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1 Introduction

The mixed complementarity problem (MCP) [6] is the variational inequality on a generalized
box, that is

find x ∈ B such that 〈F (x), y − x〉 ≥ 0 for all y ∈ B, (1.1)

where F : Rn → Rn and

B = {x ∈ Rn | li ≤ xi ≤ ui, i = 1, . . . , n},

li ∈ R∪ {−∞}, ui ∈ R∪ {+∞}, li < ui for all i = 1, . . . , n. Equivalently, it can be stated as

find x ∈ B such that Fi(x)


≥ 0, if xi = li,
= 0, if xi ∈ (li, ui),
≤ 0, if xi = ui,

i = 1, . . . , n.

As is well known, many important problems can be cast in the format of MCP [8, 6]. As
a special case of MCP, we mention the nonlinear complementarity problem (NCP), which
corresponds to setting li = 0, ui = +∞, i = 1, . . . , n. The systems of nonlinear equations are
obtained by choosing li = −∞, ui = +∞, i = 1, . . . , n. Another important example is the
primal-dual Karush-Kuhn-Tucker (KKT) optimality system: find z ∈ Rp and µ ∈ Rm such
that

g(z)− (G′(z))Tµ = 0,
µ ≥ 0, G(z) ≥ 0, 〈µ, G(z)〉 = 0,

(1.2)

where g : Rp → Rp and G : Rp → Rm. The KKT system (1.2) can be written as an MCP if
we set n = p+m and

F (x) =

(
g(z)− (G′(z))Tµ

G(z)

)
, x = (z, µ) ∈ Rp ×Rm,

li = −∞, i = 1, . . . , p, li = 0, i = p + 1, . . . , n, ui = +∞, i = 1, . . . , n. Under well-known
assumptions, (1.2) represents the first-order primal-dual necessary conditions characterizing
solutions in variational inequality or inequality-constrained optimization problems.

This paper describes a globalization scheme for a local Newton-type method proposed in
[3]. Also numerical experiments will be reported on problems from the MCPLIB collection
[4], together with results on some additional test examples.

2 The Local Active-Set Method

The algorithm of [3] belongs to the class of active-set methods. In the context of MCP, this
corresponds to identifying the sets of indices

A = A(x̄) = {i = 1, . . . , n | Fi(x̄) = 0},
N = N(x̄) = {i = 1, . . . , n | Fi(x̄) 6= 0},

Nl = Nl(x̄) = {i ∈ N | x̄i = li},
Nu = Nu(x̄) = {i ∈ N | x̄i = ui},
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where x̄ is some solution of MCP. If the specified sets can be correctly identified using
information available at a point x close enough to the solution x̄, then locally MCP can
be reduced to a system of nonlinear equations (which is structurally a much simpler problem
to solve). In the sequel, we shall also use the following partitioning of the set of active indices:

A0 = A0(x̄) = {i ∈ A | x̄i = li or x̄i = ui},
A+ = A+(x̄) = {i ∈ A | x̄i ∈ (li, ui)},
A0l = A0l(x̄) = {i ∈ A0 | x̄i = li},
A0u = A0u(x̄) = {i ∈ A0 | x̄i = ui}.

The analog of the strict complementarity condition in NCP (or KKT) corresponds, in the
setting of MCP, to saying that A0 = ∅. Under this assumption, locally MCP trivially reduces
to a system of nonlinear equations, which simplifies the local structure of MCP significantly.
The condition of strict complementarity, however, is restrictive and is not assumed.

Let ψ : R×R→ R be a complementarity function, i.e., a function such that

ψ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Assume that ψ satisfies the following additional assumptions:

a > 0, b < 0 ⇒ ψ(a, b) < 0,

a > 0, b > 0 ⇒ ψ(a, b) > 0.

Then MCP can be equivalently reformulated as a system of nonlinear equations

Ψ(x) = 0, (2.1)

where

Ψ : Rn → Rn, Ψi(x) =


Fi(x), if i ∈ IF ,
ψ(xi − li, Fi(x)), if i ∈ Il,
−ψ(ui − xi,−Fi(x)), if i ∈ Iu,
ψ(xi − li,−ψ(ui − xi,−Fi(x))), if i ∈ Ilu,

IF = {i = 1, . . . , n | −∞ = li, ui = +∞},
Il = {i = 1, . . . , n | −∞ < li, ui = +∞},
Iu = {i = 1, . . . , n | −∞ = li, ui < +∞},
Ilu = {i = 1, . . . , n | −∞ < li, ui < +∞}.

For some special choices of complementarity functions, this reformulation is well-known (see,
e.g., [1, 7]).

Complementarity functions to be used in the sequel are the natural residual ψNR(a, b) =
min{a, b}, the Fischer-Burmeister function ψFB(a, b) = a + b −

√
a2 + b2, and ψS(a, b) =

2ab− (min{0, a+ b})2 (where S stands for “smooth”). The corresponding reformulations of
MCP would be denoted by ΨNR, ΨFB and ΨS , respectively.
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Definition 2.1 Let Ψ : Rn → Rn be differentiable in a neighbourhood of x̄ ∈ Rn and
Ψ′ : Rn → R(n, n) be directionally differentiable at x̄. Then Ψ is 2-regular at x̄ if

T = {0},

where

T = T (x̄) = {ξ ∈ ker Ψ′(x̄) | (Ψ′)′(x̄; ξ)ξ ∈ im Ψ′(x̄)} (2.2)
= {ξ ∈ ker Ψ′(x̄) | P (Ψ′)′(x̄; ξ)ξ = 0},

with P being the orthogonal projector onto (im Ψ′(x̄))⊥.

