EXISTENCE OF PERIODIC ORBITS FOR
SINGULAR-HYPERBOLIC ATTRACTORS

S. BAUTISTA AND C. MORALES

ABSTRACT. An attractor is a transitive set to which all nearby positive orbits
converge. A non-trivial attractor for flows is singular-hyperbolic if it has sin-
gularities (all hyperbolic) and is partially hyperbolic with volume expanding
central direction. We show that a singular-hyperbolic attractor of a C'! flow on
a compact 3-manifold has a periodic orbit. This result has the following corol-
laries. First every singular-hyperbolic attractor has topological dimension > 2
(solving positively a question posed in [M2]). Second any of such attractors is
the closure of the unstable manifold of a periodic orbit. Third every C robust
transitive set has a periodic orbit. Our result generalize well known properties
of hyperbolic and geometric Lorenz attractors [PT].
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1. INTRODUCTION

1.1. Motivations. The singular-hyperbolic sets were introduced in [MPP3] to
classify C' robust transitive sets on 3-manifolds (see also [MPP2]). Since then
several works exploring the similarity between hyperbolic and singular-hyperbolic
sets have been appearing [BDV]. In this paper we further explore such similarities
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by studying the existence of periodic orbits on singular-hyperbolic sets. The moti-
vation is the well known fact that all (non-trivial) isolated, hyperbolic sets have a
periodic orbit. This follows from the Shadowing Lemma for flows [HK]. The natural
question is whether (non-trivial) isolated, singular-hyperbolic sets have a periodic
orbit. The answer is negative even if the isolated set is transitive [BDV], [M2].
Here we show positive answer if the isolated set is an attractor. More precisely, we
show that a singular-hyperbolic attractor of a C* flow on a compact 3-manifold has
a periodic orbit. In particular, all such attractors have topological dimension > 2
(solving positively a question posed in [M2]) and are the closure of the unstable
manifold of a periodic orbit. We also obtain the existence of periodic orbits for C!
robust transitive sets on compact 3-manifolds. Our results generalize well known
properties of hyperbolic and geometric Lorenz attractors [PT]. We also obtain an
approach for a positive solution of the following conjecture stated in [M1].

Conjecture 1. Singular-hyperbolic attractors for C* flow on compact 3-manifolds
are homoclinic classes.

1.2. Basic definitions and the Main Theorem. Hereafter M denotes a com-
pact 3-manifold. A C" flow X = X, on M isa C" action Rx M — M,r > 1. We
always assume that X is the integral solution of a C" vector field still denoted by
X. An orbit of X is the set O = Ox(q) = {X¢(q) : t € IR} for some ¢ € M. The
omega-limit set of a point p is the set wx(p) = {x € M : z = limp_ 00 X, (p) for
some sequence t, — 00}. A singularity of X is a point 0 € M such that X (o) =0
(equivalently Ox (o) = {o}). A periodic orbit of X is an orbit O = Ox(p) such
that Xr(p) = p for some minimal T' > 0 (equivalently O is compact and O # {p}).
A closed orbit of X is either a singularity or a periodic orbit of X.

A compact set A C M is:
Invariant if Xi(A) = A, Vt € R;
Transitive if A = wx (p) for some p € A;
Non-trivial if A is not a closed orbit of X;
Isolated if there is a compact neighborhood U of A such that

A = NerX(U)

(U is called isolating block);
Attracting if it is isolated and has a positively invariant isolating block U, i.e.,

X, (U)cU, Vvt>0

e Attractor if it is a transitive attracting set.

Attracting sets are isolated but not conversely. For example, a saddle-type sin-
gularity is isolated but not attracting. Many authors call attractors what we call
attracting sets, see [Mi].

A compact invariant set H of X is hyperbolic if there is a continuous tangent
bundle decomposition Ty M = E% & Ex ® E¥ over H such that Ej; is contracting,
EY is expanding and Ex denotes the direction of X ([HK], [PT]). A closed orbit
of X is hyperbolic if it is hyperbolic as a compact invariant set of X. Hereafter we
denote by

A
m(A) = inf
@ = Ik o

the minimum norm of a linear operator A.
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Definition 1. Let A be a compact invariant set of X. A continuous invariant
splitting TAM = Ep @ Fa over A is dominated if there are positive constants K, \

such that
IDX¢(z)/ 5, | < Ke™,
m(DXy(x)/F,)
A compact invariant set A is partially hyperbolic if it exhibits a dominated splitting
ThaM = E{ ® Ef such that Ef is contracting, i.e.
IDX:(z)/E: || < Ke™™, Vaz e A,Vt>0.

A compact invariant set A of X is singular-hyperbolic if it has singularities (all
hyperbolic) and is partially hyperbolic with volume expanding central direction Ef,
i.€.

Vz € A,Vt > 0.

|det(DXy(x)/p:)| > K, Vz € A,Vt>0.
A singular-hyperbolic attractor is a non-trivial attractor which is also a singular-
hyperbolic set.

The most classical example of singular-hyperbolic attractors are the geometric
Lorenz ones [GW]. Another examples different from Lorenz’s are the ones in [MPu]
or [M3]. All these examples have a periodic orbits. Our main result asserts that the
existence of periodic orbits holds true for all singular-hyperbolic attractors. More
precisely, we have the following result.

Theorem 1 (Main Theorem). A singular-hyperbolic attractor of a C' flow on
a compact 3-manifolds has o periodic orbit.

