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Abstract. We introduce a framework for the study of nonlinear homogenization problems in the setting
of stationary continuous processes in compact spaces. The latter are functions f ◦ T : R

n × Q → Q with

f ◦ T (x, ω) = f(T (x)ω) where Q is a compact (Hausdorff topological) space, f ∈ C(Q) and T (x) : Q → Q,

x ∈ R
n, is an n-dimensional continuous dynamical system endowed with an invariant Radon probability

measure µ. It can be easily shown that for almost all ω ∈ Q the realization f(T (x)ω) belongs to an algebra

with mean value, that is, an algebra of functions in BUC(Rn) containing all translates of its elements

and such that each of its elements possesses a mean value. This notion was introduced by Zhikov and

Krivenko (1983). We then establish the existence of multiscale Young measures in the setting of algebras

with mean value, where the compactifications of R
n provided by such algebras plays an important role.

These parametrized measures are useful in connection with the existence of correctors in homogenization

problems. We apply this framework to the homogenization of a porous medium type equation in R
n with a

stationary continuous process as a stiff oscillatory external source. This application seems to be new even
in the classical context of periodic homogenization.

1. Introduction

Continuous dynamical systems in compact spaces constitute a classical matter going back to pioneering
works of Birkhoff, von Neumann, Khintchine, Kolmogorov, Markov, Hopf, Krylov and Bogolyubov, among
others, during the 1930’s. They provide a natural setting for stochastic homogenization problems which
extends the setting of periodic and almost periodic functions and also combines topological and measure
theoretic features that usually allow a better understanding of the involved questions. Following a series of
important papers on stochastic homogenization of linear differential operators by Zhikov et al. [47, 48, 49] (see
also [28]), Zhikov and Krivenko [50] introduced the notion of algebras with mean value which captures the
essential properties of typical realizations of continuous stationary processes defined by continuous dynamical
systems in compact spaces endowed with an invariant probability measure. More specifically, let Q be a
compact (Hausdorff topological) space and T (x) : Q → Q, x ∈ Rn, be an n-dimensional continuous dynamical
system, that is, T (0)ω = ω, T (x+ y)ω = T (x)T (y)ω, for all ω ∈ Q, and the mapping T : Rn ×Q → Q given
by T (x, ω) = T (x)ω is continuous. A classical result of Krylov and Bogulyubov [32] establishes the existence
of an invariant (Borel regular) probability measure µ on Q for T (x); that is µ(T (x)E) = µ(E) for Borelian E.
So we may assume that Q is endowed with such an invariant probability measure. A stationary continuous
process is a mapping (x, ω) 7→ f(T (x)ω) where f ∈ C(Q) and {T (x)}x∈Rn is an n-dimensional continuous
dynamical system on a compact space Q endowed with some invariant measure. The dynamical system
(endowed with an invariant measure) is said to be ergodic if whenever f ∈ L2(Q) satisfies f(T (x)ω) = f(ω)
for µ-a.e. ω ∈ Q, for all x ∈ Rn, then f is equivalent to a constant.

1991 Mathematics Subject Classification. Primary:76M50, 74Q10; Secondary: 35B27, 35K15.
Key words and phrases. stochastic homogenization, stationary ergodic processes, two-scale Young measures, algebras with

mean value, ergodic algebras, porous medium equation.
H. Frid gratefully acknowledges the support of CNPq, grant number 306137/2006-2, and FAPERJ, grant number E-

26/152.192-2002.

1



2 LUIGI AMBROSIO, HERMANO FRID, AND JEAN SILVA

Given any f ∈ C(Q), by means of the well known Birkhoff ergodic theorem, one easily shows that for
almost all ω ∈ Q the realization f(T (x)ω) belongs to a linear subspace A ⊆ BUC(Rn), where BUC(Rn)
is the space of bounded uniformly continuous functions in Rn, with the following properties: (i) A is an
algebra, i.e., if f, g ∈ A then fg ∈ A; (ii) if f ∈ A, then its translates f(· + t), t ∈ Rn, also belong to A;
(iii) every f ∈ A possesses a mean value. A linear subspace of BUC(Rn) satisfying these three properties is
called an algebra with mean value (algebra w.m.v., for short). Given an algebra w.m.v. A we may define the
associated generalized Besicovitch space B2 as the completion of A with respect to the semi-norm provided
by the square root of the mean value of |f |2 for f ∈ A. The algebra w.m.v. A is said to be ergodic if whenever
f ∈ B2 satisfies f(· + x) := f(·) in B2 for all x ∈ Rn, then f is equivalent in B2 to a constant. It can be
shown that for almost all ω ∈ Q the realization f(T (x)ω) just mentioned belongs to an ergodic algebra, even
if the dynamical system is not ergodic.

We then follow the approach in [3], defining vector valued algebras with mean value and establishing the
existence of multiscale Young measures in the setting of vector valued algebras with mean value. For that,
as in the case of almost periodic functions, we make essential use of the fact that associated with any algebra
w.m.v. A there is a compact space K such that any f ∈ A may be viewed as an element of C(K), which
follows from a classical theorem of Stone, as is shown below (cf. Theorem 4.1). Such compact space associated
with the algebra w.m.v. provides the additional parameter of the multiscale (two-scale) Young measures.
The latter are useful tools for the search of corrector functions in nonlinear homogenization problems.

We show how this framework can be applied in the homogenization of nonlinear partial differential equa-
tions by considering the homogenization problem for a porous medium type equation with a stationary
continuous process as a stiff oscillatory external source. In this general context we need to restrict the ini-
tial data to prepared ones, that is, those which satisfy an associated stationary equation in the oscillatory
variable.

Multiscale Young measures have been introduced in periodic problems by W. E [20] as a broader tool
extending the previous concept of multiscale convergence introduced by Nguetseng [38] and further developed
by Allaire [1]. It refines to multiple scale analysis the classical concept of Young measures introduced in [45],
so fundamentally useful, especially after its striking applications in connection with problems concerning
compactness of solution operators for nonlinear partial differential equations by Tartar [44], Murat [36],
DiPerna [17, 18, 19], etc. . This paper links multiscale Young measures to the recently growing interest in
the more general setting of homogenization of random stationary ergodic processes (see, e.g., [41], [30], [28],
[15], [43], [35], [11]).

The extension of the multiscale Young measures from the periodic setting to the almost periodic was
carried out in [3] where applications to nonlinear transport equations, scalar conservation laws with oscillatory
external sources, Hamilton-Jacobi equations and fully nonlinear elliptic equations are provided. In this
connection, we recall that the two-scale convergence has been extended to the context of almost periodic
homogenization and, more generally, to generalized Besicovitch spaces in [13] (see also, e.g., [39, 40]). We also
recall that the method of two-scale convergence was extended to the context of stochastic homogenization,
under separability assumption, in [8]. The applications in the cited references [13, 39, 40, 8] are basically to
linear or monotone operators.

This paper is organized as follows. In Section 2, we recall some concepts in order to state the well
known Birkhoff Ergodic Theorem, which will be used in later sections, also recall the definition of continuous
dynamical systems, the classical theorem of Krylov and Bogolyubov and give some elementary examples. In
Section 3 we recall the definition of algebras with mean value introduced in [50]. The purpose of Section 4 is
to establish the connection between algebras with mean value and continuous dynamical systems in compact
spaces. We also analyse the characterization of AP(Rn) by means of the properties of the associated compact
spaces. In Section 5 we introduce the vector-valued algebras w.m.v. which are needed in the construction of
the multiscale Young measures in the context of algebras w.m.v. . In Section 6 we establish the theorem on
the existence of multiscale Young measures from homogenization in algebras w.m.v. . In Section 7 we apply
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the general framework established in the earlier sections to the homogenization problem of a porous medium
type equation in Rn with a stationary continuous process as a stiff oscillatory external source, and oscillatory
initial data satisfying a stationary equation in the oscillatory variable. We also include the Appendix A where
we state without proof some basic results that are needed in Section 7.

2. Stationary Processes

We begin this section by recalling the definition of n-dimensional dynamical system in a probability
measure space, as a preparation for the statement of the Birkhoff Ergodic Theorem.

Definition 2.1 (n-dimensional dynamical system). Let (Q,M(Q), µ) be any probability measure space. An
n-dimensional dynamical system on Q is a family of mappings T (x) : Q → Q, x ∈ Rn, which satisfies the
following conditions:

(i) (Group Property) T (0) = I, where I is the identity mapping on Q, and

T (x+ y) = T (x)T (y), ∀x, y ∈ Rn;

(ii) (Invariance) The mappings T (x) : Q → Q are measurable and µ-measure preserving, i.e.,

µ(T−1(x)(E)) = µ(E) for every x ∈ Rn and every E ∈M(Q);

(iii) (Measurability) Given any F ∈ M(Q) the set {(x, ω) ∈ Rn × Q : T (x)ω ∈ F} ⊆ Rn × Q
is measurable with respect to the product σ-algebra Ln ⊗ M(Q), where Ln is the σ-algebra of
Lebesgue measurable sets.

As usual, for p ≥ 1 we denote by Lp(Q) be the space of the (equivalence classes of) measurable functions
f : Q → R such that |f |p is µ-integrable on Q, and by L∞(Q) the space of the µ-essentially bounded
measurable functions. For f ∈ Lp(Q) and f ∈ L∞(Q) respectively we denote

‖f‖p :=
(
∫

Q

|f |p dµ
)1/p

, ‖f‖∞ := ess sup
ω∈Q

|f(ω)|.

An n-dimensional dynamical system T (x) : Q → Q induces an n-parameter group of transformations
T (x) : L2(Q)→ L2(Q) defined by

(T (x)f)(ω) := f(T (x)ω), f ∈ L2(Q).

It follows that the operator T (x) : L2(Q)→ L2(Q) is unitary for each x ∈ Rn. Moreover, it is a consequence
of the Lebesgue Dominated Convergence theorem (see [28], p. 223) that the group T (x) is strongly continuous,
i.e.,

(2.1) lim
x→0

‖T (x)f − f‖2 = 0, ∀f ∈ L2(Q).

