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Abstract

We consider the weighting method for constrained (finite dimen-
sional) vector optimization. First we show that the closest points in
the objective’s image from certain hyperplanes are weakly efficient;
this approach allows us to give a geometrical interpretation of the
method. We also give some conditions on the the existence of weakly
efficient optima, based on the connection between the recession cone
of the convex hull of the objective’s image and the negative of the
ordering cone.
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1 Introduction

In this work we consider the problem of finding weakly efficient points (or
weak Pareto minimal elements) of a constrained vector optimization prob-
lem. Our setting will be a finite dimensional linear space, say Rm, with the
canonical inner product 〈·, ·〉, and a preference order induced by K ⊂ Rm, a
closed convex and pointed (i.e. −K ∩K = {0}) cone with nonempty interior
int(K) (see Fig.1(a)). Our objective function, defined on a subset of another
finite dimensional space, will take its values in Rm. To be more precise, the
space Rm is endowed with the following partial order

u � v (v � u) for u, v ∈ Rm iff v − u ∈ K (see Fig.1(b)) ,

and the following stronger relation

u ≺ v (v � u) for u, v ∈ Rm iff v − u ∈ int(K) (see Fig.1(c)) .

Figure 1: In (a) we have the cone K. In (b) the vectors in the above cone are � u, while
those in the other cone are � u . In (c) we have vectors which are � u and ≺ u in the
above and the below cone, respectively.

Among the advantages of the notation “0 � w” over “w ∈ K”, we men-
tion that K-inequalities can be handled as regular ones, e.g., two of such
inequalities can be added up, or multiplied by nonnegative numbers, etc.

Given a subset Ω of Rn and a mapping F : Ω → Rm, the vector optimiza-
tion problem, understood in the weak Pareto sense ([7, 8]),

(P ) min
x∈Ω

F (x) ,

consists of finding a feasible point x∗ (x∗ ∈ Ω) such that F (x∗) is weakly
efficient (or a weak Pareto minimal element) for F (Ω), i.e. such that

F (x) ≺ F (x∗)

does not hold for any feasible x. We recall that x∗ ∈ Ω is efficient (or
Pareto minimal element) for F (Ω) if there does not exist x ∈ Ω such that
F (x) � F (x∗), with F (x) 6= F (x∗) ([7, 8]). Trivially, efficient points are also
weakly efficient.
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Scalarization techniques [4, 6, 8, 9] for solving problem (P ) substitute
the original vector problem by a suitable scalar one, in such a way that
the optimal solutions of the new problem are also optimal for the original
one. The main advantage of this approach, from a practical point of view, is
that we can use a large number of fast and reliable methods developed for
single-valued optimization in order to solve vector problems.

One of the most widely used scalarization techniques in multicriteria (i.e.,
in the Paretian cone case or, in other words, the point-wise partial order)
is the weighting method, which consists of minimizing a weighted sum of
the different objectives. The weights, which are critical for the method, in
general are not known in advance, so computational implementations of this
technique are not always straightforward.

In this paper we study an extension of the weighting method for vector
optimization, and we also present its geometrical analysis, which, for the best
of our knowledge, has not been done yet. This approach sheds new light on
this strategy, and provides conditions for the existence of suitable vectors of
weights.

2 The Weighting Method Scalarization

In this work, we will say that a scalar minimization problem is a scalarization
of (P ) if its optimal solutions are weakly efficient for (P ). For some authors
(see, e.g., [7] and [8]) a scalarization is a family of scalar problems whose
optima are exactly all optimal solutions for the vector-valued problem.

