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Abstract. We use flat divisors, and canonically associated singular holomor-

phic foliations, to investigate some of the geometry of compact complex man-
ifolds. The paper is mainly concerned with three distinct problems: the exis-

tence of fibrations, the topology of smooth hypersurfaces and the topological

closure of transcendental leaves of foliations.

1. Introduction and Statement of Results

Let M be a compact complex manifold and Div(M) be its group of divisors. We
will denote by DivS1(M) the subgroup of Div(M) formed by S1-flat divisors, i.e.,
divisors D whose associated line bundle OM (D) admits a hermitian flat connection.
We will denote by Γ(M) the quotient of the group of rational divisors by the group
of rational S1-flat divisors, i.e.,

Γ(M) =
Div(M)⊗Q

DivS1(M)⊗Q
.

If M is a projective manifold then

Γ(M) = NSQ(M) ,

i.e., Γ(M) can be identified with the rational Néron-Severi group of M , see section
4, and in particular is finite dimensional. Our first result says that this is always
the case for compact complex manifolds, i.e.,

Theorem 1. Let M be a compact complex manifold then dimQ Γ(M) <∞.

Most of our results involve the Γ-class of a divisor, i.e., the image of the divisor
under the natural homomorphism

Div(M) → Γ(M) .

Note that the Γ-class of a divisor completely determines its rational-Chern class
or, equivalently, its rational homology class. For Kaehler varieties the converse also
holds, i.e., the Γ-class of a divisor is completely determined by its rational Chern-
class. In fact in this case Γ(M) is isomorphic to the image of the group of divisors
under the rational Chern class map.

From some basic properties of flat divisors we deduce a characterization of com-
pact complex manifolds which fiber over a projective curve.
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Theorem 2. Let M be a compact complex variety and D1, D2, . . . , Dr, r ≥ 3, be
connected effective divisors which are pairwise disjoint and whose Γ-classes span
a linear subspace of Γ(M) of dimension at most r − 2. Then there exists a map
ρ : M → C with connected fibers to a smooth curve C which maps the divisors Di

to points.

A related result for projective varieties has been obtained by B. Totaro assuming
that the real Chern classes of the divisors Di lie in a line, see Theorem 2.1 of [6]. A.
Vistoli also proved a related (unplished) result: a smooth projective variety, over
an arbitrary field, with an infinite number of disjoint hypersurfaces fibers over a
curve. In the case of compact Kaehler varieties Vistoli’s proof has been adapted by
M. Sebastiani in [5]. All the mentioned results are obtained through a study of the
Picard variety of M .

Our approach to prove the above result is through the analysis of some loga-
rithmic forms and induced singular holomorphic foliations canonically associated
to flat divisors. Concerning the topology of divisors, the perturbation of these same
logarithmic forms allow us to prove the

Theorem 3. Let M be a compact complex manifold. If D1 and D2 are smooth
connected disjoint hypersurfaces such that [D1] and [D2] lie in the same line of
Γ(M) then there exists an étale Z/n-covering D̃1 of D1 and an étale Z/m-covering
D̃2 of D2 which are diffeomorphic where m and n are positive integers satisfying
m[D1] = n[D2].

It has to be noted that when M is projective, D1 and D2 are smooth connected
hypersurfaces and the Picard variety of M is isogeneous to a product of elliptic
curves then it is shown in [6] that there exists finite and cyclic étale coverings of
D1 and D2 with the same pro-l homotopy type. Theorem 3 gives a positive answer
to a conjecture made by Totaro in the above mentioned paper.

We will say that a leaf L of a codimension one holomorphic foliation of a compact
complex manifold M is transcendental if it is not contained in any compact complex
hypersurface. Our last main result is the following

Theorem 4. Let M be a compact complex manifold, F a codimension one holo-
morphic foliation of M and L a transcendental leaf of F . Denote by H the set of
compact complex irreducible hypersurfaces of M which do not intersect the topolog-
ical closure of L. Then the following assertions hold

(1) In general the cardinality of H is at most dimQ Γ(M)+1 and when is equal
to dimQ Γ(M) + 1 then F is given by a closed meromorphic 1-form;

(2) If M is projective then the cardinality of H is at most dimQ Γ(M) and
when is equal to dimQ Γ(M) then h1(M,OM ) 6= 0 and F is given by a
closed meromorphic 1-form. In particular for projective manifolds without
global holomorphic 1-forms we have that the cardinality of H is at most
dimQ Γ(M)− 1.

We remark that we cannot replace in the statement of Theorem 4 item (1) the
group Γ(M) by the Néron-Severi group of M , see Section 8. In an appendix to this
paper L. Meersseman constructs a complex manifold of dimension 5 showing that
in Theorems 2 and 3 it is also not possible to replace Γ(M) by the Néron-Severi
group of M .
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2. Flat line bundles over complex manifolds

If M is a complex manifold then the set of isomorphism classes of holomorphic
line-bundles is identified with H1(M,O∗

M ) in the following way: let L be a holomor-
phic line bundle, U = {Ui} a sufficiently fine open covering of M and φi : Ui → L be
nowhere vanishing local holomorphic sections of L; over Ui ∩ Uj we have the tran-
sition functions φij = φi · φ−1

j : Ui ∩ Uj → C∗ satisfying the identities φij · φji = 1
and φij · φjk · φki = 1. Therefore the collection {φij} determines and element of
H1(M,O∗

M ). It can be verified that this element does not depend on the choices
made above.

Denote by C∗, resp. S1, the constant sheaf over M of invertible complex num-
bers, resp. complex numbers of modulus 1.

Definition 2.1. A line bundle L ∈ H1(M,OM
∗) is C∗-flat, resp. S1-flat,

if L belongs to the image of the morphism H1(M,C∗) → H1(M,O∗
M ), resp.