Definition 2.2 (Ergodic dynamical system). Let (Q,M(Q), µ) be any probability measure space and let
T (x) : Q → Q, x ∈ Rn, be an n-dimensional dynamical system on Q. A M(Q)-measurable function
f : Q → R is called invariant if f(T (x)ω) = f(ω) µ-almost everywhere in Q, for all x ∈ Rn. A dynamical
system is said to be ergodic if every invariant function is µ-equivalent to a constant in Q.

If f is a measurable function in Q, for a fixed ω ∈ Q the function x 7→ f(T (x)ω), x ∈ Rn, is called a
realization of f and the map (x, ω) 7→ f(T (x)ω) is called a stationary process. The process is said to be
stationary ergodic if the dynamical system is ergodic.

We will make use of the well known Birkhoff Ergodic Theorem. In order to state it we need to introduce
the notion of mean value for functions defined in Rn.
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Definition 2.3. Let g ∈ L1loc(Rn). A number M(g) is called the mean value of g if

(2.2) lim
ε→0

∫

A

g(ε−1x) dx = |A|M(g)

for any Lebesgue measurable bounded set A ⊆ Rn, where |A| stands for the Lebesgue measure of A. This
is equivalent to say that g(ε−1x) converges, in the duality with L∞ and compactly supported functions, to
the constant M(g). Also, if At := {x ∈ Rn : t−1x ∈ A} for t > 0 and |A| 6= 0, (2.2) may be written as

(2.3) lim
t→∞

1

tn|A|

∫

At

g(x) dx =M(g).

We now recall the Birkhoff Ergodic Theorem (see [16]).

Theorem 2.1 (Birkhoff Ergodic Theorem). Let f ∈ Lp(Q), p ≥ 1. Then for almost all ω ∈ Q the realization
g(x) = f(T (x)ω) possesses a mean value in the sense of (2.2). Moreover, the mean value M(f(T (·)ω)) is
invariant and

∫

Q

f(ω) dµ =

∫

Q

M(f(T (·)ω)) dµ.

In particular, if the system T (x) is ergodic, then

M(f(T (·)ω)) =
∫

Q

f dµ for µ-almost all ω ∈ Q.

Throughout the remaining of this paper we will be dealing with continuous n-dimensional dynamical
systems T (x) on compact topological spaces whose definition we recall now.

Definition 2.4. Let Q be a compact topological space. A continuous n-dimensional dynamical system on
Q is a family of mappings T (x) : Q → Q, x ∈ Rn, which satisfies the following conditions:

(i) T (0) = I, where I is the identity mapping on Q, and
T (x+ y) = T (x)T (y), ∀x, y ∈ Rn;

(ii) the mapping (x, ω) 7→ T (x)ω is continuous from Rn ×Q to Q.
A well known theorem of Krylov and Bogolyubov [32] (see also [37]) asserts that for any continuous

dynamical system T (x) : Q → Q, x ∈ Rn, there exist invariant Borel probability measures when Q is
a compact separable metric space. The result holds more generally when Q is any compact Hausdorff
topological space and the proof of the more general statement is essentially the same as that of Bogolyubov
and Krylov with minor adaptations.

Henceforth by compact space we will always mean a compact Hausdorff topological space. Moreover, in
compact spaces Q we shall always consider Radon measures µ: we mean that µ is defined on the σ-algebra
B(Q) of Borel sets, it is σ-additive and Baire outer regular, i.e.

µ(B) = inf {µ(C) : C Baire set, C ⊃ B} ∀B ∈ B(Q).
Since continuous functions generate the Baire σ-algebra, in general strictly contained in the Borel σ-algebra,
the regularity condition is necessary to ensure that the space C(Q) is dense in the spaces Lp(Q, µ) of
Borel functions whose p-th power is µ-integrable, 1 ≤ p < ∞. Also, the fact that, for Baire regular
measures µ, any Borel function coincides µ-a.e. with a function measurable with respect to the Baire σ-
algebra makes irrelevant the choice between Borel and Baire σ-algebras, and we have chosen the Borel one
just for convenience. See for instance [26] for a more complete discussion of this topic.

Theorem 2.2 (Krylov-Bogolyubov). Let Q be a compact Hausdorff topological space and let T (x) : Q → Q,
x ∈ Rn, be an n-dimensional continuous dynamical system on Q. Then, there exists a probability Radon
measure µ on Q invariant under T (x), x ∈ Rn.
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Let be given any continuous dynamical system T (x), x ∈ Rn, on a compact space Q, and any probability
Radon measure µ invariant under T (x), x ∈ Rn. Then, if we choose as M(Q) the Borel σ-algebra, T (x)
can be viewed as an n-dynamical system according to Definition 2.1. To prove this fact, the only nontrivial
property to be checked is (iii). The class of Borel sets E ⊆ Q such that {(x, ω) ∈ Rn × Q : T (x)ω ∈ E}
belongs to the product σ-algebra Ln ⊗ B(Q) contains the class of open sets and it is a σ-algebra; therefore,
it coincides with the B(Q).

Definition 2.5 (Continuous stationary process). Given a compact space Q, an n-dimensional continuous
dynamical system T (x) : Q → Q, x ∈ Rn, and an invariant Radon probability measure µ in Q, by a
continuous stationary process we mean any map (x, ω) 7→ f(T (x)ω) with f ∈ C(Q).

We next give two basic examples of this setting.

2.1. Periodic functions. In this case Q = [0, 1]n and T (x) : Q → Q is defined as T (x)ω := ω + x (mod 1)
and we easily verify that T (x) is a continuous dynamical system. The Lebesgue measure is invariant and
it is also easy to see that T (x) is ergodic. Observe that C(Q) is isometrically isomorphic to the space of
continuous periodic functions with period 1 in each coordinate variable.

2.2. Almost periodic functions. This case was extensively studied in [3]. The basic fact here is that
the space of almost periodic functions is a closed subalgebra of the space of bounded uniformly continuous
functions in Rn which induces a compactification of Rn, called Bohr compactification, Gn, which turns out
to be a topological group with respect to the extension to Gn of the addition operation in Rn. Hence, in
Gn we have defined a Haar measure which is invariant with respect to the translations T (x) : Gn → Gn,
T (x)ω = ω+x. In [3] it is shown that such maps T (x) form an ergodic continuous n-dimensional dynamical
system.

We leave the more general example of the algebras with mean value to be thoroughly considered in the
next three sections, since the deep understanding of its relationship with continuous dynamical systems
acting on compact spaces is a central point of this work.

3. Algebras with Mean Value

The concept of algebra with mean value was introduced in [50] (see also [28]) as a generalization of
the concept of almost periodic functions AP(Rn) and the corresponding Besicovitch spaces BAPp(Rn),
1 ≤ p ≤ ∞ (cf. [3]), motivated by the reduction of problems of stochastic homogenization to problems of
individual homogenization, in the terminology adopted in [28].

Notation: As usual, we denote by BUC(Rn) the space of the bounded uniformly continuous real-valued
functions in Rn.

Definition 3.1. Let A be a linear subspace of BUC(Rn). We say that A is an algebra with mean value (or
algebra w.m.v., in short), if the following conditions are satisfied:

(A) If f and g belong to A, then the product fg belongs to A.
(B) A is invariant with respect to translations τy in Rn.
(C) Any f ∈ A possesses a mean value.
(D) A is closed in BUC(Rn) and contains the unity, i.e., the function e(x) := 1 for x ∈ Rn.

Remark 3.1. The definition of algebra w.m.v. as given in [28] contains only conditions (A), (B) and (C).
However, since the closure of a linear subspace A in BUC(Rn) satisfying (A), (B) and (C) also satisfies (A),
(B) and (C) and adjoining the unit to such an A one obtains a linear subspace of BUC(Rn) also satisfying
(A), (B) and (C), the inclusion of condition (D) does not imply any restriction in the theory, and we do that
here just for convenience.
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For the development of the homogenization theory in algebras A with mean value, as is done in [50, 28]
(see also [13]), in similarity with the case of almost periodic functions, one introduces, for 1 ≤ p < ∞, the
space Bp as the abstract completion of A with respect to the Besicovitch seminorm

|f |pp := lim sup
L→∞

1

(2L)n

∫

[−L,L]n
|f |p dx.

Both the action of translations and the mean value extend by continuity to Bp, and we will keep using the
notation τyf and M(f) even when f ∈ Bp and y ∈ Rn. Furthermore, for p > 1 the product in A extends to
a bilinear operator from Bp × Bq into B1, with q equal to the dual exponent of p, satisfying

|fg|1 ≤ |f |p|g|q.
In particular, the operator M(fg) provides a nonnegative definite bilinear form on B2.
Remark 3.2. A classical argument going back to Besicovitch [7] (see also [28], p.239) shows that the elements
of Bp can be represented by functions in Lploc(R

n), 1 ≤ p <∞.

Since there is an obvious inclusion between this family of spaces, we may define the space B∞ as follows:

B∞ = {f ∈
⋂

1≤p<∞

Bp : sup
1≤p<∞

|f |p <∞},

We endow B∞ with the (semi)norm

|f |∞ := sup
1≤p<∞

|f |p.

Obviously the corresponding quotient spaces for all these spaces (with respect to the null space of the

seminorms) are Banach spaces, and we get an Hilbert space in the case p = 2. We denote by
Bp
=, the

equivalence relation given by the equality in the sense of the Bp semi-norm.
A group of unitary operators T (y) : B2 → B2 is then defined by setting [T (y)f ] = τy ◦ f . Since the

elements of A are uniformly continuous in Rn, the group {T (y)} is strongly continuous, i.e. T (y)f → f in
B2 as y → 0 for all f ∈ B2. The notion of invariant function is introduced then by simply saying that a

function in B2 is invariant if T (y)f
B2

= f , for all y ∈ Rn. More clearly, f ∈ B2 is invariant if

(3.1) M
(

|T (y)f − f |2
)

= 0, ∀y ∈ Rn.

The concept of ergodic algebra is then introduced as follows.

Definition 3.2. An algebra A w.m.v. is called ergodic if any invariant function f belonging to the corre-
sponding space B2 is equivalent (in B2) to a constant.

