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Abstract: In this paper we derive “normal forms” for the defining equations of recur-
sive towers of function fields over finite fields, under certain weak hypotheses. Specially
interesting are the cases of towers of Kummer type and towers of Artin-Schreier type.

1 Introduction

The interest in solutions of polynomial equations over finite fields has a long
history in mathematics, going back at least to C.F. Gaufl. When the polyno-
mial equations define an absolutely irreducible algebraic curve (projective and
nonsingular), we have the famous theorem of A. Weil bounding the number of
solutions with all coordinates in a finite field, in terms of the genus g of the curve
and of the cardinality ¢ of the finite field. Denote by N,(g) the largest number
of rational points over the finite field F, on an irreducible curve (projective and
nonsingular) defined over F, with genus g. Then we have the following bound
(the so-called Hasse-Weil upper bound):

Ny(9) <qg+1+24q-g. (1.1)

Thara noticed that this bound can be improved significantly if the genus of the
curve is large; he introduced the quantity A(g) in order to study the asymptotics
of curves over a fixed finite field F;:

A(q) = limsup

g—0o0

Nqy(9) )

g
From Equation (1.1) we clearly have A(q) < 2,/g. The best upper bound known
for A(q) is the so-called Drinfeld-Vladut bound, see [5]:

Alg) < va -1 (1.2)

To deal with the quantity A(q), one considers towers of curves or of function
fields over finite fields, specially recursive towers (see Definition 2.2).
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The aim of this paper is to show how to transform the defining equation of
a recursive tower of function fields

fY)=g(X), with rational functions f(T"),g(T) € F,(T)

obtaining another defining equation for the same tower

fY) =9(X)

where the rational functions f(T'),§(T) € F,(T) have very special forms (see
Theorems 4.3, 5.2, 6.2, 6.4 and 7.3).

Our results can be considered as a way of classifying recursive towers over
Fy. They are also a first step in tackling the “fantasia” of N. Elkies which states
that every recursively defined tower which attains the Drinfeld-Vladut bound is
modular, see [6]. Finally we hope that our results will lead to the discovery of
new examples of asymptotically good towers.

2 Preliminaries

Let I, denote the finite field of cardinality ¢. An algebraic function field F/F,
is a finite algebraic extension of the rational function field I, (). We will always
assume implicitly that the field F, is algebraically closed in F’; i.e., the only
elements of F' which are algebraic over I, are the elements of F,. We denote
by g(F) the genus of the function field F' and by N(F') the number of rational
places (i.e., places of degree one) of F/F,.

Definition 2.1 A tower of function fields over F, is an infinite sequence F =
(Fo, F1, F>, . ..) of function fields F,,/IF, having the following properties:

(1) Fo CFy C F, C---, and for all n > 0 the extension F,,/F, is separable
of degree [F,41 : F,] > 1.

(2) For some r > 0 the function field F,./F, has genus g(F,) > 1.

Observe that g(F,) — oo as n — oo; this follows easily from conditions (1) and
(2) using the Hurwitz genus formula (see [12, Thm.II1.4.12]).

Of particular interest are “asymptotically good” towers F = (F))n>0 over
Fy, which means that each function field F}, has many rational places compared
to its genus. To make this definition precise, we first remark that for any tower
F = (Fp)n>0 over F; the limit

= lim N(Fw)
=l i

exists (see [8]). From the Drinfeld-Vladut bound (1.2) we derive A(F) < ,/g—1.
The tower F is said to be asymptotically good (resp. asymptotically bad) if
A(F) > 0 (resp. A(F) = 0).



We say that a tower F = (F,),>0 is given explicitly if there are given
elements z; € F; and polynomials 0 # ¢;(T') € F;[T] such that F,,11 = F,(Zp41)
and @, (xpe1) =0, for all n > 0. It is a non-trivial problem to provide explicitly
given asymptotically good towers. Most examples to be found in the literature
are of the following type, cf. Section 3 below:

Definition 2.2 Let F = (F,)n>0 be a tower of function fields over F,, and let
f(T),9(T) € F,(T) be two separable rational functions with coefficients in the
field IF,. We say that the tower F can be described recursively by the equation

fY) =9(X) (2.1)
if there are elements x;, for all ¢ > 0, such that the following holds:
(1) Fy =TF,(z0) is the rational function field.
(2) Foy1 = Fo(zp41) and f(zpg1) = g(zp), for all n > 0.
(3) [Fnt1 : Fn] =deg f(T), for all n > 0.

Recall that the function f(T') is called separable if f & F,(T"), where p denotes
the characteristic of F,;, and also recall that the degree of a rational function
f(T) = a(T)/b(T), with relatively prime polynomials a(T),b(T) € F,[T], is
defined as deg f(T') = max{dega(T),degb(T)}.

Definition 2.3 If the tower is recursively described by Equation (2.1), we say
that F is an (f, g)-tower over F,, and we define the corresponding basic function
field of Equation (2.1) as

F=TFy(z,y) with f(y)=g(z). (2.2)

Note that the extensions F/Fy(z) and F/F,(y) are separable and that F, is
algebraically closed in F' by our general assumption. Moreover, defining for
convenience z := f(y) = g(z) we have F,(z) = F,(z) N F,(y) and

[F: Fy(z)] = [Fy(y) : Fy(2)] = deg f(T),

[F: By (y)] = [y (2) = Fy(2)] = deg g(T).

