1. Here we use coordinates similar to the coordinates on
the wave manifold introduced in [13]. Note that the coordinates with e and ξ
changed by −e and −ξ are identical. For U− = U+ one has ξ = 0 and arbitrary
e (this is the essence of the “blow-up” procedure used in [13]). As we will see
below, these coordinates facilitate the analysis.

By using (10), the Rankine–Hugoniot conditions (2) can be rewritten as

Φ(ξ, e, ε, u) ≡ F (U0 + u + ξe)− F (U0 + u)
ξ

− (σ0 + ε)e = 0. (11)

It is easy to see that the function Φ(ξ, e, ε, u) is smooth with respect to all
variables. At u = 0 and ξ = ε = 0, equation (11) takes the form

A0e− σ0e = 0, (12)

which implies that e = r0 (the sign of r0 is irrelevant due to the equivalence
(e, ξ) ↔ (−e,−ξ) mentioned above). Hence, we must look for a solution of the
equation Φ(ξ, e, ε, u) = 0 in the neighborhood of the point (0, r0, 0, 0).

3.1 Asymptotic relation for the Hugoniot curve

Let us introduce the vectors n, q ∈ Rm as

n · a ≡ l0d
2F (a, r0), q · a ≡ 1

2
l1d

2F (a, r0) +
1
2

l0d
2F (a, r1). (13)
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Here d2F (a, b) denotes the second-order derivative of the flux function at U0:

d2F (a, b) =
m∑

i,j=1

∂2F

∂Ui∂Uj

∣∣∣
U=U0

aibj , a, b ∈ Rm, (14)

so that

F (U0 + ∆U) = F (U0) + A0∆U +
1
2

d2F (∆U,∆U) + o(‖∆U‖2). (15)

Theorem 1 Assume that at the elliptic boundary point U0 the nondegeneracy
condition

n · r0 6= 0 (16)

is satisfied, then equation (11) has a unique solution ξ(ε, u), e(ε, u) in the neigh-
borhood of (ξ, e, ε, u) = (0, r0, 0, 0). It has the form

ξ(ε, u) = 2
ε2 − n · u

n · r0
+ o(ε2, ‖u‖), (17)

e(ε, u) = r0 + r1ε + euu + o(ε, ‖u‖), (18)

where

euu = G

(
n · u
n · r0

d2F (r0, r0)− d2F (u, r0)
)

, G = (A0 − σ0I + r1r
T
0 )−1. (19)

Proof. Let us consider the Taylor expansion of the function Φ at the point
(ξ, e, ε, u) = (0, r0, 0, 0). As it was shown above, the function Φ vanishes at
(0, r0, 0, 0) (expression (11) is reduced to (12)). Using expression (15) in (11)
yields for the first and second order terms

Φ(ξ, e, ε, u) = 1
2 d2F (r0, r0) ξ + (A0 − σ0I) h− r0 ε + d2F (u, r0)

+ 1
6 d3F (r0, r0, r0) ξ2 + 1

2 d3F (u, r0, r0) ξ + d2F (h, r0) ξ + d2F (u, h)

+ 1
2 d3F (u, u, r0)− hε + · · · = 0,

(20)

where h = e−r0, I is the identity matrix, and d3F (a, b, c) is the third derivative
of the flux function defined in a way analogous to the second derivative in (14).
For small ξ, h, ε and u, equation (11) with ‖e‖ = 1 has a unique solution ξ(ε, u),
e(ε, u) if the m×(m+1) Jacobian matrix

[
1
2d2F (r0, r0), A0 − σ0I

]
has full rank.

Since the left null-space of A0 − σ0I is one-dimensional and it is defined by the
left eigenvector l0, this condition is equivalent to

l0d
2F (r0, r0) = n · r0 6= 0. (21)

This inequality is satisfied by the assumption (16) of the theorem.
Multiplying (20) by l0 from the left, and using (7), (9), (13), we obtain

l0Φ(ξ, e, ε, u) =
n · r0

2
ξ + n · u + o(ξ, ‖h‖, ε, ‖u‖) = 0. (22)
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Hence, we find ξ(ε, u) up to first order terms as

ξ(ε, u) = −2n · u
n · r0

+ o(ε, ‖u‖). (23)

In first order approximation, we have r0 ·h = 0 (recall that e = r0 + h is the
unit norm vector). In order to find h, it is convenient to add (r0 · h)r1 = 0 to
the expression (20). Then, by using (23) and keeping only the first order terms,
we write the equation Φ = 0 as

(A0 − σ0I + r1r
T
0 )h− r0 ε + d2F (u, r0)− n · u

n · r0
d2F (r0, r0) = 0. (24)

The matrix A0−σ0I + r1r
T
0 is nonsingular (r1r

T
0 is the diadic product matrix).

The inverse matrix G = (A0−σ0I+r1r
T
0 )−1 defined in (19) satisfies the relations

Gr0 = r1, Gr1 = r0, l0G = l1, rT
0 G = l0, (25)

which can be verified by using (5)–(9). Then one solves equation (24) in the
form (18), (19).