We will focus our attention on problems for which the convex hull of
F (Ω), after a suitable rigid movement, does not touch −K, i.e.,

[conv(F (Ω)) + u0] ∩ (−K) = ∅ , for some u0 ∈ Rm . (1)

Our next result shows that we do not loose generality on assuming u0 = 0,
that is to say,

conv(F (Ω)) ∩ (−K) = ∅ . (2)

Lemma 2.1 Suppose that (P ) satisfies condition (1). For u ∈ Rm define
Fu(x) := F (x) + u and consider (Pu) the corresponding vector problem in Ω,

(Pu) min
x∈Ω

Fu(x).
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Then, (Pu) satisfies condition (2) for all u � u0 (with Fu replacing F ), where
u0 is given by (1).

Moreover, these problems ( (P ) and (Pu)) have the same optima.

Proof. Note that

conv(F (Ω)) + u = conv(F (Ω) + u) = conv(Fu(Ω)).

So conv(F (Ω)) + u0 = conv(Fu0) and (Pu0) satisfies (2). Now take u � u0.
Then, u− u0 ∈ K,

conv(Fu(Ω)) = [conv(F (Ω)) + u0] + (u− u0) ,

and therefore (Pu) satisfies (2).
The last part of the claim holds trivially.

At this point, a natural question is the following: which vector optimiza-
tion problems satisfy condition (1)?

Lemma 2.2 Assume that F (Ω) + K is a convex subset of Rm.
If problem (P ) has an optimal solution, then it satisfies condition (1).

Proof. Consider x∗ a weakly efficient solution for (P ). Just take u0 �
−F (x∗).

As we shall see, functions which are “convex with the respect to K”
satisfy the assumption on Lemma 2.2. Later on, in Section 3, we will come
back on the matter of when we can perform a separating rigid movement as
in (1).

Let us now consider the problem of how to find weakly efficient solutions
for problem (P ). Recall that we are assuming condition (1). Observe that
the optimality condition F (x) ⊀ F (x∗) ∀x ∈ Ω means F (x∗) − F (x) /∈
int(K) ∀x ∈ Ω, which in turn can be written as

[F (x∗)− int(K)] ∩ F (Ω) = ∅ . (3)

Note that F (x∗)− int(K) is the interior of the cone obtained by translating
−K till the moment F (x∗) becomes its vertex (see Fig.2). Note also that
other points on the intersection of the boundaries of F (Ω) and shifted cones
of the form F (x∗) − int(K) are also weakly efficient ( Fig.2(a)). Whenever

4



Figure 2: The vertex of the shifted cone K in (a) is weak Pareto minimal for F (Ω), as
well as all points in the line supported by the cone. In (b) the shifted cone touches F (Ω)
just at its vertex, which is (strong) Pareto optimal.

the vertex is the only point in that intersection, it is Pareto optimal for F (Ω)
(Fig.2(b)).

We will devote our efforts to locate those weakly efficient points x∗, which
are ”F ’s pre-images of shifted cones’ vertices satisfying (3). But how can we
effectively locate such vertices?

Let us now give an answer to the above question. Since we are assuming
that conv(F (Ω))∩ (−K) = ∅, using the Convex Separation Theorem (see [1],
Theorem 4.7 or [2], Proposition B13), there exists a hyperplane, say Lw :=
{y ∈ Rm | 〈w, y〉 = α}, that separates −K and conv(F (Ω)). We therefore
have that conv(F (Ω)) and −K lie on the different half-spaces determined by
Lw in the following way:

〈w, y〉 ≤ α ≤ 〈w, z〉 ∀ y ∈ −K and ∀ z ∈ conv(F (Ω)) . (4)

Since K is closed, we have that 0 ∈ −K, so 0 ≤ α. If there exists ȳ ∈ −K
such that 〈w, ȳ〉 > 0, then, for large enough λ > 0 we will have 〈w, λȳ〉 > α,
with λȳ ∈ −K, in contradiction with (4). Therefore, 〈w, y〉 ≤ 0 ∀ y ∈ −K;
consequently, we can take α = 0. Hence the hyperplane Hw := {y ∈ Rm |
〈w, y〉 = 0} separates −K and conv(F (Ω)). In particular,

〈w, y〉 ≤ 0 for all y ∈ −K (5)

and
〈w, F (x)〉 ≥ 0 for all x ∈ Ω . (6)

By normalizing w, if necessary, we may assume that ||w|| = 1, where || · ||
stands for the euclidean norm.