Let A = ( Z 2 > € GL(2,F,) (i.e., a,b,c,d € F, and ad # bc), and let u
be an element in some extension field of Fy, with cu 4+ d # 0. Then we set
_au+b
Ccu+d

If the tower F = (Fj,)n>o0 is described recursively by the equation f(Y) = g(X),
we can perform a transformation of the variables xg, x1, . .. by setting z; = A-Z;,



for all 4 > 0. It is then clear that Fo = Fy(%o) and F,11 = Fy(Z,41), and that
the functions Z; satisfy the equation

F(#ar1) = §(#a), with F(T) = f(A-T) and §(T) = g(4-T).  (2.3)

This means that the tower F can also be described recursively by the equation
) = ().

A necessary condition for an (f, g)-tower F to be asymptotically good is that
deg f(T') = degg(T), see [7]. There are, however, more delicate restrictions:
the ramification behaviour of the two extensions F/F,(z) and F/F,(y) (where
F =TF,(z,y) is the corresponding basic function field) should be “similar”. For
a precise formulation of this statement see [2]. In Section 4-7 we will show that
- under rather weak assumptions about ramification in the extensions F/F,(x)
and F/F,(y) - an (f,g)-tower F can be described recursively by an equation
f(Y) = §(X), where f(T) and §(T') have a very special form.

3 Examples of recursive towers

In this section we assemble a list of known examples of asymptotically good
(f,g)-towers over F,. These examples serve as motivation and illustration for
our results in Sections 4-7.

Example 3.1 ([9, 10]) Let m > 2 and ged(m, q) = 1, and let a,b,c € F,\{0}.
Then the equation
Y"=a(X +b0)" +¢ (3.1

recursively defines a tower F; of function fields over F;; we call 7; a tower of
Fermat type. For various choices of ¢, m,a,b,c such towers provide examples
for many phenomena that can occur in the theory of recursive towers. For
example, some towers of Fermat type are completely splitting, some have finite
ramification locus, others have infinite ramification locus (for precise definitions
see [9, Sec. 2]). Among the towers of Fermat type there are asymptotically good
and also asymptotically bad towers. Particularly interesting are the following
two cases of asymptotically good towers, whose limits attain the Drinfeld-Vladut
bound A(F) = /g — 1, see [10]:

V3=(X+1>%+1 over Fy (3.2)
Y2=—(X+1>2%+1 over F,. (3.3)

Example 3.2 For any prime power ¢ = p?>* = 1 mod 2, the equation

_X?+41

Y2
2X

(3.4)

defines an asymptotically good tower F, over the finite field F,. Over the
finite field E,2 (p an odd prime) this tower attains the Drinfeld-Vladut bound



A(Fz) =p—1, see [9]. Some other examples of interesting towers defined by a
quadratic equation

V?=g(X) with g¢(X)€F,(X) and degg(X)=2 (3.5)
are given in [6, 9].

Example 3.3 ([6, 13]) For some values of ¢ and m (with gcd(m, q) = 1), the
equation
X m
Ym=1-(—— 3.6
(=) (36)

defines an asymptotically good tower F3 = (Fp, F1, F»,...) over F,. The inter-
esting feature here is that this tower F3 is unramified over the third field F3 in
the tower.

Example 3.4 ([6]) Let p be a prime number, p # 5, and consider the polyno-
mial f(T) =T° + 513 — 5T — 11 € F,[T]. Then the equation

125

X +4
/(¥5)
defines a tower F; over F,> whose limit attains the Drinfeld-Vladut bound; i.e.,
we have \(Fy) =p— 1.

f¥) = (3.7)

Example 3.5 ([8]) For any prime power ¢, the equation

X1
q —
Y?+Y = e (3.8)

defines an asymptotically good tower Fs over 2, whose limit attains the
Drinfeld-Vladut bound.

Example 3.6 ([11]) The equation
1
Y2+Y:X+1+Y (3.9)

defines an asymptotically good tower Fg over the field Fg. Its limit is given by
A(Fs) = 3/2. This tower was the first known explicit example of a tower over a
field F, with non-square cardinality whose limit is large. In fact, its limit attains
Zink’s bound, see [14].

Example 3.7 ([3]) The equation
Yy-1 X7-1
Ye = X
defines a tower F7 over the field Fp» whose limit attains the Drinfeld-Vladut

bound. For the corresponding basic function field F' = Fz(z,y), both extensions
F/Fp(x) and F/F,(y) are non-Galois for ¢ > 2.

(3.10)



Example 3.8 ([4]) The equation
1-Y X1+X-1
Ye o X
defines an asymptotically good tower Fg over the field F;s. This interesting

tower generalizes Example 3.6 to arbitrary cubic fields. Its limit satisfies Zink’s
bound (see [14]):

(3.11)

2(¢° — 1)

qg+2
As in Example 3.7, the extensions F//F,s(z) and F//Fs(y) in the corresponding
basic function field F' = Fs(x,y) are non-Galois for ¢ > 2.

A(Fg) >

Definition 3.9 Given an (f, g)-tower F over F,, we define its dual tower G as
the tower recursively given by the equation

g9(Y) = f(X);
i.e., by interchanging the variables X and Y (see [2]).

It is clear that an (f, g)-tower F and its dual G have the same limit A(F) = A\(G).
As an example of this concept we consider below the dual tower of the tower
in Example 3.6.