Now let us evaluate the second derivative of (20) with respect to ε as a
composite function (i.e., with ξ = ξ(ε, u) and e = e(ε, u)). At (ε, u) = (0, 0),
the following equalities hold: ξ = 0, e = r0 and ξε = 0, eε = hε = r1. Thus, we
obtain

Φεε =
1
2

d2F (r0, r0) ξεε + (A0 − σ0I)hεε − 2r1 = 0 (26)

(the subscripts ε denote derivatives). Multiplying by l0 from the left and using
(7), (8), we find ξεε = 4/(n · r0). This provides the coefficient of the ε2 term in
(17). 2

3.2 Singularities of Hugoniot curves

Using expressions (17) and (18) of Theorem 1 in (10), we obtain the following
asymptotic relations for shock states and speed

U− = U0 + u, U+ = U0 + u + 2
ε2 − n · u

n · r0
(r0 + εr1), σ = σ0 + ε. (27)

Here we kept only the essential lowest order terms in the expression for U+.
The term euu is dropped in the parenthesis in (27). As we will see below, the
geometry of the shock curve is described by ε in the interval ε .

√
‖u‖, so

euu ∼ ε2 is a higher order correction term.
The vector n defined in (13) is normal to the elliptic boundary at U0, pointing

into the hyperbolic region, see e.g. [24]. Thus, the nondegeneracy condition (16)
implies that the eigenvector r0 is transversal to the elliptic boundary at U0.

Assuming that u is small and fixed (the left state U− is fixed near the elliptic
boundary), we have three different forms for the Hugoniot curve in U+ state as
shown in Fig. 1. The three cases are distinguished by the sign of the quantity
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Figure 1: Hugoniot curves for fixed left states U− on or near the elliptic bound-
ary. The elliptic region lies below the gray surface.

n · u. If u = 0, then the Hugoniot curve has a cusp at the point U− = U0.
This corresponds to a left state U− lying exactly on the elliptic boundary. The
cusp consists of two curves that are tangent to the eigenvector r0 and lie in the
hyperbolic region. Asymptotically, the Hugoniot curve lies in the plane spanned
by the vectors r0 and r1.

If n · u > 0, then the left state U− = U0 + u belongs to the hyperbolic
region, and the Hugoniot curve forms a loop with self-intersection at U+ = U−.
The self-intersection point corresponds to the shock speeds σ = σ0 ±

√
n · u.

Asymptotically, the elliptic boundary crosses the loop at the middle. This means
that there is a line segment parallel to the eigenvector r0 with one end at U− =
U0 + u and opposite end at U∗

+ = U0 + u− 2 n·u
n·r0

r0 (the point corresponding to
ε = 0), which intersects the elliptic boundary at the middle, see Fig. 1b. At the
point U∗

+, the vector r1 is tangent to the Hugoniot curve. As U− → U0, the loop
of the Hugoniot curve shrinks forming the cusp singularity in Fig. 1a. It is easy
to see from expressions (27) that the angle at the self-intersection point tends
to zero asymptotically as 2‖r1‖

√
n · u. Recall that the tangent vectors to the

Hugoniot curve at the self-intersection point U− = U+ are the eigenvectors of
the matrix A(U−). These two eigenvectors merge as U− approaches the elliptic
boundary. Note that the loop in Fig. 1b was recognized in [14] by using theory
of normal forms.

If n · u < 0, then the left state U− = U0 + u belongs to the elliptic re-
gion, and the Hugoniot curve does not pass through U−, so it does not have
self-intersection points. The whole curve lies in the hyperbolic region. Asymp-
totically, the point U∗

+ of the curve nearest to the elliptic boundary corresponds
to ε = 0. The segment between U− and U∗

+ is parallel to r0 and asymptotically
intersects the elliptic boundary at the middle; it is also orthogonal to the Hugo-
niot curve at U∗

+, see Fig. 1c. We see that, for small shocks involving a state
inside the elliptic region, the other state is always in the hyperbolic region.
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3.3 Admissible shocks near the elliptic boundary

Let us check the Lax conditions (3) for different points of the Hugoniot curve.
In the case when A0 has double eigenvalue σ0 with 2 × 2 Jordan block, the
asymptotic expression for the eigenvalues of the perturbed matrix A0 + B is
given by [24]

λk,k+1 = σ0 ±
√

l0Br0 + o(‖B‖) +
1
2

(l1Br0 + l0Br1) + o(‖B‖). (28)

Hereafter, λk corresponds to the minus sign, and λk+1 corresponds to the plus
sign of the square root. Taking B = A(U) − A0 (so that A0 + B = A(U) =
dF/dU) evaluated at U = U0 + ∆U , we have

B a = d2F (∆U, a) +
1
2

d3F (∆U,∆U, a) + o(‖∆U‖2), a ∈ Rm. (29)

Using the vectors n and q defined in (13), we obtain

λk,k+1(U0 + ∆U) = σ0 ±
√

n ·∆U + o(‖∆U‖) + q ·∆U + o(‖∆U‖). (30)