H1(M,S1) → H1(M,O∗
M ), induced by the natural inclusions.

Concretely a line bundle bundle L is C∗-flat, resp. S1-flat, if it admits a system
of local holomorphic sections whose transition functions are locally constant , resp.
locally constant of modulus 1.

We recall that the Chern class of a line bundle L, denoted by c(L), is the image
of L under the map H1(M,O∗

M ) → H2(M,Z) induced by the exponential sequence

0 → Z → OM → O∗
M → 0 .

The real Chern class of L, denoted by cR(L), is the image of c(L) under the natural
map H2(M,Z) → H2(M,R).

The relations between flat line bundles and line bundles with zero real Chern
class are presented in the next proposition. Its content is quite standard but due
to a lack of references we sketch its proof.

Proposition 2.2. If α : H1(M,C) → H1(M,OM ) and β : H1(M,R) →
H1(M,OM ) are the morphisms induced by the natural inclusions then the following
assertions hold:

(1) if L is C∗-flat then cR(L) = 0;
(2) if α is surjective then L is C∗-flat if, and only if, cR(L) = 0;
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(3) if β is surjective then L is S1-flat if, and only if, cR(L) = 0;
(4) if the image of α is equal to the image of β then L is C∗-flat if, and only

if, L is S1-flat.
(5) if M is compact then β is injective. Consequently , for M compact, β is an

isomorphism if and only if 2h1(M,OM ) = h1(M,R).
(6) if M is compact then the morphism H1(M,S1) → H1(M,O∗

M ), induced by
the natural inclusion, is injective.

Proof. Consider the commutative diagram of sheaves of abelian groups over M

0 −−−−→ Z −−−−→ R −−−−→ S1 −−−−→ 0y y y
0 −−−−→ Z −−−−→ OM −−−−→ O∗

M −−−−→ 0x x x
0 −−−−→ Z −−−−→ C −−−−→ C∗ −−−−→ 0

with exact rows. From it we obtain the commutative diagram

H1(M,R) −−−−→ H1(M,S1) −−−−→ H2(M,Z) −−−−→ H2(M,R)

β

y y y
H1(M,OM ) −−−−→ H1(M,O∗

M ) −−−−→ H2(M,Z)

α

x x x
H1(M,C) −−−−→ H1(M,C∗) −−−−→ H2(M,Z) −−−−→ H2(M,C)

with exact rows.
The proof of the proposition will be a standard chasing on the diagram above.
If L is a C∗-flat line-bundle then follows from the exactness of the bottom

row of the diagram above that c(L) ∈ ker{H2(M,Z) → H2(M,C)}. Since
ker{H2(M,Z) → H2(M,C)} = ker{H2(M,Z) → H2(M,R)} we have that cR(L) =
0. This proves assertion (1).

If L is a line bundle such that cR(L) = 0 then we infer from the diagram that
there exists θ ∈ H1(M,C∗) such that c(L ⊗ θ) = 0 ∈ H2(M,Z), in particular
L ⊗ θ ∈ Im{H1(M,OM ) → H1(M,O∗

M )}. If α is surjective it follows that L ∈
Im{H1(M,C∗) → H1(M,O∗

M )} proving that L is C∗-flat. This proves assertion
(2).

Assertions (3) and (4) follow from completely analogous arguments. Assertion
(5) follows from the fact that pluriharmonic functions over compact complex man-
ifolds are constant, and (6) follows from (5). �

As the proposition above suggests we do not have in general the equivalence
between zero real Chern class, C∗-flat and S1-flat.

Example 2.3. If M is the quotient of C2 \ {0} by (z, w) 7→ (λ1 · z, λ2 · w) with
0 < |λ1| ≤ |λ2| < 1 then H1(M,O∗

M ) = H1(M,C∗) = C∗ and H1(M,S1) = S1, see
[1, pg. 172]. In particular every line bundle over M is C∗-flat and there exists line
bundles over M which are not S1-flat.

Example 2.4. There exist complex manifolds M , diffeomorphic to S3 × S3, such
that H2(M,Z) = H1(M,C) = 0 and H1(M,OM ) 6= 0. Over these manifolds every
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line bundle has zero real Chern class and a line bundle is C∗-flat if, and only if, it
is the trivial line bundle.

If M is a compact complex surface then α is always surjective, see [1, page 117].
Therefore we deduce from item (3) of proposition 2.2 the next

Corollary 2.5. On compact complex surfaces a line bundle is C∗-flat if, and only
if, it has zero real Chern class.

If M is a compact complex Kaehler manifold then it follows from Hodge Theory
that β is always surjective. In particular we have the following

Corollary 2.6. On a compact complex Kaehler manifold a line bundle is S1-flat
if, and only if, it has zero real Chern class.

3. Flat divisors on complex manifolds

A divisor D on a complex manifold M is a formal sum

D =
∞∑

i=1

diDi ,

where di ∈ Z and {Di}i∈N is a locally finite sequence of irreducible hypersurfaces
of M . If U = {Ui} a sufficiently fine open covering of M then given a divisor D
we can associate a collection of meromorphic function fi : Ui 99K P1 such that the
restriction of D to Ui coincides with the divisor (fi)0 − (fi)∞. Since the functions
fi are unique up to multiplication by a nowhere vanishing holomorphic function
over Ui we can identify the (additive) group of divisors on M , denoted by Div(M),
with the (multiplicative) group H0(M,M∗

M/O∗
M ), where M∗

M denotes the sheaf of
invertible meromorphic functions over M .

Looking at the long exact sequence in cohomology associated to the short exact
sequence of abelian groups

0 → O∗
M →M∗

M → M∗
M

O∗
M

→ 0 ,

we obtain a map H0(M,M∗
M/O∗

M ) → H1(M,O∗
M ), i.e., we obtain a map from the

group of divisors over M to the group of isomorphism classes of line bundles over
M . As usual we will denote the image of a divisor D by OM (D).