Example 3.10 The dual tower G of the tower F5 in Example 3.6 is defined by
the equation

1
Y+1+?:X2+X. (3.12)

The substitution ¥ = (fi + 1)/}7 and X = ()g +1)/X transforms Equation
(3.12) into the equation Y2 +Y = X?2/(X? 4+ X + 1). Hence the tower G can
also be described by the equation

X2

V24V = —— 3.13
s ea gy (3.13)

Considering the examples above, we make the following interesting observa-
tion:

Observation 3.11 We remark that all defining equations f(Y") = g(X) for the
towers given in Examples 3.1-3.10 can be written in the form

FY)=A-f(B-X) with A, BeGL(2F,). (3.14)

This remark is obvious for the towers given in Examples 3.1, 3.3 and 3.4. In
Example 3.5 we have f(Y) =Y?+Y and

X1

10

The proof of this remark in the other examples is left to the reader; we will
come back to Observation 3.11 in Section 4.



4 Transformations of the defining equation of a
recursive tower

In this section we study the effect of variable transformations on the defining
equation of a recursive tower. The following result is crucial.

Theorem 4.1 Let F be a tower of function fields over F, which can be described
recursively by the equation f1(Y) = g1 (X), with rational functions f1(T),q1(T) €
F,(T). Denote by F = Fy(x,y) the corresponding basic function field and set
z:= fily) = g1(x) € F. Suppose that f(T),g(T) € F,(T) are rational functions
with the following properties:

(1) deg f(T) = deg f1(T) and degg(T') = deg g:(T).

(2) There exist elements T and g in the field F such that Fy(x) = Fy(T),
Fy(y) =F,(@), (@) € Fy(2) and g(T) € Fy(2).

Then the tower F can also be described recursively by an equation of the form
fY)=A-9(B-X)
for suitable matrices A, B € GL(2,F,).

Proof. It is clear from (1) and (2) that F,(2) = F,(f(¥)) = F,(g(Z)). Hence
there exists a matrix A € GL(2,F,) such that

) =A-g(@).
We write y = C -y and T = D - ¢ with C, D € GL(2,F,;). Then
f(Cy)=A-g(D-2)=A-g(DC)-(C - x)).
Setting B=DC™!, §=C -y and Z = C - z, we see that

@) =A-g(B- ).
O
The observation at the end of Section 3 shows that many interesting towers
can be defined by an equation of the form f(Y) = A- f(B - X). This motivates
the following definition.

Definition 4.2 Let f(T) € F,(T) be a rational function. A tower F of function
fields over F, is called an f-tower if there exist matrices A, B € GL(2,F,) such
that F can be described recursively by the equation f(Y) = A- f(B- X).

All towers in Examples 3.1-3.10 are in fact f-towers for an appropriate choice
of the rational function f(7"). We have the following immediate consequence of
Theorem 4.1:



Theorem 4.3 Let F be a tower of function fields over F, which can be described
recursively by the equation f1(Y) = ¢g1(X) with fi(T),q1(T) € Fy(T). Let F =
Fy(z,y) be the corresponding basic function field and set z := f1(y) = g1(x) € F.
Suppose that f(T) € F,(T) is another rational function with the properties:

(1) deg f(T) = deg f1(T) = deg g:(T).

(2) There ezist elements T and T in the field F' such that Fy(z) = F(Z),
Fy(y) = F,(9), £(7) € Fy(2) and f(y) € Fy(z).

Then the tower F is an f-tower; i.e., it can be described recursively by
fY)=A4-f(B-X)
for suitable matrices A, B € GL(2,F,).

In Sections 5-7 we will apply Theorem 4.1 and 4.3 in specific cases; in
particular we will consider the case where both extensions F//F,(z) and F/F,(y)
are Galois extensions.

5 Towers of Kummer type

Let F be an (f, g)-tower of function fields over F, and denote by F' = Fy(z,y)
the corresponding basic function field. Here we investigate the case where both
extensions F/F,(x) and F/F,(y) are Galois extensions of degree m, with m
relatively prime to q.

Lemma 5.1 Let Fy(u) 2 Fy(2) be an extension of rational function fields of
degree [Fq(u) : Fy(z )] =m > 1 with m|(q — 1). Then the following conditions
are equivalent:

(i) The extension Fy(u)/F,(2) is Galois, and there exists a rational place of
F,(2) which is totally ramified in Fy(u).

(i) At least two places of Fy(z) are totally ramified in the extension Fq(u)/Fy(z).
(iii) There is an element @ € Fy(u) such that F,(4) = Fy(u) and a™ € Fy(z).

If one (and hence all) of the three conditions above holds, then the Galois group
of Fy(u) /F,(2) is cyclic, exactly two rational places of F,(z) are totally ramified
and all other places of Fy(z) are unramified in the extension Fy(u)/Fq(z).

Proof. (i) = (ii): Let P be a rational place of F,(z) which is totally ramified,

and let Py, ..., P be the other places of F,(z) which are ramified in the extension
F,(u)/Fq(2). Denote by e; the ramification index of P; in F,(u)/F,(z) and by
deg P; the degree of the place P;, for j = 1,...,r. Since ramification is tame,

the Hurwitz genus formula for the extension F,(u)/F,(z) gives

—2=—2m+ (m— 1) +Z ) - deg Pj,



hence
r

1 1
E <1——> ~degPj=1— —.
— €; m
j=1
Since 1/e; < 1/2, we obtain

1 " deg P;
1>1——> —
> m *]z_; 2

and therefore r = deg P, = 1 and e; = m. This proves item (ii).