In [28] it is also given an alternative definition of ergodic algebra which is shown therein to be equivalent
to Definition 3.2, by using the von Neumann’s Ergodic Theorem. We state that as the following lemma,
whose detailed proof may be found in [28], p.247.

Lemma 3.1. Let A ⊆ BUC(Rn) be an algebra with mean value. Then A is ergodic if and only if

(3.2) lim
t→∞

My

(

∣

∣

1

|B(0; t)|

∫

B(0;t)

f(x+ y) dx−M(f)
∣

∣

2

)

= 0 ∀f ∈ A.

The importance of algebras w.m.v. in connection with continuous dynamical systems is well expressed by
the following result, which is a particular case of a more general assertion stated (without proof) in [28].

Theorem 3.1. Let Q be a compact space, T (x) : Q → Q, x ∈ Rn, a continuous dynamical system, µ a
Radon probability invariant measure in Q, and f ∈ C(Q). Then, for µ-almost all ω ∈ Q, the realization
f(T (·)ω) belongs to an ergodic algebra.
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Proof. 1. We first show that for µ-a.a. ω ∈ Q the algebra generated by the family {f(T (·+ y)ω))}y∈Rn is an
algebra w.m.v.. This in turn is an easy consequence of Birkhoff’s Ergodic Theorem. Indeed, from Birkhoff’s
Ergodic Theorem the functions f(T (· + y)ω), y ∈ Qn, possess mean values as well as any finite linear
combination with rational coefficients of products of the form f(T (·+ y1)ω)f(T (·+ y2)ω) · · · f(T (·+ yN )ω),
y1, . . . , yN ∈ Qn, for µ-a.e. ω ∈ Q. We conclude the result by a standard limit argument, using the uniform
continuity of f(T (·)ω) for fixed ω.

2. Now we show that choosing ω adequately out of a suitable null set the so constructed algebras w.m.v.
are, in fact, ergodic algebras (even if the given dynamical system is not ergodic!). Indeed, let ω ∈ Q be such
that f(T (x)ω) belongs to an algebra w.m.v. A. The elements of A are of the form g(T (x)ω) with g ∈ C(Q).
By Lemma 3.1, A is ergodic if and only if

lim
t→∞

My

(

∣

∣

1

|B(0; t)|

∫

B(0;t)

g(T (x+ y)ω) dx−M(g(T (·)ω)
∣

∣

2

)

= 0 ∀g(T (·)ω) ∈ A.

Now, let us define

γt(ω) :=
∣

∣

1

|B(0; t)|

∫

B(0;t)

g(T (x)ω) dx−M(g(T (·)ω)
∣

∣

2
,

and set Γt(ω) :=My(γt(T (y)ω)). By von Neumann’s Ergodic Theorem (see [16]) we have that limt→∞ Γt(ω)
exists, for each fixed ω in a subset of Q of measure 1. Now, by dominated convergence and Birkhoff Ergodic
Theorem, we have

∫

Q

lim
t→∞

Γt(ω) dµ(ω) = lim
t→∞

∫

Q

Γt(ω) dµ(ω) = lim
t→∞

∫

Q

γt(ω) dµ(ω) = 0.

Hence, limt→∞ Γt(ω) = 0 for µ-a.a. ω ∈ Q. Therefore, by passing to a smaller subset of Q with measure 1,
if necessary, we have that the algebra w.m.v. A constructed in step 1. is in fact an ergodic algebra.

¤

The following result first established in [50] (see also [28]) decribes the main property of ergodic algebras.
We refer to [50] and [28] for the proof.

Theorem 3.2 (Zhikov & Krivenko [50]). Let A be an ergodic algebra in BUC(Rn). Then the set of functions
in A whose distributional Fourier transform has compact support not containing 0 ∈ Rn is dense in the space
V = {f ∈ B2 : M(f) = 0}.

The following lemma will be used in Section 7 where we apply our framework to the homogenization of a
porous medium type equation with oscillatory external source.

Lemma 3.2. Let A be an ergodic algebra in BUC(Rn) and h ∈ B2 such that M(h∆f) = 0 for all f ∈ A
such that ∆f ∈ A. Then h is equivalent to a constant.

Proof. It suffices verify that M(hf) = 0 for all f ∈ B2 such that M(f) = 0. Indeed, let Y be the set of
functions in A whose distributional Fourier transform has compact support not containing 0 ∈ Rn. According
to Theorem 3.2 this set is dense in V := {f ∈ B2 : M(f) = 0}. Moreover, given f ∈ Y , there is g ∈ A such
that ∆g = f , as it is shown in [28], p.246. Therefore, given any f ∈ Y , we have M(hf) = M(h∆g) = 0,
which then concludes the proof. ¤

Remark 3.3. In the case n = 1, a similar proof yields that if A is an ergodic algebra in BUC(R) and h ∈ B2
is such that M(hf ′) = 0 for all f ∈ A such that f ′ ∈ A, then h is equivalent to a constant.
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4. Compact spaces associated with algebras with mean value

We next show that any algebra w.m.v. may always be viewed as an algebra of continuous functions on
a compact space K endowed with a continuous n-dimensional dynamical system T (x) : K → K and an
invariant Radon probability measure µ. We will make use of the following lemma which is a generalization
of a lemma of [3], whose simple proof remains essentially the same and for which, therefore, we refer to [3].

Lemma 4.1. Let X1, X2 be compact spaces, R1 a dense subset of X1 and W : R1 → X2. Suppose that for
all g ∈ C(X2) the function g ◦W is the restriction to R1 of some (unique) g1 ∈ C(X1). Then W can be
extended to a continuous mapping W : X1 → X2.
Further, suppose in addition that R2 is a dense set of X2, W is a bijection from R1 onto R2 and for all
f ∈ C(X1), f ◦W−1 is the restriction to R2 of some (unique) f2 ∈ C(X2). Then W can be extended to a
homeomorphism W : X1 → X2.

We are now ready to prove the following result.

Theorem 4.1. Let A be an algebra with mean value. Then:

(i) There exist a compact space K and an isometric isomorphism i identifying A with the algebra C(K)
of continuous functions on K.

(ii) K is a compactification of Tj×Rk, for some integers j, k with j+k ≤ n, where Tj is the j-dimensional
torus S1 × · · · × S1

j times

.

(iii) The translations T (y) : Rn → Rn, T (y)x = x+ y, extend to a group of homeomorphisms T (y) : K →
K, y ∈ Rn.

(iv) The mean value operator M(f) is representable by
∫

K
i(f) dm for some Radon probability measure m

which is invariant by the group of transformations T (y), y ∈ Rn.
(v) The family T (y), y ∈ Rn, is a continuous n-dimensional dynamical system on K.

Proof. 1. If S is any set, denote by B(S) be the Banach algebra of the bounded real-valued functions on
S endowed with the sup-norm. When S is a normal topological space, a well known theorem of Stone (see
[16], Theorem IV.6.18, p.274) says that if U is a closed subalgebra of B(S) which contains the unit, then
there exist a compact Hausdorff space S1 and an isometric isomorphism between the algebras U and C(S1).
In particular, there exists a compact topological space K and an isometric isomorphism between the algebra
A and the algebra C(K). If, in addition, the functions of the algebra U distinguish between the points of S,
i.e., if x 6= y then f(x) 6= f(y) for some f ∈ U , then a corollary of Stone’s theorem quoted above (see [16],
Corollary IV.6.19, p.276) asserts that there is a one-to-one embedding of S as a dense subset of the compact
topological space K such that each f ∈ U has a unique continuous extension f to K and such correspondence
f → f is exactly the isometric isomorphism between U and C(K).

2. Since in general the functions in A do not distinguish between the points of Rn, we may introduce in
Rn the equivalence relation x ∼ y iff f(x) = f(y) for all f ∈ A. We claim that Rn/ ∼≡ Cj,k := Tj × Rk, for
some integers j, k with j+k ≤ n. Indeed, if x 6= y and x ∼ y, then, by the invariance of A under translations,
0 ∼ x− y and so

T := {t ∈ R : 0 ∼ t(x− y)}
is an additive and nontrivial subgroup of R. So, either T = R or T is a discrete subgroup τZ for some
τ > 0. In the first case the functions of A are constant along all lines parallel to x− y. In the second case,
all functions of A are periodic with period τ , that is, f(z + τ(x − y)) = f(z) for all z ∈ Rn and all f ∈ A.
Continuing this procedure, we obtain a maximal independent set of vectors v1, . . . , vj , with j ≤ n, such
that all functions of A are periodic in the direction vi with period τi. Also, let l be the dimension of the
space spanned by all directions along which all functions of A are constant. Hence, Rn/ ∼ can be naturally
identified with Cj,k, with k = n − l − j. In particular, all functions of A can be identified with bounded
uniformly continuous function on Cj,k.
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3. Viewing A as a subalgebra of B(Cj,k), the functions of A distinguish between the points of Cj,k. Hence,
there is a one-to-one embedding of Cj,k as a dense subset of the compact space K such that any function of
A may be viewed as the restriction to Cj,k of a unique function belonging to C(K).

4. There is a natural addition operation in Cj,k, with respect to which it is an additive group, since it
is the cartesian product of j copies of S1, with + ( mod 1), and k copies of R, with the usual addition
operation +. Also, for each y ∈ Rn, the action of the translation T (y) : x 7→ x + y on Rn can also be read
on the quotient space Cj,k. Applying Lemma 4.1 with X1 = X2 = K, R1 = R2 = Cj,k ⊆ K we conclude that,
for each y ∈ Rn, T (y) can be extended to a homeomorphism T (y) : K → K. For each y ∈ Rn, T (y) induces

an isometry in A which we also denote by T (y), defined by [T (y)f ](x) = f(x + y). Hence, this isometry
extends to an isometry T (y) : C(K)→ C(K) defined by [T (y)f ](z) = f(z + y).

