ASYMPTOTICS FOR THE GENUS AND THE NUMBER OF
RATIONAL PLACES IN TOWERS OF FUNCTION FIELDS
OVER A FINITE FIELD

ARNALDO GARCIA AND HENNING STICHTENOTH

ABSTRACT. We discuss the asymptotic behaviour of the genus and the number
of rational places in towers of function fields over a finite field.

1. INTRODUCTION

Y.Thara and Y.[.Manin discovered independently that the classical Hasse-Weil
bound for the number of rational points on a curve over a finite field can be
improved substantially if the genus of the curve is large with respect to the car-
dinality of the underlying finite field.

Manin’s proof is based on coding theory. In his paper [12] with the title “What
is the maximum number of points on a curve over Fy?” he recalls Goppa’s
construction of error-correcting codes using algebraic curves over a finite field
(these codes are nowadays known as algebraic geometric codes), and he shows
then that well-known bounds for the parameters of codes (like the Mc Eliece-
Rodemich-Rumsey-Welch bound) imply an improvement of the Hasse-Weil upper
bound

N(x) <q+1+29(x)-Va (L.1)

for ¢ = 2 or 3 and large genus. Here y denotes a non-singular, absolutely irre-
ducible, projective algebraic curve over the finite field F,, and N(x) (resp. ¢(x))
is the number of F,-rational points (resp. the genus) of x.

While Manin’s arguments work only for ¢ = 2 and ¢ = 3, Thara’s results hold
for all ¢. In his short note “Some remarks on the number of rational points on
algebraic curves over finite fields” he introduces, for any prime power ¢, the real
number (see [11])

A(q) = limsup N(x)/9(x),
X
where x runs over all non-singular, absolutely irreducible, projective curves over
the field F, with genus g(x) > 0. It follows immediately from the Hasse-Weil
bound (1.1) that A(¢) < 2-,/g. Thara’s first result is that one has the much
stronger estimate

Alg) < (VBg+1-1)/2. (1.2)

A. Garcia was partially supported by PRONEX CNPq # 662408/1996-9 (Brazil).
1



2 ARNALDO GARCIA AND HENNING STICHTENOTH

The idea of his proof is very simple: Let N,(x) denote the number of rational
points on x over the field F,-, for each » > 1. The Hasse-Weil bound for x/F,
and for x/F,. and the trivial observation that N(x) = N;(x) is less or equal to
Ny (x) yield easily the proof of Inequality (1.2).

It turns out to be much harder to obtain non-trivial lower bounds C' > 0
for A(¢q). To this end one has to provide an infinite sequence (xn)n>o of curves
Xn/Fy such that lim, oo N(xn)/9(xn) > C. Ihara proved in [11] already the
fundamental result

A(q) > \/g—1 for square cardinalities ¢, (1.3)

by showing that certain (Shimura-) modular curves have sufficiently many F,-
rational points, when ¢ is a square. The Inequality (1.3) was again proved by
Tsfasman, Vladut and Zink [16], and these authors showed that (1.3) implies an
improvement of the Gilbert-Varshamov bound (which is a fundamental bound in
coding theory) for all square cardinalities ¢ > 49.

Refining Thara’s method, Drinfeld and Vladut [3] improved Inequality (1.2)
further and showed that

Alg) <\/q—1 forallgq. (1.4)
In particular it follows from (1.3) and (1.4) that
A(g) =+/q—1, if ¢ is a square. (1.5)
2m—+1

For non-squares ¢ = p much less is known about A(¢). Based on classfield
towers and the Golod-Shafarevic theorem, Serre [14] proved that

A(g) > c¢-logg >0 (1.6)

with some constant ¢ > 0, independent of ¢ (see also [13]). For ¢ = p* (p a prime
number), Zink [19] proved the lower bound

2(p* — 1)
p+2
He obtained Inequality (1.7) by using degenerations of Shimura modular surfaces.

A(p*) > (1.7)

All above-mentioned results on lower bounds for A(q) are based on deep meth-
ods from number theory and algebraic geometry (classfield towers, classical mod-
ular curves, Shimura modular curves and surfaces, Drinfeld modular curves).
Moreover, most sequences (X, )n>o of curves x,, /I, with lim,,_,oc N(x»n)/9(xn) >0
which were constructed by those methods are far from being explicit. However,
for applications (e.g., in coding theory or cryptography) one needs curves over F,
with large genus and many rational points, which are given by explicit equations
and such that their rational points are given explicitly by coordinates.