For U− and U+ given by expressions (27), we find the asymptotic relations

λk,k+1(U−) = σ0 ±
√

n · u, λk,k+1(U+) = σ0 ±
√

2ε2 − n · u. (31)

In these expressions, we kept only the lowest order (square root) terms.
First, consider the left states U− in the hyperbolic region (n · u > 0). If

|ε| >
√

(n · u)/2, then the second square root in (31) is real, so U+ belongs
to the hyperbolic region. Then, by using (31) in (3), we find that the admis-
sible k-shocks correspond to ε < −√n · u, and (k + 1)-shocks correspond to√

(n · u)/2 < ε <
√

n · u. For U+ in the elliptic region (|ε| <
√

(n · u)/2), the
square root term in the second expression in (31) is purely imaginary (the expres-
sion inside the square root is negative). Then Re λk = Reλk+1 = σ0+o(‖u‖1/2),
and we have (k+1)-shocks for ε > o(‖u‖1/2). Thus, right states of (k+1)-shocks
correspond to the segment between the point U− and the opposite point of the
loop U∗

+ in Fig. 1b. Therefore, we found that the shocks satisfying the extended
Lax conditions are given by

k-shock : ε < −√n · u,

(k + 1)-shock : 0 < ε <
√

n · u,
(32)

with the terms of order ‖u‖ neglected. These shocks are represented by thick
segments Sk and Sk+1 in Fig. 1b. If we interchange the left and right states U−
and U+, the other two (thin) segments correspond to admissible shocks.

Now consider the left states U− in the elliptic region (n ·u < 0). In this case
Re λk(U−) = Re λk+1(U−) = σ0 + o(‖u‖1/2), so only k-shocks are possible. By
checking conditions (3), one finds with the accuracy o(‖u‖1/2):

k-shock : ε < 0. (33)
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These shocks are represented by the thick segment Sk in Fig. 1c. If we inter-
change the left and right states U− and U+, the other (thin) segment corresponds
to admissible (k + 1)-shocks.

A similar analysis for the left states U− at the elliptic boundary (u = 0) yields
existence of k-shocks only. These shocks are given by condition (33) (which is
exact), and are represented by the thick segment Sk in Fig. 1a. The other (thin)
segment of the Hugoniot curve in Fig. 1a corresponds to (k+1)-shocks from U+

to U− (with the left and right states interchanged).

4 Exceptional points of elliptic boundary

Let us consider a point of the elliptic boundary U0, where the nondegener-
acy condition (16) is violated, i.e., the eigenvector r0 is tangent to the elliptic
boundary:

n · r0 = 0. (34)

Such a point was called exceptional in [16]. Generically, a set of exceptional
points is a codimension 2 manifold in state space. For example, in models of
petroleum engineering [5, 19], exceptional points typically exist on the bound-
aries of elliptic regions.

Condition (34) implies that we cannot apply the implicit function theorem
for solving the equation Φ(ξ, e, ε, u) = 0 with respect to e and ξ. The standard
way to study solutions of such an equation is provided by singularity theory, see
[11]. It consists of (i) Liapunov–Schmidt reduction of the system Φ(ξ, e, ε, u) = 0
to a single scalar equation g(η, ε, u) = 0 (with a one-to-one correspondence
between the solutions ξ(ε, u), e(ε, u) and η(ε, u)), (ii) analysis of the reduced
scalar equation, and (iii) interpretation of the results in terms of the original
system variables.

In this section, we will use the direction vector e normalized as

(e− r0) · r0 = 0 (35)

instead of the condition ‖e‖ = 1 used above. The reason is that condition (35)
facilitates the Liapunov–Schmidt reduction.

4.1 Liapunov–Schmidt reduction

Theorem 2 For the exceptional point U0 at the elliptic boundary, equation (11)
can be solved for ξ and e in the neighborhood of (ξ, e, ε, u) = (0, r0, 0, 0) in the
form

e(ε, u) = r0 − 1
2 Gd2F (r0, r0)ξ + r1ε−GEd2F (u, r0) + o(ε, ‖u‖), (36)

where ξ(ε, u) is a solution of the scalar equation

α0ξ
2 + α1ξε− ε2 + n · u

+ gξuuξ + 2q · uε + 1
2 guu(u, u) + o(ξ2, ε2, ‖u‖2) = 0

(37)
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with coefficients

α0 = 1
6 l0d

3F (r0, r0, r0)− 1
2 n ·Gd2F (r0, r0), α1 = 1

2 n · r1 + q · r0,

gξuu = 1
2 l0d

3F (u, r0, r0)− 1
2 l0d

2F (u, Gd2F (r0, r0))− l0d
2F (r0, GEd2F (u, r0)),

guu(u, u) = l0d
3F (u, u, r0)− 2l0d

2F (u,GEd2F (u, r0)).
(38)

The matrix G is given in (19), and E the matrix E = I − r1l0.

Proof. Let us introduce the vector y =
(

ξ
h

)
∈ Rm+1, where h = e − r0.