The above is a special case of 2-regularity of a nonlinear mapping [10, 9], corresponding to
the case when the mapping acts from some space into itself.

Theorem 2.1 [3] Let F : Rn → Rn be sufficiently smooth near a point x̄ ∈ Rn, which is a
solution of MCP.

The mapping ΨS is 2-regular at x̄ if, and only if, there exist a neighborhood U of x̄ and
a constant M > 0 such that

‖x− x̄‖ ≤M(‖(E − P )ΨS(x)‖+ ‖PΨS(x)‖1/2) ∀x ∈ U. (2.3)

Adjusting M and U , if necessary, the error bound (2.3) can be simplified into the following
relation (less accurate, but possibly easier to use):

‖x− x̄‖ ≤M‖ΨS(x)‖1/2 ∀x ∈ U. (2.4)

The assumption of 2-regularity above is very mild. In particular, it is weaker than various
alternatives, such as semistability [2] of the MCP solution.

Proposition 2.1 [3] Semistability of a solution x̄ of MCP implies 2-regularity of ΨS at x̄
(equivalently, error bound (2.3)), but not vice versa.

As a consequence, the error bound given above can hold even when MCP reformulations
based on ΨNR and ΨFB fail to provide a bound.

The following technique for identifying the relevant index sets is based on the ideas of [5],
see also [6, Ch. 6.7]. Define the identification function

ρ : R+ → R, ρ(t) =


ρ̄, if t ≥ t̄,
−1/ log t, if t ∈ (0, t̄),
0, if t = 0,

where t̄ ∈ (0, 1) and ρ̄ > 0 are fixed numbers (the choice of t̄ and ρ̄ does not affect theoretical
analysis; in our numerical experiments reported in Section 3, we use t̄ = 0.9 and ρ̄ = −1/ log t̄,
as suggested in [5]). For any x ∈ Rn, define further the index sets

A(x) = {i = 1, . . . , n | |Fi(x)| ≤ ρ(‖ΨS(x)‖)}, (2.5)
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N(x) = {1, . . . , n} \A(x), (2.6)

Nl(x) = {i ∈ N(x) | xi − li ≤ ui − xi}, Nu(x) = N(x) \Nl(x), (2.7)

A0(x) = {i ∈ A(x) | min{|xi − li|, |ui − xi|} ≤ ρ(‖ΨS(x)‖)}, A+(x) = A(x) \A0(x), (2.8)

A0l(x) = {i ∈ A0(x) | xi − li ≤ ui − xi}, A0u(x) = A0(x) \A0l(x). (2.9)

Proposition 2.2 If ΨS is 2-regular at a solution x̄ of MCP (equivalently, the error bound
(2.3) holds), then for any x ∈ Rn sufficiently close to x̄, it holds that

A(x) = A, N(x) = N, Nl(x) = Nl, Nu(x) = Nu, (2.10)

A0l(x) = A0l, A0u(x) = A0u, A0(x) = A0, A+(x) = A+. (2.11)

Observe that in the implementation of the identification procedure, the following obvious
relations can also be taken into account: IF ⊂ A+, Il ⊂ (A0l ∪ A+ ∪ Nl) and Iu ⊂ (A0u ∪
A+ ∪Nu).

Once the index sets are identified, we have the following relations which are guaranteed
to be satisfied at a solution x̄ of MCP:

FA(x) = 0, xA0l∪Nl = lA0l∪Nl , xA0u∪Nu = uA0u∪Nu .

For simplicity of notation, suppose that the components of x ∈ Rn are ordered in such a
way that x = (xA+ , xA0l∪Nl , xA0u∪Nu). Then MCP locally reduces to the following system of
nonlinear equations:

FA(xA+ , lA0l∪Nl , uA0u∪Nu) = 0. (2.12)

Observe that in the absence of strict complementarity (when A0 6= ∅, i.e., |A| > |A+|), the
system is over-determined (the number of equations is larger than the number of unknowns).
This opens up a number of options. Of course, one can just solve the system by the Gauss–
Newton method (GNM). This possibility will be considered. However, we prefer not to limit
ourselves to GNM for the following reason: the Gauss–Newton approach can destroy structure
present in FA (for example, sparsity or the primal-dual structure in the case of KKT).