Following an attempt by Feng, Rao and Pellikaan, Garcia and Stichtenoth pub-
lished in 1995 the first explicit example of a sequence (xn)n>o of curves over F,
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with ¢ = ¢ and lim,_,oo N(Xn)/9(xn) = /@ — 1, hence attaining the Drinfeld-
Vladut bound (1.4) (see [6]). In subsequent papers, these ideas were further
developped (see [7],[8],[9]). For explicit equations for certain modular curves we
refer to [4]. Our approach is, in comparison with all others mentioned above,
fairly elementary and explicit.

The aim of this paper is to explain our construction of infinite sequences of
curves, by presenting one typical example in detail. We will use the language of
algebraic function fields which is essentially equivalent to that of algebraic curves.
We assume only some basic facts from the theory of function fields: the main tool
is ramification theory in finite extensions.

2. PRELIMINARIES AND NOTATIONS

Our reference for the theory of algebraic function fields is the book [15]. We
fix now some notations which will be used throughout this paper:

I, the finite field with cardinality q.
D the characteristic of F,.
F,E,F,,.. algebraic function fields (in one variable) over F,.

We always assume that F, is the full constant field
of F' (resp. E, F,,...).

g(F) the genus of the function field F.

P Q,.. places of a function field.

deg P the degree of the place P. In particular, the place
is said to be rational (or F,-rational) if deg P = 1.

vp the (normalized) discrete valuation associated with
the place P.

P(F) the set of places of F.

N(F) = N(F/F,) the number of F,-rational places of F.

Let E//F be a finite algebraic extension of function fields over F,. For any place
P € P(F) there are finitely many places @ € P(FE) lying above P. We then write
Q|P and denote by

e(Q|P) the ramification index of Q|P,
f(Q|P) the inertia degree of Q|P.
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Then deg @ = f(Q|P) - deg P, and we have the fundamental equality

> e@IP)- f(@IP) = [E: F]. (2.1)
Q[P
The place P € P(F) is said to be

ramified in E/F if e(Q|P) > 1 for some Q|P,
wildly ramified in E/F if ged(e(Q|P),q) > 1 for some Q|P,
tame in E/F if it is not wildly ramified,

totally ramified in E/F if e(Q|P) = [E : F] for some Q|P (it follows from
Eq.(2.1) that @ is then the only place above P and that deg @ = deg P),

completely splitting in E/F if there are exactly m = [E : F| distinct places
Q1,-..,Qm € P(E) lying above P. Then deg@Q; = deg P for all Q;|P, as
follows from Eq.(2.1).

From the fundamental equality (2.1) we also conclude an estimate for the number
of rational places of E/F,:

t-|[E:F|< N(E)<[E:F]-N(F), (2.2)

where t is the number of rational places of F' which are completely splitting in
the extension E/F.

In addition we assume now that the extension E/F is separable. Then the
following formula due to Hurwitz relates the genera of E' and F:

29(E)—2=[E: F]-(29(F)—2) + deg Diff(E/F). (2.3)
Here Diff(E//F) denotes the different of E/F which is a divisor of the function
field £/F,:
Diff(E/F)= > > d(Q|P)-
PEeP(F) Q|P

The integer d(Q|P) is called the different exponent of Q|P, and Dedekind’s dif-
ferent theorem asserts that

AQIP) = e(QIP) - 1, (2.4)
with equality if and only if Q|P is tame; i.e., if and only if the characteristic p
does not divide e(Q|P)

We will need some results about the behaviour of places in the composite of
two function fields. So we consider now a finite extension E/F of the function
field F'/F, and two intermediate fields F' C E; C E (for i = 1,2) such that E' is
the composite field E = F; - E5. Let Q € P(E) be a place of E, and let Q; = Q|g,
and P = Q| be the places below @ in E; and in F. Then the following results
hold, (see [15], ch.III).
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a) If e(Q1|P) = 1 and e(Q2|P) = [F> : F], then it follows that e(Q|Q;) =
e(Q2|P) = [E : Ey] and e(Q|Q2) = 1. Moreover, if F, is algebraically
closed in Fp, then it is also algebraically closed in the field F. (2.5)

b) If P is completely splitting in Ey/F, then the place @)1 splits completely

in E/E;. (2.6)

The assertion in (2.5) is a special case of Abhyankar’s lemma (see [15], Prop.
111.8.9).

