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Abstract

A theorem due to Fitzpatrick provides a representation of arbitrary
maximal monotone operators by convex functions. This paper explores
representability of arbitrary (non necessarily maximal) monotone opera-
tors by convex functions. In the finite dimensional case, we identify the
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one consisting of intersections of maximal monotone operators and char-
acterize the monotone operators that have a unique maximal monotone
extension.
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1 Introduction and Motivation

Let f : X → R ∪ {+∞} be a lower semicontinuous (l.s.c. from now on) proper
convex function defined on a real Banach space X 6= {0}. Then its associated
Fenchel subdifferential mapping ∂f : X ⇒ X∗ is maximal monotone [14]. For
h : X ×X∗ → R ∪ {+∞} given by

h(x, x∗) := f(x) + f∗(x∗), (1)

f∗ being the convex conjugate function of f , we have the Fenchel-Young in-
equality

h(x, x∗) ≥ 〈x, x∗〉 ,

〈·, ·〉 denoting the duality pairing between X and X∗. Moreover

x∗ ∈ ∂f(x) ⇔ h(x, x∗) = 〈x, x∗〉 . (2)

Relation (2) shows that ∂f is fully determined by h.
Let A be an arbitrary maximal monotone subset of X × X∗. Fitzpatrick

[6] proved that the family of l.s.c. convex functions h : X × X∗ → R∪{+∞}
satisfying

(i) h(x, x∗) ≥ 〈x, x∗〉,

(ii) (x, x∗) ∈ A ⇔ h(x, x∗) = 〈x, x∗〉

is nonempty. His proof is constructive. He defined ϕA : X ×X∗ → R ∪ {+∞}
by

ϕA(x, x∗) := sup
(y,y∗)∈A

〈x− y, y∗ − x∗〉+ 〈x, x∗〉 . (3)

and proved that this function has the above mentioned properties. Moreover, ϕA

is the smallest function in the family. Note that ϕA characterizes (or represents)
A. Indeed if A is maximal monotone, then

A = {(x, x∗) ∈ X ×X∗ | ϕA(x, x∗) = 〈x, x∗〉} . (4)

In a recent paper, Mart́ınez-Legaz and Théra [8] rediscovered the Fitzpatrick
function associated to maximal monotone operators and characterized the fam-
ily

{ϕA | A ⊂ X ×X∗ is maximal monotone} .

In their study of enlargements of maximal monotone operators (see [4, 16]),
Burachik and Svaiter [5] also rediscovered Fitzpatrick functions and studied
the whole family of l.s.c. convex functions associated with a given maximal
monotone operator A, i.e., those functions h satisfying (i) and (ii). They proved
that this family is invariant under a suitable generalized conjugation operator
and has a biggest element σA, which is characterized by

σA(x, x∗) = clconv(π + δA)(x, x∗), (5)
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π : X ×X∗ → R and δA : X ×X∗ → R∪{+∞} being the duality pairing (that
is, π(x, x∗) = 〈x, x∗〉) and the indicator function of A (given by δA(x, x∗) = 0 if
(x, x∗) ∈ A, +∞ if (x, x∗) /∈ A), respectively, and clconv denoting l.s.c. convex
envelope.

The purpose of this paper is to extend the representation of maximal mono-
tone operators by l.s.c. convex functions to a larger class of monotone operators.
We shall work in the framework of real Banach spaces. One of our main results
is Theorem 31 (Section 5), which establishes that, in the finite dimensional case,
the class of representable operators is the one consisting of the intersections of
maximal monotone operators.

2 Basic Definitions and Results

Let Z be an arbitrary set. The indicator function of Y ⊂ Z, defined on Z, is
δY : Z → R ∪ {+∞},

δY (z) :=
{

0 if z ∈ Y ,
+∞ otherwise.

Let W be another arbitrary set. Note that a multivalued operator F : Z ⇒ W
is fully characterized by its graph G(F ),

G(F ) := {(z, w) ∈ Z ×W | w ∈ F (z)} .

From now on, X is a real Banach space and X∗ is its dual. The ordered
duality product between X and X∗ will be denoted by π,

π : X ×X∗ → R,
(x, x∗) 7→ x∗(x).

We shall use also the product notation 〈·, ·〉,

〈x, x∗〉 := x∗(x).

A multivalued operator T : X ⇒ X∗ is monotone if

〈x− y, x∗ − y∗〉 ≥ 0, ∀x, y ∈ X, x∗ ∈ T (x), y∗ ∈ T (y).

The multivalued operator T : X ⇒ X∗ is maximal monotone if it is monotone
and, for any monotone T̃ : X ⇒ X∗,

G(T ) ⊂ G(T̃ ) ⇒ T = T̃ .

An arbitrary A ⊂ X ×X∗ is monotone if

〈x− y, x∗ − y∗〉 ≥ 0, ∀ (x, x∗), (y, y∗) ∈ A.

The set A is maximal monotone if it is monotone and for any monotone Ã ⊂
X ×X∗,

A ⊂ Ã ⇒ A = Ã.
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Trivially, the operator T : X ⇒ X∗ is monotone (resp. max. monotone) if and
only if the set G(T ) is monotone (resp. max. monotone).

The Fitzpatrick function was defined originally for maximal monotone sets [6].
Its definition can be directly generalized for arbitrary subsets of X ×X∗.

Definition 1 The Fitzpatrick function associated with A ⊂ X × X∗ is ϕA :
X ×X∗ → R,

ϕA(x, x∗) := sup
(y,y∗)∈A

〈x− y, y∗ − x∗〉+ 〈x, x∗〉

= sup
(y,y∗)∈A

(
〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉

)
.

Note that the Fitzpatrick function is convex and l.s.c.. An equivalent ex-
pression for ϕA(x, x∗) is

ϕA(x, x∗) = 〈x, x∗〉 − inf
(y,y∗)∈A

〈x− y, x∗ − y∗〉 .

Given f , an extended real function on X, its Legendre conjugate, denoted
by f∗, is the extended real function on X∗ defined by

f∗(x∗) := sup
x∈X

(
〈x, x∗〉 − f(x)

)
.

The effective domain of f is the set where f < +∞,

ed(f) := {x ∈ X | f(x) < +∞}.

The largest convex minorant of f will be denoted by conv f :

conv f := sup
h:X→R̄, h≤f

h convex

h.

The closed convex envelope of f , that is, the largest l.s.c. convex minorant of f ,
will be denoted clconvf :

clconvf := sup
h:X→R̄, h≤f

h convex, l.s.c.

h.