Our proposal is to consider the following system of nonlinear equations:

ΦC(xA+) = 0, (2.13)

where
ΦC : R|A+| → R|A+|, ΦC(xA+) = C(xA+)FA(xA+ , lA0l∪Nl , uA0u∪Nu),

with C : R|A+| → R(|A+|, A) being a smooth mapping (possibly constant). Clearly, x̄A+ is a
solution of (2.13) for any choice of C. The Jacobian of (2.13) at this solution is given by

Φ′C(x̄A+) = C(x̄A+)
∂FA
∂xA+

(x̄), (2.14)

where we have taken into account that FA(x̄) = 0. Thus x̄A+ can be found by applying
Newton-type methods to (2.13) whenever the matrix in (2.14) is nonsingular.
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Note that GNM for (2.12) would essentially correspond to choosing in (2.13)

C(xA+) =

(
∂FA
∂xA+

(xA+ , lA0l∪Nl , uA0u∪Nu)

)T
, (2.15)

and applying to the resulting system an approximate version of the pure Newton method.
Indeed, with the notation of (2.15), the Gauss–Newton iteration for (2.12) has the form

xk+1
A+

= xkA+
−
(
C(xkA+

)
∂FA
∂xA+

(xkA+
, lA0l∪Nl , uA0u∪Nu)

)−1

ΦC(xkA+
). (2.16)

Observe that the above formula is just an approximation of the standard Newton iteration
for (2.13), where the Jacobian Φ′C(xkA+

) is replaced by C(xkA+
) ∂FA
∂xA+

(xkA+
, lA0l∪Nl , uA0u∪Nu).

Due to (2.14), this change preserves the superlinear convergence of the pure Newton iteration
for (2.13). Note finally that with the choice of (2.15), we have

Φ′C(x̄A+) =

(
∂FA
∂xA+

(x̄)

)T
∂FA
∂xA+

(x̄). (2.17)

This immediately motivates the following definition.

Definition 2.2 A solution x̄ of MCP is referred to as weakly regular if

rank
∂FA
∂xA+

(x̄) = |A+|.

Weak regularity is implied by semistability, but not vice versa. Moreover, 2-regularity of
ΨS at x̄ and weak regularity, when combined, are still a weaker condition than semistability.

Proposition 2.3 [3] Let x̄ be a solution of MCP. Then semistability of x̄ implies weak reg-
ularity of x̄, but not vice versa.

Proposition 2.4 [3] Let x̄ be a solution of MCP. Then semistability of x̄ implies the com-
bination of 2-regularity of ΨS at x̄ and weak regularity of x̄, but not vice versa.

We have thus a local algorithm with superlinear convergence under assumptions weaker
than semistability of the MCP solution. Specifically, we have the following.

Theorem 2.2 Let F : Rn → Rn be sufficiently smooth near a point x̄ ∈ Rn, which is a
solution of MCP. Suppose that this solution is weakly regular and ΨS is 2-regular at x̄.

For any x0 ∈ Rn sufficiently close to x̄, if the index sets A = A(x0), A+ = A+(x0),
A0l = A0l(x0), A0u = A0u(x0), Nl = Nl(x0) and Nu = Nu(x0) are defined according to (2.5)-
(2.9), then GNM applied to the system (2.12) (with x0

A+
as a starting point) is well-defined

and superlinearly convergent to x̄A+.
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As already mentioned above, it sometimes can be useful to choose the mapping C dif-
ferently from the Gauss–Newton option of (2.15). We might want to take C(·) = C ∈
R(|A+|, |A|), a fixed matrix, in order to preserve in the matrix C ∂FA

∂xA+
(xA+ , lA0l∪Nl , uA0u∪Nu)

the structure (primal-dual, sparsity, etc.) of the matrix ∂FA
∂xA+

(xA+ , lA0l∪Nl , uA0u∪Nu). This
motivates the following considerations.

Proposition 2.5 Suppose that a solution x̄ of MCP is weakly regular.
Then the set of matrices C ∈ R(|A+|, |A|) such that Φ′C(x̄A+) is nonsingular is open and

dense in R(|A+|, |A|).

Proposition 2.5 justifies choosing C in any desirable way, as the chance that the resulting
system would be degenerate is negligible (the set of matrices for which this would happen is
of the Lebesgue measure zero). Of course, one should make reasonable choices. For example,
it should hold that rankC = |A+|.

3 Globalization Issues and Numerical Experiments

In this section we report on our numerical experience based on the MCPLIB test problems
collection (the newer version of [4]), and on some additional small examples, designed to
highlight the case where various standard regularity conditions do not hold, and thus SNM-
based methods may have trouble or converge slowly. This is precisely the case where the
switch to our local algorithm can be particularly useful.

To perform numerical experiments, we had to implement our method as a final stage of
some globally convergent scheme. It seems difficult to suggest a globally convergent scheme
directly related to the structure of our local algorithm. In some sense, this is a disadvantage.
But on the other hand, our local approach can be combined with any globally convergent
algorithm satisfying some requirements (see below). In fact, the way we suggest to use
our active-set method is precisely for improving the local convergence properties of standard
algorithms (say, when they run into difficulties because of the lack of regularity of a solution).
Our numerical experiments, reported below, indicate that the resulting strategy fulfills the
stated objective.

We now describe the basic hybrid globalization scheme and its convergence properties. The
scheme employs the linear decrease test for some (computable) merit function ϕ : Rn → R+.
Possible choices of a global algorithm and ϕ are restricted by the following assumptions:

(A1) ϕ(x) = 0 if, and only if, x ∈ Rn is a solution of MCP.

(A2) ϕ decreases monotonically along the trajectories of the global algorithm.

(A3) ϕ decreases superlinearly along the trajectories of our local method near “qualified”
solutions, i.e., solutions satisfying the assumptions of the local convergence theorem for
our method (Theorem 2.2).