3. BASIC THEORY OF TOWERS OF FUNCTION FIELDS

As we pointed out in the Introduction, we want to construct explicitly sequences
(F})i>o of function fields F;/F, such that g(F;) — oo and limsup,_,., N(F;)/g(F;)
is large. By the Drinfeld-Vladut bound (1.4) we always have that

limsup N (F;)/g(F;) < A(q) < Va—1, (3.1)

11— 00

and any sequence with lim sup, , . N(F;)/g(F;) > 0 yields by (3.1) a non-trivial
lower bound for A(q). We will not consider arbitrary infinite sequences of function
fields but we will focus on towers only.

Definition 3.1. A tower of function fields over F, is an infinite sequence F =
(Fy, F1, Fy, . ..) of function fields F;/F, having the following properties:

i) Fy, C F; C F, C..., and for each n > 1 the extension F},/F,, ; is separable

of degree [F,, : F}, 1] > 1.

ii) g(F;) > 1 for some j > 0.
It is clear by the Hurwitz genus formula (2.3) that g(F;) — oo for i — co. As we
will show, the limit lim;_,,, N(F;)/g(F;) exists for any tower F = (Fy, Fi, Fy, .. .)
over F,.
Lemma 3.2. Let F = (F});>o be a tower of function fields over F,. Then the
two sequences

(N(F)/[Fi : Fol)izo and (g(Fi)/[Fi : Fo))izo
are convergent, with

0 < lim N(F})/[F;: Fy] < oo and 0 < lim g(F;)/[F;: Fy] < 0.
11— 00 1— 00

Proof. i) For i > 1 we have

NEVIE:R) _ NE)
N(Fio1)/[Fioa: o] [Fi: Fia] - N(Fia) —
by (2.2). The sequence (N (F;)/[F; : Fy])i>o is therefore monotonously decreasing,
hence convergent.
ii) Choose j > 0 such that g(F;) > 1. As in item i) one shows that the sequence
((g(F;) — 1)/[F; : Fyl)i>; is monotonously increasing, using the Hurwitz genus
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formula (2.3). Hence the sequence ((g(F;) —1)/[F; : Fy])i>o converges in RU{oo},
and the sequence (g(F;)/[F; : Fy])i>o has the same limit. O

Now the following definitions make sense:
Definition 3.3. For a tower F = (F});> of function fields over F, we define
v(F/Fy) = lim N(F;)/[F; : Fy], the splitting rate of F/Fy,
11— 00
and
Y(F/Fy) = lim g(F;)/[F; : Fy], the genus of F/F.
11— 00
By Lemma 3.2 we have that
0 <v(F/F,) <o and 0< v(F/F) < oco.
Corollary and Definition 3.4. The limit of the tower F,
A(F) := lim N(F)/g(F),
11— 00
exists and one has
NF) = v(F/Fo)[v(F/ Fy).
Hence it follows that A\(F) > 0 if and only if v(F/Fy) >0 and (F/Fp) < 0.
Proof. Since
N(F) _ N(E)/IF : Ry
g(Fy)  g(F)/[Fi: Ry]
all assertions follow from Lemma 3.2. U

The inequality 0 < A\(F) < A(q) motivates the following definition:
Definition 3.5. The tower F = (F});>o of function fields over F, is said to be

asymptotically good, if A\(F) > 0;
asymptotically bad, if \(F) = 0;
asymptotically optimal, if \(F) = A(q).
By Corollary 3.4 a tower is asymptotically good if and only if its splitting rate is

positive and its genus is finite. Therefore we study these two properties separately
and give simple sufficient conditions for them to hold.

Definition 3.6. Let F = (F;);>( be a tower over IF,. We define two sets of places
in the function field Fj:

V(F/Fy) :={P € P(F,) | P is ramified in F, /F, for some n > 1}, and
S(F/Fy) :={P € P(Fp) | P is a rational place which splits completely in all
extensions F,,/Fy}.

The set V(F/Fy) is called the ramification locus of F/Fy, and S(F/F,) is the
completely splitting locus of F | Fy.
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Lemma 3.7. Suppose that F = (F})i>o is a tower over F,, whose completely
splitting locus S(F [ Fy) is non-empty. Then

v(F/Fy) >t>0,
with t := |S(F | Fy)|.

Proof. Let P € S(F/Fy); then there are [F,, : Fy] rational places in Py (F,) lying
above P, for any n > 0. Hence N(F,) > t-[F, : Fy|, and the lemma follows
immediately from the definition of v(F/Fp). O

Now we give a sufficient criterion for the genus v(F/Fj) to be finite.