5. If yk → y in Rn, then the isometries T (yk) : A → A pointwise converge to the isometry T (y) : A → A,
as a consequence of the uniform continuity of the functions in A. But, since A is isometrically isomorphic to
C(K), the corresponding sequence of isometries T (yn) : C(K) → C(K) converges also to the corresponding
isometry T (y) : C(K)→ C(K). Hence, for any function f ∈ C(K) we have f(z+yk)→ f(z+y) uniformly in
z ∈ K. In particular, this implies that, given a net (zd)d∈D in K converging to z ∈ K, and a sequence yk ∈ Rn

converging to y, we have f(T (yk)zd) → f(T (y)z) for all f ∈ C(K), because f(zd + y) → f(z + y). Since
C(K) separates the points of K, this is the same to say that T (yk)zd → T (y)z in K, so that the mapping
(y, z) 7→ T (y)z is continuous. Hence, T (y), y ∈ Rn, is a continuous dynamical system on K.

6. The fact that the functions of A possess a mean value provides us with a linear functional f 7→M(f)
defined on C(K). This linear functional is clearly bounded and nonnegative. Therefore, by the Riesz-Markov
theorem, M(f) is representable by integration with respect to a Radon measure m in K. Further, since the
mean value is invariant by translations, m is an invariant measure with respect to the dynamical system
T (y), y ∈ Rn. ¤

As an immediate consequence of Theorem 4.1 we have the following result whose trivial proof is left as
exercise.

Theorem 4.2. Let A be an algebra w.m.v. in Rn and let K be the compact space given by Theorem 4.1,
such that A is isometrically isomorphic to C(K), and m be the corresponding invariant measure. Then, for

1 ≤ p ≤ ∞, the generalized Besicovitch spaces Bp
/ Bp
= are isometrically isomorphic to Lp(K,m). The family

T (y), y ∈ Rn, is ergodic if and only if A is ergodic.

We have seen above that for a given algebra with mean value A there is associated a compactification K
of the corresponding Lie group Cj,k = Tj ×Rk. Since Tj is itself compact, a natural question is whether the
compact K could be represented as a Cartesian product K = Tj ×K′ where K′ is a compactification of Rk.
This is in fact the case as stated by the following result.

Theorem 4.3. If K is a compactification of Cj,k associated with a closed subalgebra A of BUC(Cj,k) con-
taining the unity, distinguishing between the points of Cj,k, and invariant by the translations f(·+t), t ∈ Cj,k,
then K is homeomorphic to Tj × K′ where K′ is a compactification of Rk. In particular, A = C(Tj) ⊗ A′
where A′ is a subalgebra of BUC(Rk) isometrically isomorphic to C(K′).

Proof. 1. First of all, the embedding Tj → Cj,k = Tj × Rk composed with the continuous embedding
Cj,k → K, provides a continuous embedding of Tj into K. Hence, Tj with the relative topology inherited
from K is also compact. Therefore, the relative topology of Tj , inherited from K, being also Hausdorff, must
coincide with the standard topology of Tj .

2. We now consider the projection π : Cj,k = Tj × Rk → Tj , π(ξ, η) = ξ, ξ ∈ Tj , η ∈ Rk. From what
we have just seen, given any function g ∈ C(Tj), this function is also continuous in the relative topology
induced by the embeddings Tj → Cj,k → K. By the invariance of A with respect to translations, and so, in
particular, with respect to the “vertical” translations given the vectors (0, η), η ∈ Rk, we deduce that given
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any pair of points η1, η2 ∈ Rk, the sets Tj × {η1} and Tj × {η2}, both with the relative topology of K, are
homeomorphic.

3. Let ξ1, ξ2 be any two points in Tj and let τ be the translation by (ξ2 − ξ1, 0) which takes the points
of π−1(ξ1) ⊆ Cj,k in a one-to-one way onto the points of π−1(ξ2) ⊆ Cj,k. Due to the invariance of A by
translations, given then any g ∈ A, [g|π−1(ξ2)] ◦ τ = g1|π−1(ξ1) for some g1 ∈ A. Reciprocally, given any
f ∈ A, [f |π−1(ξ1)] ◦ τ−1 = f2|π−1(ξ2), for some f2 ∈ A. Therefore, Lemma 4.1 implies that τ : π−1(ξ1) →
π−1(ξ2) extends to a homeomorphism τ : π−1(ξ1)→ π−1(ξ2), where π−1(ξ1) and π−1(ξ2) denote the closures

of π−1(ξ1) and π
−1(ξ2) in the relative topology induced by the topology of K. Hence, all the spaces π−1(ξ),

ξ ∈ Tj , are homeomorphic.
4. We also deduce from the above discussion that the relative topology of Cj,k induced by the embedding

into K is also a product topology. In particular, the projection π : Cj,k → Tj is also continuous when Cj,k
and Tj are both given the relative topology inherited from K. Hence, π extends to a continuous surjective
mapping π : K → Tj , and we have π−1(ξ) = π−1(ξ), for all ξ ∈ Tj .

5. Summing up the above arguments, we arrive at the conclusion that K is homeomorphic to Tj×π−1(ξ0),
for an arbitrarily taken ξ0 ∈ Tj . Since π−1(ξ0) is clearly a compactification of Rk, this concludes the proof
of the theorem.

¤

We now analyze the relationship between algebras with mean values distinguishing between points of Rn

and the subalgebras of the algebra of almost periodic functions in Rn.

Theorem 4.4. Let A be an algebra with mean value distinguishing between the points of Rn and let K be the
associated compactification of Rn. Then A is a subalgebra of the algebra of the almost periodic functions in
Rn if and only if the addition operation + : Rn ×Rn → Rn can be extended to a continuous group operation
+ : K × K → K giving to K the structure of a compact abelian topological group. In this case, the Radon
measure induced by the mean value is the unique Haar measure defined in the abelian topological group K.

Proof. 1. First, we easily see that if + can be extended continuously to K×K providing K with a structure
of a compact topological abelian group, then the translates {f(· + t) : t ∈ Rn} form a precompact family
in BUC(Rn) for any f ∈ A, which is the same as saying that A is a subalgebra of the algebra of the almost
periodic functions.

2. Indeed, these translates are the restrictions to Rn × {t} of the composition of continuous functions

K × K +→ K
f
→ R. Since the composition is uniformly continuous with respect to the (uniform) topology of

K ×K, these translates are restrictions to Rn of the family f(·+ t) ∈ C(K) which is equicontinuous, in the
sense that given any ε > 0, there is a neighborhood V of the diagonal in K×K such that if (z1, z2) ∈ V , then
|f(z1 + t)− f(z2 + t)| < ε, for any t ∈ Rn. In particular, the family {f(·+ t)}, t ∈ Rn, is totally bounded in
C(K), that is, given ε > 0, there is a finite set {t1, . . . , tN} such that for all t ∈ Rn, ‖f(·+t)−f(·+tj)‖∞ < ε,
for some j ∈ {1, . . . , N}. Therefore, we conclude that {f(·+ t)} is precompact in BUC(Rn).

3. To prove the converse, let Gn be the Bohr compactification of Rn, that is, the compactification of Rn

induced by the whole algebra of the almost periodic functions (see [16]; also [3]). In order to take advantage
of the properties of exponential functions we consider algebras of complex valued functions; the passage to
the real valued case is immediate. Let then A be a subalgebra of almost periodic functions.

4. It is well known that the family F := {eiλ·x : λ ∈ Rn} form a fundamental set in the space of almost
periodic functions AP(Rn), in the sense that any f ∈ AP(RN ) may be approximated in the sup-norm by
finite linear combinations of elements of F .

5. Suppose first that A is a subalgebra of AP(Rn) generated by any subset F ′ ⊆ F , and let K be
the associated compactification of Rn. We are going to apply Lemma 4.1 with X1 = K × K, X2 = K,
R1 = Rn × Rn, R2 = Rn and W : R1 → R2 the addition operation + in RN . For any eiλ·x ∈ F ′, we have
eiλ·(x+y) = eiλ·xeiλ·y. Clearly, eiλ·xeiλ·y is the restriction to Rn × Rn of a continuous function in K × K.
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Since F ′ is a fundamental set for A, Lemma 4.1 implies that + may be continuously to K × K. It is also
immediate to verify that this extension preserves the properties of an abelian group.

6. Now, we consider the case where A is a general subalgebra of AP(Rn), not necessarily generated
by some subset of F . We first interpret K as a quotient space of Gn as follows. In Gn we consider the
equivalence relation z1 ∼ z2 if f(z1) = f(z2) for all f ∈ A, where f denotes the unique continuous extension

of f to Gn. The quotient space K̃ = Gn/ ∼, endowed with the quotient topology, is a compact space. The

functions f , f ∈ A, pass to the quotient and f ∈ C(K̃) for all f ∈ A. Moreover, the family {f : f ∈ A}
distinguishes between the points of K̃. Hence, there is an isometric isomorphism between A and C(K̃) and
so K̃ is homeomorphic to K and we may identify these spaces.

7. Now, observe that if z1, z2, σ1, σ2 ∈ Gn with z1 ∼ z2 and σ1 ∼ σ2, then z1 + σ1 ∼ z2 + σ2. Indeed,
given any f ∈ A, by the invariance of A by translations we have

f(z1 + σ1) = f(z2 + σ1) = f(σ1 + z2) = f(σ2 + z2).

We have seen above that for any f ∈ A, f(x+ y) is the restriction to Rn × Rn of a continuous function on
Gn × Gn. Now, as we have just proved, this function may pass to the quotient Gn/ ∼ ×Gn/ ∼≡ K × K.
Hence, f(x + y) is the restriction to Rn × Rn of a continuous function on K × K for all f ∈ A. Therefore,
an application of Lemma 4.1 with X1 = K × K, X2 = K, R1 = Rn × Rn, R2 = Rn and W = +, gives that
+ may be continuously extended to K × K and it is again a trivial matter to prove that the abelian group
properties are preserved by this extension.

8. The fact that the measure m of K induced by the mean value on A is the Haar measure is a straight-
forward consequence of the uniqueness of the Haar measure.

¤

5. Vector-valued algebras with mean value

In this section we extend the notion of algebra with mean value to vector-valued functions. We begin
with the following definition.