(i) = (iii): Let Pi, @1 be places of Fy(z) which are totally ramified in the
extension F,(u)/F,(2), and denote by P (resp. Q) the place of F,(u) lying above
Py, (resp. @1). As above it follows from the Hurwitz genus formula that the
places P; and @; (hence also the places P and () are rational places. In a
rational function field, any divisor of degree 0 is principal, hence we can find
elements @ € Fy(u) and Z € F,(z) with principal divisors

(ﬂ)]Fq(u) =P—-(@ and (Z)Fq(z) =P — Q.

Above we have denoted by (t)g the principal divisor of the function ¢ in the
function field E. It follows that

(@), (w) = mP —mQ = (2)r,(u),

and hence @™ = c¢- Z with 0 # ¢ € F,. The element 4 is a generator of the
function field F,(u), since its pole divisor has degree one. We have thus proved
item (iii).

(iii) = (i): Observing that the field F, contains the m-th roots of unity, this
implication is obvious: the automorphisms of the extension F,(u)/F,(z) are
given by (@) = ¢ - @ with (" = 1 and the zero of @ is totally ramified in the
extension Fy(u)/Fq(2). |

Now we come to the main result of this section.

Theorem 5.2 Let F be an (f1,g1)-tower of function fields over F, and denote
by F = Fy(z,y) the corresponding basic function field. Suppose that the following
conditions hold:

(1) deg f1(T) = deg g1 (T) = m and m divides (¢ — 1).
(2) Both extensions Fy(x)/Fy(g1(x)) and Fy(y)/Fy(f1(y)) satisfy the equivalent
conditions (1)—(iil) of Lemma 5.1.
Then F is an f-tower with f(T) =T™. More specifically, the tower F can be
described recursively by an equation of the form
m_ WX+ D"+ X +9)"
c(X+1)m +d(X +v)m
with a,b,c,d,y € Fy, v # 1 and ad # be.

(5.1)



Proof. By Theorem 4.3 and Lemma 5.1, the tower F is an f-tower with
f(T) =T™. This means that F can be described recursively by an equation

a <Q1X+Bl>m+b1
ym X + 6 _ ai(a1 X 4+ )™ + by (mX +01)™
o <Oé1X+51>m d, ci(a X + )™ +di(mX +6)™
X + 6

(5.2)

with a1d1 75 b101 and 04161 ;é 61’)/1.

We first consider the case where a; # 0 and +; # 0. Then it follows that
B1 # 0 or §; # 0, and we can assume that $; # 0. Substituting V' = aflﬁlff
and X = a; ' X we obtain

<&>m1~/m _ a1 (B1X + B)™ + bi(of 'Bin X + 6)™
a c1(BiX + B)™ +di (o) B X + 6™

hence

gm _ (X )"+ H(X 49"

(X +1)m +d(X + )™

It is clear that v # 1 and ad # be, since otherwise Equation (5.3) is not abso-
lutely irreducible.

Next we consider the case where oy = 0 or 3 = 0 in Equation (5.2). We
can assume that 71 = 0 and «; # 0, and then Equation (5.2) takes the form

(5.3)

_ az(X + B2)™ + by
c2(X 4 f2)™ 4+ do

ym with as, bg, Ca, d2, BQ € IFq. (54)
Suppose that S» = 0; then Equation (5.4) can be written as Y™ = C' - X™

with a matrix C € GL(2,F,). For the functions zg,z1,22,... in the tower
F = (Fy, F1, Fy,...) this means that

et =C-af', 2P =C-z"=C% -z, ..., " =C" -z

for all n > 1. Since GL(2,F,) is a finite group, we have C™ = id for some n > 1,
and therefore z7' = zf*, o7 | = x7", etc. It follows that we have the equalities
Fno_1 =F, = Fypy1 = ---, a contradiction. We have thus shown that S # 0
in Equation (5.4). The substitution X = 3,/X and Y = $5/Y then transforms
Equation (5.4) into

?m _ CL3(X + l)m + b3Xm
03()2 + l)m + d3Xm
which has the form as in Equation (5.1). i

We remark that Equation (5.1) can also be written as

F(Y)=A-f(B-X) with f(T):TﬂﬁA:(Z 2),3:(} i)

10



where ad # bc and v # 1.

A tower F which can be recursively described by Equation (5.1) is called a
tower of Kummer type, since both extensions F'/F,(z) and F/F,(y) are Kummer
extensions, where we again denote by F' = F,(x,y) the corresponding basic
function field. This class of towers contains the towers of Fermat type (see
Example 3.1) and some other towers discussed in Section 3 (see Equations (3.4),
(3.5) and (3.6)).

6 Towers of Artin-Schreier type

Some of the examples of towers in Section 3 are described recursively by an
equation of the form Y* + aY = g(X), where £ is a power of p = char(F,), and
with 0 # a € F; and ¢g(X) € F,(X). In this section we will discuss equations of
this type. Let p = char(IF,) denote the characteristic of IF,. Recall that a monic
polynomial p(T") € F,[T] of the form

r
p(T)=> a;T", with a; €F, and a, =1,
i=0

is called an additive polynomial over [F,. It is separable if and only if ay # 0
(since its derivative is '(T) = ap). A finite field extension E/F with F D F,
is called an Artin-Schreier extension if there exists an element u € E with
E = F(u) whose irreducible polynomial over F' has the form h(T') = p(T) — z,
with z € F and p(T) a separable additive polynomial over F,.