Given A ⊂ X ×X∗, define sA, σA : X ×X∗ → R̄ by

sA := conv(π + δA), σA := clconv(π + δA). (6)

These functions where defined and studied in [5] for A maximal monotone.
If h is an extended real function in X×X∗, then h∗ is defined in (X ×X∗)∗ =

X∗ ×X∗∗. We will consider the canonical injection (if X is reflexive, canonical
identification) of X in X∗∗, which assigns to x ∈ X the functional

X∗ 3 x∗ 7→ x∗(x).
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With this convention, if we take (x, x∗) ∈ X × X∗ and A ⊂ X × X∗ then
(x∗, x) ∈ X∗ ×X∗∗ and

(π + δA)∗(x∗, x) = sup
(y,y∗)∈X×X∗

(
〈y, x∗〉+ 〈x, y∗〉 − (π + δA)(y, y∗)

)
= sup

(y,y∗)∈A

(
〈y, x∗〉+ 〈x, y∗〉 − 〈y, y∗〉

)
= sup

(y,y∗)∈A

〈x− y, y∗ − x∗〉+ 〈x, x∗〉 .

Hence, for any (x, x∗) ∈ X ×X∗,

ϕA(x, x∗) = (π + δA)∗(x∗, x)
= (sA)∗(x∗, x) (7)
= (σA)∗(x∗, x).

Given h : X ×X∗ → R, define J h : X ×X∗ → R,

J h(x, x∗) := h∗(x∗, x). (8)

Now, (7) can be synthetically rewritten as:

ϕA = J (π + δA) = J (sA) = J (σA). (9)

Trivially, from Definition 1,

ϕA(x, x∗) ≥ 〈x, x∗〉 , ∀(x, x∗) ∈ A. (10)

Moreover, monotonicity may be characterized by Fitzpatrick functions.

Proposition 2 A set A ⊂ X ×X∗ is monotone if and only if

ϕA(x, x∗) = 〈x, x∗〉 , ∀(x, x∗) ∈ A.

or equivalently,
ϕA ≤ π + δA.

Proof. Equivalence between the two last conditions follows from (10).
Monotonicity of A means that, for any (x, x∗) ∈ A,

〈x− y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ A.

This condition is trivially equivalent to

ϕA(x, x∗) ≤ 〈x, x∗〉 ,

for all (x, x∗) ∈ A.

Proposition 3 A set A ⊂ X ×X∗ is monotone if and only if ϕA ≤ σA.
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Proof. If A is monotone, then, by Proposition 2, ϕA ≤ π + δA. Since ϕA is
convex and l.s.c., we conclude that ϕA ≤ σA.

Assume now that ϕA ≤ σA. Since σA ≤ π + δA, we get ϕA ≤ π + δA. Now,
using Proposition 2 the conclusion follows.

Observe that, according to (9), the condition ϕA ≤ σA may be written as

J (σA) ≤ σA.

The preceding proposition suggests the introduction of the class of functions
h : X ×X∗ → R ∪ {∞} which are convex, l.s.c., and satisfy the condition

J h ≤ h.

The above condition is an abbreviation for

h∗(x∗, x) ≤ h(x, x∗), ∀(x, x∗) ∈ X ×X∗,

which can be expressed more symmetrically as

〈x, y∗〉+ 〈y, x∗〉 ≤ h(x, x∗) + h(y, y∗) ∀(x, x∗), (y, y∗) ∈ X ×X∗.

We call this class ∆(X) or ∆. Formally we have:

∆ :=
{

h : X ×X∗ → R ∪ {+∞} | h is convex and l.s.c., ∀(x, x∗), (y, y∗)
〈x, y∗〉+ 〈y, x∗〉 ≤ h(x, x∗) + h(y, y∗)

}

=
{

h : X ×X∗ → R ∪ {+∞} | h is convex and l.s.c.,
J h ≤ h

}
.

If A is monotone, then (by Proposition 3) σA belong to this class. Note that
if h ∈ ∆, k is convex, l.s.c., and k ≥ h then k ∈ ∆.

Take h ∈ ∆. Setting (x, x∗) = (y, y∗) here one deduces the inequality h ≥ π,
which, as we will see in the next section, is crucial for a convex function h to
represent a monotone set.

We end this section with a result due to Fitzpatrick [6].

Theorem 4 If A ⊂ X×X∗ is maximal monotone then, for all (x, x∗) ∈ X×X∗,

ϕA(x, x∗) ≥ 〈x, x∗〉 ,
(x, x∗) ∈ A ⇔ ϕA(x, x∗) = 〈x, x∗〉 .

Moreover, ϕA is the smallest convex function with these properties.

3 Representable Monotone Operators

First we characterize monotone operators in terms of convex functions and the
duality product.
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Theorem 5 Let A ⊂ X ×X∗. Then A is monotone if and only if there exists
a convex function h : X ×X∗ → R∪{+∞} such that, for all (x, x∗) ∈ X ×X∗,

h(x, x∗) ≥ 〈x, x∗〉 ,
(x, x∗) ∈ A ⇒ h(x, x∗) = 〈x, x∗〉 . (11)

Moreover, h may be taken l.s.c. also (closed convex).

Proof. Suppose that A is monotone. Using Zorn Lemma we conclude that
there exists a maximal monotone Ã ⊂ X×X∗ such that A ⊂ Ã. Taking h = ϕ

eA
and using Theorem 4 we conclude that (11) holds. By its definition, ϕ

eA is l.s.c..
Assume now that there exists a convex function h : X × X∗ → R∪{+∞}

such that (11) holds. Let (x, x∗), (y, y∗) ∈ A. By the second condition in (11),

h(x, x∗) = 〈x, x∗〉 , h(y, y∗) = 〈y, y∗〉 .

Using the convexity of h we get

h

(
1
2
(x + y),

1
2
(x∗ + y∗)

)
≤ 1

2
〈x, x∗〉+

1
2
〈y, y∗〉 .

Now, using the first condition in (11) and the above inequality, we get

1
4
〈x + y, x∗ + y∗〉 ≤ 1

2
〈x, x∗〉+

1
2
〈y, y∗〉 ,

which is equivalent to 〈x− y, x∗ − y∗〉 ≥ 0. So, A is monotone.

Remark 6 The function h may also be taken in ∆, by choosing h = σA. Indeed,
σA is trivially convex and l.s.c.. Using Proposition 3 we conclude that if A is
monotone then ϕA ≤ σA, which by our choice of h and by (9) is equivalent to
J h ≤ h, and so h = σA ∈ ∆.

Corollary 7 For any set A ⊂ X ×X∗, the following conditions are equivalent:

1. A is monotone.

2. J (σA) ≤ σA.

3. σA majorizes π.

4. sA majorizes π.

Proof. By Proposition 3 and (9), items 1 and 2 are equivalent.
If A is monotone, then by the preceding theorem there exists a l.s.c. convex

function h which coincides with π on A and majorizes π. In particular, h ≤
π + δA. Therefore, using also definition (6), we have π ≤ h ≤ σA. This proves
that item 1 implies 3. The implication 3⇒4 is trivial. For 4⇒1, observe that
item 4 together with (6) implies that sA coincides with π on A, and then use
the preceding theorem again.
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A monotone set A ⊂ X ×X∗ is representable if there exists a l.s.c. convex
function h : X ×X∗ → R∪{+∞} such that h ≥ π and

A = {(x, x∗) ∈ X ×X∗ | h(x, x∗) = 〈x, x∗〉} .