Our choice of a global algorithm and a merit function, as well as the full method, would be
stated later. We first give a simplified general discussion.
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At each iteration k of the global algorithm, we first identify the relevant index sets. If
there is a reason to believe that the identification is correct (e.g., if it did not change when
compared to the previous iteration), then we compute the trial point x̃k+1

A+
by the step of

GNM applied to (2.12) at xkA+
, and set the remaining components of x̃k+1 ∈ Rn equal to the

corresponding components of lA0l∪Nl and uA0u∪Nu . If x̃k+1 is well-defined and

ϕ(x̃k+1) ≤ qϕ(xk), q ∈ (0, 1), (3.1)

then we set xk+1 = x̃k+1, and proceed with the next iteration. Otherwise, we compute xk+1

by the step of the global algorithm, and proceed with the next iteration.
If the linear decrease test (3.1) is satisfied for a finite number of iterations only, the hybrid

globalization scheme behaves essentially as the global algorithm, and the global convergence
properties of the latter remain valid. Otherwise, taking into account assumption (A2), we
conclude that

ϕ(xk+1)→ 0 as k →∞,

and in particular, according to assumption (A1), each accumulation point of the sequence
{xk} is a solution of MCP. This characterizes the global convergence properties of the hybrid
scheme.

Suppose now that a “qualified” solution x̄ of MCP is an accumulation point of {xk}.
Then, by assumption (A3), the linear decrease test (3.1) is satisfied for all iteration indices k
sufficiently large. Furthermore, it is easy to see that the hybrid scheme eventually switches to
our local algorithm (with the “starting point” sufficiently close to x̄). Hence, by Theorem 2.2,
the entire sequence {xk} converges to x̄ superlinearly.

In our numerical experiments we adopt the following choices. As a global algorithm, we
use the linesearch-SNM for (2.1) with Ψ = ΨFB. More precisely, we essentially follow the
implementation suggested in [12] (“General Line Search Algorithm”), with all the parameter
values adopted there. Furthermore, we take ϕ = ϕFB, where

ϕFB : Rn → R, ϕFB(x) =
1
2
‖ΨFB(x)‖2.

We emphasize that this is just one example of the various appropriate choices. But this
particular algorithm seems reasonable for our purposes. Linesearch SNM is known to be
quite efficient, and at the same time, it is easy to implement in its basic form. We note that
we do not use any enhancements, such as crashing and nonmonotone linesearch (see, e.g.,
[13]). The reason is that these are intended to improve global behavior of the algorithm, while
we are concerned with local behavior. Thus a simple implementation of the global scheme
is sufficient for our purposes, as our principal conclusions refer to the local convergence
properties.

Assumptions (A1) and (A2) are evidently satisfied for the adopted choices. In order to
guarantee (A3), we need to assume the error bound

‖x− x̄‖ = O(‖ΨFB(x)‖). (3.2)

Recall that this bound is equivalent to semistability. Under this assumption, for x0 ∈ Rn

close enough to a “qualified” solution x̄, and the corresponding trajectory {xk} of the local
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method, we have

ϕFB(xk+1) =
1
2
‖ΨFB(xk+1)−ΨFB(x̄)‖2

= O(‖xk+1 − x̄‖2)
= o(‖xk − x̄‖2)
= o(‖ΨFB(xk)‖2)
= o(ϕFB(xk)),

where the second equality is by the Lipschitz-continuity of ΨFB near x̄, the third is by
Theorem 2.2, and the fourth is by (3.2). Thus, assumption (A3) is satisfied.

We proceed with the formal statement of the algorithm. Variable “Alg” below is used
to select between the two variants of the algorithm that would be compared to each other.
Alg = 1 means that the possibility of switching to our step is blocked, and so the algorithm
works as the usual linesearch SNM/FB from [12]. Alg = 2 corresponds to the proposed
active-set strategy. Note however that switching to an active-set step is forbidden on the first
iteration, and also in the case when the identified index sets differ from the corresponding
index sets at the previous iteration. This is done in order to prevent the algorithm from
switching to the active-set strategy too early, when the sets are not yet stabilized and are
likely to give incorrect identification.

Algorithm 3.1 Preliminary step. Set Alg = 1 or 2. Fix q, ε, τ ∈ (0, 1), δ, γ > 0. Set
k = 0 and choose x0 ∈ Rn.

Initialization step. If Alg = 1 or k = 0, go to SNM/FB step. Otherwise define
the index sets A = A(xk), Nl = Nl(xk), Nu = Nu(xk), A+ = A+(xk), A0l = A0l(xk),
A0u = A0u(xk) according to (2.5)–(2.9). If at least one of these sets does not coincide with
its counterpart computed at the previous iteration, go to SNM/FB step.

GNM/active-set step. Compute x̃k+1 ∈ Rn as follows:

x̃k+1
A+

= xkA+
−

( ∂FA
∂xA+

(xk)

)T
∂FA
∂xA+

(xk)

−1

∂FA
∂xA+

(xk)FA(xkA+
, lA0l∪Nl , uA0u∪Nu), (3.3)

x̃k+1
A0l∪Nl = lA0l∪Nl , x̃k+1

A0u∪Nu = uA0u∪Nu .