Figure 3: The closest points in F (Ω) to Hw are weakly efficient.

According to Fig.3, good candidates for vertices F (x∗) of shifted cones of
the above mentioned form, which touch F (Ω) without overlapping image’s
points other than the boundary ones, are the closest points from Hw at F (Ω).
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We will now prove that such points are indeed weakly efficient for F (Ω);
in other words, that x∗ is a weak Pareto minimal element of problem (P )
if F (x∗) realizes the minimal distance between F (Ω) and Hw. We begin by
establishing some notation which we will use on the sequel. We will call Pw

the orthogonal projector onto the separating hyperplane Hw, i.e.,

Pw(y) := y − 〈w, y〉w . (7)

Clearly, the distance between a point y ∈ Rm and Hw is given by ||y−Pw(y)||.
In our next theorem we will see that, as we claimed, every point in Ω that
minimizes (over Ω) ||F (x) − Pw(F (x))|| is an optimal solution for problem
(P ).

Before stating and proving the announced result, let us make some com-
ments. First, (5) is telling us that w is an element of K∗, the positive dual
(or polar) of K, the (convex) cone of vectors that form an acute angle with
every element of K, i.e.,

K∗ := {y ∈ Rm | 〈v, y〉 ≥ 0 ∀ v ∈ K} . (8)

Second, it is well known that it is possible to describe the topological interior
of K as:

int(K) = {y ∈ Rm | 〈y, v〉 > 0, ∀ v ∈ K∗ \ {0}} . (9)

And finally, if y ∈ int(K) then Pw(y) 6= y. Indeed, if Pw(y) = y, then, from
the definition of Pw given in (7), it follows that 〈w, y〉 = 0, in contradiction
with (9), since w ∈ K∗ \ {0}.

Theorem 2.3 If (2) holds and the unitary m-vector w satisfies (5)-(6), then
every optimal solution of the scalar problem

(S) min
x∈Ω

||F (x)− Pw(F (x))||

is weakly efficient for the vector problem

(P ) min
x∈Ω

F (x) .

Proof. Let x∗ ∈ Ω be an optimal solution for (S), that is to say

||F (x∗)− Pw(F (x∗))|| ≤ ||F (x)− Pw(F (x))|| for all x ∈ Ω . (10)
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Suppose that x∗ is not a weakly efficient point for problem (P ). Then, the
optimality condition (3) does not hold, i.e.

[F (x∗)− int(K)] ∩ F (Ω) 6= ∅ .

So, there exist ȳ ∈ int(K) and x̄ ∈ Ω such that

F (x∗)− ȳ = F (x̄) .

Therefore

||F (x∗)− Pw(F (x∗))||2 = ||F (x̄) + ȳ − Pw(F (x̄) + ȳ)||2

= ||F (x̄)− Pw(F (x̄))||2 + ||ȳ − Pw(ȳ)||2

+ 2〈F (x̄)− Pw(F (x̄)), ȳ − Pw(ȳ)〉
> ||F (x̄)− Pw(F (x̄))||2

+2〈F (x̄)− Pw(F (x̄)), ȳ − Pw(ȳ)〉
= ||F (x̄)− Pw(F (x̄))||2 + 2〈w, F (x̄)〉〈w, ȳ〉,(11)

where the inequality holds by virtue of the last observation we made just
before this theorem, since ȳ ∈ int(K), and the last equality follows from (7)
and the fact that ||w|| = 1. Now we claim that

〈w, ȳ〉 > 0 . (12)

As we have mentioned just before this theorem, the vector w is an element
of K∗. Since ||w|| = 1 and ȳ ∈ int(K), from (9) it follows that (12) holds.