We will use the notation R for the family of monotone representable subsets of
X ×X∗. Given h : X ×X∗ → R∪{+∞}, define

L(h) := {(x, x∗) ∈ X ×X∗ | h(x, x∗) = 〈x, x∗〉} (12)

and
b (h) := {(x, x∗) ∈ X ×X∗ | h(x, x∗) ≤ 〈x, x∗〉} .

Observe that L(h) ⊂ b (h). If h ≥ π, then L(h) = b (h). Define also

F := {h : X ×X∗ → R∪{+∞} | h is convex and l.s.c., h ≥ π} . (13)

Now we have a synthetic expression for R:

R = {L(h) | h ∈ F} . (14)

By Theorem 4, if A ⊂ X × X∗ is maximal monotone then its Fitzpatrick
representation ϕA belongs to F and one has A = L(ϕA). Therefore all maximal
monotone operators are representable. Monotone representable operators share
some properties with maximal monotone operators:

Proposition 8 Let A be a monotone representable set. Then

1. A(x) := {x∗ ∈ X∗ | (x, x∗) ∈ A} is closed and convex, for all x ∈ X.

2. A−1(x∗) := {x ∈ X | (x, x∗) ∈ A} is closed and convex, for all x∗ ∈ X∗.

3. A is closed. Moreover, let {(xk, x∗k)}k∈N be a sequence in A.

a If xk
w→ x and x∗k → x∗, then (x, x∗) ∈ A,

b If xk → x and x∗k
w→ x∗, then (x, x∗) ∈ A.

Proof. There exists some l.s.c. convex h : X ×X∗ → R∪{+∞} such that
h ≥ π and A = L(h). Then

A = {(x, x∗) ∈ X ×X∗ | h(x, x∗)− 〈x, x∗〉 ≤ 0} .

Since the function h̃ : X ×X∗ → R∪{+∞} defined by

h̃(x, x∗) = h(x, x∗)− 〈x, x∗〉

is l.s.c. and convex in x and x∗ separately, items 1 and 2 hold.
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To prove 3, observe that l.s.c. convex functions are weakly l.s.c.. If {(xk, x∗k)}k∈N
is a sequence as in item 3.a or 3.b, then {xk}, {x∗k} are bounded, 〈xk, x∗k〉 con-
verges to 〈x, x∗〉 and

h(x, x∗)− 〈x, x∗〉 ≤ lim inf
k→∞

h(xk, x∗k)− 〈x, x∗〉

= lim inf
k→∞

h(xk, x∗k) + lim
k→∞

(
− 〈xk, x∗k〉

)
= lim inf

k→∞

(
h(xk, x∗k)− 〈xk, x∗k〉

)
= 0.

An extension of A ⊂ X × X∗ is any B ⊂ X × X∗ such that A ⊂ B. The
family of representable monotone extensions of A will be called R(A). Formally,

R(A) := {R ∈ R | A ⊂ R} . (15)

The family R(A) is determined by a subset of F , namely, if we define

F (A) := {h ∈ F | (x, x∗) ∈ A ⇒ h(x, x∗) = 〈x, x∗〉} , (16)

or, equivalently,
F (A) = {h ∈ F | A ⊂ L(h)} ,

we have
R(A) = {L(h) | h ∈ F (A)} . (17)

Note that R(∅) = R and F (∅) = F . If A is not monotone, then R(A) = ∅
and F (A) = ∅. Some properties of the family F (A), in the case where A is
maximal monotone, were studied in [5]. Even when A is monotone but not
maximal monotone, some properties remain.

Proposition 9 Let A ⊂ X×X∗. Then A is monotone if and only if F (A) 6= ∅.
Moreover

1. For any h1, h2 ∈ F (A) and t ∈ [0, 1],

th1 + (1− t)h2 ∈ F (A) .

2. If {hi}i∈I ⊂ F (A), with I 6= ∅, then

sup
i∈I

hi ∈ F (A) .

Proof. The first part of this proposition follows from Theorem 5. The
proofs of items 1 and 2 are trivial.

Corollary 10 Let A ⊂ X ×X∗. Then A is monotone if and only if R(A) 6= ∅.
If {Ri}i∈I is a nonempty family in R(A), then

⋂
i∈I Ri ∈ R(A).
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Proof. The first assertion follows from Proposition 9 and (17). Use again
(17) to conclude that, for each i ∈ I, there exists some hi ∈ F (A) such that
Ri = L(hi). Define

R :=
⋂
i∈I

Ri, h := sup
i∈I

hi.

Note that hi ∈ F (Ri) ⊂ F (R) for all i ∈ I. Hence, h ∈ F (R), that is,
R ⊂ L(h). If (x, x∗) ∈ L(h) then hi(x, x∗) ≤ 〈x, x∗〉 for all i ∈ I. Since
hi(x, x∗) ≥ 〈x, x∗〉, we conclude that, for all i ∈ I, hi(x, x∗) = 〈x, x∗〉, so
(x, x∗) ∈ L(hi) = Ri. Hence (x, x∗) ∈ R. Altogether, R = L(h) and, since
A ⊂ R, F (R) ⊂ F (A) , so that h ∈ F (A); this shows that R ∈ R(A).

Let A ⊂ X × X∗ be monotone. From Corollary 10 it follows that the
intersection of all elements of the (nonempty) family R(A) still belongs to this
family. This is the smallest representable extension of A and will be called the
monotone representable closure of A, denoted clR(A),

clR(A) :=
⋂

R∈R(A)

R. (18)

Representable extensions of a monotone A can be seen as outer approximations
of A by representable monotone sets. From this point of view, clR(A) is the
best (smallest) outer approximation of A by a representable monotone set.

Lemma 11 Let A ⊂ X ×X∗ be monotone. If A ⊂ B ⊂ clR(A) then

R(A) = R(B), F (A) = F (B)

and
clR(A) = clR(B).

Some other properties of clR are exposed below:

Proposition 12 Let A,B ⊂ X ×X∗ be monotone. Then

1. A ⊂ clR(A).

2. clR(A) ∈ R.

3. A ∈ R ⇔ clR(A) = A.

4. clR(clR(A)) = clR(A).

5. A ⊂ B ⇒ clR(A) ⊂ clR(B).

6. A ⊂ B,B ∈ R ⇒ clR(A) ⊂ B.

Let M be the family of monotone subsets of X ×X∗,

M := {A ⊂ X ×X∗ | A is monotone} .

Then R ⊂M and, by Proposition 12, clR : M→R is a closure operator in M
for which R is the family of “closed” sets.

Now we shall obtain another characterization of clR(A).
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Theorem 13 For any set A ⊂ X×X∗, the following conditions are equivalent:

1. A is monotone.

2. σA ∈ F (A).

3. σA = suph∈F(A).

Hence, if A is monotone then

clR(A) = L(σA).

