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1 Introduction

The interest in function fields over finite fields with many rational places has increased
lately because of several applications to Coding Theory, Cryptography, Finite Geometry,
etc. Especially interesting is the concept of the limit of a tower of function fields. A
theorem of Tsfasman-Vladut-Zink shows that towers with big limits provide the exis-
tence of linear codes with limit parameters above the so-called Gilbert-Varshamov bound
(see [13]).

Among the explicit towers which are known in the literature, Artin-Schreier towers
play a prominent role, cf. [7], [8], [11] and [5]. It is the goal of this note to show that some
Artin-Schreier towers are surprizingly easy to handle; i.e., one can easily determine the
asymptotic behaviour of the genus (see Theorem 1 below), similarly to the case of tame
towers (see [9] and [10]). This is obtained via a key lemma (see Lemma 1 below) on the
behaviour of different exponents in the composite field of two Artin-Schreier extensions
of prime degree p. As an application of our Theorem 1, we provide much simpler proofs
for the limits of the towers in [8] and [11], avoiding all the technical computations done

in those two papers (see Theorem 2 and also Remark 2 here).
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2 Artin-Schreier towers and the Key Lemma

Throughout this paper, we denote by IF, the finite field of cardinality ¢ and by p the
characteristic of F,. A tower over F, is an infinite sequence F = (Fp, F1, Fy,...) of

function fields F;/F, such that:
(i) all extensions F;,/F; are finite and separable;
(ii) the field IF, is algebraically closed in F;, for all ¢ > 0;
(iii) the genus g(F;) goes to infinity for i — oo.

For a function field F' over F,, we denote by g(F) (resp. N(F)) the genus of F
(resp. the number of [ -rational places of F'). For a tower F as above, the following

limits do exist (see [9]):
e The splitting rate v(F/Fy), defined as

v(F) = lim N(F,)/[F, : Fy.

n—o0

e The genus v(F/Fy) of the tower, defined as
VF/R) = lim g(F,)/[F, : Fil.
e The limit A(F) of the tower, defined as

AF) = lim N(F,)/g(F,) = v(F/Fo)/[v(F/Fo).

n—0o0
The tower F is called asymptotically good if the limit satisfies A(F) > 0; this condition is
equivalent to
v(F/Fy) >0 and ~(F/F) < oo.
If all extensions F; 1/ F; of the tower F are Artin-Schreier extensions, we call F an Artin-
Schreier tower (see [1]). The tower F is recursive if it is recursively given by a polynomial

f(X,Y) e F,[X,Y]; ie., if Fy = Fy(x) is the rational function field and for all n > 0,

Fop1 = Fu(wn) with f(zn, p11) = 0 and [F,yy @ F,] = degy f(X,Y).



We mention three important results on the limit of a tower F over F,:
(1) The Drinfeld- Viadut bound (see [4]): for all towers F/F,, one has
AMF) <Vq-1.

(2) If ¢ = £? is a square, then there exist towers F/F, which attain the Drinfeld-Vladut

bound; i.e., there exist towers such that (see [6])
AMF)=q—1.
(3) If ¢ = £? is a cube, then there exists a tower F/F, with (see [3])
AMF) > 2002 -1)/(¢+2).
In the case ¢ = p is a prime, this is the so-called Zink’s bound [14].

The first ezplicit example in the literature of a tower F/F, with ¢ = ¢* such that
AMF) = /g — 1, is an Artin-Schreier tower (see [7]). This first example is closely related
to the Artin-Schreier tower F;/F, which is recursively given by the polynomial f;(X,Y)
below (see [8]):

AXY) =X+ ) +Y) - X" (*)

The first ezplicit example of a tower over a cubic field F, (with ¢ = ¢3) which attains
Zink’s bound, is the recursive tower Fy over the field with 8 elements which is given by

the polynomial f5(X,Y") below (see [11]):
f(X,Y)=XY?+Y)+ X*+ X +1. (**)
The proofs in [8] and [11] that these two towers F; and F; satisfy
AMF)=0—-1 and A\(F)=3/2

are rather long and very technical. The next lemma is the core of the simplification of

those results given in a unified way in this paper.
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For a finite separable extension of function fields E/F and a place @) of E above a

place P of F, we denote by d(Q|P) the corresponding different exponent.