Definition 3.1. We will say that a divisor D ∈ Div(M) is C∗-flat, resp. S1-flat,
if OM (D) is a C∗-flat, resp. S1-flat, line bundle.

A divisor D on a complex manifold M is said to be linearly equivalent to zero
if OM (D) ≡ OM . Equivalently, there exits a meromorphic function f : M 99K P1

such that D = (f)0 − (f)∞. In particular D is C∗-flat. Note that if we take ω
the rational 1-form over P1 with simple poles at zero and infinity then f∗ω will be
a closed meromorphic one-form over M with simple poles along the support of D
and holomorphic on the complement. A similar property holds for a general C∗-flat
divisor as the next proposition shows.

Proposition 3.2. If D is a C∗-flat line bundle over a complex manifold M then
there exists a closed meromorphic one-form ω with simple poles along the support
of D and holomorphic on the complement.
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Proof. If {Ui} is sufficiently fine covering of M and fi : Ui 99K P 1
C are meromorphic

maps such that (fi)0− (fi)∞ = D|Ui
then an explicit description of OM (D) is given

by the transition functions fij = fi ·fj
−1 : Ui∩Uj → C∗. By hypothesis the cocycle

{fij} is cohomologous to a locally constant cocycle {tij}. Concretely there exists
holomorphic functions ti : Ui → C∗ such that fij · t−1

ij = ti · t−1
j . Therefore the

meromorphic functions Fi : Ui 99K P1
C, Fi = fi

ti
satisfies

(1) (Fi)0 − (Fi)∞ = D|Ui

(2) Fi = tij · Fj .
In particular, over Ui ∩ Uj , we obtain the equality

dFi

Fi
=
dFj

Fj
,

which implies that there exists a closed meromorphic 1-form ω such that

ω|Ui
=
dFi

Fi
,

for every open set Ui ∈ U . �

It is important to note that in general the 1-form ω constructed above is not
unique. In fact for two distinct choices of flat local equations for D we obtain
two meromorphic 1-forms with simple poles along D differing by a global closed
holomorphic 1-form η.

Reciprocally if {Fi : Ui 99K P1
C} is a collection of flat local equations for D as

in the proof of proposition 3.2 and η is a closed holomorphic 1-form over M then
choosing arbitrary branches of Hi = exp

∫
η over each open set Ui we obtain a new

collection of flat local equations Gi = Fi/Hi. Moreover we have that over each
open set Ui the equality

dGi

Gi
=
dFi

Fi
− η .

In other words, if Ω1
M,closed denotes the sheaf of closed holomorphic 1-forms over

M then from the short exact sequence

0 −−−−→ C∗ −−−−→ O∗
M

d log−−−−→ Ω1
M,closed −−−−→ 0

one deduces that the kernel of the map H1(M,C∗) → H1(M,O∗
M ) coincides with

the image of the map H0(M,Ω1
M,closed) → H1(M,C∗).

We can summarize the discussion above by saying that the 1-form ω is uniquely
determined by the choice of a C∗-flat structure on the line bundle OM (D) and of
an element of PH0(M,O∗

M ), i.e., a nowhere vanishing global holomorphic function
of M modulo C∗.

If D is a S1-flat divisor then we can repeat the construction made in the proof
of proposition above and choose meromorphic functions Fi : Ui 99K P1

C satisfying
(Fi)0− (Fi)∞ = D|Ui

and Fi = tij ·Fj , where tij are now locally constant functions
of modulus 1. If we set

ωD =
dFi

Fi

then, from the injectivity of H1(H,S1) → H1(H,O∗
H)(cf. proposition 2.2 item (6)),

it follows that the only ambiguity on the definition of ωD comes from an element of
PH0(M,OM ). In particular if M is a compact complex manifold then the 1-form
ωD is canonically defined.
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Proposition 3.3. Let D be a S1-flat line bundle over a (not necessarily compact)
complex manifold M and ωD be a meromorphic 1-form defined as above. If V is
a compact complex subvariety of M which does not intersect the support of D then
i∗ωD = 0, where i : Vsmooth →M denotes the natural inclusion of the smooth locus
of V . Moreover there exists an open neighboorhood U of V such that ωD |U is exact.

Proof. Keeping the notation above, note that F = |Fi| is a well defined continuous
fromM to [0,∞] which is locally defined as the modulus of an holomorphic function.
As such, it must be constant when restricted to any compact complex subvariety
of M . In particular we have that i∗ωD = 0, where i : Vsmooth → M denotes the
natural inclusion of the smooth locus of a compact complex subvariety V of M .

Now if we cover V by simply connected open subsets {Ui}i∈N of M such that
V ∩Ui is connected and Ui ∩ |D| = ∅ then we can choose primitives gi : Ui → C for
ωD such that gi|V ∩Ui

≡ 0. It follows that the functions gi patch together to form a
function g from U , the union of the sets Ui, to C such that

ωD |U = dg

as wanted. �

As the proposition above testifies when D in a non-trivial S1-flat divisor the
foliation induced by ωD has some remarkable properties. Most of our results will
follow from an analysis of this foliation.

Definition 3.4. If D 6= 0 is a S1-flat divisor of a compact complex manifold M
then FD is the codimension one singular holomorphic foliation induced by ωD.

A key property of the foliation FD is described in the following

Corollary 3.5. If D 6= 0 is a S1-flat line bundle over a complex manifold M then
the foliation FD leaves D and every compact complex hypersurface contained in the
complement of the support of D invariant.