Proof. By its definition, σA ≤ π + δA (and is convex, l.s.c.). So, σA ≥ π if
and only if σA ∈ F (A). Using this fact and the equivalence of items 1 and 3 in
Corollary 7 we conclude that items 1 and 2 above are equivalent.

To prove 2 =⇒ 3, it suffices to observe that every h ∈ F (A) is convex, l.s.c.
and satisfies h ≤ π + δA, whence, by (6), h ≤ σA. Combining this with item 2
we get item 3.

The implication 3 =⇒ 2 follows from Proposition 9.
Finally, if A is monotone then, using (18) and (17), we get

clR(A) =
⋂

R∈R(A)

R =
⋂

h∈F(A)

L(h) =
⋂

h∈F(A)

b (h) = b

(
sup

h∈F(A)

h

)
= b (σA)

= L(σA).

Corollary 14 Let A ⊂ X ×X∗ be monotone. Then σA = σclR(A).

Now we give another characterization of the functions belonging to F (A):

Proposition 15 Let A ⊂ X ×X∗ be monotone and h : X ×X∗ → R∪{+∞}
be convex and l.s.c. Then the following conditions are equivalent:

1. h ∈ F(A).

2. π ≤ h ≤ σA.

3. π ≤ h ≤ π + δA.

Lemma 16 Let A ⊂ X ×X∗ be monotone. Then

clR(A) ⊂ L(ϕA).

Proof. By Propositions 2 and 3 one has

ϕA(x, x∗) = 〈x, x∗〉 ,∀(x, x∗) ∈ A

and
σA ≥ ϕA, (19)
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respectively.
Let (x, x∗) ∈ X ×X∗. By Fenchel-Young inequality,

σA(x, x∗) + (σA)∗(x∗, x) ≥ 〈(x, x∗), (x∗, x)〉.

Using now (7), we get

σA(x, x∗) + ϕA(x, x∗) ≥ 2 〈x, x∗〉 .

By the preceding inequality and Theorem 13,

ϕA(x, x∗) < 〈x, x∗〉 ⇒ σA(x, x∗) > 〈x, x∗〉 ⇒ (x, x∗) /∈ clR(A),

on the other hand, by (19) and Theorem 13,

ϕA(x, x∗) > 〈x, x∗〉 ⇒ σA(x, x∗) > 〈x, x∗〉 ⇒ (x, x∗) /∈ clR(A).

Therefore (x, x∗) ∈ clR(A) ⇒ ϕA(x, x∗) = 〈x, x∗〉.

3.1 Translations

Given any (x0, x
∗
0) ∈ X ×X∗, define τ(x0,x∗0) : X ×X∗ → X ×X∗ by

τ(x0,x∗0)(x, x∗) := (x− x0, x
∗ − x∗0).

For any A ⊂ X ×X∗, one has

τ(x0,x∗0)(A) = {(x− x0, x
∗ − x∗0) | (x, x∗) ∈ A}

= A− {(x0, x
∗
0)} .

Obviously, τ(x0,x∗0) preserves monotonicity and maximal monotonicity and is
continuous and invertible, with(

τ(x0,x∗0)

)−1 = τ−(x0,x∗0).

Given any h : X ×X∗ → R∪{+∞}, define T(x0,x∗0)(h) : X ×X∗ → R∪{+∞}
by

T(x0,x∗0)(h) := (h− π) ◦ (τ(x0,x∗0))−1 + π. (20)

Equivalently,

T(x0,x∗0)(h)(x, x∗) = h(x + x0, x
∗ + x∗0)− [〈x, x∗0〉+ 〈x0, x

∗〉+ 〈x0, x
∗
0〉] .

Hence, T maps convex (l.s.c.) functions into convex (resp., l.s.c.) functions. By
(20),

T(x0,x∗0)(h)− π = (h− π) ◦ (τ(x0,x∗0))−1,

and so we conclude that T(x0,x∗0) is a bijection from F onto itself, which preserves
the pointwise partial ordering. The above equality also proves, for any A ⊂
X ×X∗, the equivalence

h ∈ F(A) ⇔ T(x0,x∗0)h ∈ F(τ(x0,x∗0)A).
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Direct calculation yields

T(x0,x∗0)ϕA = ϕτ(x0,x∗0)(A).

As T(x0,x∗0) is an order preserving bijection from F(A) onto F(τ(x0,x∗0)A), we
also have

T(x0,x∗0)σA = στ(x0,x∗0)(A).

It is trivial to verify that, for any h : X ×X∗ → R∪{+∞},

L(T(x0,x∗0)h) = τ(x0,x∗0)L(h)
b(T(x0,x∗0)h) = τ(x0,x∗0)b(h).

Proposition 17 Let A ⊂ X ×X∗ be monotone. Then

clR(τ(x0,x∗0)A) = τ(x0,x∗0) (clR(A)) .

4 A Polarity Approach to Monotonicity

In this section we shall approach monotonicity from the point of view of the
classical notion of polarity [1]. Let us consider the reflexive and symmetric
binary relation µ on X ×X∗ given by

(x, x∗) µ (y, y∗) ⇐⇒ 〈x− y, x∗ − y∗〉 ≥ 0. (21)

Definition 18 The monotone polar of A ⊂ X ×X∗ is

Aµ := {(x, x∗) | (x, x∗) µ (y, y∗), ∀(y, y∗) ∈ A} .

The following properties follow from the fact that the mapping A 7−→ Aµ is
a polarity [1]:

1. (∪i∈IAi)
µ = ∩i∈IA

µ, (with the convention ∩i∈∅Bi = X ×X∗).

2. A ⊂ Aµµ.

3. Aµµµ = Aµ.

4. A ⊂ B ⇒ Bµ ⊂ Aµ.

5. ∅µ = X ×X∗.

Our next proposition, which has an obvious proof, gives a useful interpreta-
tion of the monotone polar of a monotone set:

Proposition 19 Let A be monotone. Then (x, x∗) ∈ Aµ if and only if A ∪
{(x, x∗)} is monotone.

13



From the preceding proposition it follows that, for this specific polarity, we
have

(X ×X∗)µ = ∅.

The closure operator induced by the polarity µ is the mapping A 7−→ Aµµ.
We call Aµµ the µ-closure of A and say that the set A ⊂ X ×X∗ is µ-closed if
Aµµ = A. It follows from item 3 above that the family of µ-closed sets is equal
to the family of polars {Bµ | B ⊂ X ×X∗}.

Remark 20 For any A ⊂ X × X∗, Aµµ is the smallest µ-closed set which
contains A.

Monotonicity and maximal monotonicity can be easily characterized in terms
of the polarity A 7−→ Aµ:

Proposition 21 Let A ⊂ X ×X∗. The following conditions are equivalent:

1. A is monotone.

2. A ⊂ Aµ.

3. Aµµ ⊂ Aµ.

4. Aµµ is monotone.

Moreover, A is maximal monotone if and only if A = Aµ.