According to (35),
h · r0 = 0. (39)

Then we can write the equation Φ(ξ, e, ε, u) = 0 as Φ(y, ε, u) = 0 (keeping
the same letter is not confusing as the number and type of the arguments is
different). The (m + 1)-dimensional vector y belongs to the m-dimensional
subspace defined by (39); also, y = 0 when ξ = 0 and e = r0. Using (20), we
find the following formulae for the derivatives of Φ(y, ε, u) at (y, ε, u) = (0, 0, 0):

Ldy ≡ Φydy = 1
2 d2F (r0, r0) dξ + (A0 − σ0I) dh,

Φyy(dy1, dy2) = d2F (dh2, r0)dξ1 + d2F (dh1, r0)dξ2 + 1
3 d3F (r0, r0, r0) dξ1dξ2,

Φudu = d2F (du, r0), Φuu(du, du) = d3F (du, du, r0),

Φyu(dy, du) = 1
2 d3F (du, r0, r0)dξ + d2F (du, dh),

Φε = −r0, Φyεdy = −dh, Φuε = 0, Φεε = 0.
(40)

Here subscripts denote derivatives with respect to the corresponding variable.
The linear operator L has one-dimensional null-space for vectors y satisfying

condition (39). It is easy to see that the vector v0 ∈ kerL can be taken as

v0 =

(
1

− 1
2Gd2F (r0, r0)

)
, (41)

where the matrix G is defined in (19). Indeed, by using the degeneracy con-
dition (13), (34) and the last equality in (25), one can check that the vector
− 1

2Gd2F (r0, r0) is orthogonal to r0, i.e., condition (39) is satisfied. Thus, using
(39) and (40),

Lv0 = 1
2 d2F (r0, r0) + G−1

(− 1
2 Gd2F (r0, r0)

)
= 0. (42)

The left null-space of L is given by the left eigenvector l0, so that l0L = 0.
The matrix E = I − r1l0 defines the projection operator from Rn onto range L;
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this property follows from relations (8) and (9). Finally, we define the inverse
operator L−1 on range L as

L−1a ≡
(

0

Ga

)
, (43)

According to the Liapunov–Schmidt reduction procedure, the solution of
equation Φ(y, ε, u) in the neighborhood of (0, 0, 0) can be given as

y = ηv0 + W (η, ε, u) (44)

where η is a solution of a scalar equation g(η, ε, u) = 0, and W belongs to
range L−1, i.e., its first component is zero. The first component of relation
(44) yields ξ = η. The smooth functions g(η, ε, u) and W (η, ε, u) can be found
as a Taylor expansion. Their derivatives taken at (0, 0, 0) are given by the
formulae [11, Chapt. 1]:

gη = 0, gηη = l0Φyy(v0, v0), gα = l0Φα, gηα = l0Φyαv0 + l0Φyy(v0,Wα),

gαα = l0Φαα + 2l0ΦyαWα + l0Φyy(Wα, Wα), Wη = 0, Wα = −L−1EΦα,
(45)

where subscripts denote derivatives with respect to the corresponding variables,
and α stands for ε or u. By using (40), (41), (43) in (45), we find

gη = 0, gηη = 1
3 l0d

3F (r0, r0, r0)− n ·Gd2F (r0, r0),

gε = 0, gεε = −2, gηε = 1
2 n · r1 + q · r0, gudu = n · du, guεdu = 2q · du,

gηudu = 1
2 l0d

3F (du, r0, r0)− 1
2 l0d

2F (du, Gd2F (r0, r0))− l0d
2F (r0, GEd2F (du, r0)),

guu(du, du) = l0d
3F (du, du, r0)− 2l0d

2F (du,GEd2F (du, r0)),

Wη = 0, Wε =
(

0
r1

)
, Wudu =

(
0

−GEd2F (du, r0)

)
.

(46)
Here we also used (8), (9), (13), (25) and the relations GEr0 = Gr0 = r1,
l0GE = l1E = l1. Then the expressions in the theorem follow directly from (44)
and (46). 2

4.2 Singularities of Hugoniot curves

Let us consider equation (37) for left states U− = U0 + u such that n · u ∼ ‖u‖.
Formally, this corresponds to perturbations u along a line passing through U0

transversal to the elliptic boundary (the other situation, when n · u ¿ ‖u‖,
will be considered later). In the case n · u ∼ ‖u‖, we can neglect higher order
terms (the terms in the second row) in (37) to obtain the following asymptotic
equation

α0ξ
2 + α1ξε− ε2 + n · u = 0. (47)
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Figure 2: Hugoniot curves near the exceptional point for D < 0. The elliptic
region lies below the gray surface.

This equation defines a curve in the (ε, ξ)-plane. If n·u > 0, this curve intersects
the ε-axis at the points

ξ = 0, ε = ±√n · u. (48)

Remark that equation (47) with u = 0 corresponds to the normal form
ξ2 ± ε2 = 0 whose universal unfolding is ξ2 ± ε2 + α = 0, see [11]. This
means that equation (47) describes the generic unfolding of a singularity in the
neighborhood of (ξ, ε, u) = (0, 0, 0).