If this point is well-defined and

ϕFB(x̃k+1) ≤ qϕFB(xk), (3.4)

set xk+1 = x̃k+1, adjust k by 1, and go to Initialization step.
SNM/FB step. Compute Λk ∈ ∂BΨFB(xk) and

x̃k+1 = xk − Λ−1
k ΨFB(xk).

If this point is well-defined and (3.4) holds, set xk+1 = x̃k+1, adjust k by 1, and go to
Initialization step.
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If x̃k+1 is well-defined but (3.4) does not hold, set d̃k = x̃k+1 − xk. If

〈ϕ′FB(xk), d̃k〉 ≤ −γ‖d̃k‖δ,

set dk = d̃k and go to Linesearch step.
Gradient step. Set dk = −ϕ′FB(xk).
Linesearch step. Compute the stepsize parameter αk according to the Armijo rule:

αk = τ s, where s is the smallest nonnegative integer satisfying

ϕFB(xk + τ sdk) ≤ ϕFB(xk) + ετ s〈ϕ′FB(xk), dk〉.

Set xk+1 = xk + αkd
k, adjust k by 1, and go to Initialization step.

Note that (3.3) differs slightly from the pure Gauss–Newton iteration given by (2.16)
with C(xA+) defined in (2.15). The modification is made in order to reduce the number of
evaluations of the Jacobian of F : the described algorithm requires exactly one such evaluation
per iteration, whether Alg = 1 or 2. This modification does not affect the rate of convergence.
To see this, note that (2.16) can be written in the form

xk+1
A+

= xkA+
− (C(xkA+

)(C(xkA+
))T)−1C(xkA+

)FA(xkA+
, lA0l∪Nl , uA0u∪Nu).

Comparing this iteration with (3.3), observe that∥∥∥∥∥ ∂FA∂xA+

(xk)− (C(xkA+
))T

∥∥∥∥∥ =

∥∥∥∥∥ ∂FA∂xA+

(xk)− ∂FA
∂xA+

(xkA+
, lA0l∪Nl , uA0u∪Nu)

∥∥∥∥∥
= O(‖xkA0l∪Nl − lA0l∪Nl‖+ ‖xkA0u∪Nu − uA0u∪Nu‖)
= O(‖xk − x̄‖),

provided the index sets are correctly identified for a given solution x̄.
To compute Λk ∈ ∂BΨFB(xk) at SNM/FB step, we used the procedure suggested in [1]

(with zi = 1 ∀ i = 1, . . . , n, in the notation of [1], and the “computer zero” parameter set to
10−10). The well-known formula ϕ′FB(xk) = ΛT

k ΨFB(xk) is used to compute the gradient of
ϕFB.

In the numerical experiments reported below, we used the following set of parameters:
q = 0.9, ε = 10−4, τ = 0.5, δ = 2.1, γ = 10−9. The stopping criterion is

‖ΨFB(xk)‖ < 10−9. (3.5)

The cases when an algorithm did not terminate according to this criterion after 500 iterations
are referred to as failures.

The algorithm was implemented in Matlab, making use of the standard option for treating
sparse matrices. The Table 1 below reports first the total number of iterations for the two
algorithms, and then the number of times the GNM/active-set step has been used. Next to
the latter number, in the brackets, stands the number of active-set iterations at the “tail”
of the process (right before convergence had been declared). Next, the total number of
SNM/FB steps of the globalization scheme is reported for the two algorithms. In the brackets
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is the number of complete SNM/FB steps, i.e., those accepted with the unite stepsize in
the linesearch step or by the linear decrease test without linesearch. Finally, the number
of gradient steps and the number of evaluations of F are reported (recall that for both
algorithms, the Jacobian of F is evaluated once per iteration). Failures are marked by “-”.

Both variants of the algorithm failed for the following 10 problems: billups, bishop,
colvdual, ehl k40, ehl k60, ehl k80, forcebsm, forcedsa, lincont, simple-ex. Recall
that by failure we mean that (3.5) was not satisfied after 500 iterations. In particular,
for billups both variants of the algorithm converged to a local minimizer of the merit
function, which is not an MCP solution. But for this problem, this is typical for (most) MCP
algorithms. We note that the problems mentioned above are considered among the difficult
ones in MCP literature. Since we were able to solve essentially all the other problems, this
means that our implementation of the global scheme, though simple, is sufficiently robust.
The rest of this discussion focuses on the cases for which at least one algorithm did not fail.

For 3 problems, namely duopoly, shubik, and ne-hard, switching to our step at some
early stage prevented failure (although for ne-hard, the accuracy obtained by the algorithm
without switching was of order 10−9, i.e., almost satisfying the stopping test (3.5)). The
opposite situation was observed for games only, though the obtained accuracy in the latter
case was also of order 10−9. We do not have an explanation for the behavior on those 4
problems and regard it as (probably) “accidental”. Moreover, the possible negative global
effect of switching to the active-set step too early can be avoided by the following simple
trick. When an active-set step is accepted, we can store the previous iterate as a back-up,
and restart the algorithm from that point if an active-set step is rejected on some subsequent
iteration (which indicates that the switch occurred too early).