Lemma 3.8. Let F = (F});>0 be a tower over F,. Suppose that the following
conditions hold:

1) the ramification locus V(F | Fy) is finite;
2) all extensions F,/Fy are tame.

Then the genus v(F/Fy) is finite. More precisely,
VF/Fy) < g(Fo) + (s —2)/2,
where s =3 peyr/my deg P

Proof. Let P € P(Fp) and @ € P(F,) with Q|P. Then the different exponent
d(Q|P) is equal to e(Q|P) — 1, since the extension F,,/F, is tame. We obtain
therefore

deg Diff (F,,/Fy) = ZPGV(}'/FO) ZQ\P d(Q|P) - deg @
< Zpev(]-‘/FO)(ZQ|P e(Q|P) - f(Q|P)) - deg P
= [Fn : FU] - S,
with s = ZPGV(}'/FO) deg P. The Hurwitz genus formula gives now
29(Fy) — 2 < [Fy : Fo](29(Fy) — 2 + s),

and the assertion of Lemma 3.8 follows. ]

Corollary 3.9. Let F = (Fj)i>0 be a tower over F, satisfying the following
conditions:

1) the ramification locus V(F | Fy) is finite;

2) all extensions F,/Fy are tame;

3) the completely splitting locus S(F/Fy) is non-empty.
Then the tower is asymptotically good.

4. A SIMPLE EXAMPLE

In this section we present in detail a very simple example of an optimal tower
over the field with 9 elements. The analysis of this particular tower is typical

for many other examples of asymptotically good towers, see Section 5 below.
The tower F = (Fy, F1, Fy, ...) is defined as follows: Fj := Fy(x) is the rational
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function field over Fy, and for all n > 1 let F,, = F,,_1(x,), where z,, satisfies the
equation
2
o Tp_gt1
= — 4.1
=ttt (a.)

We must first show that the sequence of function fields (Fy, Fy, Fy, .. .) is in fact
a tower over the field Fy; in particular we have to show that F; ; F; 1 and that
Fy is algebraically closed in Fj, for all ¢ > 0. Before proving this, we study the
“basic function field” corresponding to Eq.(4.1); this is the function field

2
1
F=TFy(z,y), with y? =2 2+ . (4.2)
T
We also fix an element § € Fy with 62 = —1. The following notation will be

useful. Let E//F, be a function field and @) € P(E) be a place of E. Let z € E
and o € F, U{oo}. Then for a € F, we write z = a (at Q) if Q) is a zero of z — a,
and z = oo (at Q) if @ is a pole of z.
Lemma 4.1. Let F =Ty (x,y) be defined by Eq.(4.2). Then we have:
i) [F:Fy(x)] =[F :Fq(y)] =2, and Fy is the full constant field of F.
ii) In the extension F/Fy(z), exactly the places with x = 0, © = oo and
x = %6 are ramified.
iii) Let Q € P(F) be the place with x = oo (by item ii) there exists exactly
one such place). Then y = oo (at Q), and Q is unramified in F/Fqy(y).

Proof. Clear from the theory of Kummer extensions of algebraic function fields
(see [15], Prop.II1.7.3) O

Corollary 4.2. Let Fy = Fo (), and for alln > 1 let F,, = F,,_1(xy,), where x,
satisfies Eq.(4.1). Then the following holds:
i) [Fy @ Fy] =27, for alln > 0.
ii) The pole of xq is totally ramified in the extension F,/Fy, and Fy is alge-
braically closed in F,.
iii) Let Q) € P(F,) be the pole of o in F, (which is unique by item ii)). Then
Q is unramified in the extension F,,/Fqy(x,).

Proof. The case n = 1 is clear from Lemma 4.1, and we assume that the corollary
holds for n. Let @ € P(F,;1) be a pole of 2 in F,, 1, and denote by @1, Q- and
P the places below @ in the fields F,,Fy(z,, z,11) and Fy(z,). Then @, is the
pole of xy in F,, and (by induction hypothesis) e(Q|P) = 1, and P is the pole of
zp in Fy(2,). Moreover Q5 is a simple pole of x,,1, and Q5| P is totally ramified.
Now we apply (2.5) (Abhyankar’s lemma) and obtain all assertions for the case
n+ 1. 0

For the rest of this section we consider the sequence F = (Fy, Fi, F5, ...) of func-
tion fields over Fy which is defined by Eq.(4.1). Note that we have not proved
yet that F is indeed a tower, since we haven’t shown that ¢g(F};) > 2 for some j.
Thus will be done in Lemma 4.3 below.
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For o € Fy we denote by P, € P(Fp) the zero of o — a and by P, the pole
of zy in the rational function field Fy = Fg(zo). Recall that § € Fy is an element
with §%2 = —1.