Using asymptotic expression (36) in (10), the Hugoniot curve for U+ =
U0 + u + ξe is given by

U+ = U0 + u + ξ
(
r0 − 1

2 Gd2F (r0, r0)ξ + r1ε
)
, (49)

where again we kept only the essential lowest order terms (according to (47), the
geometry of the Hugoniot curve is described by ε in the interval ε .

√
‖u‖ and

ξ ∼ ε). The points with ξ = 0 in (48) correspond to the self-intersection point
of the Hugoniot curve at U+ = U− = U0 + u. Naturally, the self-intersection
exists only for n · u > 0, when U− belongs to the hyperbolic region.

There are two cases distinguished by the sign of the quantity

D = α2
1 + 4α0. (50)

If D < 0, then for u = 0 (i.e., for the left shock state at the exceptional point
U− = U0) equation (47) has only the trivial solution ξ = ε = 0. For left states
U− lying in the hyperbolic region (n · u > 0), the solution of (47) represents an
ellipse in the (ε, ξ)-plane, see Fig. 2a. This ellipse determines an eight-shaped
curve in state space, see Fig. 2b. According to (49), this curve is elongated in
the direction of r0, i.e. parallel to the elliptic boundary (recall that r0 is tangent
to the elliptic boundary at the exceptional point, see (34)). As U− → U0 in the
hyperbolic region, the eight-shaped Hugoniot curve shrinks to a point. For left
states U− lying in the elliptic region (n · u < 0), equation (47) has no solutions,
so the Hugoniot curve does not exist (at least locally).
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Figure 3: Hugoniot curves near the exceptional point for D > 0. The elliptic
region lies below the gray surface.

For D > 0, the solution of (47) for u = 0 is given by two lines

ε =
(
α1 ±

√
D

)
ξ/2 (51)

intersecting at the origin, see Fig. 3a. These lines determine two curves in state
space passing through the exceptional point U0 tangent to the elliptic boundary
along the eigenvector r0, Fig. 3b. A detailed analysis using inequality (58) below
shows that either both curves lie in the hyperbolic region, or one curve lies in
the hyperbolic region and the other in the elliptic region. Fig. 3 corresponds
to the case when both curves lie in the hyperbolic region. For left states U−
lying in the hyperbolic region (n · u > 0), the solution of (47) is given by two
branches of a hyperbola in the (ε, ξ)-plane lying in the left and right quadrants.
In state space, these branches intersect at U−, Fig. 3c. Finally, for left states
U− lying in the elliptic region (n · u < 0), the solution is given by two branches
of a hyperbola lying in the upper and lower quadrants. Then there are two
separated Hugoniot branches which do not pass through U−, Fig. 3d.

Now consider the case n·u ¿ ‖u‖, when the left shock state is much closer to
the elliptic boundary than to the exceptional point (this happens for perturba-
tions u along a curve tangent to the elliptic boundary at U0). We are interested
in the situation when n ·u ∼ ‖u‖2. In this case all terms in equation (37) are of
the same order of magnitude. The solution of equation (37) in the (ε, ξ)-plane
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Figure 4: Hugoniot curves near the exceptional point for n · u ∼ ‖u‖2 (the
elliptic region is gray).

is an ellipse (or the empty set) if D < 0, and it is a hyperbola if D > 0. Unlike
the previous case, these curves (ellipse or hyperbola) are not centered at the
origin. The curves intersect the ε-axis for U− in the hyperbolic region, they are
tangent to the ε-axis for U− at the elliptic boundary, and have no intersection
with the ε-axis for U− in the elliptic region. This follows from the result in
classical theory that there are two transversal Hugoniot curves passing through
U− (recall that this corresponds to ξ = 0) for U− in the hyperbolic region. In
state space, the Hugoniot curves are described by the formula U+ = U0 +u+ ξe
with e given by expression (36). If the position of the ellipse or hyperbola rel-
ative to the ε-axis is the same as in Fig. 2a or 3a, then the Hugoniot curves in
state space have qualitatively the same form as described above. The other four
possibilities, when the ellipse is tangent or does not intersect the ε-axis, and
when the hyperbolae are tangent or intersect the ε-axis, are shown in Fig. 4.
These cases represent transitions from singular structures of shock curves near
exceptional points to regular structures described in Section 3.

Remark For a system of two conservation laws with a quadratic flux function,
we have r0 = lT1 , r1 = lT0 and G = r0l0 + r1l1. Then, at the exceptional point
(n · r0 = 0), we find

α0 = −1
2

n·Gd2F (r0, r0) = −1
2

(n·r1)l1d2F (r0, r0) = −(n·r1)
(

q · r0 − 1
2

n · r1

)
.

(52)
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Using α1 from (38) yields

D = α2
1 + 4α0 =

(
q · r0 − 3

2
n · r1

)2

≥ 0. (53)

This proves that the singularity of type shown in Fig. 2 (D < 0) does not arise
in systems of two conservation laws with quadratic flux functions.