For 20 test problems the active-set step was never accepted, but trying it never harmed
drastically. The number of evaluations of F for the algorithm without the switching option is
typically not much less than for the complete variant, especially when the number of iterations
is relatively large. We consider this extra work as a price to pay for safeguarding better local
convergence properties in situations where SNM/FB runs into difficulties (see below).

The GNM/active-set step was ever accepted “improperly”, i.e., far from a solution and
with (probably) incorrect identification, for 5 test problems only. As mentioned above, for
duopoly and shubik this actually prevented failure, but for games this caused it. For
freebert this resulted in some extra linesearch steps. This points to the (obvious) fact
that switching to the active-set strategy too early should be avoided.

For 19 test problems our step was used “properly” (on the final stage of the process). For
badfree and handskoop, this was evidently rather advantageous. This has to do, of course,
with the lack of (BD-)regularity, which affects the SNM/FB algorithm. In the other cases
(apparently either BD-regular or not regular even in our sense), the conclusions are overall
similar to the situation when our step was never used. In those cases, we do not win or lose
much. On the one hand, we typically have to pay the price of a few more evaluations of F (but
not always). On the other hand, note that the dimension of the linear system of equations
which gives the GNM/active-set step is smaller than the dimension of the system to compute
the SNM/FB step. This can be significant for large-scale problems (if the GNM/active-
set step is accepted then no further computation is needed at this iteration). Finally, the
“proper” use of our step never increased (and sometimes decreased) the overall number of
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iterations.

Table 1: Global algorithm for MCPLIB

Iter GNM/AS SNM/FB Gradient Number of
number steps steps steps evaluations

(tail) (stepsize = 1) of F
Alg 1 2 2 1 2 1 2 1 2
badfree 36 8 2(1) 36 6 179 62
bert oc 8 10 1(0) 8(8) 9(9) 24 56
bertsekas 59 59 59(6) 59(6) 937 1140
billups – – – – – – – – –
bishop – – – – – – – – –
bratu 29 29 29(10) 29(10) 200 258
choi 6 6 6(6) 6(6) 18 32
colvdual – – – – – – – – –
colvnlp 11 11 1(1) 11(5) 10(4) 68 93
cycle 4 4 3(3) 4(3) 1(0) 15 23
degen 6 5 1(1) 6(6) 4(4) 18 30
duopoly – 59 1(0) – 56(10) – 2 – 916
ehl k40 – – – – – – – – –
ehl k60 – – – – – – – – –
ehl k80 – – – – – – – – –
ehl kost 30 30 30(6) 30(6) 217 289
electric 131 131 131(8) 131(8) 1225 1663
explcp 22 21 1(1) 22(7) 20(5) 132 186
forcebsm – – – – – – – – –
forcedsa – – – – – – – – –
freebert 18 25 1(0) 18(5) 24(5) 124 291
gafni 13 13 13(4) 13(4) 76 114
games 30 – – 30(7) – – 340 –
hanskoop 16 4 1(1) 15(15) 2(2) 1 1 53 26
hydroc06 5 5 4(4) 5(4) 1(0) 18 28
hydroc20 9 9 8(8) 9(8) 1(0) 31 49
jel 10 9 1(1) 10(8) 8(6) 38 57
josephy 4 3 1(1) 4(4) 2(2) 12 16
kojshin 4 3 1(1) 4(4) 2(2) 12 16
lincont – – – – – – – – –
mathinum 8 8 2(2) 8(7) 6(5) 27 47
mathisum 9 9 9(7) 9(7) 33 65
methan08 4 4 3(3) 4(4) 1(1) 12 20
nash 6 6 1(1) 6(5) 5(4) 22 34
ne-hard – 29 18(4) – 11(4) – – 187
obstacle 8 8 8(6) 8(6) 30 48
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Table 1: Global algorithm for MCPLIB

Iter GNM/AS SNM/FB Gradient Number of
number steps steps steps evaluations

(tail) (stepsize = 1) of F
Alg 1 2 2 1 2 1 2 1 2
opt cont 12 12 12(10) 12(10) 43 71
opt cont127 13 13 13(7) 13(7) 65 97
opt cont255 15 15 15(8) 15(8) 75 111
opt cont31 9 9 9(8) 9(8) 30 48
opt cont511 20 20 20(6) 20(6) 140 200
pgvon106 28 28 27(2) 27(2) 1 1 206 301
pies 11 11 11(9) 11(9) 41 69
powell 8 8 6(6) 6(6) 2 2 40 68
powell mcp 3 3 2(2) 3(3) 1(1) 9 15
qp 6 5 1(1) 6(6) 4(4) 18 28
scarfanum 5 5 5(5) 5(5) 15 31
scarfasum 5 5 5(5) 5(5) 15 31
scarfbsum 170 170 170(8) 170(8) 2002 2620
shubik – 395 1(0) – 392(6) – 2 – 7002
simple-ex – – – – – – – – –
simple-red 11 11 2(2) 11(11) 9(9) 33 65
sppe 7 7 2(2) 6(6) 4(4) 1 1 25 42
tinloi 8 8 8(8) 8(8) 24 48
tobin 3 3 1(1) 3(3) 2(2) 9 16
trafelas 58 58 55(7) 55(7) 3 3 471 599

General conclusions are as follows. The option of switching to our step never harms too
much, though we certainly have to pay some extra price for computing it at some iterations
(at those where the index sets do not change), even if this step is eventually rejected. But this
is consistent with the main goal of the presented approach. We emphasize that the goal is
not in improving the linesearch SNM/FB (or any other algorithm) when it works efficiently.
We try not to harm/interfere too much in those cases, while extending the algorithm to the
(irregular) cases when SNM/FB does not work well.