Definition 5.1. Let A ⊆ BUC(Rn) be an algebra with mean value and let E be a Banach space. We denote
by A(Rn;E) the space of functions f ∈ BUC(Rn;E) satisfying the following conditions:

(i) For all L ∈ E∗, Lf := 〈L, f〉 belongs to A;
(ii) The family {Lf : L ∈ E∗, ‖L‖ ≤ 1} is relatively compact in A.
For bounded Borel sets Q ⊆ Rn and f ∈ BUC(Rn;E), it is easily checked by an approximation with

Riemann sums that L 7→
∫

Q
〈L, f〉 dx defines a linear functional on E∗, continuous for the weak topology

σ(E∗, E); as a consequence, there exists a unique element of E, that we shall denote by
∫

Q
f dx, satisfying

〈L,
∫

Q

f dx〉 =
∫

Q

〈L, f〉 dx ∀L ∈ E∗.

For similar reasons, if f ∈ A(Rn;E) the integrals
∫

Qt
f dx weakly converge in E, as t → +∞, to a vector,

that we shall denote by
∫

Rn f dx, characterized by

〈L,
∫

Rn

f dx〉 =
∫

Rn

〈L, f〉 dx ∀L ∈ E∗.

Theorem 5.1. Let A ⊆ BUC(Rn) be an algebra with mean value. Let E be a Banach space and K be the
compact associated with A. There is an isometric isomorphism between A(Rn;E) and C(K;E). Denoting by

g 7→ g the canonical map from A to C(K), the isomorphism associates to f ∈ A(Rn;E) the map f̃ ∈ C(K;E)
satisfying

(5.1) 〈L, f〉 = 〈L, f̃〉 ∈ C(K) ∀L ∈ E∗.
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In particular, for each f ∈ A(Rn;E), ‖f‖E ∈ A.

Proof. 1. For any z ∈ K we consider the map L 7→ Lf (z). This is a linear map on E∗; we claim that the

compactness of F implies that this map is continuous with respect to the topology σ(E∗, E).
2. Indeed, by the well known Krein-Šmulian Theorem (see, e.g.,[16], p. 429) it suffices to check the

continuity of this linear functional when restricted to bounded closed balls. Now, if Li → L in the w∗-
topology, then the maps Lif converge to Lf pointwise and compactness yields that they converge also in A.
As a consequence Lif converge uniformly in K to Lf .

3. Hence, for any z ∈ K we can find an element of E, that we denote by f̃(z), such that Lf (z) = 〈L, f̃(z)〉
for any L ∈ E∗. This proves (5.1) and it remains to show that f̃ is a continuous map. This is again an
argument based on the compactness of the family F := {Lf : L ∈ E∗, ‖L‖ ≤ 1}: if zi → z then, by the

compactness of F , Lf (zi) → Lf (z) uniformly with respect to L in the unit ball of E∗. As a consequence

f̃(zi)→ f̃(z) in E.

4. Now we prove that f 7→ f̃ is an isometry between A(Rn;E) and C(K;E). This map is clearly an

isomorphism. Moreover, for each x ∈ Rn we obtain from (5.1) that ‖f̃(x)‖E = ‖f(x)‖E . Since ‖f̃‖E ∈ C(K)
we have that ‖f‖E ∈ A and so ‖f̃‖E = ‖f‖E . Consequently, f 7→ f̃ is an isometry. ¤

Definition 5.2. Given a compact space K, a probability Radon measure m on K and a Banach space E,
for 1 ≤ p <∞, we define the space Lp(K;E) as the completion of C(K;E) with respect to the norm ‖ · ‖p,
defined as usual:

‖f‖p :=
(
∫

K

‖f‖pE dm
)1/p

.

We also define L∞(K;E) as the space of the functions f : K → E such that f ∈ Lp(K;E) for all p ∈ [1,∞)
and sup1≤p<∞ ‖f‖p < +∞. We then set

‖f‖∞ := sup
1≤p<∞

‖f‖p.

As usual, we identify functions in Lp that coincide m-a.e. in K.

From Theorem 5.1 it follows easily the following analogue of Theorem 4.2.

Theorem 5.2. Let A(Rn) be an algebra w.m.v. in Rn, E be a Banach space, and K the compact space
given by Theorem 4.1, such that A(Rn) is isometrically isomorphic to C(K). Then, for 1 ≤ p ≤ ∞, the

vector-valued generalized Besicovitch spaces Bp(Rn;E)
/ Bp
= are isometrically isomorphic to Lp(K;E).

6. Multiscale Young Measures from Homogenization in Algebras w.m.v.

Next we establish the theorem concerning the existence of two-scale Young measures in algebras w.m.v. .
The proof follows exactly as the one of the corresponding result for almost periodic functions in [3], and so
we simply refer to [3] for the proof.

We consider an algebra w.m.v. A(Rn) ⊆ BUC(Rn), the associated compact space K that A(Rn) ∼ C(K)
and the corresponding Radon invariant measure m on K. Let Ω ⊆ Rn be a bounded open set and {uε(x)}ε>0
be a family of functions in L∞(Ω;K), for some compact and separable metric space K.

Theorem 6.1. Given any infinitesimal sequence {εi}i∈N there exist a subnet {uεi(d)}d∈D, indexed by a

certain directed set D, and a family of probability measures on K, {νz,x}z∈K,x∈Ω, weakly measurable with
respect to the product of the Borel σ-algebras in K and Rn, such that

(6.1) lim
D

∫

Ω

Φ(
x

εi(d)
, x, uεi(d)(x)) dx =

∫

Ω

∫

K

〈νz,x,Φ(z, x, ·)〉 dm(z) dx ∀Φ ∈ A (Rn;C0(Ω×K)) .
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Here Φ ∈ C (K;C0(Ω×K)) denotes the unique extension of Φ. Moreover, equality (6.1) still holds for
functions Φ in the following function spaces:

(1) B1(Rn;C0(Ω×K));
(2) Bp(Rn;C(Ω̄×K)) with p > 1;
(3) L1(Ω;A(Rn;C(K))).

Remark 6.1. A similar result holds, with minor adaptations in the proof, for families {uε}ε>0 ⊆ L1(K;Rm)
that satisfy the condition

lim
R→∞

lim sup
ε→0

|{|uε| > R}| = 0.

This happens, for instance, when a uniform bound in Lp(Ω;Rm) is available. In this special case, the
representation formula (6.1) is valid for all Φ(z, x, λ) ∈ A(Rn;C0(Ω, C(R

m))) such that

lim
|λ|→∞

|Φ(z, x, λ)|
|λ|p = 0 uniformly as (z, x) ∈ Rn × Ω.

This extension is analogous to the well known one in the classical theory of Young measures (see, e.g., [5],
[4], [42] etc.).

As in the classical theory of Young measures we have the following consequence of Theorem 6.1.

Theorem 6.2. Let Ω ⊆ Rn be a bounded open set, let {uε} ⊆ L∞(Ω;Rm) be uniformly bounded and let νz,x
be a two-scale Young measure generated by a subnet {uε(d)}d∈D, according to Theorem 6.1. Assume that U

belongs either to L1(Ω;A(Rn;Rm))) or to Bp(Rn;C(Ω̄;Rm)) for some p > 1. Then

(6.2) νz,x = δU(z,x) if and only if lim
D
‖uε(d)(x)− U(

x

ε(d)
, x)‖L1(Ω) = 0.

7. Porous medium type equations with oscillating external sources: The Cauchy problem

Let (Q, µ) be a compact space and T (x) : Q −→ Q an ergodic n-dimensional continuous dynamical system
on Q with an invariant probability measure µ on Q. We consider the following stochastic homogenization
problem

{

∂tu−∆f(u) = − 1
ε2∆yV (T (xε )ω), (x, t, ω) ∈ Rn+1+ ×Q

u(x, 0) = u0(T (
x
ε )ω, x), (x, ω) ∈ Rn ×Q

where V,∆V ∈ C(Q) and u0 ∈ L∞
(

Rn;C(Q)
)

. Here we denote Rn+1+ := Rn×(0,∞). As usual, ∆ =
∑n
i=1 ∂

2
xi

is the Laplace operator and we denote ∆y =
∑n
i=1 ∂

2
yi , where y represents the oscillatory variable x/ε. Here,

by ∆V ∈ C(Q) we mean that the function Ṽ (x, ω) := V (T (x)ω) satisfies ∆Ṽ ∈ C(Rn ×Q).
Since, by the Theorem 3.1, almost all realizations of functions in C(Q) belong to an ergodic algebra, for

simplicity of notation, here and henceforth, we consider the equivalent individual homogenization problem
with oscillatory functions belonging to an ergodic algebra, which in this case reduces to the problem

(7.1)

{

∂tu = ∆f(u)− 1
ε2∆yV (xε ), (x, t) ∈ Rn+1+

u(x, 0) = u0(
x
ε , x), x ∈ Rn.

So, let A(Rn) be an ergodic algebra, K be the compact space given by Theorem 4.1 such that A(Rn) ∼ C(K),
and m be the associated invariant probability measure on K. We make the following assumptions:

(A1) The function f in (7.1) is in C1(R) and satisfies f ′(u) > 0 for u ∈ R.
(A2) u0 ∈ L∞(Rn;A(Rn)) and for some ϕ0 ∈ L∞(Rn) we have

(7.2) u0(y, x) = g(ϕ0(x) + V (y)),

where g := f−1.
(A3) V, ∆V ∈ A(Rn).
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Let g be as above and f̄ be implicitly defined by the equation

(7.3) p =

∫

Rn

g(f̄(p) + V (y)) dy.

Theorem 7.1. Suppose assumptions (A1), (A2) and (A3) hold and let uε denote the unique solution of
(7.1). Let ū be the unique entropy solution of

(7.4)

{

∂tū−∆f̄(ū) = 0, (x, t) ∈ Rn+1+

ū(x, 0) =
∫

Rn u0(y, x) dy, x ∈ Rn

and set

(7.5) U(y, x, t) := g(f̄(ū(x, t)) + V (y)).