1.3. Corollaries. Let us state some corollaries of the Main Theorem. Previously
we recall some short definitions and facts. By the stable manifold theory [HPS], if
O is a hyperbolic closed orbit with splitting To M = E @ EX @ EY of a flow X
on M, then its unstable set

Wx(0) = {q € M : dist(X¢(q),0) = 0,t - —o0},

is an immersed submanifold tangent at O to the subbundle EJ ® E%. An isolated
set A is Clrobust transitive if there are a isolating block U of A and a neighborhood
U of X (in the space of C* flows) such that NMy>oY;(U) is a non-trivial transitive
set of Y, VY € U. Denote by CI(B) the closure of B C M.

The following corollary was proved first in [M4] with different methods.

Corollary 1. A singular-hyperbolic attractor of a C' flow on a compact 3-manifold
has topological dimension > 2.

Proof. Let A be a singular-hyperbolic attractor as in the statement. By the Main
Theorem we have that A has a periodic orbit O. Clearly O must be saddle-type
ie. dim(E®) = dim(E") = 1. As noted before the unstable set W¥%(O) of O is a
submanifold tangent at O to the direction EJ & EY. In particular, dim(W%(0)) =
2. Then, dim(A) > 2 since W%(O) C A as A is an attractor. O

Corollary 2. If A is a singular-hyperbolic attractor of a C' flow X on a compact
3-manifold, then A = CI(W¥%(0)) for some closed orbit O of X.

Proof. If A is as in the statement, then A has a periodic orbit @ by the Main
Theorem. As before we have that O is saddle-type and so dim(W¥%(0)) = 2. In
addition, W¥%(O) C A since A is an attractor. By using dim(W¥%(0O)) = 2, the
dense orbit and the contracting direction of A we can prove that W% (0O) is dense
in A. Hence A = Cl(W¥%(0)) as desired. O
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Corollary 3. C! robust transitive sets for C' flows on compact 3-manifolds have
a periodic orbit.

Proof. By [MPP3], every C' robust transitive set is either a non-trivial isolated
hyperbolic set or a singular-hyperbolic attractor (up to reversing the flow). Then
the result follows from the Shadowing Lemma (in the first case) and the Main
Theorem (in the second case). O

The Main Theorem provides a possible approach to prove Conjecture 1. Indeed,
one could try to prove that the attractor is the homoclinic class of the periodic orbit
obtained in the Main Theorem. However, this argument fails because a homoclinic
class in a singular-hyperbolic attractor may be trivial [MPul].

The proof of the Main Theorem is based on the existence of periodic points
for triangular maps and the techniques in [MPa]. The organization is as follows.
In Section 2 we prove the existence of periodic orbits for triangular maps with
some hyperbolicity (Theorem 2). Although this result is related to some works
dealing with hyperbolic maps with singularities ([AP], [KS], [P]) we cannot use
these works because our maps are not C? and have infinitely many discontinuity or
no invariant measures (see for instance (H2) p. 125 in [P] or the proof of Theorem
11 in [P] p. 142). In Section 3 we prove the Main Theorem using Theorem 2.
One of the links between these theorems is Lemma 6. This lemma is used to
prove that if the flow has a periodic orbit in the attractor, then there is a return
map close to the singularities satisfying the hypotheses of Theorem 2. We observe
that Lemma, 6 is true for attractor but not for isolated sets in general. We use the
transitivity of the attractor only to prove Proposition 1. Consequently, a non-trivial
singular-hyperbolic attracting set A satisfying the conclusion of this proposition has
a periodic orbit. On the other hand, our arguments can be used also to study the
existence of periodic orbits on a non-trivial singular-hyperbolic Lyapunov stable
set. More precisely, we can prove that a non-trivial singular-hyperbolic Lyapunov
stable set A satisfying the conclusion of Proposition 1 either has a periodic orbit or
is accumulated by infinitely many periodic orbits.

2. PERIODIC ORBITS FOR TRIANGULAR MAPS

We investigate the existence of periodic points for certain maps in [—1, 1] x[—1, 1] to
be called triangular maps. In the literature the name ”triangular maps” is reserved
to continuous selft-maps of [—1,1] x [—1, 1] which are skew produt, i.e. preserving
the constant vertical foliation (see for instance [BGM], [JS]). In our context we
have to consider discontinuous maps preserving a continuous (but not necessarily
constant) vertical foliation. These maps will appear in Section 3 as return maps
close to the singularities of a singular-hyperbolic attractor.

2.1. Definition of triangular maps and Theorem 2. Hereafter we denote
by I the compact interval [—1,1]. We denote by X a disjoint union of k-copies
{Z1,--+, %} of the square I?, i.e. ¥; = I? where I; = [-1,1] is a copy of I. For
alli=1,---,k we denote

L_z' = {—1} X Ii; Lgi = {0} X Ii; L-H = {1} X Iz

We also denote

k k k
L_= U L_;; L= U Lo;; Ly = U Ly;.
=1 i=1 i=1
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Given a map F we denote by Dom(F) the domain of F. The discontinuity set
D(F) of F is denoted by

D(F) = {z € Dom(F) : F is discontinuous in z}.

If F is a map, we say that x € Dom(F) is periodic if there is n > 1 such that
Fi(z) € Dom(F) for all 0 < j <n—1 and F"(z) = z.

By a curve ¢ in ¥ we mean a one-to-one C' map ¢ : Dom(c) C IR — ¥ whose
Dom(c) is a compact interval. We shall identify ¢ with its image in X. A curve L
in ¥ is called vertical if Dom(L) = I and L is the graph {(9(y),y) : y € I} of some
Clmapg:I—1.