Proof. The equivalence between items 1 and 2 is obvious. Since polarity
reverses inclusions, by taking polars in item 2 one gets 3. As Aµµµ = Aµ,,
items 3 and 4 are nothing else than items 2 and 1, respectively, with A replaced
by Aµµ, and so they are equivalent. The implication 4 =⇒ 1 follows from the
inclusion A ⊂ Aµµ. The last statement follows from the equivalence between
items 1 and 2 and Proposition 19.

From the above characterization, it trivially follows that maximal monotone
operators are µ-closed.

Maximal monotone operators have many nice properties [2], [10], [15]. Any
monotone A ⊂ X ×X∗ can be extended to a maximal monotone B ⊂ X ×X∗.
For A ⊂ X ×X∗, let M(A) denote the set of maximal monotone extensions of
A,

M(A) := {B ⊂ X ×X∗ | B is maximal monotone, A ⊂ B} .

Obviously, M(A) 6= ∅ if and only if A is monotone. Note that M(A) ⊂ R(A).

Proposition 22 Let A ⊂ X ×X∗ be monotone. Then

1. Aµ =
⋃

B∈M(A) B.

2. Aµµ =
⋂

B∈M(A) B.

3. Aµµ ∈ R(A).
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Proof. Item 1 follows from Proposition 19 and the above mentioned fact
that any monotone operator has a maximal monotone extension. Item 2 follows
by taking monotone polars in item 1 and using the characterization of maximal
operators given in Proposition 21. Finally, item 3 is a consequence of 2 and the
inclusion M(A) ⊂ R(A).

Corollary 23 Let A ⊂ X×X∗. Then A is monotone if and only if Aµ contains
a maximal monotone set.

Proof. The “only if” part is an immediate consequence of Proposition 22.
Conversely, if there is a maximal monotone set T ⊂ Aµ then, using Proposi-
tion 21, we get A ⊂ Aµµ ⊂ Tµ = T ⊂ Aµ; hence, again by Proposition 21, A is
monotone.

As a consequence of item 3 of Proposition 22, if A is monotone then

clR(A) ⊂ Aµµ.

In Theorem 31 (Section 5) we establish that, in finite dimensional spaces, the
above inclusion holds as an equality. This is one of the main results of this
paper.

Observe that the Fitzpatrick function is also linked to monotone polarity;
indeed, for any A ⊂ X ×X∗ one has

b(ϕA) = Aµ. (22)

In particular,
b(ϕAµ) = Aµµ. (23)

For a nonmonotone set A, ϕA cannot be the Fitzpatrick function of a mono-
tone set, as the next proposition states.

Proposition 24 Let A ⊂ X ×X∗. If there exists a monotone set B ⊂ X ×X∗

such that ϕA = ϕB then A is monotone.

Proof. By (22) we have Aµ = b (ϕA) = b (ϕB) = Bµ; hence, using Propo-
sition 21, we get A ⊂ Aµµ = Bµµ ⊂ Bµ = Aµ. Again by Proposition 21, A is
monotone.

For a monotone but not maximal monotone A, one may have ϕA /∈ F(A).
A trivial example is A = {(0, 0)}. In the last section we will characterize, in the
finite dimensional case, those monotone operators A that satisfy ϕA ∈ F(A).

Proposition 25 Let A ⊂ X ×X∗ be monotone. Then

ϕAµ ∈ F(Aµµ), L( ϕAµ) = Aµµ.

Proof. Notice that, for any B ⊂ X × X∗, ϕB majorizes π on B. Hence,
as item 3 of Proposition 21, Definition 1, and (23) imply that ϕAµ ≥ ϕAµµ =
ϕb(ϕAµ ), it follows that ϕAµ majorizes π on b(ϕAµ). Since ϕAµ strictly majorizes
π on the complement of this set, we conclude that ϕAµ ≥ π, so ϕAµ ∈ F .
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Therefore, L(ϕAµ) = b(ϕAµ). Using this equality, the fact that A ⊂ Aµµ and
(23) again the conclusions follow.

Let A ⊂ X × X∗ be monotone. Since, in this case, Aµ = ∪B∈M(A)B, we
also have

ϕAµ = sup
B∈M(A)

ϕB .

The monotone relation (21) is preserved by translations, that is, for any
(x, x∗), (y, y∗), (z, z∗) ∈ X ×X∗ one has

(y, y∗) µ (z, z∗) ⇐⇒ τ(x,x∗)(y, y∗) µ τ(x,x∗)(z, z∗).

Therefore, for any A ⊂ X ×X∗ one has(
τ(x,x∗) (A)

)µ = τ(x,x∗) (Aµ)

and (
τ(x,x∗) (A)

)µµ = τ(x,x∗) (Aµµ) .

5 A Characterization of Representable Mono-
tone Operators in the Finite Dimensional Case

The aim of this section is to prove that, in the finite dimensional case, the
representable closure of a monotone set coincides with its µ-closure. This result
will be useful in Section 6, where we shall characterize monotone sets that admit
only one maximal monotone extension.

To simplify the proof, we shall first study the origin of X × X∗ and then
extend the results to arbitrary points.

Let N be the set of points in X×X∗ that are not in monotone relation with
the origin (0, 0):

N := {(x, x∗) ∈ X ×X∗ | 〈x, x∗〉 < 0}.

Then, for A ⊂ X ×X∗,

(0, 0) ∈ Aµµ ⇐⇒ N ∩Aµ = ∅.

Proposition 26 Let A ⊂ X ×X∗. If ϕA(0, 0) < 0 and

N ∩ ed(ϕA) 6= ∅,

then (0, 0) /∈ Aµµ.

Proof. We shall produce a point in N ∪Aµ using the proposition’s assump-
tions.

Take (x, x∗) ∈ N ∩ ed(ϕA) and define, for t ∈ R,

(xt, x
∗
t ) := t (x, x∗) + (1− t) (0, 0)

= (tx, tx∗).
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Clearly, for t > 0,
〈xt, x

∗
t 〉 = t2 〈x, x∗〉 < 0.

So, (xt, xt∗) ∈ N for any t > 0. As ϕA is convex, for t ∈ [0, 1] one has

ϕA(xt, x
∗
t ) ≤ t ϕA(x, x∗) + (1− t)ϕA(0, 0).

Since ϕA(0, 0) < 0 and ϕA(x, x∗) < +∞, for t ∈ (0, 1] small enough, one has

t ϕA(x, x∗) + (1− t) ϕA(0, 0) < t
2 〈x, x∗〉 .

Altogether,
ϕA(xt, x

∗
t ) <

〈
xt, x

∗
t

〉
.

Using (22) and the above inequality one has (xt, x
∗
t
) ∈ Aµ. So, (xt, x

∗
t
) ∈ N∩Aµ

and hence (0, 0) /∈ Aµµ.

Lemma 27 Let X be finite dimensional and A ⊂ X × X∗ be monotone. If
ϕA(0, 0) < 0, then (0, 0) /∈ Aµµ.