We also point out that the efficiency of the identification procedure is of crucial importance
for the methods presented in this paper. According to our numerical experience, the switching
to our local method usually occurs exactly one iteration after the correct identification is
obtained. Additional tuning of the identification procedure (i.e., using scaling or different
identification functions) might improve the performance significantly. Actually, identification
techniques other than the one described above could also be tried. Also, note that we have not
been using any heuristic considerations to decide whether or not the active-set step should be
computed. Developing such heuristics can certainly save some computational work as well.
For example, even if the active sets have not changed from one iteration to the next, we may
decide not to compute the active-set step if the residual is relatively large (i.e., we are still far
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from a solution). Other important issues are feasible versions of the method, and different
globalization schemes which would better fit the structure of the method. This will be the
subjects of future research.

To conclude, we illustrate some possible scenarios of the purely local behavior of SNM/FB
and GNM/AS by applying them to the following small test problems with violated BD-
regularity for ΨFB. We are talking here about the basic SNM/FB and GNM/AS iterations,
without any modifications and tricks concerned with globalization. In particular, GNM/AS
algorithm is specified precisely by (2.15), (2.16), with the index sets identified at the starting
point (thus, this is the algorithm whose local properties are characterized by Theorem 2.2).

The first problem is a slight modification of [3, Example 3.1].

Example 3.1 Let n = 2, li = 0, ui = +∞, i = 1, 2, and let F (x) = ((x1−1)2, x1 +x2 +x2
2−

1). The point x̄ = (1, 0) is the solution of this NCP. Semistability (and hence, BD-regularity
for ΨNR and ΨFB) is violated here, while 2-regularity and weak regularity hold. The starting
point is x0 = (1.5, −0.5), with ‖x0 − x̄‖ ≈ 7.1e–01, ‖ΨFB(x0)‖ ≈ 8.2e–01, det Λ0 ≈ 1.4e+00.

SNM/FB converges in 13 steps. At the final step, ‖x13 − x̄‖ ≈ 3.0e–05, ‖ΨFB(x13)‖ ≈
6.2e–10, det Λ13 ≈ –8.3e–05 (which indicates degeneracy). The rate of convergence is linear,
with the ratio approaching 1/2.

The behavior of GNM/AS is reported in Table 2, and it clearly shows fast quadratic
convergence.

Table 2: GNM/AS for Example 3.1

k 0 1 2 3
‖xk − x̄‖ 7.1e–01 1.3e–01 3.7e–03 9.9e–08
‖ΨFB(xk)‖ 8.2e–01 1.6e–02 1.4e–05 9.9e–15
‖xk−x̄‖
‖xk−1−x̄‖ 1.8e–01 2.9e–02 2.7e–05

The next four problems, taken from [11, Examples 1–4] (Example 3.2 is slightly modified),
are the KKT systems of the form (1.2), with g(z) = f ′(z), z ∈ Rp, where the objective
function f : Rp → R will be specified for each example below.

Example 3.2 Let p = m = 2, f(z) = (z1 + z2)2/2 + (z1 + z2)3/3, G(z) = (z1, z2), z ∈ R2,
z̄ = 0, µ̄ = 0. Semistability holds here, but for ΨNR (and hence, for ΨFB), BD-regularity
is violated. The starting point is z0 = (1, 2), µ0 = (0.01, 0.01), with ‖x0 − x̄‖ ≈ 2.2e+00,
‖ΨFB(x0)‖ ≈ 1.7e+01, det Λ0 ≈ 4.3e–04.

The behavior of SNM/FB is as follows: det Λ1 ≈ 7.3e–10, det Λ2 ≈ 0, but the corre-
sponding linear system is solvable, and the method manages to escape the “bad” region.
Specifically, det Λ3 ≈ 4.3e–16, while det Λ4 ≈ 2.5e–00, and the algorithm converges in 7 iter-
ations. At the final step, ‖x7 − x̄‖ ≈ 1.0e–16, ‖ΨFB(x7)‖ ≈ 1.4e–16, det Λ7 ≈ 2. The rate of
convergence is superlinear.

The behavior of GNM/AS is reported in Table 3, and it also shows the superlinear rate.
Note that while SNM/FB and GNM/AS exhibit similar convergence for this problem,

the performance of SNM/FB clearly depends on the specific implementation. In particular,
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solution of a given degenerate linear system depends on the linear solver, and can affect the
overall convergence. Also, in the cases where BD-regularity is violated, different procedures
to compute Λk could result (in general, not in this example) in different linear systems and
some of them can be ill-conditioned close to the solution, preventing fast convergence of
SNM/FB.