A continuous foliation F; (with leave’s space I) in a component ¥; of ¥ is a
vertical foliation of X; if F; is formed by vertical curves such that the curves L_;,
Lg;, Ly; are leaves of F;. A vertical foliation F of ¥ is the union of vertical foliations
Fiof ¥;,i=1,--- k. Note that the leave’s space SL of F is a disjoint union of
k-copies {I1,--- , I} of I. If F is a vertical foliation of ¥, a subset B C ¥ is called
F-invariant if L € F and LN B # () implies L C B. Sometimes we use the notation
L € F to indicate that L is a leaf of F. Next we state the definition of triangular
maps to be used in the sequel.

Definition 2. A triangular map is an injective map F : Dom(F) C ¥ — ¥ having
an invariant vertical foliation F, i.e. the following conditions hold:
1. Dom(F) is F-invariant.
2. If L€ F and L C Dom(F), then there is f(L) € F such that F(L) C f(L).
3. F/p:L — f(L) is continuous.

If F: Dom(F) C ¥ — X is a triangular map with associated foliation F, then
we have a one-dimensional map f : Dom(f) C SL — SL. This map allows us to
define the lateral limits

f(Lys+) = lim f(L) and f(Ls—) = lim f(D)
LCDom(F), L—L7, LCDom(F), L—L3,
for all L., C Cl(Dom(F)) when they exist.

We shall denote by TY. the tangent space of ¥. Given z € ¥, a > 0 and a
one-dimensional subspace V, C T, we denote by C,(z,V,) = C,(z) the cone in
T,Y with slope a around V,,, namely

Co(z) ={v; € TpX : L(vg,Vy) < a}y

where Z denotes angle. A cone field in ¥ will be a continuous map Cy, : z € ¥ —
Cu(z) C T,%, where C,(z) is a cone with slope a in T,X.. A cone field C, is said
to be transverse to a vertical foliation F in ¥ if v, ¢ T, L for all leaf L of F, z € L
and all v, € Cy(x), i.e., if T, L not is contained in C,(z) for all L € F and all
x € L.

There are triangular maps F' : ¥ — ¥ without periodic points. Indeed, put k =1
and consider the natural coordinate system (z,y) in ¥. Then define F(z,y) =
((x +v (mod 2)) —1,9(z,y)) for suitable g(x,y) with « irrational. This map has
no periodic orbits. On the other hand, the return map associated to the geometric
Lorenz attractor [GW] is a triangular map with many periodic points. This exam-
ple which suggests the existence of periodic points for triangular maps with some
hyperbolicity. The definition is the following.

Definition 3. Let F' : Dom(F) C ¥ — X a triangular map and A > 0 be fized.
We say that F' is A-hyperbolic if there is a cone field Cy, in X such that:
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1. Cy is transverse to F.
2. If x € Dom(F) and F is differentiable in x, then

DF(z)(Ca(x)) C Int(Coy2(F(2)))

and

| DF(2) - va |2 A [] v ],
for all v, € Cy(z).

To study A-hyperbolic triangular maps we assume the following additional hy-
potheses:

(H1): f L€ F, L C Dom(F) and F(L) C ¥\ (L_ULy), then Fis C! in a

neighborhood of L in X.

(H2): Let L € Ur_,{L_;L;;} and n € IN be such that F/(L) C Dom(F) N
(L-ULy)forall0 < j<n—1and F*(L) Cc ¥\ (L_UL,). If L, C
Dom(F) N F~1(L) is a leaf of F, then there is a neighborhood S C Dom/(F)
of L, in ¥ such that F(S\ L,) C ¥\ (L_ UL,). Moreover, the lateral limits
f(L«+) and f(L.—) exist and belong to {L, f(L),---, f™(L)}.

Examples of A\-hyperbolic triangular maps F satisfying (H1)- (H2) with A > /2
and Dom(F) = I? \ Ly are the two-dimensional return maps associated to the
geometric Lorenz attractors [ABS], [GW]. In these examples we have the existence
of many periodic points. Such examples motivate the main result of this section.

Theorem 2. Let F be a A-hyperbolic triangular map satisfying (H1)-(H2) with
A > 2 and Dom(F) =X\ Lo. Then F has a periodic point.

See also [AP] and [P] for related results.

2.2. Preliminary lemmas. A closed vertical band in ¥ will be the closed region
[L, L'] in between two disjoint vertical curves L, L' in the same component X; of X.
The sets (L, L") =[L, L'\ (LU L"), (L,L']=[L,L'|\ L, [L,L') = [L,L'] \ L' will
be called vertical bands with (L, L") being called open vertical band. We say that
[L,L'] is a (closed) vertical band around L, if L. C (L, L").

Hereafter F' is a A-hyperbolic triangular map satisfying the hypotheses (H1)-
(H2) with A > 2 and Dom(F) = ¥\ Ly. The foliation and cone field associated
to F' will be denoted by F and C\, respectively. We shall denote by < the natural
order in the leaves’s space I of F;. If B C ¥ we denote by Fp the union of the
leaves intersecting B. If B = {z} reduces to a single = then F, is precisely the leaf
of F containing z. Obviously B is F-invariant if and only if B = Fg. If S C ¥
and B C X, we say that S covers B if S intersects all the leaves of F in Fp, i.e., if
B C Fs.

The remark below is a direct consequence of the definition of F' (F' is an injective
map, Dom(F) is F—invariant and F/y, is continuous on each leaf L of the domain),
the Hypothesis (H1) and the continuity of F.

Remark 1. D(F) is F-invariant and closed in Dom(F). In addition we have
F(D(F)) C L_ULy, Dom(F)\ D(F) is open in ¥ and F/ pomr)\p(r)) is a C*
embedding.