Proof. If A = ∅ the lemma holds trivially. So, we assume A 6= ∅.
Take any (x0, x

∗
0) ∈ A. Since ϕA(0, 0) < 0,

〈x0, x
∗
0〉 ≥ −ϕA(0, 0) > 0 .

In particular, x0 6= 0. Define

C0 := {(λx0, x
∗) ∈ X ×X∗ | λ > 0, 〈x0, x

∗〉 < 0}
= {λx0 | λ > 0} × {x∗ ∈ X∗ | 〈x0, x

∗〉 < 0}.

Note that C0 ⊂ N . If C0 ∩ ed(ϕA) is nonempty, then we may apply Proposi-
tion 26 to conclude that (0, 0) /∈ Aµµ. So, assume that

C0 ∩ ed(ϕA) = ∅.

As C0 and ed(ϕA) are nonempty convex sets and X is finite dimensional, C0

and ed(ϕA) can be properly separated by a hyperplane [13, Theorem 13.3]. This
means that there exist z∗ ∈ X∗, z ∈ X and β ∈ R such that:

1. For any (x, x∗) ∈ C0 and (y, y∗) ∈ ed(ϕA),

〈x, z∗〉+ 〈z, x∗〉 ≤ β ≤ 〈y, z∗〉+ 〈z, y∗〉. (24)

2. For some (x, x∗) ∈ C0 and (y, y∗) ∈ ed(ϕA),

〈x, z∗〉+ 〈z, x∗〉 < 〈y, z∗〉+ 〈z, y∗〉. (25)
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Since (0, 0) ∈ ed(ϕA)∩C0, we have β = 0. By the structure of C0 and (24),
we conclude that

〈x0, z
∗〉 ≤ 0 (26)

and, for some α ≥ 0,
z = αx0. (27)

By (24), we get

〈y, z∗〉+ 〈αx0, y
∗〉 ≥ 0, ∀(y, y∗) ∈ ed(ϕA). (28)

Therefore, for any (y, y∗) ∈ A ⊂ ed(ϕA),

〈y,−z∗〉+ 〈−αx0, y
∗〉 − 〈y, y∗〉 ≤ − 〈y, y∗〉 ,

which implies that
ϕA(−αx0,−z∗) ≤ ϕA(0, 0) < 0.

In particular,
(−αx0,−z∗) ∈ ed(ϕA). (29)

Since α ≥ 0, using (26) we get

〈−αx0,−z∗〉 = α 〈x0, z
∗〉 ≤ 0.

If this inequality holds strictly then (−αx0,−z∗) ∈ N ∩ ed(ϕA), and so we may
use Lemma 26 to conclude that (0, 0) /∈ Aµµ. Thus, we assume that

α 〈x0, z
∗〉 = 0. (30)

Now we will discuss the cases α = 0 and α > 0 separately.
First assume that α = 0, that is, z = 0. The inclusion (x0, x

∗
0) ∈ A ⊂ ed(ϕA)

and (28) yield
〈x0, z

∗〉 ≥ 0 .

Using also (26) we get
〈x0, z

∗〉 = 0.

By (25), there exist (λ0x0, x
∗) ∈ C0 and (y, y∗) ∈ ed(ϕA) such that

λ0〈x0, z
∗〉+ 〈z, x∗〉 < 〈y, z∗〉+ 〈z, y∗〉.

Since z = 0 and 〈x0, z
∗〉 = 0, the above inequality reduces to

〈y, z∗〉 > 0. (31)

Define, for t ∈ [0, 1],

(yt, y
∗
t ) := t(y, y∗) + (1− t)(−αx0,−z∗)

= t(y, y∗) + (1− t)(0,−z∗)
= (ty, ty∗ − (1− t)z∗).
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As ϕA is convex, (yt, y
∗
t ) ∈ ed (ϕA) for any t ∈ [0, 1]. Moreover,

〈yt, y
∗
t 〉 = t2 〈y, y∗〉 − t(1− t) 〈y, z∗〉 .

Using also (31) we conclude that, for t ∈ (0, 1] small enough, 〈yt, y
∗
t 〉 < 0, and

hence (yt, y
∗
t ) ∈ N ∩ ed(ϕA). So we may apply Proportion 26 to conclude again

that (0, 0) /∈ Aµµ.
It remains to consider the case α > 0. Then, using assumption (30) we

obtain again that
〈x0, z

∗〉 = 0.

Define, for t ∈ [0, 1],

(xt, x
∗
t ) := t(x0,x

∗
0) + (1− t)(−αx0,−z∗)

= ((t− (1− t)α)x0, tx
∗
0 − (1− t)z∗).

As ϕA is convex, (xt, x
∗
t ) ∈ ed (ϕA) for any t ∈ [0, 1]. Moreover,

〈xt, x
∗
t 〉 = [t− (1− t)α] 〈x0, tx

∗
0 − (1− t)z∗〉

= t[t− (1− t)α] 〈x0, x
∗
0〉 .

Since α > 0 and 〈x0, x
∗
0〉 > 0, we conclude that, for t ∈ (0, 1] small enough,

〈xt, x
∗
t 〉 < 0. So (xt, x

∗
t ) ∈ N ∩ ed(ϕA), and we may apply Proposition 26 for

the last time to conclude again that (0, 0) /∈ Aµµ.

Proposition 28 Let A ⊂ X×X∗ be monotone, (x, x∗) ∈ X×X∗. If ϕA(0, 0) =
0, 〈x, x∗〉 < 0 and ϕA(x, x∗) < 0, then (0, 0) /∈ Aµµ.

Proof. Define, for t ∈ [0, 1],

(xt, x
∗
t ) := t(x, x∗)

= t(x, x∗) + (1− t)(0, 0).

Trivially,
〈xt, x

∗
t 〉 = t2 〈x, x∗〉 .

As ϕA is convex and ϕA(0, 0) = 0, for t ∈ [0, 1],

ϕA(xt, x
∗
t ) ≤ tϕA(x, x∗) + (1− t)ϕA(0, 0)

= tϕA(x, x∗).

Since ϕA(x, x∗) < 0, for some t̂ > 0 small enough

t̂ϕA(x, x∗) < t̂2 〈x, x∗〉 .

Hence, ϕA(x
bt, x

∗
bt
) <

〈
x
bt, x

∗
bt

〉
. So (x

bt, x
∗
bt
) ∈ Aµ which, together with

〈
x
bt − 0, x∗

bt
− 0
〉

=

t̂2 〈x, x∗〉 < 0, implies (0, 0) /∈ Aµµ.
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Proposition 29 Suppose that X is reflexive and let A ⊂ X×X∗ be monotone.
If σA(0, 0) > 0 and ϕA(0, 0) = 0, then (0, 0) /∈ Aµµ.

Proof. As ϕA(0, 0) = 0 > −∞, using Definition 1 we conclude that A is
nonempty. By their definitions, ϕA and σA are closed (l.s.c.) convex functions.
Moreover, as A is a nonempty monotone set we also conclude that ϕA and σA

are proper ( 6≡ +∞ and > −∞).
Since X is reflexive, the canonical injection of X into X∗∗ becomes an iden-

tification. Moreover, in this setting

(X ×X∗)∗ = X∗ ×X∗∗ = X∗ ×X, (X ×X∗)∗∗ = X ×X∗.