4.3 Admissible shocks

Let us check the Lax conditions (3) along the Hugoniot curve. We consider the
cases n · u ∼ ‖u‖ shown in Figs. 2 and 3. (In this paper, we do not study the
Lax conditions in the case n · u ∼ ‖u‖2, which is more complicated.) Then,
according to asymptotic equation (47), the following quantities have the same
order of magnitude: ε ∼ ξ ∼ ‖u‖1/2. For the characteristic speeds λk,k+1(U−)
with U− = U0 + u we have the same asymptotic relation as in (31):

λk,k+1(U−) = σ0 ±
√

n · u, (54)

which contains the terms of order ‖u‖1/2. The main correction term in expansion
(49) for U+ is ∆U+ ≈ ξr0 ∼ ‖u‖1/2. This term vanishes when we substitute (49)
into (30), because n · r0 = 0. This means that the square root and the linear
terms in (30) are of the same order ∼‖u‖1/2. In order to find the asymptotic
values for characteristic speeds, one must use the second order approximation for
the expression inside the square root in (28) of the following form [24, Chapt. 2]:

l0Br0 +
1
4

(l1Br0 + l0Br1)2 − l0BGBr0 + o(‖B‖2). (55)

(This expression corresponds to a degenerate type of bifurcation of a double
eigenvalue when l0Br0 ∼ ‖B‖2.) Using expansions (29) and (49) in (55) and
substituting the result into (28), one finds the asymptotic expression

λk,k+1(U+) = σ0 + q · r0ξ

±
√(

(q · r0)2 + 1
2 l0d3F (r0, r0, r0)− 3

2 n ·Gd2F (r0, r0)
)
ξ2 + n · r1εξ + n · u,

(56)
where we kept only the leading terms of order ‖u‖1/2. By using the quantities
α0, α1 defined in (38) and equation (47), we write (56) as

λk,k+1(U+) = σ0 + q · r0ξ ±
√

(ε− q · r0ξ)2 + ξ(α1ε + 2α0ξ). (57)

The right state U+ lies in the hyperbolic region if

(ε− q · r0ξ)2 + ξ(α1ε + 2α0ξ) > 0. (58)

First, consider the left states U− in the hyperbolic region (n · u > 0). Using
(54) and (57) in (3) (with σ = σ0 + ε), we write the admissibility conditions for
the k-shock as

k-shock : ε < −√n · u, ξ(α1ε + 2α0ξ) > 0, (59)
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Comparing (58) and (59), it is easy to see that the right states U+ of k-shocks
lie in the hyperbolic region. Similarly, for (k + 1)-shocks we find

(k + 1)-shock : −√n · u < ε <
√

n · u, ξ(α1ε + 2α0ξ) < 0, ε > q · r0ξ. (60)

Conditions (59) and (60) determine two segments in the Hugoniot curve with
one end at U− and, possibly, a separate segment for k and/or (k + 1)-shocks.

Consider now the left states U− in the elliptic region (n · u > 0). Using (54)
and (57) in (3), we write the admissibility conditions for the k-shock as

k-shock : ε < 0, ξ(α1ε + 2α0ξ) > 0, (61)

There are no (k + 1)-shocks in this case.
We remark that by using formulae (54) and (57), one can find segments of

Hugoniot curves satisfying shock speed conditions different from (3), e.g., the
segments containing possible states of certain non-Lax shocks (Si,j shocks [17]).

5 Riemann solutions with states in the elliptic
region

Consider the Riemann problem for the system of conservation laws (1), i.e.,
the weak scale-invariant solution U(x, t) = Ũ(x/t) for piecewise constant initial
data with a single jump at x = 0:

U(x, 0) =
{

L, x < 0;
R, x > 0.

(62)

When both L and R are very near each other and both lie in the hyperbolic
region, Riemann solutions are described by the standard Lax diagram [25]. For
initial data near the elliptic boundary, Riemann solutions were discussed in [5,
7, 12, 21] for systems of two conservation laws. In this section, we contribute
with an example of the Riemann solution for two conservation laws with left
initial condition L in the elliptic region near the boundary, and right initial
condition R in the hyperbolic region. This example illustrates the asymptotic
description of Hugoniot curves given in Section 3.

A typical Riemann solution is a sequence of two waves (rarefactions and/or
shocks) separated by a constant state M . Rarefaction waves are smooth solu-
tions U(λ) parametrized by the speed λ = x/t satisfying the equation A(U)U ′ =
λU ′, where U ′ = dU/dλ. The rarefaction wave defines a curve in state space,
which is tangent at each point to one of the eigenvectors of the matrix A(U).
Given the left state U− in the hyperbolic region, the rarefaction curve and the
shock curve (the curve of right states for admissible shocks) lie at opposite sides
of U−, where they are tangent, see e.g. [25]. The structure of rarefaction curves
near the elliptic boundary is described in [16].