If ¢ is a curve in ¥ we denote by ¢g, ¢; its end points and Int(c) = ¢\ {co, 1}

A open curve is a curve without its end points. We say that c¢ is tangent to C,, if
c'(t) € Cyu(c(t)) for all t € Dom(c). A Cy-spine of a vertical band [L, L], (L, L"),
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[L,L') or (L, L'] will be a curve ¢ C [L, L'] tangent to C,, such that {cg,c1} C LUL'
and Int(c) C (L,L").

Definition 4. Let B be a F-invariant set. We say that B is F-discrete if for every
F-invariant neighborhood U of Lo in X the set {L € F : L C (B\U)} is finite.

Lemma 1. If F' has no periodic points, then the following properties hold:

(1) D(F) is F-discrete.

(2) Ifi € {1,--- ,k} and D(F) N [Lo;, L+;] consists of a finite number of leaves,
then f(Loi+) exists.

(3) Ifi € {1,--- ,k} and D(F) N [L_;, Lo;] consists of a finite number of leaves,
then f(Lo;—) exists.

Proof. Since F has no periodic points we have that there is 0 < n < 2k such
that F*(L,) C ¥\ (L_ U Ly) for all L, € U*_ {L ;,L,;}. Suppose that there
is a F-invariant neighborhood U of Ly in ¥ such that D(F) \ U has a infinite
numbers of leaves. As D(F) is closed in Dom/(F'), then there is a sequence of leaves
L, ¢ D(F)\U such that L, - L C D(F). By (H2) there is a neighborhood
S C Dom(F) of L in ¥ such that F(S\ L) C £\ (L_ULy), and by (H1), the leaf
L cannot be accumulated by leaves in D(F). This is a contradiction which proves
the first part of Lemma 1.

Now let 4 € {1,---k} be such that D(F) N [Lg;, Ly;] consists of a finite num-
ber of leaves. Since D(F) N [Lg;, Ly;] is the union of a discrete set of leaves and
Dom(F/x,) = ; \ Ly;, we can choose a leaf B > Lg; in I; such that (Lg;, B] C
Dom(F) \ D(F). It follows that f is continuous in (Lo;, B]. If f/(1,, B] were not
monotone then it would exist two different leaves L, L' C (Lg;, B] with L" = f(L) =
f(L"). Choose a Cy-spine ¢ of [L, L']. Then ¢ C Dom(F)\ D(F') and so F(c) would
be a curve transverse to F intersecting the common leaf L"” twice. This contradic-
tion shows that f/ ., ) is monotone, and so, f(Lo;+) exists proving the second
part of the lemma. The third part can be proved with similar arguments. O

Lemma 2. Let ¢ C Dom(F) \ D(F) be a open curve transverse to F. If there are
n > 1 and an open curve c* with closure Cl(c*) C ¢ such that Fi(c*) C Dom(F) \
D(F) for all 0 <i<n—1 and F™(c*) covers c, then F has a periodic point.

Proof. Since c is a open curve transverse to F we have that F, is a vertical band
(L, L"). Analogously F.« is a vertical band (L, L,) with closure [L,, L] contained
in (L, L'). Clearly we have Fi((L,,L.)) C Dom(F)\ D(F) forall 0 <i <n —1,
and so, the restricted map f"/(r, 1) is continuous because F"/(r, /) is a ct
embedding. On the other hand, if W € (L,L') then there is z € ¢* such that
F*(xz) € W because F"(c*) covers ¢. But F™(z) € f*(F;). So W = f™(F.),
ie. W € f"((L«,L.)). Henceforth [L.,L.] ¢ (L,L") C f™((L«,L.)). Since
f"/(L.,L) is continuous we conclude that f" has a fixed point L.. in [L., L,].
Hence F™(Lyx) C f™(Lss) = L«x and so F™ has a fixed point in L, by the Brower
Theorem since F™/r,,, is continuous. This fixed point represents a periodic point
of F' and the proof follows. O

Lemma 3. F carries a curve ¢ C Dom(F) \ D(F) tangent to C, with length | c |
into a curve tangent to Cy, with length > A-| ¢ |.
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Proof. Let ¢ : Dom(c) - Dom(F)\ D(F') be a curve tangent to Cy,. If t € Dom(c)
and c'(t) € Cyn(c(t)), then DF(c(t))c! (t) € Co(F(c(t)), because

DF(c(t))(Calc(t))) C Int(Coy2(F(c(t))))-
Also,

IFOCI=/D ()IIDF(C(t))C'(t) IIdtZ/D Al @) ldt=x|cl.

om(c)

The poof follows. O

Observe that if F' has no periodic leaves, then for each i = 1,...,k there are
n(—i),n(+i) with 0 < n(—i),n(+i) < 2k such that F/(L_;),F(Ly;) C L_ U Ly
forall 0 < j < n(—i)—1, 0 <1< n(+i)—1and FP)(L_;), F**)(L,,) C
S\ (L_ULy).