Then, as ε→ 0, we have uε → ū in the weak star topology of L∞(Rn+1+ ) and

(7.6) lim
ε→0

‖uε − U(
x

ε
, x, t)‖L1

loc
(Rn+1

+ ) = 0.

Proof. 1. First, we observe that the solutions uε, ε > 0, of (7.1) are bounded uniformly with respect to ε in
L∞(Rn+1+ ). For this, we note that for all α ∈ R, the function defined by ψα(y) := g(V (y)+α) is a stationary
solution of (7.1). Hence, if α1, α2 are such that α1 ≤ ϕ0(x) ≤ α2 for x ∈ R, we have

g(V (
x

ε
) + α1) ≤ u0(

x

ε
, x) ≤ g(V (

x

ε
) + α2) for all x ∈ Rn.

By the monotonicity of the solution operator of (7.1) (see Theorem A.3), we get

g(V (
x

ε
) + α1) ≤ uε(x, t) ≤ g(V (

x

ε
) + α2) for all (x, t) ∈ Rn+1+ .

Thus, in the sequel, we denote by K a closed interval containing the image of all the functions uε, ε > 0.
Let νz,x,t ∈ M(K), with (z, x, t) ∈ K × Rn+1+ , be the two-scale space time Young measures associated

with a subnet of {uε}ε>0 with test functions oscillating only on the space variable. Following [21] and [3],
the theorem will be proved by adapting DiPerna’s method in [19], that is, by showing that νz,x,t is a Dirac

measure for almost all (z, x, t) ∈ K × Rn+1+ . Observe that, for every α ∈ R, the entropy solutions uε and
ψα(

x
ε ) satisfy (see Theorem A.3)

(7.7)

∫

R
n+1
+

|uε(x, t)−ψα(
x

ε
)|φt + |f(uε(x, t))− f(ψα(

x

ε
))|∆φdx dt+

∫

Rn

|u0(
x

ε
, x)−ψα(

x

ε
)|φ(x, 0) dx ≥ 0,

or all 0 ≤ φ ∈ C∞c (Rn+1). In (7.7), we take φ(x, t) = ε2ϕ(xε )ψ(x, t) with 0 ≤ ψ ∈ C∞c (Rn+1+ ), ϕ, ∆ϕ ∈ A(Rn)
and ϕ ≥ 0. Observe that

∆φ = ∆ϕ(
x

ε
)ψ(x, t) + 2ε∇ϕ(x

ε
) · ∇ψ(x, t) + ε2ϕ(

x

ε
)∆ψ(x, t).

Letting ε→ 0 and using Theorem 6.1, we get
∫

R
n+1
+

∫

K

ψ(x, t)〈νz,x,t, |f(·)− f(ψα(z)|〉∆ϕdm(z) dx dt ≥ 0.

Now apply the inequality above to ‖ϕ‖∞ ± ϕ to obtain

(7.8)

∫

R
n+1
+

∫

K

ψ(x, t)〈νz,x,t, |f(·)− V (z)− α|〉∆ϕdm(z) dx dt = 0

for all ϕ such that ϕ,∆ϕ ∈ A(Rn).
2. As in [21], we define a new family of parameterized measures µz,x,t supported on a compact set

K ′ ⊃ {f(λ)− V (z) : (λ, z) ∈ K ×K} by

(7.9) 〈µz,x,t, θ〉 := 〈νz,x,t, θ(f(·)− V (z))〉 θ ∈ C(R).
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In this way, the equation (7.8) can also be rephrased as

(7.10)

∫

R
n+1
+

∫

K

ψ(x, t)〈µz,x,t, θ〉∆ϕ(z) dm(z) dx dt = 0,

where θ(λ) = |λ− α|.
On the other hand, using the integral equation defining weak solution of (7.1) with a test function as

above, we easily get letting ε → 0 that (7.10) holds when θ is any affine function. Therefore, we deduce
that (7.10) holds for finite linear combinations of affine functions and functions of the form | · −α|, α ∈ R.
Since these combinations generate the piecewise affine functions, we finally conclude that (7.10) holds for all
θ ∈ C(R).

Set F (z) :=
∫

R
n+1
+

ψ(x, t)〈µz,x,t, θ〉 dx dt and observe that
∫

K
F (z)∆ϕ(z) dm(z) = 0, for all ϕ such that

ϕ, ∆ϕ ∈ A(Rn). Then, we can apply the Lemma 3.2 to obtain that F is equivalent to a constant. Using
this fact and defining

µx,t :=

∫

K

µz,x,t dm(z) ∈M(K ′),

we have, in particular,

∫

R
n+1
+

ψ(x, t)〈µz,x,t, θ〉 dx dt =
∫

K

∫

R
n+1
+

ψ(x, t)〈µz,x,t, θ〉 dx dt dm(z) =

∫

R
N+1
+

ψ(x, t)〈µx,t, θ〉 dx dt,

for a.e. z ∈ K.
Hence,

∫

R
n+1
+

〈

µx,t,

∫

K

W (z, ·) dm(z)
〉

ψ(x, t) dx dt =
∑

i

m(Ki)
∫

R
n+1
+

〈µx,t, θi〉ψ(x, t) dx dt(7.11)

=
∑

i

m(Ki)
∫

R
n+1
+

〈µz,x,t, θi〉ψ(x, t) dx dt =
∑

i

∫

K

∫

R
n+1
+

〈µz,x,t, θi〉χKi
(z)ψ(x, t) dx dt dm(z)

=

∫

R
n+1
+

∫

K

〈µz,x,t,W (z, ·)〉ψ(x, t) dm(z) dx dt

for any function W (λ, z) =
∑

i θi(λ)χKi
(z), where θi ∈ C(K ′), Ki is any Borelian subset of K, and χKi

is
the characteristic function of Ki. By approximation (7.11) holds for any W ∈ C(K ×K ′).

3. From (7.7), taking the limit as ε→ 0, passing to a subnet if necessary, we get

∫

R
n+1
+

∫

K

〈νz,x,t, | · −ψα(z)|〉ϕt + 〈νz,x,t, |f(·)− f(ψα(z))|〉∆ϕdm(z) dx dt(7.12)

+

∫

Rn

∫

K

|u0(z, x)− ψα(z)|ϕ(x, 0) dm(z) dx ≥ 0

for all α ∈ R and for all 0 ≤ ϕ ∈ C∞c (Rn+1).
We define I(ρ, α) and G(ρ, α) by

I(ρ, α) :=

∫

K

|g(ρ+ V (z))− g(α+ V (z))| dm(z),(7.13)

G(ρ, α) := |ρ− α|.(7.14)
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Now, setting θ(t) = |g(t+ V (z))− g(α+ V (z))|, we have

∫

R
n+1
+

∫

K

〈νz,x,t, | · −ψα(z)|〉ϕt dm(z) dx dt =

∫

R
n+1
+

∫

K

〈νz,x,t, θ(f(·)− V (z))〉ϕt dm(z) dx dt

=

∫

R
n+1
+

∫

K

〈µz,x,t, |g(·+ V (z))− g(α+ V (z))|〉ϕt dm(z) dx dt

Using (7.11), we obtain

∫

R
n+1
+

∫

K

〈νz,x,t, | · −ψα(z)|〉ϕt dm(z) dx dt(7.15)

=

∫

R
n+1
+

∫

K

〈µz,x,t, |g(·+ V (z))− g(α+ V (z))|〉ϕt dm(z) dx dt

=

∫

R
n+1
+

〈

µx,t,

∫

K

|g(·+ V (z))− g(α+ V (z)) dm(z)
〉

ϕt dx dt

=

∫

R
n+1
+

〈µx,t, I(·, α)〉ϕt dx dt

Analogously,

(7.16)

∫

R
n+1
+

∫

K

〈νz,x,t, |f(·)− f(ψα(z))|〉∆ϕ(x, t) dm(z) dx dt =

∫

R
n+1
+

〈µx,t, G(·, α)〉∆ϕ(x, t) dx dt.

Using (7.15) and (7.16) in (7.12), we have

∫

R
n+1
+

〈µx,t, I(·, α)〉ϕt + 〈µx,t, G(·, α)〉∆ϕdx dt(7.17)

+

∫

RN

∫

K

|u0(z, x)− ψα(z)|ϕ(x, 0) dm(z) dx ≥ 0,

for all 0 ≤ ϕ ∈ C∞c (Rn+1) and all α ∈ R .
Now, choosing ϕ(x, t) = δh(t)φ(x), with δh(t) = max

{

h−t
h , 0

}

for 0 ≤ φ ∈ C∞c (RN ), t ≥ 0, and h > 0 in
(7.17), we obtain

(7.18) lim
h→0

1

h

∫ h

0

∫

Rn

〈µx,t, I(·, α)〉φdx dt ≤
∫

Rn

∫

K

|u0(z, x)− ψα(z)|φdm(z) dx.

Using the flexibility provided by φ in (7.18), we deduce that the same inequality holds if α ∈ L∞(Rn).
We have that ϕ0(x) := f(u0(z, x) − V (z)) is independent of z. Taking α(x) = ϕ0(x) and recalling that

u0(z, x) = g(α(x) + V (z)), we have α(x) = f̄(ū(x, 0)). Using this and ψα(z) = g(α + V (z)) in (7.18), we
obtain that

(7.19) lim
h→0

1

h

∫ h

0

∫

Rn

〈µx,t, I(·, f̄(ū(x, 0)))〉φdx dt = 0,

for all 0 ≤ φ ∈ L1(Rn).



MULTISCALE YOUNG MEASURES IN STOCHASTIC HOMOGENIZATION 17

4. By applying the Theorem A.2 with u1 = uε and u2(y) = ψα(
y
ε ), using test functions like in the doubling

of variables method and taking the limit, we get

−
∫

R
n+1
+

B
ψα(

x
ε
)

ϑδ
(uε(x, t))ϕt dx dt(7.20)

+

∫

R
n+1
+

Hδ(f(uε(x, t))− f(ψα(
x

ε
)))∇[f(uε(x, t))− f(ψα(

x

ε
))] · ∇ϕdx dt

= −
∫

R
n+1
+

|∇[f(uε(x, t))− f(ψα(
x

ε
))]|2H ′δ(f(uε(x, t))− f(ψα(

x

ε
)))ϕdx dt.