Consider the left initial condition L in the elliptic region close to the bound-
ary. Then the slower wave in the Riemann solution is a shock; its right state is
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Figure 5: Diagram of possible right initial states R in Riemann solutions for a
left initial state L in the elliptic region.

the intermediate state of the Riemann solution M , see Fig. 5. The thick solid
line in the figure shows possible states M for fixed L (this is the part of the
Hugoniot curve for U− = L corresponding to admissible shocks satisfying (3);
M0 is the end point of this part corresponding to σ = Re λ1(U−)). Fig. 5 cor-
responds to L far away from any of exceptional points, see Fig. 1c. The faster
wave may be a shock or a rarefaction. Thus, there are two typical structures
of Riemann solutions for different right initial conditions. The first Riemann
solution consists of a shock S1 (from L to M) followed by a shock S2 (from M
to R). These Riemann solutions correspond to R lying in the region marked
S1S2 in Fig. 5. The second Riemann solution consists of a shock S1 (from L to
M) followed by a rarefaction of the second characteristic family R2 (from M to
R). These Riemann solutions correspond to R lying in the region marked S1R2

in Fig. 5. Local Riemann solutions with the right states R to the right of the
thick dashed line do not exist. This line consists of the rarefaction curve R2

from M0 (the part of the curve to the right of M0 in Fig. 5) and right states of
S2 shocks from M0 (the part of the curve to the left of M0 in Fig. 5).

Consider the Riemann problem for system (1) with flux function and initial
conditions

F (U) =
(

(U2)2

U1

)
, L =

(
0

−0.02

)
, R =

(
0.02
0.16

)
. (63)

The characteristic speeds at U = (U1, U2) are λ1 = −√2U2 and λ2 =
√

2U2.
The elliptic region is the lower half-plane U2 < 0, so L is in the elliptic region,
and R is in the hyperbolic region. For the left state U− = L, we find all possible
right states U+ from the Rankine–Hugoniot equation (2) as

U+ =

(
σ(0.04 + σ2)

0.02 + σ2

)
. (64)

By checking the admissibility conditions (3), we find that 1-shocks correspond
to σ < 0 (the value σ = 0 corresponds to the end point M0 = (0, 0.02), see
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Figure 6: Numerical simulations of the Riemann solution with one shock and
rarefaction wave (the elliptic region is gray).

Fig. 5). This can be compared with the asymptotic expression (27) evaluated
for the elliptic boundary point U0 = (0, 0). At this point σ0 = 0, and we find

r0 =
(

0
1

)
, r1 =

(
1
0

)
, l0 = (1, 0), l1 = (0, 1), u =

(
0

−0.02

)
, n =

(
0
2

)
.

(65)
Substituting (65) into (27) gives the exact expression (64).

By solving the equation A(U)U ′ = λU ′ for the rarefaction of the second
family (λ = λ2 =

√
2U2) with the right state R given in (63), we obtain the

states on the rarefaction wave as

U(λ) =

(
0.02 +

(
λ3 − 0.128

√
2
)
/3

λ2/2

)
. (66)

The right state of the shock (64) must be equal to the left state of the rarefaction
(66). Numerical computation yields the intermediate state and shock speed as

σ = −0.2311, M =
( −0.02158

0.07340

)
. (67)

The shock is admissible since σ < 0. Thus, we found the Riemann solution with
one shock and one rarefaction wave. The shock has the speed and right state
(67), and the rarefaction is given by (66) with 0.3831 ≤ λ ≤ 0.4

√
2.

Numerical simulations were carried out using a linearized Crank-Nicolson
scheme for two viscous conservation laws (4) with coefficient ε = 0.01 of the
parabolic term and data (63). Figure 6 shows the numerical solution in (U1, U2),
(x, U1) and (x,U2) spaces at a certain time. This solution represents a traveling
wave S1 from L to M , which becomes a shock as ε → +0, followed by a rarefac-
tion wave R2 from M to R. The numerical solution agrees very well with the
analytic Riemann solution (64), (66), (67). We also observed stability of this
solution.

18



6 Discussion

The Lax diagram for the structure of the Riemann solution changes for elliptic
left states near regular points of the elliptic boundary. Shock-shock and shock-
rarefaction sequences are preserved, but there are no local solutions in half
a region near the left state, out of the elliptic region, because there are no
rarefaction waves emanating from this left state. This gap may be filled by
non-local solutions.

The structure of the Riemann solution near exceptional points of the elliptic
boundary is very rich, as already shown in our analysis of the Hugoniot curves
that parametrize shocks. To understand it, it is necessary to study the traveling
waves for these shocks. An initial step using the results of [8] on bifurcations of
planar vector fields was taken in [4], where quadratic flux functions were studied.
A program for finding Riemann solutions for nonhomogeneous quadratic flux
functions under the viscous profile condition for shocks was initiated in [2], and
continued in [20], where two examples were solved, and theoretically in [9]. Our
work shows that cubic terms in the flux function must be considered. Remark
that the effect of the cubic terms vanishes as the elliptic region shrinks to a point.
At this point, a double semi-simple eigenvalue (characteristic speed) appears,
and the statement can be proved by analyzing local behavior of eigenvalues and
eigenvectors [24].