The following lemma is an analogue to Lemma 5.1.

Lemma 6.1 Let F,(u) D Fy(z) be an extension of rational function fields of
degree [Fy(u) : F,(2)] = p", with p = char(F,) and r > 1. Then the following
conditions are equivalent:

(i) The extension Fy(u)/F,(z) is Galois.

(ii) There is an element @ € Fy(u) with Fy(u) = Fy(@) and a separable additive
polynomial p(T') € Fy[T] of degree deg p(T) = p" such that p(i) € F,(2)
and all roots of p(T) = 0 are in F,.

If one (and hence both) of the conditions above holds, then the Galois group of
F,(u)/Fy(2) is elementary abelian of type (p, ..., p), exactly one rational place of
F,(z) is totally ramified in Fy(u)/Fy(2) and all other places of Fy(2) are unram-
ified in Fy(u). Moreover, the irreducible polynomial over F,(z) of the element @
in condition (ii) above is h(T') := p(T) — w with w € Fy(z) and F,(z) = Fy(w).

Proof. (i) = (ii): We assume that the extension F,(u)/F,(2) is Galois of degree
p" and denote by Gal(F,(u)/F,(2)) its Galois group. First we show that there is
exactly one place of IF,(z) which ramifies in F,(u). Suppose this is wrong. Then
at least two places Py # Qo of F,(z) are ramified in the extension Fy(u)/F,(z).

11



Denote by Pi,...,P, (resp. Q1,...,Qm) all places of Fy(u) lying above Py
(resp. Qo), and by e(F;) (resp. e(Q;)) the ramification index of P; (resp. @;)
in Fy(u). Since all ramification is wild, the different exponents of P;| Py satisfy
d(P;|Py) > e(P;) and similarly d(Q;]|Qo) > e(Q;). Now the Hurwitz genus
formula for the extension F,(u)/Fy(z) gives

=2 > 2"+ 3L e(P) deg P + Z;n:l e(Q;) - deg Q;
= —2p"+p"-deg B+ p"-degQo
> 0,

a contradiction. It follows that exactly one place Py of F,(2) is ramified in Fy(u)
and that deg Py = 1; i.e., P, is a rational place. It is now easily seen that the
place P, is totally ramified in the extension F,(u)/IF,(z) (otherwise, by Hilbert’s
ramification theory, there would exist an intermediate field Fy(z) C E C Fy(u)
such that E/F,(z) is unramified - a contradiction).

Denote by P the unique place of F,(u) lying above Py. Since P|Fy is totally
ramified, P is a rational place of IF,(u). Choose @ € F,(u) with pole divisor P,
then @ also generates the field F,(u). Any automorphism o € Gal(F,(u)/F,(2))
fixes the place P, so o(i) = ¢, -4+ d, with ¢,,d, € F,. Then o(@) = ¢ -a+d;
for all ¢ > 1 (with some element d; € F,), and since oP” =id we conclude that
c(p,r =1, hence ¢, = 1. The map

Gal(F, (u)/Fq(2)) — T,
o —  dy

(with o(@) = @ + d,) is then a monomorphism from Gal(F,(u)/F,(z)) onto an
additive subgroup U C F,, hence Gal(F,(u)/F,(z)) is elementary abelian of type
(p,--..,p). The polynomial

p(T):= [[ (T —d) e F,[T]
deU

is an additive polynomial of degree p” (since U is an additive subgroup of F,,
cf. [12, IT1.7.9]), and the element

deu

is invariant under Gal(F,(u)/F,(z)). It follows that w € F,(z), and since the
pole order of w at the place P is equal to p" = [F,(u) : F,(2)], we conclude that
F,(w) = F,(z). Thus we have proved item (ii) and all claims stated at the end
of Lemma 6.1.

(ii) = (i): Let @ and p(T') be as in (ii). It is clear that the polynomial h(T') :=
p(T) — p(a) € F,(2)[T] is the irreducible polynomial of @ over F,(z). The
equation p(T) = 0 has p" distinct roots d € F, and for any such d we have
h(i+d) = p(a + d) — p(a) = p(a) + p(d) — p(i) = p(d) = 0. Hence h(T) =0
has p" roots in IF,(u) and the extension F,(u)/F,(z) is Galois. m|

Combining Theorem 4.1 and Lemma 6.1 we obtain the following result:
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Theorem 6.2 Let F be a tower over F, which can be described recursively by
the equation f(Y) = g(X), with rational functions f(T) and g(T) in Fy(T)
satisfying deg f(T') = degg(T) = p", where p denotes the characteristic of F,.
Denote by F = Fy(z,y) the corresponding basic function field. Suppose that
both extensions F[Fy(x) and F/Fy(y) are Galois. Then there exist monic ad-
ditive polynomials ©1(T), p2(T) € F,[T] of degree p" having all roots in F, and
non-singular matrices A, B € GL(2,F,) such that the tower F can be described
recursively by the equation

p2(Y) =A-pi(B- X).
A typical example for Theorem 6.2 is the tower F; from Example 3.5 which
is given recursively by Equation (3.8):

X1

Yi+Y = ———.
+ X141
Setting 1 (T) := p2(T) :=T?+ T we see that

os(Y) = A-p1(B-X) with A:B:(? é)

For Artin-Schreier extensions of degree p we can sharpen Lemma 6.1 and
thereby we obtain a stronger version of Theorem 6.2:

Lemma 6.3 Let F,(u) D Fy(z) be an extension of rational function fields of
degree [Fy(u) : F,(2)] = p = char(F,). Then the following conditions are equiva-
lent:

(i) The extension Fy(u)/F,(z) is Galois.