Combining now (6), (11) and (12), we get

||F (x∗)− Pw(F (x∗))||2 > ||F (x̄)− Pw(F (x̄))||2 ,

in contradiction with (10). Whence, (3) holds and x∗ is weakly efficient for
problem (P ).

Observe now that from the definition of the orthogonal projector Pw given
in (7), from (6) and the fact that ||w|| = 1, it follows that

||F (x)− Pw(F (x))|| = 〈w,F (x)〉 for all x ∈ Ω . (13)

Hence, we have the following corollary.
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Corollary 2.4 Under the assumptions of Theorem 2.3, all optimal solutions,
if any, of

min
x∈Ω

〈w,F (x)〉 , (14)

are weakly efficient for (P ).

Proof. The result follows combining Theorem 2.3 and (13).

Problem (14) is a scalarization of (P ). The procedure which consists of
choosing some w ∈ K∗ and then solving the scalar problem (14) is known as
the weighting method [5, 11].

Note that (14) may be an unbounded problem and, even if it is bounded,
it may lack minimizers. Here we will not study which of such scalarizations
(i.e., which w’s) are “adequate”. Of course, there are some simple cases for
which this is not an issue; for instance, if F (Ω) is compact, all scalarizations
as (14) will be useful, since this kind of problems always has optimal solutions.

Up to now, we know that by performing a rigid movement, if necessary,
we can try to compute (at least theoretically) a weakly efficient solution of
problem (P ), by minimizing the distance between F (Ω) (or F (Ω)+u, for some
u ∈ Rm) and a hyperplane that separates this set from −K. Next we will
prove a sort of converse, namely that, when the objective’s image is convex,
every weakly efficient point can be obtained in such a way. Afterward, we
will study a more general condition, related to convexity, which guarantees
the same result.

Theorem 2.5 Assume that F (Ω) is a convex set and let x∗ ∈ Ω be a weakly
efficient point for (P ). Then, there exists a vector u ∈ Rm such that x∗

minimizes the distance between F (Ω) + u and a hyperplane that separates
this set and −K. Furthermore, this hyperplane is of the form Hw = {y ∈
Rm | 〈w, y〉 = 0}, where w ∈ K∗ and ||w|| = 1. In particular,

x∗ ∈ argminx∈Ω〈w, F (x)〉 .

Proof. If x∗ ∈ argminx∈Ω||Pw(F (x)) − F (x)|| for some norm one vector
w ∈ K∗, where Pw is the orthogonal projector onto Hw, then the result is
obviously true for u = 0.

Otherwise, by taking u = −F (x∗), we have, from the definition of weak
efficiency, that

(F (Ω) + u) ∩ (−int(K)) = ∅ .
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Therefore, by the non-strict Convex Separation Theorem, there exists 0 6=
w ∈ Rm such that

〈w,F (x)− F (x∗)〉 ≥ 0 ∀ x ∈ Ω , (15)

〈w, y〉 ≤ 0 ∀ y ∈ −int(K) . (16)

Clearly, there is no loss of generality if we assume that ||w|| = 1. Moreover,
using (16) and the continuity of the inner product, we conclude that 〈w, y〉 ≤
0 for all y ∈ −K; that is to say, w ∈ K∗. Finally, by virtue of (15) we get

x∗ ∈ argminx∈Ω〈w, F (x)〉 .

The whole result follows now from (13).

Observe that F (Ω) may be convex but, nevertheless, problem (P ) may
lack weak Pareto optimal solution. Consider, for instance, n = 1, m = 2,
K = R2

+, the nonnegative orthant, Ω = (0, 1) ⊂ R and F (t) := te, where
et = (1, 1) ∈ R2. Clearly, Ω and F (Ω) are convex sets, but the last set has
no weak Pareto minimal elements.