Lemma 4.3. With notations as above, we have:

i) The four places Py, Py, Ps and P_s are totally ramified in the extension
Fy/Fy, and the genus of Fy is at least g(Fy) > 3.
ii) In the extension Fys/Fy also the places Py and P_y are ramified.

Proof. i) The assertion about ramification follows easily from Lemma 4.1 and
(2.5), and then the Hurwitz genus formula (2.3) for the extension Fy/F, gives

29(Fy) —2>4-(=2) +4-(4—1) =4,

hence g(F3) > 3. In fact it is easily shown that g(F,) = 3.
ii) Since we will not need this result, we leave the proof to the reader (use Lemma
4.1 again!). O

We are now going to determine the ramification locus and the genus of the
above tower (see Def. 3.6).

Lemma 4.4. Let F = (F});>o be the tower over Fy which is defined by Eq.(4.1).
Then we have:
i) The ramification locus of F|Fy is the set V(F/Fy) = {P, | a € A}, with
A =1{0,00,£1, %8}, and hence |V (F/Fy)| = 6.
ii) The genus of F|Fy satisfies v(F/Fy) < 2.

Proof. i) Let A be as above, and consider a place P € V(F/Fy). Then for
some n > 1 there exists a place @) € P(F,) such that Q|P and @ is ramified
over F,,_;. Considering F), as the composite field of F,,_; and Fy(z,_1,z,) over
Fo(x,-1), we conclude from (2.5) (Abhyankar’s lemma) that @ is ramified in
Fo(zy1,2n)/Fo (2, 1), and then it follows from Lemma 4.1 that 2, ; = 0 or co
or +6 at ). We have therefore z, ; = a € A, for some o € A.

Suppose now that z; = 8 € A at the place @), for some 1 < i <n—1. If we
can show that this implies z;_; = v € A at @, it will follow that V(F/F) is
contained in the set { P,|a € A}, and in particular that |V (F/Fy)| < 6. Now we
see from Eq.(4.1)

o Tyt

T;

Y

2wy
that

rp=0atQ = z;1€ {0} atQ,

ri=o00at QQ = z; 1 € {0,00} at Q,

rp=xdlat@QQ = x;_;1=1at Q,

r,=+dat QQ = x;_;=—1atQ.
This proves our claim that V(F/Fy) C {P,|a € A}. From item ii) of Lemma 4.3
follows equality (but in the following we need only the inclusion “C”).
ii) Follows from item i) and Lemma 3.8. Note that we have just used that the
cardinality of V(F/F,) is at most 6. O



10 ARNALDO GARCIA AND HENNING STICHTENOTH

Now we consider the completely splitting locus S(F/Fy) and the splitting rate

V(f/Fo)
Lemma 4.5. Let F = (F});>o be the tower over Fy which is defined by Eq.(4.1).
Then we have:

i) The completely splitting locus of F/Fy is S(F/Fy) = {Ps | € B}, with

B={1+6,1-06,—-1+40,—1—0}, and hence |S(F/Fy)| = 4.

ii) The splitting rate of F/Fy satisfies v(F[Fy) > 4.

Proof. i) One checks that for x = 5 € B the equation
, P+l P+
2 23

has both roots in the set B (here one uses that p = 3). It follows by induction
(using (2.6)) that the places P3 with 5 € B split completely in the tower F. For
a € (Fy U {o0}) \ B, the place P, belongs to the ramification locus V(F/Fp) by
Lemma 4.4, and therefore P, ¢ S(F/Fp). This proves item 1i).

ii) This follows from item i) and Lemma 3.7. Note that here we have just used
that |S(F/Fy)| > 4. O

Theorem 4.6. The tower F = (F;)i>o over the field Fy which is defined by
Eq.(4.1) has the limit

MF)=2=v9—1;
so it attains the Drinfeld-Viadut bound, and it is therefore an asymptotically op-
timal tower over FFy.