Lemma 4. Suppose that F' has no periodic leaves. Let L, L' be two different leaves
in D(F) with (L,L') open vertical band in ¥ and (L,L') C Dom(F)\ D(F). If c
is a Cy-spine of (L, L"), then F(c) covers a vertical band of the form (W, W') with
k
W, W' € | J{L i, Lys, f*C(Ls), f" 4 (Ly) )
i=1
Proof. Note that F/(y 1 is a C' diffeomorphism since (L, L') C Dom(F)\ D(F),
and F(L),F(L"y C L_ U Ly. Let ¢ be a Cy-spine of (L,L') with ¢(0) € L and
¢(1) € L'. Then F(c) is a curve tangent to C, with Int(F'(c)) contained in the
vertical band limited forf(L+) and f(L'—). If L = L_; for some i = 1, ..., k, then
f(L_;+) exists and belongs to

{f(L—z)a fZ(L—i)a e ’fn(—z) (L—Z)}
because F' has no periodic leaves. Analogously if L' = Ly; for some i = 1,..., k.
Hence we can assume that L € F \ U {L_;}. Then F(L) C L. with L, €
UF_ {L_i,Ly;}. As F has no periodic leaves, there is n(x), 0 < n(x) < 2k such
that F7(L,) C (L_ULy) forall 0 < j <n(x)—1, and F**)(L,) Cc T\ (L_ULy).
By (H2) f(L+) exists and

F(L+) € {Lu, (L), fA(L), s [ (L)}
Analogously if L' € F\ Ur_;{Ly;} This finishes the proof. O

Define
L ={f(Loi—): f(Loi—) exists, i =1, ..., k}
and
Ly ={f(Loi+) : f(Loi+) exists, i =1,...,k}.

Lemma 5. Suppose that F has no periodic leaves. For all curve ¢ C Dom(F) \
D(F) tangent to C, there are a smaller curve ¢* C ¢ and n'(c) > 0 such that
Fi(c*) € Dom(F) \ D(F) for all 0 < j < n'(¢) — 1 and F™)(c*) covers (W, W)
where W, W' belong to

k
U {L—i;L+z’; FrEN(Loy), frE) (L-H)} UL_ULy.

i=1
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Proof. For all curve ¢ C Dom(F) \ D(F) tangent to C, we define
n(c) = Sup{n >1:Fi(c) C Dom(F)\ D(F),Y0<j<n—1}.

Note that 1 < n(c) < oo because A > 1 and ¥ has finite diameter. Moreover,
F™¢)(c) is a curve tangent to Cy, with F™)(c) N (D(F) U Lo) # 0.

Define 8 = (1/2) - A > 1. Fix an open curve ¢; C Dom(F) \ D(F) and define
ny = n{cy). If F™ (¢;) intersects D(F') U Ly in a single leaf Ly, then F™ (¢;) N Ly
reduces to a single point p;. In such a case we define ¢; = largest connected
component of F™ (¢1) \ {p1} and ¢ = F~™(c}). Then, we have the following
properties:

1) ¢2 C ¢1 is an open curve tangent to C,.

2) Fi(cy) C Dom(F)\ D(F), for all 0 < j < n;.

3) | F™i(ca) [> B | ey |
Indeed, the first property holds since F'~"t/ Fos is a C! embedding. The second

property follows from the definition of n; = n(c1) and the fact that ¢§ = F™(c3)
does not intersect the leaves of D(F). The third property follows from Lemma 3
because

| F™ (e2) [=] e3 |2 (1/2)- [ F™ (e1) [2 (1/2) - A" [ ea [2 (1/2) - A ea |= B- [ en |

since A > 2 and ny > 1.

Now we define ns = n(cz). The second property implies na > ni. As before,
if F™2(cy) intersects D(F) U Ly in a single leaf Lo, then F™2(cy) N Ly reduces to
a single point ps. In such a case we define ¢§ = largest connected component of
F" () \ {p2} and ¢3 = F~™2(c%). As before we have

| F™(cs) |=] 5 |2 (1/2)- [ F™(c2) [2 (1/2) - A™27™ | F™(c2) [2 B2 | e |
by the third property. We have the following properties:

1) ¢3 C c2 is an open curve tangent to Cl.
2) Fi(c3) C Dom(F)\ D(F) for all 0 < j < na.
3) | F™2(c3) [> 8% | e |-

In this way we obtain a sequence m1,m2,ns,--- of positive integers with n; >
n;_1; and a sequence ¢1, ¢a, ¢3, - - - of curves such that the following properties hold
foralll >1

1) ¢41 C ¢ is an open curve tangent to Cl.

2) Fi(ci41) C Dom(F) \ D(F) for all 0 < j < ;.

3) | Fr(ery) [2 8 e |-

The sequences n; and ¢; have to be finite by the third property since X have
finite diameter and F™(c;41) is tangent to C,. So, there is a first ly such that
F™o(¢y,) intersects two different leaves L, L' of F in D(F) U L.

If L,L' C D(F) then we can assume that (L, L") C Dom(F) \ D(F) since D(F)
is discrete by the first part of Lemma 1 (recall that F' has no periodic points by
assumption). It follows that F™o(c;,) contains a Cy-spine cf ,; of (L, L'). In this
case ¢ = ¢, ¢* = F~™o (¢} ;) and n'(c) = ny, + 1 satisfy the conclusion of Lemma
5.

Now we assume that L = Lg; for some ¢ = 1,--- ,k and that Lo; < L' (the
argument when L' < Ly; is similar). If (Lg;, L') N D(F) # (), then we can find
aleaf L" in D(F') such that (L",L') C Dom(F) \ D(F) and F™o(c;,) contains a
spine of (L",L'). In this case we conclude as before. Hence we can assume that
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(Loi, L"Y N D(F) = (. Then, D(F) N [Lo;, L4;] consists of a finite number of leaves
of F. On the other hand, f(Lg;+) = f(L+) exists by Lemma 1. Then, F™o(c,)
contains a Cy-spine Cy ,; of (L, L'). By choosing ¢ = ¢, ¢* = F~™o(c} , ) and
n'(c) = ny, + 1 we obtain the result. This proves the result.