Example 3.6. Let M be, as in example 2.3, the quotient of C2 \ {0} by (z, w) 7→
(λ1 · z, λ2 · w) with 0 < |λ1| ≤ |λ2| < 1. Suppose further that λk

1 6= λl
2 for every

(k, l) ∈ Z2 \ {(0, 0)}. Under this hypothesis M contains just two irreducible curves;
they are elliptic curves corresponding to the quotient of the axis by the contraction
above, see [1, pg. 173]. Since every line bundle over M is C∗-flat the same is true
for divisors. Let D be a non-zero divisor on M supported on the quotient of one of
the axis. Since the quotients of the two axis do not intersect each other it follows
from corollary 3.5 that D is not S1-flat, although D is C∗-flat.

Another consequence of proposition 3.3 is a particular case of Theorem 2. We
will include it here since the arguments are simpler than in the general case.

Corollary 3.7. Let M be a compact complex manifold such that h1(M,R) =
2h1(M,OM ). If {Hi}i∈N is an infinite set of pairwise disjoint hypersurfaces of
M then there exists a holomorphic map ρ : M → C, C a smooth algebraic curve,
with connected fibers such that every Hi is a component of a fiber of ρ.

Proof. Since H2(M,R) = H2(M,Q)⊗ R is finite dimensional there exists integers
k, n1, . . . , nk, k > 0, such that

cR

(
OM (

k∑
r=1

nrHr)

)
= 0 ,
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i.e., the divisor D =
∑k

r=1 nrHr has zero real Chern class. From proposition
2.2(items (3) and (5)) we obtain that the line bundle OM (

∑k
i=1 nrHr) is S1-flat.

From corollary 3.5 there exists a codimension one holomorphic foliation F of M
leaving every Hi, i ∈ N, invariant.

We now make use of of Ghys’ version of Jouanolou’s Theorem, see [2], to obtain
a meromorphic first integral g : M 99K P 1

C of F . Since the hypersurfaces {Hi} are
pairwise disjoint we can easily verify that the indeterminacy locus of g is empty
and therefore g is holomorphic. From Stein’s factorization Theorem there exists an
algebraic curve C, a fibration with ρ : M → C and a ramified covering π : C → P 1

C
such that g = π ◦ ρ. �

We end this section with examples of S1-flat divisors over projective manifolds
which are not associated to divisors linearly equivalent to zero.

Example 3.8. Let M be projective manifold and suppose that there exists a
nontrivial homomorphism φ : π1(M) → S1. If π : M̃ →M is the universal covering
of M then we consider the codimension one foliation G̃ over M ×C2 defined by the
1-form ω = xdy − ydx where (x, y) are the coordinates of C2. The homomorphism
φ induces an action Φ of π1(M) on M̃ × C2 given by

Φ : π1(M)× (M̃ × C2) → M̃ × C2

(g, (p, (x, y))) 7→ (g · p, (φ(g)x, φ(g)−1y))

It is easy to see that the action Φ preserves the foliation G̃.
The quotient of M̃ ×C2 by Φ defines a rank 2 vector bundle E over M equipped

with a codimension one foliation G. Observe that E = L⊕L∗ where L and L∗ are
flat line-bundles.

By GAGA’s principle this vector bundle is algebraic and therefore P(E), the
projectivization of E, is a projective variety. Note that P(E) carries two sections
M1 and M2 corresponding to the split E = L ⊕ L∗.

The foliation G induces a smooth codimension one foliation F of P(E) which
leaves the two sections M1 and M2 of P(E) invariant. The divisor D = M1 −M2

is S1-flat and it is possible to prove that F = FD. Moreover we have that
(1) if the image of π1(M) is a non-trivial finite subgroup of S1 then D is not

linearly equivalent to zero but there exist a multiple of D linearly equivalent
to zero;

(2) if the image of π1(M) is not a finite subgroup of S1 then D, or any of its
multiples, is not linearly equivalent to zero.

The next example is a variant of an example presented in [6] and attributed to
Brendan Hassett.

Example 3.9. Let M be a projective variety with h1(M,OM ) > 0 and L be a
non-trivial line-bundle with trivial Chern class, i.e., L ∈ Pic0(M). Let D1 be an
effective divisor such that h0(M,OM (D1) ⊗ L) > 0. If D2 is the zero divisor of a
section of OM (D1)⊗ L then D = D1 −D2 is S1-flat. Moreover

(1) if L is a torsion element of Pic0(M) then D is not linearly equivalent to
zero but there exist a multiple of D linearly equivalent to zero;

(2) if L is a non-torsion element of Pic0(M) then D, or any of its multiples, is
not linearly equivalent to zero.
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4. The Group Γ(M) for compact complex manifolds

If M is a compact complex manifold let Γ(M) be the group defined by

Γ(M) =
Div(M)⊗Q

DivS1(M)⊗Q
.

Since flat divisors have zero rational Chern class then there exists a rational Chern
class map

cQ : Γ(M) → H2(M,Q) .

It follows from proposition 2.2 that for compact complex manifolds M with
2h1(M,OM ) = h1(M,R) that the map cQ is injective. For projective manifolds
it is a trivial matter to verify that this injectivity identifies the image of Γ(M) with
the rational Néron-Severi group of M .

In order to prove that Γ(M) is finite dimensional for general compact complex
manifolds we will consider the algebraic reduction of M .

4.1. Divisors and Algebraic Reduction. For the results mentioned on the next
two paragraphs the reader should consult [7, pages 24–27] and references there
within.

If M is a compact complex manifold then the field of meromorphic functions of
M , denoted by k(M), is a finitely generated extension of C whose transcendence
degree is bounded by the dimension of M . The transcendence degree of M is called
its algebraic dimension and will be denoted by a(M). In the case a(M) = dimM
then M is called a Moishezon manifold and there exists a finite succession of blow-
ups along non-singular centers such that the resulting manifold is projective.