Proof. Since \(F) = v(F/Fy)/v(F/Fy) (see Corollary 3.4), we get from Lemmas
4.4 and 4.5 that \(F) > 4/2 = 2. On the other hand, the Drinfeld-Vladut bound

(1.4) gives the estimate A(F) < 2, and so we obtain that A(F) = 2. O
Remark 4.7. One can consider the tower F given by Eq.(4.1) over the field F,z,
for any odd prime number p. Fixing an element § € F,» with 6> = —1 one can
easily see that Lemma 4.4 holds also for p > 3, and hence that

v(F/Fy) <2 forall p>3. (4.3)

The determination of the completely splitting locus S(F/Fpy) is for arbitrary
prime numbers p > 3 much harder than in the special case p = 3. One can prove
that

|S(F/Fo)l =2(p = 1). (4.4)
It follows from (4.4) that the splitting rate v(F/Fy) satisfies v(F/Fy) > 2(p—1),
therefore

ANF) = v(F[Fo)[7(F/Fo) 2 p—1.

This lower bound for A(F) is equal to the Drinfeld-Vladut bound, and so the

tower F given by Eq.(4.1) is in fact asymptotically optimal over the quadratic
fields Iz, for all prime numbers p > 3.
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The analysis of the set S(F/Fp) involves the so-called Deuring polynomial H,(X) €
F,[X] which is defined by

H,(X) = "”‘Z”” (@—;)/2)2 v

j=0 J

The key point of this analysis is to show that all roots of the equation H,(3*) = 0
are in > and that

S(F/Fy) = {Ps | Hy(B") = 0}. (4.5)

We proved these assertions for p = 3 in Lemma 4.5 (note that H3(X*) =

X*+41). For p =5 one has H5(X?*) = X® — X*+1 € F5[X] and we leave it to the

reader as an exercise to prove (4.5) in this case. For p = 7 one has to consider

the polynomial H;(X*) = X'? + 2X® 4+ 2X* 4 1 over the field Fyg, and already

in this case it is non-trivial to prove (4.5) directly. For general p > 3 we refer to
9], Sec. 5.

5. FURTHER EXAMPLES

In this section we present some further examples of recursively defined towers
F over a finite field F,. We say that a tower F = (Fy, F, Fy, ...) over F, is defined
recursively by the equation

p(y) = v(x) (5.1)
(with rational functions ¢(Y'), ¢ (X) with coefficients in F,) if the following con-
ditions hold:

i) Fy = F,(zo) is the rational function field over F,, and for all ¢ > 0,
Fip1 = Fi(wip) with o(zi1) = ¢(2:).
ii) [Fiq1: Fj] = degp(Y), for all : > 0.
For instance, the tower F over Fy that we analyzed in Section 4, is recursively

defined by the equation y* = (2% + 1)/2z.
Remark 5.1. Observe that it is not clear a priori, if an equation ¢(y) = ¢ (z)
defines a tower: it can happen that the equation ¢(Y") = ¢(z;) becomes reducible
over the field F; = F,(zo,...,x;) for some ¢ > 0, or that the constant field of
F, (o, ..., x;) is larger than F,. Therefore one has to investigate in every specific
case if a particular Eq.(5.1) actually defines a tower.

Example 5.2. (Towers of Fermat type, see [9],[18]). A tower over F, which is
defined recursively by the equation

y"=a-(x+b)"+c ,with a,b,c € F, and (m,q) =1 (5.2)
is called a Fermat tower over F,. One can show that Eq.(5.2) defines a tower if
and only if m > 1 and abec # 0. The condition (m,q) = 1 ensures that Fermat
towers are tame; i.e., all extensions F,,/Fj are tame. For specific values of m,a, b
and ¢, Fermat towers have nice properties, e.g.

a) If ¢ =1 mod m and a = 1, then the pole Py, of ¢ in Fy splits completely
in the Fermat tower F; hence v(F/Fp) > 1, by Lemma 3.7.
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b) There are examples of Fermat towers with finite ramification locus.
We point out two special cases of Fermat towers:

Example 5.3. (see [8]) Let ¢ = p® with e > 1 and m = (¢ —1)/(p — 1). Then
the Fermat tower F /I, which is defined recursively by the equation

y"=1—(z+1)" (5.3)

is asymptotically good; its limit satisfies \(F) > 2/(¢—2). In fact, it is easily seen
that in this specific case the ramification locus satisfies V(F/Fy) C {P,|a € F,}
and hence it has cardinality at most ¢. Moreover the pole of z( splits completely
in F. We then conclude from Lemmas 3.7 and 3.8 that