So, X ×X∗ is also reflexive. Therefore [3, Theorem 1.10]

σA = (σA)∗∗.

In particular,

σA(0, 0) = sup
(y∗,y)∈X∗×X

(
− (σA)∗(y∗, y)

)
= − inf

(y∗,y)∈X∗×X
(σA)∗(y∗, y).

Using now (7) we get

−σA(0, 0) = inf
(y∗,y)∈X∗×X

ϕA(y, y∗).

Since σA(0, 0) > 0, there exists some (y, y∗) such that

ϕA(y, y∗) < 0. (32)

If 〈y, y∗〉 < 0, then we may apply Proposition 28 to conclude that (0, 0) /∈ Aµµ.
So we assume that

〈y, y∗〉 ≥ 0. (33)

Define

t :=
(1/4) |ϕA(y, y∗)|

〈y, y∗〉+ (1/2) |ϕA(y, y∗)|
. (34)

Trivially, 0 < t ≤ 1/2. Since ϕA(0, 0) = 0, there exist some (x, x∗) ∈ A such

that
0 ≤ 〈x, x∗〉 ≤ (1/2) t |ϕA(y, y∗)| . (35)

Since (x, x∗) ∈ A,

〈x, y∗〉+ 〈y, x∗〉 − 〈x, x∗〉 ≤ ϕA(y, y∗) < 0. (36)

Define

z := ty + (1− t)x,

z∗ := ty∗ + (1− t)x∗.
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Using (36) we get

〈z, z∗〉 = t2 〈y, y∗〉+ t(1− t) [〈y, x∗〉+ 〈x, y∗〉] + (1− t)2 〈x, x∗〉
= t2 〈y, y∗〉+ t(1− t) [〈y, x∗〉+ 〈x, y∗〉 − 〈x, x∗〉] + (1− t) 〈x, x∗〉
≤ t2 〈y, y∗〉+ (1− t) [tϕA(y, y∗) + 〈x, x∗〉] . (37)

From (32) and (35),

tϕA(y, y∗) + 〈x, x∗〉 ≤ (t/2)ϕA(y, y∗) < 0.

Therefore,

〈z, z∗〉 ≤ t2 〈y, y∗〉+ (1− t)(t/2)ϕA(y, y∗)
= t2 〈y, y∗〉 − (t2/2)ϕA(y, y∗) + (t/2)ϕA(y, y∗)
= t [t (〈y, y∗〉+ (1/2) |ϕA(y, y∗)|) + (1/2)ϕA(y, y∗)]
≤ t [(1/4) |ϕA(y, y∗)|+ (1/2)ϕA(y, y∗)]
= t [(1/4)ϕA(y, y∗)]
< 0. (38)

Since ϕA is convex, A is monotone and (x, x∗) ∈ A, we have ϕA(x, x∗) =
〈x, x∗〉 and

ϕA(z, z∗) ≤ tϕA(y, y∗) + (1− t)ϕA(x, x∗)
= tϕA(y, y∗) + (1− t) 〈x, x∗〉
≤ tϕA(y, y∗) + 〈x, x∗〉 (39)
< 0. (40)

Therefore ϕA(z, z∗) < 0, 〈z, z∗〉 < 0 and we may apply again Proposition 28
to conclude that (0, 0) /∈ Aµµ.

Proposition 30 Let A ⊂ X ×X∗ be monotone. If ϕA(0, 0) > 0, then (0, 0) /∈
Aµµ.

Proof. If ϕA(0, 0) > 0, then (0, 0) /∈ Aµ and, since Aµµ ⊂ Aµ, (0, 0) /∈ Aµµ.

Theorem 31 Let X be finite dimensional and A ⊂ X×X∗ be monotone. Then
clR(A) = Aµµ.

Proof. First we claim that

(0, 0) ∈ clR(A) ⇔ (0, 0) ∈ Aµµ. (41)

We already know that clR(A) ⊂ Aµµ. So, we only need to prove that

(0, 0) /∈ clR(A) ⇒ (0, 0) /∈ Aµµ.
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Assume that (0, 0) /∈ clR(A). This is equivalent to the inequality

σA(0, 0) > 0.

Hence, if ϕA(0, 0) = 0, by Proposition 29 one has (0, 0) /∈ Aµµ. The cases
ϕA(0, 0) < 0 and ϕA(0, 0) > 0 are covered by Lemma 27 and Proposition 30,
respectively. This proves (41).

Now let (x0, x
∗
0) be an arbitrary point in X ×X∗. Obviously,

τ(x0,x∗0) (x0, x
∗
0) = (0, 0).

Since
τ(x0,x∗0) (clR(A)) = clR(τ(x0,x∗0)A)

and
τ(x0,x∗0) (Aµµ) =

(
τ(x0,x∗0) (A)

)µµ
,

we conclude that (x0, x
∗
0) ∈ clR(A) is equivalent to (0, 0) ∈ clR(τ(x0,x∗0)A). In

the same way, (x0, x
∗
0) ∈ Aµµ is equivalent to (0, 0) ∈ τ(x0,x∗0)(Aµµ). Now we

apply (41)
As trivial consequences of Theorem 31, we get the following results:

Corollary 32 Let X be finite dimensional and A ⊂ X × X∗ be monotone.
Then A is representable if and only if A is µ-closed. Hence, in finite dimensional
spaces, the monotone representable sets are the intersections of arbitrary families
of maximal monotone sets.

Corollary 33 Let X be finite dimensional and A ⊂ X×X∗ be monotone. Then

clR(A) = ∩B∈M(A)B.

By Theorem 13, we know that if A ∈ R then σA is a convex representation
of A. Now, in the finite dimensional case, from Theorem 31 and Proposition
25 we obtain another convex representation of the elements of R, by means of
Fitzpatrick functions:

Corollary 34 Let X be finite dimensional and A ⊂ X×X∗ be monotone. Then

clR(A) = L(ϕAµ).

In particular, if A ∈ R, then ϕAµ is a representation of A.

Note that if A is maximal monotone, then A = Aµ, and so in this case
the representation provided by the preceding corollary reduces to the original
Fitzpatrick representation ϕA.

22



6 Pre-maximal Monotone Operators

In many cases, one needs to obtain a maximal monotone operator out of the sum
of two maximal monotone operators T1, T2. Under some regularity assumptions,
T1 + T2 is maximal monotone. If these regularity assumptions are lacking, then
one can try to obtain a regularized sum S, which should coincide with the usual
sum in the case when T1 + T2 is maximal monotone [7, 9, 11, 12]. Evidently,
the operator T1 +T2 is monotone. The regularized sum of T1 and T2, whichever
definition of regularization may be considered, should contain T1 + T2. If it
happens that T1 + T2 admits a unique maximal monotone extension, then we
are in a comfortable position, because any consistent regularized sum should
yield such extension. This motivates the following definition:

Definition 35 A monotone set A ⊂ X × X∗ is pre-maximal monotone if it
has a unique maximal monotone extension.