(ii) There exists an element uy € Fy(u) such that u} —uy € Fy(z) and Fy(uy) =
F, (u).

(iii) There ezists an element us € Fy(u) and an element 0 # a € Fy such that
F,(u2) = F,(u) and ub — aP~tuy € Fy(2).
(iv) For all elements 0 # b € F, there is some element uz € Fy(u) such that
F,(u3) = F,(u) and ub — bP~tug € F,(2).
Proof. It is sufficient to prove the implications (i) = (iii) = (iv).
(i)= (iii): Let Fy(u)/F,(2) be Galois of degree p. By Lemma 6.1 there is an
element @ with F, (@) = F,(v) and a polynomial p(T") = TP —cT with 0 # c € F,
such that p(@) € Fy(z) and p(T) = T? — T = T(TP~' — ¢) = 0 has all roots

in F,. This means that ¢ = a?~! for some a € F,\{0}. The element uy := @
therefore has the desired properties.
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(iii)= (iv): We now assume that there is an element uy € Fy(u) with F,(uz) =
F,(u) and an element 0 # a € F, such that ub —a?~luy € F,(2). Let b € F,\{0}
be given. We then set us := a~'bus and obtain

uh — b tug =a PP ul — P a  bus = a P OP (uh — aPus),

hence F,(u3) = F,(u) and uf — b*~tuz € F,(2). 0

Theorem 6.4 Let F be a tower over F, which can be described recursively by
the equation f(Y) = g(X), with rational functions f(T) and g(T') in Fy(T)
satisfying deg f(T) = degg(T) = p", where p denotes the characteristic of F,.
Denote by F = TF,(x,y) the corresponding basic function field. Suppose that both
extensions F[F,(x) and F/F,(y) are Galois. Let 0 # e € F, and set

o(T) :=TP — e’ 'T € F,[T].

Then the tower F is a gp-tower; more precisely, the tower can be described
recursively by one of the following equations:

m +c (C’ase ].)
p(Y)=4 @9 (%) +5b (Case 2)

a

m +c (CG,SG 3)

\
with a,b,c,a € Fy; and a # 0, o # 0. In Case 1 we can further assume that
a ¢ F,, and in Case 2 we can assume that a ¢ F,.

Proof. By Theorem 4.3 and Lemma 6.3 we can describe the tower F recur-
sively by an equation

o(Y)=A-p(B-X) with A, B eGL(2,F,),
where p(T) = TP — eP~!T as above. This means that

aX + 4
a~p<ryX+6>+b

p(Y) =
aX +
c-p<7X+6>+d

We distinguish four possible cases:

with ad # bc and ad # 5. (6.1)

(Case 1): ¢ # 0 and v = 0. We may assume that ¢ = 1 and obtain from
Equation (6.1)

o(V) = M plarX +B1) +b1 _ a1 -p(aaX) + b
plar X + B1) +du plar X) + do

as
= — 22— +b
p(CKlX)-l-dg 3
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with certain elements a;, bj,--- € Fy.

(Case 2): ¢ =0 and v # 0. Now we may assume that v = 1 and obtain from

Equation (6.1)
X+

We substitute Y =Y — § and X = X — 4. This gives
o a X +
p(Y)—p0) = a-p <1T&> + b

a
= a1~p<§2+,32>+b1

hence

with ai,b]-, SRS IFq.

(Case 3): ¢ # 0 and v # 0, and we may assume that ¢ = v = 1. In this case,
Equation (6.1) gives

aX + oy
) = o)t me(Fa) e
’ B aX+0Y g - M LB +d
P\ x+0 PAxss ™
(65}
a-p( >+b1
= §+6 = aa2 + bs.
1 1
p<X+6>+d1 p<X+5>+d1

We substitute Y =Y —§ and X = X — § and find

p(V) = —— 2 4 by,
aq
()
as desired.
(Case 4): ¢ = = 0. In this case Equation (6.1) yields

p(Y) =ar-plar X + 1) + b1 = a1 - p(ar X) + b. (6.2)
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We have shown in [1, Prop.4.5] that Equation (6.2) does not define a tower.

It is clear that in Cases 1-3 the constants a and a are non-zero. Assume
now that in Case 1 the recursive equation of the tower is

a
Y) = —rn—— ith E,. .
oY) oaX) 0 +c¢ with «a €, (6.3)

Then p(aX) = a- p(X), and we can rewrite Equation (6.3) as
pY)=C-p(X) with amatrix C € GL(2,F,).

For some n > 1 we have C"™ = id, and as in the proof of Theorem 5.2 we
conclude that Equation (6.3) does not define a tower.