2.3. Proof of Theorem 2. Let F' be a A-hyperbolic triangular map satisfying
(H1)-(H2) with A > 2 and Dom(F) = ¥\ Lo. We assume by contradiction that
F has no periodic points. By the first part of Lemma 1 we have that D(F) is
F-discrete, and so, Dom(F) \ D(F) = X\ (D(F) U Ly) is open-dense in X.

Let B the family of vertical bands in ¥ of the form (W, W') where W, W' belong

to
k
U {sz'; Lyi, f"C0(Ly), f"(H)(LH)} UL ULy,
=1
Clearly B = {By,---, By} is a finite set. As Dom(F)\ D(F) is open-dense in ¥
we can choose a curve ¢; C By with closure Cl(c¢;) C Dom(F) \ D(F).

By Lemma 5 applied to ¢ = ¢ there are a curve ¢; * C ¢; and n'(c¢;) > 0 such
that F7(c;*) € Dom(F)\ D(F) for all 0 < j < n/(¢;) — 1 and F™ (1) (¢} *) covers
Bj, for some j; € {1,--- ,m}. Define ¢; = ¢; * and ny = n'(¢;). Note that j; # 1
for, otherwise, F™ (¢) covers ¢; and then F' would have a periodic point by Lemma
2 a contradiction. Then we have the following properties:

1) ju ¢ {1}.

2) ¢1 C ¢ is a curve.

3) Fi(c1) C Dom(F)\ D(F) for all 0 < j <mnq — 1.

4) F™ (cy) covers Bj,.

Again, since Dom(F)\ D(F) is open-dense in ¥, we choose a curve ¢;; C F™ (¢q)N
B;, with closure Cl(c,) C Dom(F) \ D(F). By Lemma 5 applied to ¢ = ¢, there
are a curve ¢, * C ¢; and n/(c;) > 0 such that F7(cy*) C Dom(F) \ D(F) for all
0 < j<n'(c;) — 1 and F™(¢2)(¢;*) covers B;, for some js € {1,---,m}. Define
Ccy = F‘"I(C'l)(c'2 *) and n2 = ny + n'(c;). Note that jo ¢ {1,j1}. Indeed, if j2 =1,
then F™2(cq) covers covers ¢; and then F would have a periodic point by Lemma
2 a contradiction. If j, = j; then F™(¢2)(c;*) covers ¢, and so F would have a
periodic point by Lemma, 2 a contradiction. Then we have the following properties:

1) j2 ¢ {1,571}

2) ¢y C ¢q is a curve.

3) Fi(cy) C Dom(F)\ D(F) forall 0 < j <ngp — 1.

4) F™(cy) covers Bj,.

In this way we can construct sequences ji, jo, js, - € {1,2,---,m}; ¢1,¢2,¢3, -+
and n1,n2,ns,-- - such that the following properties hold for all s > 1 with ¢ = ¢;
and jo =1:

1) jS ¢ {17j17j27j37" . 7js—1}-

2) ¢s C cs—1 is a curve.

3) Fi(cs) C Dom(F)\ D(F) for all 0 < j < ng — 1.
4) F"s(c,) covers Bj, .

However, the first property cannot be satisfied Vs > 1 because {1,---,m} is a
finite set. This is a contradiction which proves the result. O
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3. PROOF OF THE MAIN THEOREM

We investigate the existence of periodic orbits for singular hyperbolic attractors.
In particular, we prove the Main Theorem using Theorem 2. We shall use some
constructions some of which can be found in sections 5 and 6 in [MPal].

3.1. Singular cross-section. Hereafter X will denote a C! flow on a compact
3-manifold M.

Definition 5. A singularity o of X is Lorenz-like if its eigenvalues A1, A2, A3 are
real and satisfy the following eigenvalue relation (up to some order):

A2 < A3 <0< —A3 < Aq.
We consider Lorenz-like singularities by the following proposition.

Proposition 1. Let A be a singular-hyperbolic attractor of X. Then, the following
properties hold:
(1) If TAM = E5 @ E5 denotes the singular-hyperbolic splitting of A, then X (z) €
E¢, dim(E2) =1 and dim(ES) = 2 for all x € A.
(2) If o is a singularity of X in A, then o is Lorenz-like and satisfies the following
equality:
W (o)NnA={c}.

Proof. Since A is transitive we can fix ¢ € A with dense orbit, i.e. A = wx(q).
First we claim that X (q) ¢ E;. Indeed, suppose the contrary namely X(q) € Ej.
Then, X(X¢(q)) = DX:(q)(X(q)) € EY,, for all ¢ > 0 by invariance. Since E*
is contracting we have that lim, , | X (X%, (¢))] = 0 as n — oo for all sequence
t, — oo. This implies X (z) = 0 for every x € A since the orbit of ¢ is dense. We
contradict the non-triviality of A and the result follows. Using the claim and the
dominating splitting we obtain X (z) € E¢ for all x € A. On the other hand, the
dimension dim(E¢) is constant for € A since A is connected. If such a dimension
is 1, then we have that Ef is expanding (i.e. contracting for the reversed flow).
As X(z) € E¢ for all z € A (and M is compact) we obtain a contradiction unless
X (z) = 0for all z € A. This would imply that A is a singularity which is absurd as
A is non-trivial. We conclude that dim(ES) = 0,2 or 3 for all z € A. Clearly such
a dimension is neither 0 (for otherwise A would be an attracting closed orbit) nor 3
(for A is an attractor). This implies that dim(E¢) = 2 for all z € A. It follows that
dim(EZ) = 1 for all z € A proving (1). (2) follows from (1) and the arguments in
[MPP1]. O

Every Lorenz-like singularity o of X is hyperbolic. Hence the stable and unstable
manifolds W§ (o), W¥% (o) exist and are tangent at o to the eigenspace associated
to the set of eingenvalues {A2, A3} and {A1} respectively [HPS]. In particular,
dim(W% (o)) = 2 and dim(W¥ (o)) = 1. A further invariant manifold, the strong
stable manifold W§? (o), is well defined and tangent at o to the eigenspace associated
the {A2}. Consequently dim(W§ (o)) = 1.