In general there exists a compact complex variety M̃ , a bimeromorphic morphism
ψ : M̃ → M and a morphism π : M̃ → N with connected fibers such that N is a
smooth projective variety and

ψ∗k(M) = π∗k(N) .

The projective variety N is called an algebraic reduction of M . Note that an
algebraic reduction of M is unique up to bimeromorphic equivalence.

We will say that a hypersurface H of a complex variety M is special if, in the
notations above, the restriction of π ◦ ψ−1 to H is a dominant meromorphic map,
i.e., has dense image. Remark that a Moishezon variety does not have special
hypersurfaces and every hypersurface of a variety of zero algebraic dimension is
special.

The proposition below is a generalization of Theorem 6.2 of [1, page 129].

Proposition 4.1. If M is a compact complex variety then there are at most
h1(M,Ω1

M ) + dimM − a(M) special hypersurfaces.

Proof. Suppose that Hk, 1 ≤ k ≤ h1(M,Ω1
M ) + dimM − a(M) + 1, are distinct

special hypersurfaces of M and let H = ⊕kC ·Hk be the C-vector space generated
by them.

As in [2] we can define a morphism from θ : H → H1(M,Ω1
M ) as follows: for

everyHk we can consider the associated line bundleOM (Hk) and map it to d log φij ,
where φij are the transition functions of OM (Hk); the morphism is then defined
through linearity. If

∑
λkHk belongs to the kernel of θ then we can define a global

meromorphic 1-form with simple poles of residue λk along Hk.
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From our assumptions we have that the dimension of the kernel of θ is at least
dimM−a(M)+1 and we can therefore construct ω1, . . . , ωl, l = dimM−a(M)+1,
meromorphic 1-forms over M such that the polar set of ωr is

(ωr)∞ = H1 ∪H2 ∪ . . . ∪Hh ∪Hh+r ,

where h = h1(M,Ω1
M ). In particular the 1-forms ωi are linearly independent over

C and moreover since Hi are special theirs restriction to F , the closure of a general
fiber of π ◦ ψ−1 : M 99K N , are still linearly independent over C.

Let η1, . . . , ηa(M) be the pullback under π ◦ψ−1 of rational 1-forms of N linearly
independent over k(N). Since we have now dimM + 1 meromorphic 1-forms there
exists a relation of the form

l∑
i=1

fiωi =
a(M)∑
j=1

gjηj ,

where fi and gj are meromorphic functions of M .
If we take the restriction of the relation above to F then since every meromorphic

function of M is constant along F we obtain that the restriction of the 1-forms ωi

to F are linearly dependent over C. A contradiction which proves that there are at
most h1(M,Ω1

M ) + dimM − a(M) special hypersurfaces on M . �

The statement of Theorem 6.2 of [1, page 129] is the specialization to the case
of surfaces of the following

Corollary 4.2. If M is a compact complex variety of algebraic dimension zero then
M has at most h1(M,Ω1

M ) + dimM hypersurfaces.

Example 4.3. If M is the quotient of Cn \{0} by a sufficiently general contraction
then a(M) = h1(M,Ω1

M ) = 0 and M has n = dimM special hypersurfaces; this
shows that the bound presented in proposition 4.1 above is sharp in every dimension.

4.2. Proof Theorem 1. If the algebraic dimension of M is zero then Theorem 1
is an immediate consequences of corollary 4.2.

If M is a Mosheizon variety then, as we have already mentioned, there exists a
projective variety M̃ and a bimeromorphic morphism ψ : M̃ → M . Therefore the
finitude of dimQ Γ(M̃) implies the finitude of dimQ Γ(M).

It remains to deal with the cases where the algebraic dimension of M satisfies
0 < a(M) < dimM .

Without loss of generality we can suppose that there exists a holomorphic map
from M to a smooth projective variety N with connected fibers. Let π : M → N
be such map and set R ⊂M as

R = {x ∈M ; rank dπ(x) < dimN} .
We will make use of the following lemma.

Lemma 4.4. In the notations above if H be an irreducible hypersurface of M then
(1) if dimπ(H) < dimN − 1 then H ⊂ R;
(2) if π(H) 6⊂ π(R) and dimπ(H) = dimN − 1 then, in the group of divisors

of M , π∗(π(H)) = H +E, where E is an effective divisor supported on R.

Proof. Item (1) follows from the local form of submersions and item (2) follows
from Sard’s Theorem and the connectedness of the fibers of π. We leave the details
to the reader. �
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Let now S(M) denote the subgroup of Div(M) generated by the special divisors
of M and R(M) denote the subgroup of Div(M) generated by divisors supported
on R. Note that S(M) and R(M) have both of finite rank and the map

Div(N)⊕ S(M)⊕R(M) → Div(M)
(D,S,R) 7→ π∗D + S +R

is surjective. Since π∗ sends S1-flat divisors of N to S1-flat divisors of M and Γ(N)
is finite dimensional. �

5. A key property of the foliation FD

We start this section with a simple lemma.

Lemma 5.1. If D is a of a compact complex manifold M then there exists a
compact complex manifold M̃ and a bimeromorphic map π : M̃ → M such that
π∗D admits a decomposition of the form π∗D = D+ −D− where D+ and D− are
effective divisors with disjoint supports.

Proof. We are in a situation very similar to the elimination of indeterminacies of
a rational map. Note that an arbitrary divisor D admits a decomposition of the
form D+ −D− with D+ and D− effective and with disjoint supports if, and only
if, for every point p in the support of D there exists an open set Up containing p
where the divisor can be locally defined by the scheme of zeros minus the scheme
of poles of a holomorphic function from Up to P1.

So write D as P − N where P and N are effective divisors without irreducible
components in common in theirs supports. If IP and IN are the sheaves of ideals
naturally associated to P , respectively N, then let S be subscheme of M defined by
IP + IN .