AF) =z 2/(q—2)>0.
Note that Example 5.3 gives an easy proof for all non-prime ¢ of the fact that
A(q) > 0 (see the Introduction, Eq.(1.6))

Example 5.4. (see [8]). Let £ > 3 and ¢ = ¢* be a square. Then the Fermat
tower JF over I, which is defined by

yl=1—(z+ 1! (5.4)
is asymptotically good over F,, with A\(F) > 2/(¢ — 2). In fact, in this example
one shows easily that the ramification locus satisfies V(F/Fy) C {P.|a € Fy}
and that the pole of z( splits completely over Fy.

Observe that Example 5.3 yields an optimal tower over Fy, and Example 5.4
yields an optimal tower over the field Fy. For other applications of Lemmas 3.7
and 3.8 we refer to [9].

Now we will consider some wild (i.e., non-tame) towers.

Example 5.5. (see [7]). Let ¢ = £ be a square, and let F = (F;);> be the tower
over [F, which is recursively defined by

y oy =22 1. (5.5)

One can easily determine the ramification locus V(F/F,) and the completely
splitting locus S(F/Fp) in this case:

V(F/Fy) = {P,YU{P, | a'+a = 0}, and S(F/F)) = {Ps | B € F, and 3*+p # 0}.

It follows that the splitting rate satisfies v(F/Fpy) > ¢* — £. However, it is much
harder to determine the genus ~(F/Fp), since in case of wild ramification one
has in general no control on the different exponents. A very careful analysis of
the ramification behaviour of this towers shows that v(F/Fp) = ¢, and therefore
MF) > (0> —1)/t =€ —1 . Now it follows from the Drinfeld-Vladut bound that
we have equality A(F) = ¢ — 1 ; i.e., the tower F which is defined by Eq.(5.5) is
optimal over the field Fp.

We remark that the tower in Example 5.5 is closely related to the optimal tow-
ers over I, (with ¢ = ¢?) which were considered in [1] and [6]. Its interpretation
as a Drinfeld modular tower was established in [5].
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If ¢ is not a square, it seems to be harder to find towers over F, with “large”
limits. The tower in Example 5.3 is asymptotically good over F, for each non-
prime ¢, but the limit \(F) > 2/(q — 2) is rather small. We give now two other
examples of wild towers with large limits, over finite fields with cubic cardinality.

Example 5.6. (see [10]) This is a wild tower over the field with eight elements;
it is recursively defined by the equation

y2+y:x—|—1+1/x over [Fg. (5.6)

It is not difficult to determine the ramification locus V' (F/Fp) and the completely
splitting locus S(F/Fy):

V(f/Fg):{Pa|a:OOOTQEF4} and S(f/Fo):{P/3|5EF8\IF2}

The difficult part here is to investigate the behaviour of the ramified places, since
they are all wildly ramified. One can show that v(F/Fy) = 4 and hence that
A(F) > 3/2; this is just Inequality (1.7) for p = 2.

Example 5.7. (see [2]). The equation
1=y’ =@"+a-1)/z (5.7)

defines a very interesting recursive tower F over the field F, with ¢ = ¢* (one can
easily show that for £ = 2 this tower is the same as the tower of Example 5.6).
There are ((¢ + 1) rational places of Fy/F, which split completely in the tower
F (but one does not see them as easily as in the towers of Examples 5.2 - 5.6).
For ¢ # 2 the extensions Fj,i/F; in this tower are non-galois, and ramification
is very complicated: some places are tamely ramified, others are wild, and the
computation of the different exponents is rather involved. The result of a careful
analysis gives
VF/FRy) =t +2)/(20=2),
and therefore
MNF) = v(F/Fo) [v(F/Fo) > 2( = 1) /(£ +2) .

So the tower in Example 5.7 attains Zink’s lower bound (1.7) for A(p?®) (in case
¢ =pis a prime), and it also proves the bound

A(L%) > 2(¢* —1)/(£ +2) for all prime powers /.

Problem 5.8. We finish this paper with an obvious problem: Find asymptoti-
cally good recursive towers with large limits over any finite field F,. For example,
can one produce towers F over F, with ¢ = p***! such that the limit A(F) is close
to a constant multiple of p"? How to find explicit equations leading to recursive
towers F with positive limit A(F) > 0 over prime fields F,?
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