We will now see that if F (Ω) + K := {F (x) + y | x ∈ Ω and y ∈ K}
is a convex subset of Rm, then similar results as those of Theorem 2.5 can
be proved. First, we establish a condition under which the set F (Ω) + K is
convex. For that, we need to introduce the notion of convexity of a function
in relation to a cone. We say that F : Ω → Rm is K-convex if

F (λx + (1− λ)y) � λF (x) + (1− λ)F (y) ∀x, y ∈ Ω and ∀λ ∈ [0, 1].

Note that this definition extends the classical concept of convexity of a scalar
valued function; in fact, convex real valued functions are K-convex, with
K = R+, where R+ stands for the nonnegative half-line in R.

In general, K-convexity of F does not imply convexity of it’s image, but
(together with convexity of Ω) it does imply convexity of the set F (Ω) + K,
as we will see now.

Lemma 2.6 Let Ω be a convex subset of Rn and F : Ω → Rm a K-convex
mapping. Then F (Ω) + K is a convex set.

Proof. Let epi(F ) be the (K-)epigraph of F ,

epi(F ) := {(x, y) ∈ Ω× Rm | F (x) � y} ,
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and let Π : Rn × Rm → Rm be the projector onto Rm, i.e.,

Π(x, y) := y , ∀ (x, y) ∈ Rn × Rm.

We claim that
Π(epi(F )) = F (Ω) + K . (17)

Let us see that (17) is true. If (x, y) ∈ epi(F ), we have that y−F (x) ∈ K, so
Π(x, y) = y = F (x) + (y− F (x)) ∈ F (Ω) + K. Conversely, if u ∈ F (Ω) + K,
then there exists x ∈ Ω and y ∈ K such that u = F (x) + y. Whence,
u − F (x) = y ∈ K, that is to say, F (x) � u, and (x, u) ∈ epi(F ); so
u = Π(x, u) ∈ Π(epi(F ).

Now observe that K-convexity of F trivially implies convexity of epi(F ).
Therefore, since Π is linear and Ω convex, Π(epi(F )) is convex and the proof
is complete by virtue of (17).

Observe that the converse of our lemma does not hold in general; in other
words, convexity of F (Ω) + K (and of Ω) does not necessarily imply K-
convexity of F . To see this assertion, just consider n = m = 1, Ω = R,
K = R+ and F (x) = −|x|. In this case, F (Ω) + K = −R+ + R+ = R,
however F is not (K−)convex.

The vector optimization problem (P ) is said to be convex if its feasible
set Ω is convex and its objective F is K-convex. We can now state and prove
the result we were looking for.

Theorem 2.7 Let x∗ ∈ Ω be a weakly efficient point for problem (P ). If
F (Ω) + K is convex , then there exists a norm one vector w ∈ K∗ such that

x∗ ∈ argminx∈Ω〈w, F (x)〉 .

In particular, if problem (P ) is convex (i.e., if Ω is convex and F is K-
convex), such w ∈ K∗ exists.

Proof. We claim that(
F (Ω) + K

)
∩

(
F (x∗)− int(K)

)
= ∅ . (18)

Indeed, if there exist x ∈ Ω, y ∈ K and y′ ∈ int(K) such that F (x) + y =
F (x∗) − y′, then F (x∗) − F (x) = y + y′ � 0, in contradiction with the
optimality of x∗. Therefore (18) holds.
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So, in view of (18) and the Convex Separation Theorem, there exist an
m-vector w 6= 0 and a real number α such that

〈w, F (x∗)− y〉 ≤ α for all y ∈ int(K) (19)

and
α ≤ 〈w,F (x) + z〉 for all x ∈ Ω and for all z ∈ K. (20)

Using the continuity of the inner product, we conclude that (19) holds for
y ∈ K. So, taking y = 0 in (19) and z = 0, x = x∗ in (20), we get
α = 〈w, F (x∗)〉. Therefore, taking again z = 0 in (20), we verify that

x∗ ∈ argminx∈Ω〈w, F (x)〉 .