Let π : M ′ → M be the blow-up of M along S. We claim that π∗D has the
wanted properties. In fact if U is an open set on M and F : U 99K P1 is such that
D|U = F−1(0)−F−1(∞) then we have that π−1(U) is isomorphic to closure of the
graph of F . In particular π∗F is holomorphic. Since π∗F locally defines π∗D the
lemma follows after taking a resolution of the singularities of M ′. �

From now on we will say that a divisor D is without base points if D = D+−D−
where D+ and D− are effective divisors with disjoint supports.

The next proposition is the cornerstone of the proofs of Theorems 2 and 4. It is
in fact a generalization of item (1) of proposition 3.3.

Proposition 5.2. Let F be a holomorphic foliation of a compact complex manifold
M and D be a S1-flat divisor of M . If F admits a transcendental leaf whose closure
does not intersect the support of D then F = FD.

Proof. From lemma 5.1 we can suppose, without loss of generality, that the S1-flat
divisor D is without base points, i.e., D = D+−D− where D+ and D− are effective
divisors with disjoint supports.

By definition the foliation FD is induced by a closed meromorphic one form ωD

with polar set supported onD and admits a real first integral F : M → [0,∞](where
F = |Fi| on every open set Ui in the notation of the proof of proposition 3.3) such
that F−1(0) is equal to the support of D+ and F−1(∞) is equal to the support of
D−.
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Consider
F|L : L→ [0,∞]

the restriction of F to the transcendental leaf L of F . Since F is locally defined as
the modulus of a holomorphic function then F|L is either constant or an open map.
If F|L is constant then L is a leaf of both F and FD. In particular the tangency
locus of F and FD contains the analytic closure L. Since L is not contained in any
hypersurface then F = FD.

From now on we will suppose that F|L is an open map. Recall that F can be
locally written as

F =
∣∣∣∣exp

(∫
ωD

)∣∣∣∣
and that all the periods of ωD are purely imaginary complex numbers. If all the
periods of ωD are commensurable with π

√
−1 then there exists a positive integer

n such that Fn is equal to the modulus of the complex function f = exp(n(
∫
ωD)).

Let L be the topological closure of L and ∂L = L\L. Note that both L and ∂L are
invariant under F . Since f is open and L does not intersect the support of D then
f(∂L) contains f(L) \ f(L). If p ∈ ∂L ∩ f−1(∂f(L)) then the restriction of f to
Lp, the leaf of F through p, is constant and it follows that Lp is also invariant by
FD. Thus ∂L is invariant by both F and FD. Since f(L) is an open set relatively
compact in C∗ ⊂ P1 we have that ∂f(L) is infinite. In particular F and FD have
an infinite number of leaves in common. This is sufficient to show that F = FD.

It remains to analyze the case where ωD has a period not commensurable with
π
√
−1. When this is the case the multi-valued function f = exp(

∫
ωD) has a

monodromy group dense in S1. Let π : M̃ →M the covering of M associated to f
and consider the commutative diagram below.

π−1(L) −−−−→ M̃
f̃=exp(

∫
π∗ωD)

−−−−−−−−−−→ P1

π

y π

y y|·|
L −−−−→ M

F−−−−→ [0,∞]

Since F|L is open and L does not intersect the support of D then there exist
positive real numbers N− and N+ such that F (L) = (N−, N+). The density of
the monodromy group of f in S1 implies that

f(L) = f̃(π−1(L)) = {z ∈ C;N− ≤ |z| ≤ N+}.

Thus if R is the set of complex numbers of modulus N+ modulo the monodromy
group of f then the restriction of f to ∂L∩F−1(N+) induces a surjective map onto
R. Since the monodromy group of f is finitely generated R is infinite. It follows
that ∂L∩F−1(N+) contains infinitely many distinct leaves of F where the function
F is constant. Once again we conclude that F and FD have an infinite number of
leaves in common. This is sufficient to show that F = FD.

�

6. Compact Complex Varieties which fiber over a curve

The main purpose of this section is to prove Theorem 2. The proof will be based
on the following lemma which is a corollary to proposition 5.2.
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Lemma 6.1. Let D1 and D2 be two S1-flat divisors on a compact complex manifold
M . If there exists a connected component of the support of D1 which does not
intersect the support of D2 then FD1 = FD2 .

Proof. Let ωD1 and ωD2 be the meromorphic 1-forms canonically associated to D1

and D2 and let E be a connected component of the support of D1 which does not
intersect the support of D2. In the proof of proposition 5.2 we saw that FD1 admits
a real analytic first integral F : M → [0,∞] and E is a level of F . Thus there exists
an open neighborhood U of E in M which is saturated by the foliation FD1 , i.e.,
every leaf of FD1 which intersects U is in fact contained in U . Moreover we can
choose U such that D2 ∩ U = ∅.

Let L be an arbitrary leaf of FD1 contained in U \E. If L is a complex subvariety
of M then L is invariant by FD2 by proposition 3.3. Thus if every such L has a
complex subvariety of M as topological closure then the restriction of FD1 and FD2

to U coincides. It follows that FD1 = FD2 .
Otherwise there exists a transcendental leaf of FD1 contained in U \ E and we

can apply proposition 5.2 to conclude that FD1 = FD2 holds also in this case. �

6.1. Proof of Theorem 2. Let H be the subgroup of Div(M) generated by the
divisors D1, . . . , Dr, r ≥ 3. Since, by hypothesis, D1, D2, . . . , Dr span a linear
subspace of Γ(M) of dimension no greater than r + 2 it follows that the natural
map

H⊗Q → Γ(M)

has a kernel of dimension at least 2. Thus we can produce two S1-flat divisors, D
and D′, contained in H and such that there exists a component E of the support
of D not contained in D′. At this point we can use lemma 6.1 to guarantee that
FD = FD′ .