The classical Grobman-Hartman Theorem [dMP] gives the description of the
flow nearby a Lorenz-like singularity o of X. This is done at Figure 1. Note that
W3f(o) separates W% (o) in two connected components: the top and the botton
ones. In the top component we consider a cross-section S* = St of X together with
a curve [t = [ as in Figure 1. Similarly we consider a cross-section S® = S? and a
curve I® = [ in the botton component. S* is diffeomorphic to [-1,1] x [—1, 1] and
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I* is contained in W§ (o) \ W% (o) for x = t,b. The positive flow lines of X starting
at StUS?\ (I' UI®) exit a small neighborhood of o passing through the cusp region
as indicated in Figure 1. The positive orbits starting at I* U1® goes directly to o.
We note that the boundary of S* is formed by four curves, two of them transverse
to [* and two of them parallel to I*. The union of the curves in the boundary of S*
which are parallel (resp. transverse) to [* is denoted by 8vS* (resp. 8"S*).

Definition 6. The cross-sections St,S® above are called singular cross-sections as-
sociated to o. The curves It,1° are called singular curves of St,S? respectively.

S(3)

w o)

FIGURE 1. Singular cross-section.

Remark 2. The following holds by Proposition 1-(2). Let A a singular-hyperbolic
attractor and o be a singularity in A. Then, there are singular cross-sections St, S®
associated to o which are arbitrarily close to o and satisfy

AN (@"St uohst) = .

For simplicity we denote by Singx(B) the set of singularities of X in a subset

BCcM.If
S ={St,8":0 € Singx(A)}
is a collection formed by singular cross-sections S, S, o € Singx(A), then we
define
o"s= | (@"SLtudsh).
g€Singx (A)

Definition 7. Let A be a singular-hyperbolic attractor of X. A singular cross-
section of A is a disjoint collection

S={8L, Sk 0 € Singx(A)},
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formed by singular cross-sections St,S%, o € Singx(A), such that
ANno"s =0.

We still denote by S the union of the elements of S. The singular curve of S is the
associated collection of singular curves

1={I',1" : 5 € Sinx(A)}.

3.2. Return map for singular cross-sections. Associated to any singular cross-
section S of a singular-hyperbolic attractor A of X we have a return map

II =1Ig: Dom(Il) C S — S,

given by

where Dom/(II) and T'(z) denotes respectively the domain of IT and the first (pos-
itive) return time of x respectively. The following lemma describes Dom/(IT) when
X has no periodic orbits in A.

Lemma 6. Let A be a singular-hyperbolic attractor of a C* flow X in M. Then,
there is a positively invariant isolating block Uy of A arbitrarily close to A with
the following property: If X has no periodic orbits in A and S C Uy is a singular
cross-section of A, then

Dom(II) = S\ L.

Proof. Since A is an attractor we can find a positively invariant isolating block
Uy arbitrarily close to A (this is a well known exercise in topological dynamics).
Now, let S C Uy be a singular cross-section of A. Clearly I N Dom(II) = @ and
so Dom(Il) C S\ I. On the other hand, pick x € S\ . If z ¢ Dom(II), then
wx(z) C A and wx (z) has no singularities. It follows that wx(x) is hyperbolic by
[MPP1]. By applying the Shadowing Lemma for flows [HK] we can find a periodic
orbit of X close to wx (z). It follows that such a periodic orbit belongs to A which
is absurd. This proves S\ I C Dom(II) and the result follows. O

3.3. Induced foliations on singular cross-sections. Hereafter A denotes a
singular-hyperbolic attractor of X and by Tp M = E3 ® E{ the singular-hyperbolic
splitting of A. The contracting direction E® is one-dimensional by Proposition
1-(1). So, Ef can be extended to an invariant contracting splitting Elsj( A) On 2
neighborhood U(A) of A. The standard Invariant Manifold Theory [HPS] implies
that Efj( A) is integrable, i.e. tangent to an invariant continuous one-dimensional
contracting foliation F*° on U(A). If z € U(A) we denote by F:° the leaf of F**
containing x.

Now, we obtain a foliation F on S by projecting F*° onto S in the following
way. Let S be a singular cross-section contained in U(A). If I C IR and B C M we
define

X1(B) = {X¢(z) : (t,z) € I x B}.
For every € > 0 and z € U(A) we define
f;,e = X[*E,e](]:;s)‘

If z is a regular point of z (i.e. X(z) # 0) then F;  is a two-dimensional subman-

ifold of M (this remark applies for all x € S). If z € S we define
Foe=TFpNS.
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Since S is compact (and formed by regular points) we can find € > 0 such that if
Fz = Fz,c, then the family

F={Fy:ze€S}
defines a continuous one-dimensional foliation of S having [ as union of leaves.