Lemma 1. (Key Lemma). Let F/F, be a function field and let Ey\/F and Es/F be
linearly disjoint Artin-Schreier extensions of F', both of degree p. Denote by E = E; - Fs
the composite field of Ey and E5. Let Q) be a place of E and denote by Q1,Qs and P its
restrictions to the subfields E1, Ey and F. Suppose that we have

d(Q;|P) € {0,2p — 2}, fori=1,2.
Then d(Q|Q;) € {0,2p — 2}, fori=1,2.

Proof: We denote by vp the discrete valuation of F' corresponding to the place P (and by
vo and vg,, accordingly). The only non-trivial case is d(Q1|P) = d(Q2|P) = 2p — 2. By
the theory of Artin-Schreier extensions (see [12], Sec. II1.7) we can find elements z; € E;

and x5 € E, such that Ey = F(x1), Es = F(x3) and moreover

 —x1 =2z and b — a9 = 2,
where z; and z; are functions in F' such that vp(z1) = vp(z) = —1. Hence we also

have that vg, (z1) = —1. Since the residue field of F' at the place P is perfect, there are
elements u,w € F' with

2y +w, wvp(u)=0 and wvp(w)>1.
<1

It follows that
xh — g = 2uP + 2w = (2 — z1)uP + 21w = ((x10)? — z1u) + 21 (U — UP) + ZyW.
Setting x3 := x5 — uxy, we then see that F = Ej(z3) and
p

T3 — Tz = UT] +W =: 23,

with vg, (@) > 0, vg,(w) > 0 and vg, (1) = —1. Hence vg,(z3) = —1 or vg,(z3) > 0,
which implies (see [12], Prop. II1.7.8)

d(Q|Q1) = 2p — 2 or d(Q|Q1) = 0. O
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In Section 2 we will need two more lemmas:

Lemma 2. Let E/F be an abelian extension of function fields of degree |[E : F| = p",
and let Hy, Hy be intermediate fields with F C Hy C Hy C E and with [Hy : H1] = p. Let
Q@ be a place of E which is totally ramified in the extension E/F, and denote by P,Q
and Qs the restrictions of Q to F, Hy and Hy. Assume that d(Q|P) = 2(p" —1). Then it
follows that

d(Q2|Q1) =2p—2.

Proof: First we consider the case F' = Hy, so F C Hy C F with [Hy : F| = p and
|[E : Hy] = p™'. By Hilbert’s different formula (see [12], Theorem II1.8.8) we have that

d(Q2|P) > 2(p — 1) and d(Q|Q2) > 2(p" ' — 1).

The transitivity of the different ([12], Corollary I11.4.11) gives

2(p" —1) =d(Q|P) =p" " - d(Q2| P) + d(Q|Q2)
>p M 2p—2) 420" 1) =20 - 1).

Hence d(Qz|P) = 2p — 2 and d(Q|Q2) = 2(p"~! — 1). Now the result follows easily by

induction. O

Lemma 3. Let Ey C E; C Ey C --- C E,, be a chain of function fields E;/F,, where
each step is Galois of degree |E; 1 : Bl =p (1 =0,...,m —1). Let Q be a place of E,,
and denote by Q; the restriction of Q) to E;. Suppose that

d(Qi41]Q:) € {0,2p — 2}, fori=0,...,m— 1.

Then the different exponent of Q) in the extension E,,/Eq satisfies:
d(Q[Qo) = 2(e — 1),
where e = e(Q|Qo) 1is the ramification degree of Q|Qo.

Proof: Straightforward, using the transitivity of the different (see [12], Corollary I11.4.11).
(Il



3 Artin-Schreier towers with Property (A)

The Artin-Schreier towers F we will consider here are given recursively by a polynomial
f(X,Y) € F,[X,Y] with degy f = degy f = p". We assume that the “basic function
field” F =F,(z,y) with f(z,y) = 0 has the following property:

Property (A). Both extensions F/F,(x) and F/F,(y) are Artin-Schreier extensions of
degree p". Moreover, each ramified place in F/F,(z) orin F/F,(y) is totally ramified with
different exponent equal to 2(p" — 1).