We can now conclude as in the proof of Jouanolou’s Theorem. Note that there
exists a non-constant meromorphic function F ∈ k(M) such that ωD = F · ωD′ .
Differentiating we obtain that dF ∧ωD = 0, i.e., F is a meromorphic first integral of
FD = FD′ . Since D is without base points it follows that F is in fact a holomorphic
map F : M → P1. The Theorem follows taking the Stein factorization of F . �

7. Diffeomorphism type of Smooth Divisors

This section is devoted to the proof of Theorem 3. Before proceeding to the
proof we would like to recall some remarks and examples made in [6].

(1) If M is a projective variety with H1(M,R) = 0 then the Betti numbers and
Hodge numbers of a smooth divisor are determined by its Chern class, see
[6, remark 2]. More generally the same argument used there apply to any
compact complex variety with H1(M,OM ) = 0.

(2) If M is a projective and D is an ample smooth divisor of M then the Betti
and Hodge numbers of D are determined by its Chern class, see [6, remark
1].

(3) There exists smooth complex projective manifolds with two disjoint homol-
ogous smooth divisors which are both connected but have different Betti
numbers.
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7.1. Proof of Theorem 3. Let D1 and D2 be two connected smooth divisors
which are disjoint and whose Γ-classes lie in a line of Γ(M). There exists integers
p and q such that D = pD1 − qD2 is S1-flat. Thus we can choose a covering
U = {Ui} of M and local meromorphic functions Fi defining D = pD1 − qD2 such
that the Fi = tijFj and tij are locally constant functions of modulus 1. As before
we have that ω = dFi

Fi
is a well-defined global meromorphic 1-form and moreover

F = |Fi| : M → [0,∞] is a well-defined continuous function(real-analytic outside
the support of D).

We can also define a global (real) 1-form θ over M \ (D1 ∪ D2) by the re-
lation θ|Ui

= d arg(Fi), where arg denotes the complex argument, i.e., Fi =
|Fi| · exp(

√
−1 arg(Fi)). Note that θ is nothing more then the imaginary part

of ωD.
In a neighborhood of D1 and D2 the 1-form θ has mild algebraic singularities;

if U is a sufficiently small neighborhood of a point p ∈ D1 ∪D2 then, over U , the
foliation induced by θ is diffeomorphically equivalent to the foliation of Σ× (D∩U)
induced by xdy − ydx, where (x, y) are local real coordinates of a transversal Σ of
D.

Integration along closed paths defines a homomorphism∫
θ : H1(M \ (D1 ∪D2),R) → R

γ 7→
∫

γ

θ

which sends γ1 and γ2, small loops around D1 and D2 respectively, to real numbers
commensurable to π.

The inclusion of M \ (D1 ∪ D2) into M induces a surjective homomorphism
H1(M \ (D1 ∪ D2),R) → H1(M,R) whose kernel is contained in the subspace of
H1(M \ (D1 ∪ D2),R) generated by γ1 and γ2. Therefore we can choose T ∈
H1(M,R), i.e., T is a morphism T : H1(M,R) → R such that (T +

∫
θ)(γ) is

commensurable to π for every γ ∈ H1(M \ (D1 ∪D2),Z).
If S denotes the singular set of FD then we can apply proposition 3.3 to ensure

the existence of an open set US ⊂M containing S and such that∫
θ ∈ ker{H1(M \ (D1 ∪D2),Z) → H1(US ,Z)} ⊗ R .

We can therefore choose T arbitrarily small and contained in K, where

K = ker{H1(M,Z) → H1(US ,Z)} ⊗ R.
If T1, . . . , Tk is a basis of K then from DeRham’s isomorphism there exists C∞

real closed 1-forms η1, . . . , ηk on M such that, for i = 1, . . . , k,

Ti =
∫
ηi .

We can also assume that the restriction of ηi to US is identically zero. In fact
since

∫
ηi ∈ K it follows that ηi|US

= dgi for some function gi : US → R. If gi is
not constant then we can take g̃i : M → R, an arbitrary C∞-extension of gi, and
replace ηi by ηi − dg̃i. From now on we will identify K with the R-vector space
generated by ηi, i = 1 . . . k.

If η ∈ K then the (real) singular foliation G induced by the real part of ωD and
θ + η is such that G|US

= FD |US
. Moreover, by transversality, there exists an open
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neighborhood UK of the origin of K such that for every η ∈ UK the singular set of
G is the same as the singular set of FD.

So let η ∈ UK be such that
∫

γ
θ + η is a rational multiple of π for every γ ∈

H1(M \ (D1∪D2),Z). Since H1(M \ (D1∪D2),Z) is finitely generated there exists
a positive integer N such that

G = exp
(
iN

∫
θ + η

)
: M \ (D1 ∪D2) → S1

is a well-defined C∞ function.
Since the local structure, around points of D1, of the foliation induced by η + θ

is the same of the foliation induced by θ if we take a smooth fiber D̃1 of

F ×G : M \ (D1 ∪D2) → (0,∞)× S1 ∼= C∗

sufficiently close to D1 then there exists a positive integer m such that D̃1 is an étale
Z/m-covering of D1. In an analogous way a smooth fiber D̃2 of F ×G sufficiently
close to D2 is an étale Z/n-covering of D2 for some positive integer n.