On the other hand, letting z be an arbitrary element of K and taking x = x∗

in (20), we conclude that w ∈ K∗. As w 6= 0, we can assume that ‖w‖ = 1.
If Ω is convex and F is K-convex, in view of Lemma 2.6, F (Ω) + K is

convex and therefore the conclusion holds again.

We finish this section mentioning that some wellknown results for the
weighting method in the Paretian case can be easily extended to the general
one (i.e., when the ordering cone is closed, convex, pointed and has nonempty
interior). For instance,

• If w ∈ int(K∗), then all optima of minx∈Ω〈w, F (x)〉 are (strong) Pareto
optima for the vector problem (P ).

• If minx∈Ω〈w, F (x)〉 has a unique optimal solution, then it is a (strong)
Pareto optimal point for problem (P ).

3 On the Existence of Suitable Rigid Move-

ments

Finally, we go back to the very beginning of our discussion and study when
we can perform a rigid movement which prevents the convex hull of F ’s image
from touching −K. That is to say, we will see in which cases there exists u0

such that (1) holds.
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The following fact will be needed.

K ∩
(
K∗ \ {0}

)
6= ∅ . (21)

In order to verify it, note that if (21) does not hold, then, by the nonstrict
Convex Separation Theorem, there exists 0 6= w ∈ Rm such that

〈w, v〉 ≥ 0 ∀ v ∈ K, (22)

〈w, v〉 ≤ 0 ∀ v ∈ K∗ \ {0}. (23)

By (22), w ∈ K∗. Since w 6= 0, by virtue of (23), ||w||2 = 〈w, w〉 ≤ 0, in
contradiction with w 6= 0.

Recall now that the recession cone of a convex set C ⊂ Rm (see, e.g.,
[10]) is the set of all half-lines contained on the set, i.e.,

0+C := {v ∈ Rm | C + tv ⊂ C ∀ t ≥ 0}.

We begin the analysis with a sufficient condition for the existence of a sep-
arating translation. We will first study the general case of a convex set
C ⊂ Rm. As usual, cl(C) stands for the closure of C.

Lemma 3.1 Let C ⊂ Rm be convex. If 0+cl(C) ∩ (−K) = {0}, then there
exists u ∈ Rm such that

[C + u] ∩ (−K) = ∅.

Proof. Suppose that

[C + u] ∩ (−K) 6= ∅, ∀u ∈ Rm. (24)

It is enough to show that, under this assumption, 0+cl(C) ∩ (−K) 6= {0}.
By (21), we can take e ∈ K ∩ (K∗ \ {0}) and for each k ∈ N, we use (24)

to obtain
xk ∈ [C + ke] ∩ (−K).

Therefore,
xk = ck + ke, ck ∈ C, xk ∈ −K.

Since e ∈ K∗ and xk ∈ −K, we have 〈e, xk〉 ≤ 0, i.e., 〈e, ck + ke〉 ≤ 0, and
so, using the Cauchy-Schwartz inequality,

k‖e‖2 ≤ 〈−e, ck〉 ≤ ‖e‖ ‖ck‖ ,
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which implies ‖ck‖ ≥ k‖e‖. So

lim
k→∞

‖ck‖ = ∞ .

We claim that the accumulation points of the normalized sequence {ck/‖ck‖}
belong to 0+cl(C). Indeed, let c = limj→∞ ckj/‖ckj‖, x ∈ cl(C) and t ≥ 0.
Since {ck} diverges, we have that

x + tc = lim
j→∞

(1− t/‖ckj‖)x + (t/‖ckj‖)ckj

Therefore, since x and ck belong to the convex set cl(C), the above sequence
of their convex combinations is in cl(C), and so it’s limit belongs to cl(C), i.e.,
x+tc ∈ cl(C). Hence, c ∈ 0+cl(C), as we claimed. Observe that the sequence
{ck/‖ck‖} has at least one accumulation point because it is bounded.

Note that
ck = xk − ke.