3.4. Refinement of singular cross-sections. We use the foliation F in Sub-
section 3.3 to refine a singular cross-section S C U(A) in the following way. Let
S be a singular-cross section of A. By definition S is a disjoint collection S =
{St,S? : o0 € Singx(A)} of singular cross-sections S¢,S?, o € Singx(A). Recall
that | = {It,1® : 0 € Sinx(A)} is the singular curve of S. By construction ¥
divides S} in two connected components S+, 5%~ (x = t,b). For § > 0 small we
choose two points z},z; € S¥* whose distance to I} is §. Define S*(8) as the

singular cross-sections of ¢ satisfying the following property:
0°S:(0) = fwa_ U .7-'%+.

We have depicted S*(§) = St (8) in Figure 1. It follows from the definition that
S* and S%(8) have the same singular curve [*. In addition, 8"S}(8) C 6"S: and
S%(9) is invariant for the foliation F in S. Since S is a singular cross section of A
we conclude that the set

S(8) = {SL(8),85(8) : 0 € Singx(A)}

is also a singular cross-section of A. Note that S and S(J) have the same singular
curve [. For simplicity we denote by II; = Ilg() the return map associated to
S(9) and by Ts(x) the return time of x € Dom(Ils). Clearly S(6) C S and so
S(6) C U(A) for all §. A simple observation is that the return time T is uniformly
large as 6 — 0%, namely
lim inf Ts(z) = oc.
50t z€5(5)
Lemma 7. Let A be a singular-hyperbolic attractor of a C* flow X in M. Then,
there is a positively invariant isolating block Uy C U(A) of A arbitrarily close to
A with the following property: If X has no periodic orbits in A and S C Uy is a
singular cross-section of A, then for all 6 > 0 small one has:
1. Dom(Ils) = S(0) \ I.
2. Dom(Ils) is F-invariant.
3. If L € F and L C Dom(Ily), then there is f(L) € F such that (L) C f(L).
4. s/ : L = f(L) is continwous for all L € F with L C Dom(Ils).

Proof. Let Uy be the positively invariant isolating block of A coming from Lemma
6. Let U(A) be the domain of F*°. Since Uy is arbitrarily close to A we can assume
that Up C U(A). Define U; = Up. Let S C U; be a singular cross-section of A.
Clearly S(6) C S C Up for all §. Suppose that X has no periodic orbits in A. Then,
Lemma 6 implies
Dom(Ils) = S(6) \ 1

proving (1). We obtain (2) from (1) because [ is union of leaves of F. On the other
hand, T is uniformly large for 6 > 0 small. In addition,

ors(8) c d"s
for all 6. Pick L = F, € F with L C Dom(Ils). We can assume that L is contained

in F2* by projecting along the flow. Since T is uniformly large we have that
the positive orbit of the elements of L stay uniformly close to the one of z. In
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addition, TI;(z) is close to AN S(5). As ANd"S(§) = ) we obtain the following: If
II;(z) € S%(9) for some o, *, then
X,y (B) € (Fiyay.e N X1 ea(S2(0) \ Xpc,a(0"85(3).
See Figure 2. By projecting along the flow we obtain
H5(L) C fl‘[;(m)-

Setting f(L) = F,(;) we obtain (3). To finish we observe that (4) follows from
the Tubular Flow Box Theorem [dMP)]. O

X o 4 (3'S(3))

X o 4 (3S(8)

6(x) , €
Fn

5®)

FIGURE 2. Proof of Lemma 7.

3.5. Proof of the Main Theorem. Let A be a singular-hyperbolic attractor of
a C! flow X on a compact 3-manifold M. We assume by contradiction that X has
no periodic orbits in A. Let U(A) be the domain of the foliation F** described in
Subsection 3.3. Recall that the contracting direction E} extend to a contracting
direction E,SJ( A) on U(A). Analogously we can extend the central direction Ef to
obtain a subbundle Ef]( A) but this extension is invariant only in A.

Let U; C U(A) be the isolating block of A coming from Lemma 7. By Remark 2
we can fix a singular cross-section S = {S%,S? : 0 € Singx(A)} of A contained in
U;. Let S(8) be the refinement of S described in Subsection 3.4. We can consider
S(6) = X as a finite disjoint collection ¥ of copies of [—1,1] x [—1, 1] by identifying
L_, L, with the connected components of 9¥S(d); and Lo with the singular curve [
of S(9) (see Subsection 2.1 for the corresponding definitions). As X has no periodic
orbits in A, Lemma 7 implies that the return map F' = Il of ¥ is a triangular map
(with associated foliation F) satisfying

Dom(F) =X\ L.

Fix A > 2. We claim that there is § > 0 small such that F' is a A-hyperbolic
triangular map satisfying (H1)-(H2) with Dom(F) = ¥\ Lg. We already obtained
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the last property holds. To prove that F' is A-hyperbolic we need to find a cone
field C, in X satisfying the properties (1), (2) and (3) in Definition 3. To define
C, we set a = 1/3, and, for each z € ¥ we define

Co(z) ={v; € T, X : L(vg, V) < a},

where V, = E¢ N T,X. These choices imply Definition 3-(1) because F is obtained
by projecting F*° to 3. On the other hand, since the return time is large we obtain
Definition 3-(2) because the splitting TAM = E} @ Ef is dominated. Analogously
we obtain Definition 3-(3) because Ef is volume expanding (compare with the proof
of Corollary 6.5, p. 1589 in [MPa]). To prove that F' satisfies (H1)-(H2) we can
use tubular flow-box arguments ([dMP]) because F' is the return map induced by
X. This proves the claim. It follows from the claim and Theorem 2 that F' has a
periodic point. This periodic point must belong to a periodic orbit of X in A, a
contradiction. This contradiction proves the result. [l
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