We consider the pyramid associated to the recursive tower F (where k = F,):

F, = O,XI,xz,x
F, = k(XO,Xl,Xz) k(x,, xz,x3)

Figure 1

By assumption, all extensions in the base of the pyramid in Figure 1 (i.e., the exten-
sions k(xy, Tni1)/k(z,) and k(z,, Tni1)/k(2n11)) satisfy Property (A). Using Lemma 2
we can refine this pyramid and we then obtain another pyramid (see Figure 2) with cyclic
extensions of prime degree p, such that all extensions of the refined pyramid also satisfy

Property (A), with » = 1, as follows from iterated applications of Lemma 1.



A picture illustrating this refinement process in the case r = 3 is given below (Lemma 1
is applied iteratedly starting from the regions marked with ® and going upwards to the
right and to the left):

F, = kixg) k(x ) k(x,) k(x3)

Figure 2

This gives a refinement F’ of the original tower F. Every field F,, belonging to the
tower F is also a member of the refined tower F’, and we obtain from Lemma 3 that for

any place () of F,,, the different exponent for () over Fj is given by

d(Q|P) = 2(e(Q[P) — 1).

As before, we denoted above by P the place of Fy below @) and by e(Q|P) the ramification
degree of Q|P.
The ramification locus V (F/Fy) of a tower F = (F});>o is defined as

V(F/Fy) :={P | P is a place of Fy which is ramified in F,,/Fp, for some n > 1 }.
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We say that the tower F is of finite ramification type if the ramification locus is finite,

and then we set

degV(F/Fy):= > degP.

PEV(]:/F())

Now we can state our main result:

Theorem 1. Let F be a recursive Artin-Schreier tower of finite ramification type satis-

fying Property (A). Then the genus ~(F/Fy) is finite, and we have

Y(F/Fy) < deg V(F/Fy) — 1.

Proof: The degree of the different of the extension F),/Fj is given by

deg Diff(F,,/ Fy) = sz Q|P) - deg Q,

P Q|P

where P runs over the ramification locus V' (F/Fp) and @ runs over all places of the field

F,, above P. We then obtain

deg Diff(F,,/Fo) = > ) " 2(e(Q|P) — 1) - deg Q

P Q|P

<2-% ) e(QIP)-degQ
P Q|P

=2 [Fy: Fy]-deg P =2[F, : Fy] - deg V(F/Fp).
P

Observe that the field Fj is rational, so the Hurwitz genus formula for the function field

extension F,,/Fy yields

29(Fy) — 2 = —2[F, : Fy] + deg Diff(F,/Fy)
< 2[F, : Fpl(deg V(F/Fo) — 1).

Dividing by 2 - [F,, : Fy] and letting n — oo, we obtain the desired result. O



4 Application to the towers F; and F;
Here we show that Theorem 1 easily implies the main results of [8] and [11].

Theorem 2. Let Fy and Fy be the towers defined by (*) and (**) as in Section 2. Their
limits satisfy

AMF)>L—1 and XF) > 3/2.
Proof: It is shown in [8] that
v(F1/Fy) >0 —¢ and degV(F/Fy) ={+1.
In [11] one shows that
v(Fo/Fy) =6 and degV(Fy/Fy) = 5.

In fact, these statements are the “trivial” parts of the papers [8] and [11]. It is also easy
that the basic function fields corresponding to the towers F; and F, satisfy Property (A).

From Theorem 1 we then get
O

Remark 1. The equality A(F;) = ¢ — 1 now follows from the Drinfeld-Vladut bound.
Since A\(F1) = v(F1)/v(F1), it also follows that v(F;) = £ — £ and v(F;) = £.

Remark 2. In the literature there are other explicit examples (see [7] and [2]) of wildly
ramified towers over F, (with ¢ = ¢* a square), which attain the Drinfeld-Vladut bound.
The tower in [2] which is the same as the one given by Eq.(25) in [5], can be seen as a
subtower of the tower F; above. The tower in [7] can be obtained in a simple way from the
tower F; as a composite tower with a cyclic Kummer extension of the field Fy = F,(zo)
(see [8], Remark 3.11). In this way, the optimality of the towers in [7] and [2] can also be

proved without long and technical calculations.
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