It is natural to ask under which conditions an operator is pre-maximal mono-
tone:

Proposition 36 Let A be monotone. Then the following conditions are equiv-
alent:

1. A is pre-maximal monotone.

2. Aµ = Aµµ.

3. ϕAµ = ϕAµµ .

4. Aµ is monotone.

5. Aµ is maximal monotone.

6. Aµµ is maximal monotone.

Moreover, if these conditions holds, Aµ (or equivalently, Aµµ) is the unique
maximal monotone extension of A.

Proof. Suppose that item 1 holds. Let T be the unique maximal monotone
extension of A. Them M(A) = {T}. Hence, by items 1 and 2 of Proposition
22, item 2 holds.

Item 2 trivially implies item 3. From item 3 of the observation that follows
Definition 18, using (22) we get Aµ = b(ϕAµµ); from (23), Aµµ = b(ϕAµ). So,
item 3 implies 2 and these items are equivalent.

Item 2 obviously implies item 4.
Assume item 4 and take a maximal monotone extension B of A. By item 1

of Proposition 22, B ⊂ Aµ. As Aµ is monotone, we conclude that it is maximal
monotone. This proves the implication 4 =⇒ 5.

Assume that item 5 holds. Let B be a maximal monotone extension of A.
By item 1 of Proposition 22, B ⊂ Aµ. So, B = Aµ, and we conclude that Aµ

23



is the unique maximal monotone extension of A. This proves the implication 5
=⇒ 1.

To end the proof, applying Proposition 21 to Aµµ and using again the equal-
ity Aµµµ = Aµ, we conclude that item 6 is equivalent to item 2.

Next we give some sufficient conditions for an operator to be pre-maximal
monotone.

Lemma 37 Let A ⊂ X × X∗ be monotone. If clR(A) is maximal monotone,
then A is pre-maximal monotone and clR(A) is the unique maximal monotone
extension of A.

Proof. Let B be a maximal monotone extension of A. Since maximal
monotone operators are representable, it follows that clR(A) ⊂ B. Now, since
clR(A) is maximal monotone, we conclude that B = clR(A).

Lemma 38 Let A ⊂ X×X∗ be monotone. The following conditions are equiv-
alent:

1. L(ϕA) = b(ϕA).

2. ϕA ≥ π

3. ϕA ∈ F(A).

4. ϕA = ϕAµ .

Moreover, if the above conditions hold, then A is pre-maximal monotone.

Proof. Items 1 and 2 are trivially equivalent. Since A is monotone, by
Proposition 2,

ϕA ≤ π + δA.

Therefore, items 2 and 3 are equivalent also.
Assume now that item 4 holds. By (10), ϕAµ(x, x∗) ≥ 〈x, x∗〉, for all (x, x∗) ∈

Aµ. Therefore,
ϕA(x, x∗) ≥ 〈x, x∗〉 , ∀(x, x∗) ∈ Aµ.

By (22),
ϕA(x, x∗) ≥ 〈x, x∗〉 , ∀(x, x∗) /∈ Aµ.

Combining these inequalities, we conclude that ϕA ≥ π. We just proved that 4
=⇒ 2.

Now assume that item 2 holds. By Theorem 5 we conclude that LϕA is
monotone. Since items 1, 2 and 3 are equivalent, using also (22), we conclude
that, in this case

Aµ = b(ϕA) = L(ϕA).

Therefore, Aµ is monotone. Using now Proposition 36 we conclude that Aµ is
maximal monotone and that A is pre-maximal monotone. As A is monotone
A ⊂ Aµ. Therefore,

π ≤ ϕA ≤ ϕAµ ,
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and ϕA ∈ F(Aµ). Since Aµ is maximal monotone, this inclusion, together with
Theorem 4 yields

ϕAµ ≤ ϕA.

Combining the above inequalities, we conclude that ϕA = ϕAµ . So we proved
that 2 =⇒ 4.

Therefore, items 2 and 4 are also equivalent. In proving the implication 2
=⇒ 4 we also proved that item 2 implies that A is pre-maximal monotone.

Is is natural to ask what are the relations between the conditions of Lemma
37 and Lemma 38.

Proposition 39 Let A ⊂ X ×X∗ be monotone. If clR(A) is maximal mono-
tone, then ϕA ≥ π. If X is reflexive, the converse also holds.

Proof. By Corollary 14, σA = σclR(A). Using also (7) we get

ϕA = ϕclR(A).

If clR(A) is maximal monotone, then, by Theorem 4, ϕclR(A) ≥ π. So, this
implies ϕA ≥ π.

Assume now that X is reflexive and ϕA ≥ π. Using Lemma 38 and Proposi-
tion 36 we conclude that A is pre-maximal monotone, Aµ is maximal monotone
and

ϕA = ϕAµ .

Using now (7) for ϕA and ϕAµ we obtain

(σA)∗(x∗, x) = (σAµ)∗(x∗, x), ∀(x∗, x) ∈ X∗ ×X.

As X is reflexive, X∗ × X = (X × X∗)∗ and (σA)∗ = (σAµ)∗. Now, applying
Fenchel-Moreau Theorem [3, Theorem 1.10] we get

σA = (σA)∗∗ = [(σA)∗]∗ = [(σAµ)∗]∗ = (σAµ)∗∗ = σAµ .

Using also Theorem 13 we conclude that

clR(A) = L(σA) = L(σAµ) = clR(Aµ).

Since Aµ is maximal monotone, clR(Aµ) is equal to Aµ, and so, clR(A) = Aµ.

In finite dimensional spaces we have stronger results.

Proposition 40 Let X be finite dimensional and A ⊂ X × X∗ be monotone.
Then the following conditions are equivalent:

1. A is pre-maximal monotone.

2. Aµ = Aµµ.

3. ϕAµ = ϕAµµ .
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4. Aµ is monotone.

5. Aµ is maximal monotone.

6. Aµµ is maximal monotone.

7. clR(A) is maximal monotone.

8. L(ϕA) = b(ϕA).

9. ϕA ≥ π

10. ϕA ∈ F(A).

11. ϕA = ϕAµ .

Under these conditions, one has:
a) L(ϕA) is maximal monotone.
b) ϕL(ϕA) = ϕA.

Proof. By Proposition 36, items 1, 2, 3, 4, 5, 6, are equivalent.
Since finite dimensional spaces are reflexive, using Proposition 39 and Lemma

38 we conclude that items 7, 8, 9, 10, 11 are equivalent.
Equivalence between item 6 and item 7 follows from Theorem 31. Therefore

conditions 1-11 are equivalent.
To prove a), use item 8 and (22) to deduce that L(ϕA) = Aµ and then use

item 5. To prove b), use the equality L(ϕA) = Aµ and item 11.
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