Finally we consider Case 2 and assume that a € F,. Then the defining
equation of F is

aq
Y) = (—) b, 6.4
(V) =9 () + (6.4)
hence p(Y — aa/X) = b. This shows that Equation (6.4) is not absolutely
irreducible, contrary to our definition of recursive towers. O

As an application of Theorem 6.4 we obtain a complete list of all (f,g)-
towers with deg f = deg g = 2 over the field Fy with two elements. By Theorem
6.4 such a tower can be described recursively by an equation

1

V24Y = AR +ec (6.5)
(%) +(x) +b
with b, c € F,.
For b = ¢ = 0, Equation (6.5) becomes
1 X2
Y2 +Y = = :
Q7+ (G) X+

This is the tower F5 from Example 3.5 for ¢ = 2. It attains the Drinfeld-Vladut
bound over Fy.

Next we consider the case b = 0, ¢ = 1. Then Equation (6.5) becomes
Y?+Y = (X?+ X +1)/(X + 1), and with the transformation X = X +1,
Y =Y + 1 we obtain

~ ~ ~ 1
V24Y =X+1+—=.
X
This tower was considered in Example 3.6; it is asymptotically good over the
field Fg.
Similarly for b = 1, ¢ = 0 we get the equation

X2

I . S
s ea
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This tower was considered in Example 3.10; it is dual to the previous tower,
and hence it is asymptotically good over Fg.

Finally, for b = ¢ = 1 we find the equation

X+1
yiiy—_~*t1l
s ea gy

With the substitution ¥ =Y + 1, X = X + 1 this gives

~ ~ X

X2+ X+1

This equation has not yet been considered in the literature. It would be inter-
esting to study the tower F which is recursively defined by Equation (6.6). In
particular: is F asymptotically good over I, with ¢ = 2, for some s > 17

7 Some non-Galois f-towers

The concept of an f-tower is useful not only in case the extensions F/Fy(z) and
F[F,(y) are Galois (with F' = F,(z,y) denoting the corresponding basic function
field). In this section we consider a situation where both these extensions are
non-Galois. Among other things, this leads to a more natural representation
and a better understanding of the towers in Examples 3.7 and 3.8.
Let us consider in more details the tower in Example 3.8, which is given
recursively by the equation f(Y) = g(X) with
1-Y X7+ X -1

F0) = and g(X) = =

(7.1)
We set z := f(y) = g(x).

Remark 7.1 There are places P,Q of F,(z) and places P, Q of F,(z) with P|P
and Q|Q such that

e(PIP)=q and e(QQ)=q-1;

indeed, this follows from the fact that the element z — 1 = (x — 1)?/z has a zero
of order ¢ and a pole of order ¢ — 1 in F (x). Also, there are places R, S of F,(z)
and places R, S of F,(y) with R|R and S|S such that

e(RIR) =q and e(S|S)=q—1.

This shows that the extensions F,(z)/F,(z) and F,(y)/Fy(z) have a similar ram-
ification structure.

Keeping the remark above in mind, we return to the general case of an
(f,g)-tower F over F,. We begin with an analogue of Lemmas 5.1 and 6.1.
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Lemma 7.2 Let Fy(u) D Fy(z) be an extension of rational function fields of
degree [Fe(u) : Fe(2)] = ¢ > 1, and assume that p = char(F,) divides q. Set

h(T) := T — T\ € F,[T).
Assume that there are places P and Q of Fy(u) such that
e(P|IP)=q and e(Q|Q)=q—1,

where P and Q denote the restrictions of P and Q to the subfield Fe(z). Then
there is an element G € Fy(u) such that Fo(d) = Fy(u) and h(a) € Fy(z).

Proof. Let P, Q, P, Q be as in the lemma. It follows from the Hurwitz genus
formula that all these places are rational. We choose a generator Z of Fy(z)
whose principal divisor in the field Fy(z) is

(E)Fe(z) =Q-P

Then the principal divisor of Z in F,(u) has the form
(5)]Fg(u) =(q— I)Q + Ql - lﬂs (7.2)

with another place Q1 of Fy(u) of degree one. We can choose an element @ €
Fy(u) with the following properties: the pole of @ in Fy(u) is P, the zero of i is
Q and the zero of & —11s Q. We then consider the element h(@) = 47 —a¢~" =
@971 (@ — 1). Tts principal divisor in the field Fy(u) is by construction

(h(ﬁ))]ﬂ(u) = (q - ]-)Q + Q~1 - qp: (73)
and it follows from Equations (7.2) and (7.3) that h(@#) = c¢-Z for some 0 # ¢ € F,.
O

Combining Lemma 7.2 and Theorem 4.3 we obtain immediately:

Theorem 7.3 Let F be an (f, g)-tower over Fy such that deg f(T) = deg g(T) =
q > 1 and suppose that the characteristic of Fy divides q. Denote by F = Fy(x,y)
the corresponding basic function field with f(y) = g(x) =: z. Assume that both
extensions Fy(z)/Fe(2) and Fy(y)/Fe(2) satisfy the assumptions of Lemma 7.2;
i.e., there are places P, Q, R, S of Fy(z) and P, Q of Fy(x) and R, S of Fy(y)
with P|P, Q|Q, R|R and S|S whose ramification indices are

e(PIP) = e(RIR) =q and (QIQ) = e(S|S) = q— 1.