Now, we let α = ξ(y, s) := f̄(ū(y, s)), take φ as in the doubling of variables method, integrate in y, s, and
send δ → 0, to get
∫

(Rn+1
+ )2

−|uε(x, t)− ψξ(y,s)(
x

ε
)|φt +∇x|f(uε(x, t))− f(ψξ(y,s)(

x

ε
))| · ∇xφdx dt dy ds

= − lim
δ→0

∫

(RN+1
+ )2

|∇x[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))]|2H ′δ(f(uε(x, t))− f(ψξ(y,s)(

x

ε
)))φdx dt dy ds.

Then we use Theorem 6.1 on multiscale Young measures to obtain, as ε→ 0,

∫

(Rn+1
+ )2

−〈µx,t, I(·, ξ(y, s))〉φt − 〈µx,t, G(·, ξ(y, s))〉∆xφdx dt dy ds

(7.21)

= − lim
ε→0

lim
δ→ 0

∫

(RN+1
+ )2

|∇x[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))]|2H ′δ(f(uε(x, t))− f(ψξ(y,s)(

x

ε
)))φdx dt dy ds.

5. Observe that ∇y[f(ψξ(y,s)(xε ))] = ∇y[V (xε ) + ξ(y, s)] = ∇yξ(y, s). Hence

0 =

∫

R
n+1
+

∇y[f(ψξ(y,s)(
x

ε
))] · ∇x[Hδ(f(uε(x, t))− f(ψξ(y,s)(

x

ε
))φ] dx dt,

which implies that
∫

R
n+1
+

{

∇y[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))] · ∇x[f(uε(x, t))− f(ψξ(y,s)(

x

ε
))]

H ′δ(f(uε(x, t))− f(ψξ(y,s)(
x

ε
)))φ

}

dx dt

= −
∫

R
n+1
+

∇y[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))] · ∇xφHδ(f(uε(x, t))− f(ψξ(y,s)(

x

ε
))) dx dt.

Integrating in y, s and letting δ → 0, we have
∫

(RN+1
+ )2

|f(uε(x, t))− f(ψξ(y,s)(
x

ε
))|div y∇xφdx dt dy ds

= lim
δ→0

∫

(Rn+1
+ )2

{

∇y[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))] · ∇x[f(uε(x, t))− f(ψξ(y,s)(

x

ε
))]

H ′δ(f(uε(x, t))− f(ψξ(y,s)(
x

ε
)))φ

}

dx dt dy ds.
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By Theorem 6.1, as ε→ 0, we get

∫

(Rn+1
+ )2

〈µx,t, G(·, ξ(y, s))〉div y∇xφdx dt dy ds
(7.22)

= lim
ε→0

lim
δ→0

∫

(Rn+1
+ )2

∇y[f(uε)− f(ψξ(
x

ε
))] · ∇x[f(uε)− f(ψξ(

x

ε
))]H ′δ(f(uε)− f(ψξ(

x

ε
)))φdx dt dy ds.

Similarly, we have also that f(uε(x, t))− f(ψξ(y,s)(xε )) = f(uε(x, t))− V (xε )− ξ(y, s) and thus

∇x[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))] = ∇x[f(uε(x, t))− V (

x

ε
)].

The latter, proceeding as above in obtaining (7.22), yields the equality
∫

(Rn+1
+ )2

〈µx,t, G(·, ξ(y, s))〉div x∇yφdx dt dy ds(7.23)

= lim
ε→0

lim
δ→0

∫

(Rn+1
+ )2

∇x[f(uε)− f(ψξ(
x

ε
))] · ∇y[f(uε)− f(ψξ(

x

ε
))]H ′δ(f(uε)− f(ψξ(

x

ε
)))φdx dt dy ds

where uε and ξ are functions of x, t and y, s, respectively.
6. Let ū be the entropy solution of (7.4). From (A.5) in Theorem A.1, we have

∫

R
n+1
+

|l − ū(y, s)|φs + sgn(f̄(l)− f̄(ū(y, s)))∇y f̄(ū) · ∇yφdy ds(7.24)

= lim
δ→0

∫

R
n+1
+

|∇y f̄(ū)|2H ′δ(f̄(l)− f̄(ū(y, s)))φdy ds, for all l ∈ R.

Now, let k := f̄(l) and notice that l =
∫

K
g(f̄(l)+V (z)) dm(z) and that ū(y, s) =

∫

K
g(ξ(y, s)+V (z)) dm(z).

Thus,
∫

R
n+1
+

|l − ū(y, s)|φs dy ds =
∫

R
n+1
+

∣

∣

∣

∣

∫

K

(g(k + V (z))− g(ξ(y, s) + V (z)) dm(z)

∣

∣

∣

∣

φs dy ds

=

∫

R
n+1
+

(
∫

K

|g(k + V (z))− g(ξ(y, s) + V (z))| dm(z)

)

φs dy ds =

∫

R
n+1
+

I(k, ξ(y, s))φs dy ds.

Also,
∫

R
n+1
+

sgn(f̄(l)− f̄(ū(y, s)))∇y f̄(ū) · ∇yφdy ds

= −
∫

R
n+1
+

∇y|f̄(l)− f̄(ū(y, s))| · ∇yφdy ds =
∫

R
n+1
+

|k − ξ(y, s)|∆yφdy ds

=

∫

R
n+1
+

G(k, ξ(y, s))∆yφdy ds.

Besides, since ∇yξ(y, s) = ∇y[f(ψξ(y,s)(xε ))], we have
∫

R
n+1
+

|∇y f̄(ū)|2H ′δ(f̄(l)− f̄(ū(y, s)))φdy ds =
∫

R
n+1
+

|∇yξ(y, s)|2H ′δ(k − ξ(y, s))φdy ds

=

∫

R
n+1
+

|∇yf(ψξ(y,s)(
x

ε
))|2H ′δ(k − ξ(y, s))φdy ds.
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Using the two previous equalities in (7.24) we obtain
∫

R
n+1
+

I(k, ξ(y, s))φs +G(k, ξ(y, s))∆yφdy ds = lim
δ→0

∫

R
n+1
+

|∇yf(ψξ(y,s)(
x

ε
))|2H ′δ(k − ξ(y, s))φdy ds.

for all k ∈ R and all 0 ≤ φ ∈ C∞c ((Rn+1+ )2).
We take k = f(uε(x, t))− V (xε ) in the above equality and integrate in x, t to get

∫

(Rn+1
+ )2

I(f(uε(x, t))− V (
x

ε
), ξ(y, s))φs +G(f(uε(x, t))− V (

x

ε
), ξ(y, s))∆yφdx dt dy ds(7.25)

= lim
δ→0

∫

(Rn+1
+ )2

{

|∇y[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))]|2H ′δ(f(uε(x, t))− f(ψξ(y,s)(

x

ε
))φ

}

dx dt dy ds.

Applying Theorem 6.1, letting ε→ 0, we obtain

lim
ε→0

∫

(Rn+1
+ )2

I(f(uε(x, t))− V (
x

ε
), ξ(y, s))φs

=

∫

(Rn+1
+ )2

∫

K

〈νz,x,t, I(f(·)− V (z), ξ(y, s))〉φs dm(z)

=

∫

(Rn+1
+ )2

∫

K

〈µz,x,t, I(·, ξ(y, s))〉φs dm(z) =

∫

(Rn+1
+ )2

〈µx,t, I(·, ξ(y, s))〉φs

Similarly

lim
ε→0

∫

(Rn+1
+ )2

G(f(uε(x, t))− V (
x

ε
), ξ(y, s))∆yφ =

∫

(Rn+1
+ )2

〈µx,t, G(·, ξ(y, s))〉∆yφ.

Using the last two equalities in (7.25), we get
∫

(Rn+1
+ )2

〈µx,t, I(·, ξ(y, s))〉φs + 〈µx,t, G(·, ξ(y, s))〉∆yφdx dt dy ds(7.26)

= lim
ε→0

lim
δ→0

∫

(Rn+1
+ )2

|∇y[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))]|2H ′δ(f(uε(x, t))− f(ψξ(y,s)(

x

ε
)))φdx dt dy ds.

7. We now prove that

(7.27)

∫

R
n+1
+

〈µx,t, I(·, ξ(x, t))〉ϕt + 〈µx,t, G(·, ξ(x, t))〉∆ϕdx dt ≥ 0,

for all 0 ≤ ϕ ∈ C∞c (Rn+1+ ).
By subtracting (7.21) from (7.22), we deduce that

∫

(Rn+1
+ )2

−〈µx,t, I(·, ξ(y, s))〉φt − 〈µx,t, G(·, ξ(y, s))〉
(

∆xφ+ div y∇xφ
)

(7.28)

= − lim
ε→0

lim
δ→0

∫

(Rn+1
+ )2

{

|∇x[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))]|2

+∇y[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))] · ∇x[f(uε(x, t))− f(ψξ(y,s)(

x

ε
))]

}

H ′δ(f(uε(x, t))− f(ψξ(y,s)(
x

ε
))φ.
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The sum of (7.26) and (7.23)) gives

∫

(Rn+1
+ )2

〈µx,t, I(·, ξ(y, s))〉φs + 〈µx,t, G(·, ξ(y, s))〉
(

∆yφ+ div x∇yφ
)

(7.29)

= lim
ε→0

lim
δ→0

∫

(RN+1
+ )2

{

|∇y[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))]|2

+∇y[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))] · ∇x[f(uε(x, t))− f(ψξ(y,s)(

x

ε
))]

}

H ′δ(f(uε(x, t))− f(ψξ(y,s)(
x

ε
))φ.

Finally, taking the difference between (7.28) and (7.29) we obtain

∫

(Rn+1
+ )2

−〈µx,t, I(·, ξ(y, s))〉(φt + φs)− 〈µx,t, G(·, ξ(y, s))〉
(

∆x + div y∇x + div x∇y +∆y

)

φ(7.30)

= − lim
ε→0

lim
δ→0

∫

(Rn+1
+ )2

{

∣

∣∇x[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))]

+∇y[f(uε(x, t))− f(ψξ(y,s)(
x

ε
))]
∣

∣

2
H ′δ(f(uε(x, t))− f(ψξ(y,s)(

x

ε
)))φ

}

≤ 0.