Acknowledgments

This work was supported by CNPq under Grants 301532/2003-6, 300097/2004-
2, 304168/2006-8, 472067/2006-0, 300668/2007-4, FAPERJ under Grant E-
26/152.163/2002, E-26/152.525/2006, E-26/110.310/2007, CAPES under Grant
0722/2003 (PAEP no. 0143/03-00), FINEP under Grant 01.02.0212.00 and
President of Russian Federation grant No. MK-2012.2006.1.

References

[1] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential
Equations (Springer, New York, 1983).

[2] A. V. Azevedo, Multiple fundamental solutions for hyperbolic-elliptic sys-
tems of conservation laws. Ph.D. Thesis, PUC-RIO, Rio de Janeiro, 1991.

[3] A. V. Azevedo and D. Marchesin, Multiple viscous profile Riemann solu-
tions in mixed elliptic-hyperbolic models for flow in porous media, in Non-
linear evolution equations that change type. IMA Vol. Math. Appl. Vol. 27
(Springer, New York, 1990), pp. 1–17.

[4] A. V. Azevedo, D. Marchesin, B. Plohr and K. Zumbrun, Capillary insta-
bility in models for three-phase flow, Z. Angew. Math. Phys. 53 (2002)
713–746.

19



[5] J. B. Bell, J. A. Trangenstein and G. R. Shubin, Conservation laws of mixed
type describing three-phase flow in porous media, SIAM J. Appl. Math. 46
(1986) 1000–1017.

[6] S. Canic, Nonexistence of Riemann solutions for a quadratic model deriving
from petroelum engineering, Nonlinear Anal. Real World Appl. 4 (2003)
373–408.

[7] S. Canic, B. L. Keyfitz and E. H. Kim, Mixed hyperbolic-elliptic systems in
self-similar flows, Boletim da Sociedade Brasileira de Matematica 32 (2002)
1–23.

[8] F. Dumortier, R. Roussarie and J. Sotomayor, Bifurcation of planar vector
fields. Lecture Notes in Mathematics. Vol. 1480 (Springer, Berlin, 1991).

[9] C. Eschenazi, C. F. Palmeira, Local topology of elementary waves for sys-
tems of two conservation laws, Mat. Contemp. 15 (1998) 127–144.

[10] H. Frid, Measure-valued solutions for multiphase flow in porous media,
Journal o Mathematical Analysis and Applications 196 (1995) 614–627.

[11] M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation
Theory (Springer, New York, 1985).

[12] H. Holden, On the Riemann problem for a prototype of a mixed type con-
servation law, Comm. Pure Appl. Math. 40 (1987) 229–264.

[13] E. L. Isaacson, D. Marchesin, C. F. Palmeira and B. J. Plohr, A global
formalism for nonlinear waves in conservation laws, Comm. Math. Phys.
146 (1992) 505–552.

[14] B. L. Keyfitz, A geometric theory of conservation laws which change type,
Z. Angew. Math. Mech. 75 (1995) 571-581.

[15] B. L. Keyfitz, R. Sanders and M. Sever, Lack of hyperbolicity in the two-
fluid model for two-phase incompressible flow, Discrete Contin. Dyn. Syst.
Ser. B 3 (2003) 541–563.

[16] A. A. Mailybaev and D. Marchesin, Hyperbolicity singularities in rarefac-
tion waves, J. Dynam. Differential Equations 20 (2008), to appear.

[17] A. A. Mailybaev and D. Marchesin, Dual-family viscous shock waves in
n conservation laws with application to multi-phase flow in porous media,
Archive for Rational Mechanics and Analysis 182 (2006) 1–24.

[18] D. Marchesin and C. F. B. Palmeira, Topology of elementary waves for
mixed-type systems of conservation laws, J. Dynam. Differential Equations
6 (1994) 427–446.

[19] D. Marchesin and B. Plohr, Wave structure in WAG recovery, Society of
Petroleum Engineers Journal 6 (2001) 209–219.

20



[20] V. M. M. Matos, Riemann Problem for Two Conservation Laws of Type
IV with Elliptic Region. Ph.D. Thesis, IMPA, Rio de Janeiro, 2004 (in
Portuguese).

[21] V. Matos and D. Marchesin, High Amplitude Solutions for Small Data in
Pairs of Conservation Laws that Change Type, in Hyperbolic Problems:
Theory, Numerics, Applications (Springer, Berlin, 2008), pp. 711-719.

[22] H. B. Medeiros, Stable hyperbolic singularities for three-phase flow models
in oil reservoir simulation, Acta Appl. Math. 28 (1992) 135–159.

[23] W. Schulte and A. Falls, Features of Three-Component, Three-Phase Dis-
placement in Porous Media, SPE Reservoir Engineering 7 (1992) 426-432.

[24] A. P. Seyranian and A. A. Mailybaev, Multiparameter Stability Theory with
Mechanical Applications (World Scientific, Singapore, 2003).

[25] J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New
York, 1983).

21