Table 3: GNM/AS for Example 3.2

k 0 1 2 3 4 5 6 7
‖xk − x̄‖ 2.2e+00 9.0e–01 3.2e–01 7.1e–02 5.0e–03 2.8e–05 9.1e–10 9.3e–19
‖ΨFB(xk)‖ 1.7e+01 4.1e+00 9.3e–01 1.6e–01 1.0e–02 5.7e–05 1.8e–09 1.8e–18
‖xk−x̄‖
‖xk−1−x̄‖ 4.0e–01 3.5e–01 2.2e–01 7.1e–02 5.6e–03 3.2e–05 1.0e–09

The next example shows that both 2-regularity of ΨS and weak regularity are important
for fast convergence of GNM/AS.

Example 3.3 Let p = m = 2, f(z) = z2
1/2 + z3

2/3, G(z) = (z1 − z2
2/2, z1 + z2

2/2), z ∈ R2,
z̄ = 0, µ̄ = 0. Semistability is violated (and hence, BD-regularity for ΨNR and ΨFB is
violated). For ΨS , 2-regularity holds, but weak regularity does not. The starting point is
z0 = (0.1, 0.1), µ0 = (0.1, 0.1), with ‖x0 − x̄‖ ≈ 2.0e–01, ‖ΨFB(x0)‖ ≈ 1.3e–01, det Λ0 ≈
2.0e–01.

Both SNM/FB and GNM/AS converge in 12 steps, and ‖x12−x̄‖ ≈ 2.4e–05, ‖ΨFB(x12)‖ ≈
8.4e–10, det Λ12 ≈ 2.9e–04. The rate of convergence is linear with ratio 1/2.

Example 3.4 Let p = 2, m = 3, f(z) = z1+(z2
1 +z2

2)/2, G(z) = (z1, z2, z1+z2), z ∈ R2, z̄ =
0, µ̄ = (1, 0, 0). Semistability holds here, but for ΨNR (and hence, for ΨFB), BD-regularity
is violated. The starting point is z0 = 0, µ0 = (1, 0.01, 0.01), with ‖x0 − x̄‖ ≈ 2.2e–01,
‖ΨFB(x0)‖ ≈ 1.2e–01, det Λ0 = 0.

Though Λ0 is singular, the SNM/FB linear system is solvable, and the method manages
to escape. Specifically, det Λ1 = −2, and the algorithm converges in 2 iterations: the second
step gives the exact solution with det Λ2 ≈ –3.5e–01. Note however that, as already discussed
above, this behavior cannot be guaranteed for some other implementation of the linear system
solver (and in general, of the procedure to compute Λk).

GNM/AS terminates after 1 step at the exact solution. The reason for this is that
A0 = {4, 5}, while x0

1, x0
2, and x0

3 coincide with the corresponding components of x̄. The
iteration of GNM/AS terminates with the exact solution at the identification phase.

Example 3.5 Let p = m = 1, f(z) = z4/4, G(z) = z, z ∈ R, z̄ = 0, µ̄ = 0. Weak
regularity holds here, but semistability (and hence, BD-regularity for ΨNR and ΨFB) and
even 2-regularity for ΨS , are violated. The starting point is z0 = 1, µ0 = 0.1, with ‖x0− x̄‖ ≈
1.0e+00, ‖ΨFB(x0)‖ ≈ 9.1e–01, det Λ0 ≈ 2.7e+00.

SNM/FB converges in 18 steps. At the final step, ‖x18 − x̄‖ ≈ 6.8e–04, ‖ΨFB(x18)‖ ≈
3.1e–10, det Λ13 ≈ 3.1e–06. The rate of convergence is linear with ratio approaching 2/3.

The behavior of GNM/AS is reported in Table 4, and it shows fast quadratic convergence.
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Table 4: GNM/AS for Example 3.5

k 0 1 2 3 4
‖xk − x̄‖ 1.0e+00 6.0e–01 2.2e–01 2.7e–03 9.0e-13
‖ΨFB(xk)‖ 9.1e–01 2.2e–01 1.0e–03 2.0e–08 7.4e-37
‖xk−x̄‖
‖xk−1−x̄‖ 6.0e–01 3.6e–01 1.3e–02 3.3e-10

The final example NCP taken from [12, Example 2.1].

Example 3.6 Let n = 2, F (x) = (−x1 + x2, −x2), x ∈ R2, x̄ = 0. BD-regularity holds for
ΨNR (and hence, semistability also holds), but not for ΨFB. The starting point is x0 = (2, 4),
with ‖x0 − x̄‖ ≈ 4.5e+00, ‖ΨFB(x0)‖ ≈ 5.8e+00, det Λ0 = 0.

Here, SNM/FB fails to make a step. At the same time, GNM/AS terminates after 1
step at the exact solution. The reason for this is that A0 = {1, 2}. Thus, the iteration of
GNM/AS reduces to identifying the index sets.

Note that the problem in Example 3.6 is actually a linear complementarity problem, that
is, NCP with affine F . We point out that in the case of affine F , just one step of GNM/AS
gives the exact solution, provided the index sets are correctly identified. For example, this
behavior is observed also for the problem badfree from the MCPLIB collection: once xk is
close to the solution x̄ = (0, 0, 0.5, 0.5, 1), GNM/AS produces xk+1 = x̄. At the same time,
for xk close to x̄, a degenerate Λk is computed, and SNM/FB fails.
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