Now, we take φ(x, t, y, s) := ϕ(x+y2 , t+s2 )ρn(
x−y
2 )θn(

t−s
2 ), where 0 ≤ ϕ ∈ C∞c (Rn+1+ ), and ρn, θn are

classical approximation of the identity sequences in Rn and R, respectively, as in the doubling of variables
method, and observe that

(

∆x + div y∇x + div x∇y +∆y

)

φ = ρn(
x− y
2

)θn(
t− s
2

)∆xϕ(
x+ y

2
,
t+ s

2
).

Substituting such test function in the inequality in (7.30) and letting n→∞, we obtain (7.27), proving the
assertion.

8. To conclude the proof, we set ϕ(x, t) = δh(t)Λ(x) in (7.27), with 0 ≤ δh ∈ C∞c (R+) as in the step 3.
above and Λ given by (A.6). We define

γ(t) :=

∫

Rn

〈µx,t, I(·, ξ(x, t))〉Λ(x) dx

and observe that G(·, ·) ≤ CI(·, ·). Then, using the properties of the weight function Λ, proceeding in a
standard way and letting h→ 0, we arrive at

γ(t) ≤ C

∫ t

0

γ(s)ds for a.e. t ≥ 0.

Hence, Gronwall’s lemma implies γ(t) = 0 for a.e. t ≥ 0 which, by the definition of γ, means that
〈µx,t, I(·, ξ(x, t))〉 = 0 for a.e. (x, t) ∈ Rn+1+ , and so 〈µx,t, G(·, ξ(x, t))〉 = 0 for a.e. (x, t) ∈ Rn+1+ . Therefore,

µx,t is the Dirac mass concentrated at ξ(x, t) for a.e. (x, t) ∈ Rn+1
+ . Recalling the definition of µx,t we have

also that µz,x,t is the Dirac mass concentrated at ξ(x, t) for a.e. (z, x, t), and thus, νz,x,t is the Dirac mass
concentrated at g(f̄(ū(x, t)) + V (z)) for a.e. (z, x, t). Hence, we can apply Theorem 6.1 to conclude (7.6).



MULTISCALE YOUNG MEASURES IN STOCHASTIC HOMOGENIZATION 21

Finally, the fact that the whole sequence uε converges in the weak star topology of L∞(Rn+1+ ) to ū follows

from (7.6) observing that, for any ϕ ∈ Cc(Rn+1+ ), we have

lim
ε→0

∫

R
n+1
+

U(
x

ε
, x, t)ϕ(x, t)dxdt =

∫

R
n+1
+

∫

K

U(z, x, t)ϕ(x, t)dm(z) dx dt

=

∫

R
n+1
+

(
∫

K

g(f̄(ū(x, t)) + V (z) )dm(z)

)

ϕ(x, t) dx dt

=

∫

R
n+1
+

ū(x, t)ϕ(x, t) dx dt,

by the definitions of f̄ and U .
¤

Appendix A. Some basic results about the nondegenerate porous medium equation

In this section we state (without proof) some basic results about the porous medium equation which are
used in Section ??. More specifically, we consider the Cauchy problem for the following quasilinear parabolic
equation

(A.1) ut −∆f(u) = h(x), (x, t) ∈ Rn+1+ := Rn × (0,∞),

with initial data given by

(A.2) u(x, 0) = u0(x), x ∈ Rn,

where we assume that f : R → R is a smooth Lipschitz function with f ′(u) > 0 for u ∈ R and h, u0 ∈ L∞(Rn).
Observe that here we only consider the simpler nondegenerate case, i.e., f ′ > 0.

Definition A.1. A function u ∈ L∞(Rn+1+ ) is said to be an entropy solution of the problem (A.1),(A.2) if
the following hold:

(1) f(u(x, t)) ∈ L2loc((0,∞);H1
loc(R

n));
(2) Given ϕ ∈ C∞c (Rn+1), ϕ ≥ 0 and any pair of functions (η, q) ∈ C2(R)2 such that q′(λ) = f ′(λ)η′(λ),

with η convex, we have

(A.3)

∫

R
n+1
+

η(u)ϕt + q(u)∆ϕ+ η′(u)hϕdx dt+

∫

Rn

η(u0)ϕ(x, 0) dx ≥ 0.

Let Hδ : R → R be the approximation of the sgn function given by

Hδ(s) :=















1, for s > δ,
s

δ
, for |s| ≤ δ,

−1, for s < −δ
,

and let (Hδ)+ and (Hδ)− denote its nonnegative part and nonpositive part, respectively; (Hδ)+(s) :=
max{Hδ(s), 0}, (Hδ)−(s) := max{−Hδ(s), 0}.

Given a nondecreasing Lipschitz continuous function ϑ : R → R and k ∈ R, we define

Bkϑ(λ) :=

∫ λ

k

ϑ(f(r))dr.

Let us denote

ϑδ(λ) := Hδ(λ− f(k)) and (ϑδ)+(λ) := (Hδ)+(λ− f(k)).
The following two results are essentially adaptations of more general ones established in [12] and state
important properties of entropy solutions of (A.1),(A.2).
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Theorem A.1. Let u be the entropy solution of the problem of Cauchy (A.1),(A.2), with h, u0 ∈ L∞(Rn).
Then,

∫

R
n+1
+

−Bkϑδ(u)ϕt +Hδ(f(u)− f(k))∇f(u) · ∇ϕ−Hδ(f(u)− f(k))hϕdx dt(A.4)

= −
∫

R
n+1
+

|∇f(u)|2H ′δ(f(u)− f(k))ϕdx dt

for all k ∈ R and all 0 ≤ ϕ ∈ C∞c (Rn+1+ ). Moreover, letting δ → 0 in (A.4) and using the strict increasing
monotonicity of f , we obtain

∫

R
n+1
+

−|u− k|ϕt +∇|f(u)− f(k)| · ∇ϕ− sgn(u− k)hϕdx dt(A.5)

= − lim
δ→0

∫

R
n+1
+

|∇f(u)|2H ′δ(f(u)− f(k))ϕdx dt,

for all k ∈ R and all 0 ≤ ϕ ∈ C∞c (Rn+1+ ). We have similar identities with Bkϑδ , Hδ replaced by B
k
(ϑδ)+

, (Hδ)+,

respectively, in (A.4) and |u− k|, |f(u)− f(k)| replaced by (u− k)+, (f(u)− f(k))+, respectively, in (A.5).

For the next result we assume that there is V ∈ W 2,∞(Rn) such that, in (A.1), h = ∆V . In particular,
(A.1) admits stationary solutions, namely,

ψα(x) := f−1(V (x) + α), α ∈ R.

Theorem A.2. Let u1, u2 be entropy solutions of the Cauchy problem for (A.1) with initial data u01, u02 ∈
L∞(Rn). Assume h = ∆V for some V ∈W 2,∞(Rn) and that u2 is a stationary solution. Then,

−
∫

(Rn+1
+ )2

(

B
u2(y)
ϑδ

(u1(x, t))(φt + φs) +Hδ(f(u1(x, t))− f(u2(y)))(h(x)− h(y))φ
)

dx dt dy ds

+

∫

(Rn+1
+ )2

Hδ(f(u1(x, t))− f(u2(y)))(∇x +∇y)[f(u1(x, t))− f(u2(y))] · (∇x +∇y)φdx dt dy ds

= −
∫

(Rn+1
+ )2

|(∇x +∇y)[f(u1(x, t))− f(u2(y))]|2H ′δ(f(u1(x, t))− f(u2(y)))φdx dt dy ds,

for all 0 ≤ φ ∈ C∞c ((Rn+1+ )2).

Let the weight function Λ : Rn → R be defined by

(A.6) Λ(x) := e−
√
1+|x|2 .

An important feature of the weight function Λ is that

(A.7) |DiΛ(x)| ≤ Λ(x), for i = 1, . . . , n, and |∆Λ(x)| ≤ Λ(x), for x ∈ Rn.

The next result establishes the existence and L1-stability of entropy solutions of (A.1),(A.2). The proof,
which we will omit, is obtained by combining ideas in Volpert & Hudjaev [46], more specifically the use of
the weight function Λ, and the extension of the doubling of variables method of Kruzhkov [31] to degenerate
quasilinear parabolic equations obtained by Carrillo [12].

Theorem A.3. Assume f : R → R is a Lipschitz non-decreasing function and h, u0 ∈ L∞(Rn). Then we
have the following:

(i) There exists an entropy solution u ∈ L∞(Rn+1+ ) of the problem (A.1),(A.2).
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(ii) If u1, u2 ∈ L∞(Rn+1+ ) are entropy solutions of (A.1) with initial data u01, u02 ∈ L∞(Rn), respectively,
then

(A.8)

∫

Rn

(u1(x, t)−u2(x, t))+φt+(f(u1(x, t))−f(u2(x, t)))+∆φdx dt+
∫

Rn

(u01(x)−u02(x))+φ(x, 0) dx ≥ 0,

for all 0 ≤ φ ∈ C∞c (Rn+1), from which we obtain

(A.9)

∫

Rn

|u1(x, t)− u2(x, t|φt + |f(u1(x, t))− f(u2(x, t))|∆φdx dt+
∫

Rn

|u01(x)− u02(x)|φ(x, 0) dx ≥ 0,

for all 0 ≤ φ ∈ C∞c (Rn+1).
(iii) Therefore, there is a constant c > 0, depending only on n and f , such that for a.e. t ≥ 0 we have

(A.10)

∫

Rn

(u1(x, t)− u2(x, t))+ Λ(x) dx ≤ ec t
∫

Rn

(u01(x)− u02(x))+ Λ(x) dx.

In particular, we also have

(A.11)

∫

Rn

|u1(x, t)− u2(x, t))|Λ(x) dx ≤ ec t
∫

Rn

|u01(x)− u02(x)|Λ(x) dx.
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