Since −K is a closed convex cone, ck ∈ −K and the accumulation points of
{ck/‖ck‖} also belong to −K. Therefore, 0+cl(C) ∩ (−K) 6= {0}.

Now we discuss a necessary condition for the existence of a separating
translation.

Lemma 3.2 Let C ⊂ Rm be convex. If there exists u ∈ Rm such that
[C + u] ∩ (−K) = ∅, then

0+C ∩ int(−K) = {0}.

Proof. We will show that, if

0+C ∩ int(−K) 6= {0} , (25)

then for any u ∈ Rm,
[C + u] ∩ (−K) 6= ∅ . (26)

Assume that (25) holds and take v ∈ 0+C ∩ int(−K). For any u ∈ Rm

and c ∈ C, there exists some (large enough) t > 0 such that

(1/t)(c + u) + v ∈ −K .
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Therefore c + u + tv ∈ −K. On the other hand, since 0+C = 0+[C + u],
v ∈ 0+[C + u] and so we have c + u + tv ∈ [C + u]. Altogether, gives
c + u + tv ∈ [C + u] ∩ (−K) and (26) holds for any u.

In particular, all these facts hold for C = conv(F (Ω)). Whence, concern-
ing the existence of a u0 ∈ Rm such that (1) holds, we have the following
results.

Proposition 3.3 If 0+cl(conv(F (Ω))) ∩ (−K) = {0}, then there exists a
vector u0 ∈ Rm such that

conv(Fu0(Ω)) ∩ (−K) = ∅ .

Conversely, if such a u0 exists, then 0+conv(F (Ω)) ∩ int(−K) = {0}.

Proof. Both facts follow immediately from our previous lemmata and the
definition of Fu0 (Fu0(x) = F (x) + u0 for all x ∈ Ω).

We end this section by giving a straightforward interpretation of Propo-
sition 3.3 from the weighting method’s point of view.

Corollary 3.4 If 0+cl(conv(F (Ω))) ∩ (−K) = {0}, then there exists a
vector w ∈ K∗ \ {0} such that the problem

minx∈Ω〈w, F (x)〉

is bounded (from below). Conversely, if the above problem is bounded for
some w ∈ K∗ \ {0}, then 0+conv(F (Ω)) ∩ int(−K) = {0}.

Proof. First assume that 0+cl(conv(F (Ω))) ∩ (−K) = {0}. By Proposi-
tion 3.3, there exists u0 ∈ Rm such that conv(Fu0(Ω)) ∩ (−K) = ∅ . Then,
using once again the nonstrict Convex Separation Theorem and the fact that
−K is a closed cone (see (4)-(6)), we have that

〈w, y〉 ≤ 0 ≤ 〈w, Fu0(x)〉 ∀x ∈ Ω, y ∈ −K ,

for some w ∈ K∗ \ {0}. Hence,

〈w,−u0〉 ≤ 〈w,F (x)〉 ∀x ∈ Ω .
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Let us now see the converse. Assume that, for some w ∈ K∗ \ {0},

〈w, F (x)〉 ≥ α ∀x ∈ Ω, (27)

Suppose that 0+conv(F (Ω)) ∩ int(−K) 6= {0}, and let v be a nonzero m-
vector in that intersection. Then, for any z ∈ conv(F (Ω)) and t ≥ 0, z+tv ∈
conv(F (Ω)). So, by Caratheodory’s Theorem ([3], Proposition 1.3.1),

z + tv =
m+1∑
i=1

λiF (xi) , (28)

where xi ∈ Ω, λi ≥ 0 for all i = 1, 2, . . . m + 1 and
∑m+1

i=1 λi = 1. From (28)
and (27), we get

〈z + tv, w〉 ≥ α > −∞ ∀ t ≥ 0 . (29)

But, since v ∈ int(−K) and w ∈ K∗ \ {0}, we have

lim
t→+∞

〈z + tv, w〉 = −∞ ,

in contradiction with (29). So such v cannot exist and the conclusion follows.
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