Set h(T) :=T?—T9 1. Then the tower F is an h-tower over Fy; i.e., F can be
described recursively by the equation

h(Y)=A h(B-X)

for suitable matrices A, B € GL(2,T,).
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As an example for Theorem 7.3 we consider once again the tower Fg from
Example 3.8 which is defined by f(Y) = ¢g(X) with f(}Y) and ¢(X) as in Equa-
tion (7.1). It follows from Remark 7.1 and Theorem 7.3 that the tower Fg is an
h-tower; indeed, setting ¥ = 1/Y and X = 1/X, Equation (7.1) becomes

- 14 X1 x4 1
¥)= - =

" “T—l‘m'
X -1

Hence the tower Fg can also be described recursively by the equation

MY)=1- —— — A.h(B-X) (7.4)

H(5)
(L) man=(1 )

An important step in [4] is to show that the tower Fs = (Fo, F1, Fa,...) over
F,> has the following property: there are ¢* + ¢ rational places of the field Fy
which split completely in all extensions F,, /Fy, for n > 1. Using the recursive
description of Fs by Equation (7.4) we can give a much simpler proof of this
property than the proof in [4] which is based on the recursive description of Fg
by Equation (7.1). First of all we have the following polynomial identity which
can be checked easily:

with

(T — 1T 1 =T - (W(T)" = h(T) +1). (7.5)
Denoting by F, the algebraic closure of F,, we then define the set Q C F, by
Q:={a ek (a—1)7 et = _1}\{0}. (7.6)

It is clear that © C Fyz and that the cardinality of Q is ¢* + ¢.

Recall that the function 2y € Fy is a generator of the rational function field
Fy/F,s, see Definition 2.2. We want to show that the zero of 2y — «, for a € Q,
splits completely in all extensions F,,/Fy (which proves the desired property of
the tower Fg). By Equation (7.4) it is enough to prove the following claim:

Claim: Let 3 € F, be an element such that

1

Then the element 3 also belongs to the set ().

hpB)=1- for some «a € Q. (7.7
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Proof of the Claim. Let a € (2, then v := a/(a — 1) € 2 by the definition in
(7.6). We now consider an element # € F, which satisfies Equation (7.7), so

1
h(B)=1- ") for some v € . (7.8)

In order to prove that 3 € Q we have to check (by Equation (7.5)) the identity
h(B)1Tt — h(B) +1=0;i.e.,

i = HD=1 o
Now
MEY = 1= (by (7.8)
= 1- h(i;g’y_ T (since v € Q)
- Tt (by (78))
FTISRG)
() -1
h(B)
This proves Equation (7.9) and finishes the proof of the claim. |

Remark 7.4 The tower F7 given in Example 3.7 is asymptotically good over
the quadratic field Fy=, and by Theorem 7.3 it can also be described by an
equation h(Y) = A-h(B - X) with h(T) = T? — T?! and with matrices 4, B €
GL(2,F;2). One checks that this equation is

(7.10)

References

[1] P. Beelen, A. Garcia and H. Stichtenoth, On towers of function fields of
Artin-Schreier type, to appear in Bulletin Braz. Math. Soc.

[2] P. Beelen, A. Garcia and H. Stichtenoth, On ramification and genus of
recursive towers, preprint (2004).

[3] J. Bezerra and A. Garcia, A tower with non-Galois steps which attains the
Drinfeld-VIadut bound, to appear in J. Number Theory.

20



[4]

[5]

[6]

J. Bezerra, A. Garcia and H. Stichtenoth, An explicit tower of function
fields over cubic finite fields and Zink’s lower bound, preprint (2003).

V.G. Drinfeld and S.G. Vladut, The number of points of an algebraic curve,
Funktsional. Anal. i Prilozhen. 17 (1983), 68-69. [Funct. Anal. Appl. 17
(1983), 53-54].

N. D. Elkies, Explicit Modular Towers, in Proceedings of the 35th Annual
Allerton Conference on Communication, Control and Computing (Urbana,
1997), 23-32, 1998.

A. Garcia and H. Stichtenoth, Skew pyramids of function fields are asymp-
totically bad, in Coding Theory, Cryptography and Related Areas (Gua-
najuato, 1998), 111-113, Springer, 2000.

A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers
of function fields over finite fields, J. Number Theory 61 (1996), 248-273.

A. Garcia and H. Stichtenoth, On tame towers over finite fields, J. Reine
Angew. Math. 557 (2003), 53-80.

A. Garcia, H. Stichtenoth and M. Thomas, On towers and composita of
towers of function fields over finite fields, Finite Fields Appl. 3 (1997),
257-274.

G. van der Geer and M. van der Vlugt, An asymptotically good tower of
function fields over the field with eight elements, Bull. London Math. Soc.
34 (2002), 291-300.

H. Stichtenoth, Algebraic function fields and codes, Springer, Berlin, 1993.

J. Wulftange, Zahme Tiirme algebraischer Funktionenkérper, Ph.D. Thesis,
University of Essen, 2003.

T. Zink, Degeneration of Shimura surfaces and a problem in coding the-
ory, in Fundamentals of Computation Theory, Lecture Notes in Computer
Science, Vol. 199, Springer, Berlin, 503-511, 1985.

Authors’ addresses:

Peter Beelen, Fachbereich Mathematik, Universitit Duisburg-Essen, 45117 Essen, Germany.
e-mail: peter.beelen@uni-essen.de

Arnaldo Garcia, Instituto de Matemdtica Pura e Aplicada IMPA, Estrada Dona Castorina
110, 22460-320, Rio de Janeiro RJ, Brazil. e-mail: garcia@impa.br

Henning Stichtenoth, Fachbereich Mathematik, Universitit Duisburg-Essen, 45117 Essen,

Germany. e-mail: stichtenothQuni-essen.de

21