Since η ∈ UK the map F ×G has a finite number of critical values. Thus we can
join q1 = (F ×G)(D̃1) to q2 = (F ×G)(D̃2) by a differentiable path γ : [0, 1] → C∗

avoiding the critical values of F ×G.
The gradient flow of the restriction of F × G to (F × G)−1(γ([0, 1]) induces a

diffeomorphism between D̃1 and D̃2. �

Remark 7.1. It is shown in [6] that if D1 and D2 are smooth divisors on a pro-
jective manifold with the same Chern class then, after blowing up the intersection
scheme of D1 with D2 and resolving the resulting variety, the strict transforms of
D1 and D2 have the same Chern class. A similar argument shows that our re-
sult holds for smooth divisors D1 and D2, not necessarily disjoint, with the same
Γ-class.

Note that a similar reasoning for smooth divisors which are not disjoint and
whose Γ-classes lie in a line does not work. For instance if we take the a line L
and a smooth cubic C on P2 they have non-diffeomorphic universal coverings and
3L− C is a S1-flat divisor.

8. The Closure of Transcendental Leaves

8.1. Hypersurfaces with ample normal bundle. The original motivation of
this work was to find an analogous of the following well-known fact for general
projective varieties: if F is a holomorphic foliation of Pn and L is a transcendental
leaf of F then the topological closure of L intersects every compact hypersurface of
Pn, see [3].

The key point on the proof of the fact above is that the complement of any
compact hypersurface of Pn is Stein, and even more it is in fact affine.

A first result, and almost obvious, result on this direction is the following

Proposition 8.1. Let F be a holomorphic foliation of a projective variety M and
H an effective divisor of M with ample normal bundle. 1 If L is a leaf of F
then L is contained in contractible subvariety of M or the topological closure of L
intersects H.

1See [4] for a precise definition of divisors with ample normal bundle.
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Proof. First we will assume that F is a one dimensional foliation.
Since the normal bundle of H is ample according to [4, Theorem 4.2, p. 110]

there exists a positive integer k such that:
• the linear system H0(M,OM (nH)) is free from base points;
• the natural map φ : M → PH0(M,OM (nH))∗ is holomorphic
• φ is biholomorphic on a neighborhood of H;
• the set φ(H) can be identified with the intersection of an hyperplane of

PH0(M,OM (nH))∗ with φ(M), the image of φ.
Thus we can identify φ(M \H) with an affine closed set of some affine space CN .
Suppose that L is not contracted by φ. Therefore we can choose a principal open

subset U of CN (the complement of an algebraic hypersurface) satisfying:
• U ∩ φ(L) 6= ∅;
• φ(M \H) ∩ U is a smooth affine variety;
• φ∗F restricted to U ∩ φ(M \ H) is generated by a global section of the

tangent sheaf of U ∩ φ(M \H).

Denote by M̃ the intersection of φ(M \H) with U .
Let ΘU be the sheaf of vector fields of U and Θ

U,M̃
be the subsheaf formed by

vector fields tangent to M̃ . From the exact sequence of OU -coherent sheaves

0 → Θ
U,M̃

⊗ I
M̃
→ Θ

U,M̃
→ Θ

M̃
→ 0 ,

and the fact that coherent sheaves over affine varieties have no higher order co-
homology we deduce that there exists a foliation of U , which naturally extends
to a foliation G of PH0(M,OM (nH))∗, and whose restriction to M̃ coincides with
φ∗(F).

Therefore let p ∈ φ(L) ∩ M̃ be a non-singular point of φ∗(F). The proposition
follows if the closure of the leaf of G through p is not contained on any compact
subset of CN . But this is precisely the case since no holomorphic vector field on
CN has bounded invariant subsets other than the ones contained in its singular set.

The general case, F a foliation of arbitrary dimension, can be deduced from the
case just studied by taking arbitrary one-dimensional foliations tangent to F . �

In the two dimensional case the above proposition specializes to

Corollary 8.2. Let F be a holomorphic foliation of a projective surface S and D
an effective divisor of S. If L is a transcendental leaf of F such that topological
closure of L does not intersect the support of D then D2 ≤ 0.

8.2. Proof of Theorem 4. Let H be the set of compact complex hypersurfaces
of M which do not intersect the leaves of F and H be the subgroup of Div(M)
generated by H. Denote by Γ the natural map

Γ : H⊗Q → Γ(M) .

If dimQ ker Γ ≥ 2 then there exists two there exists two S1-flat divisors D1 and
D2 such that the supports of D1 and D2 are distinct, i.e., there exists an irreducible
hypersurface E contained in the support of D1 but not contained in the support of
D2. From proposition 5.2 and lemma 6.1 we have that F = FD1 = FD2 . Moreover,
see argument in the proof of Theorem 2, F has a meromorphic first integral and,
consequently, does not have transcendental leaves. This shows that dimQ ker Γ ≤ 1.
In particular the cardinality of H is at most dimQ Γ(M) + 1.
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When the cardinality of H is precisely dimQ Γ(M)+1 we have that dimQ ker Γ =
1. If D is a generator of the kernel of Γ it follows from proposition 5.2 that F = FD.
This sufficient to prove (1).

If M is projective then we claim that Γ is not surjective. Otherwise there exists
an ample divisor Z with support contained in H contradicting proposition 8.1.
Moreover, since M is projective, if h1(M,OM ) = 0 then numerical and linear
equivalence coincides modulo torsion. Thus arguing as above we prove (2). �

We conclude by remarking that we cannot replace in the statement of item (1)
of Theorem 4 the group Γ(M) by the Néron-Severi group of M , i.e., the group of
divisors modulo homological equivalence.

For instance if M is an arbitrary primary Hopf surface, i.e. S is the quotient of
C∗2 by a linear diagonal contraction, and E1 and E2 denote the elliptic curves on
S obtained as the quotients of the coordinates axis then the divisor D = E1 − E2

is S1-flat as the reader can easily verify. If the algebraic dimension of S is zero
then every leaf of the foliation FD distinct from E1 and E2 is transcendental and
its topological closure does not intersect the support of D. Therefore for every
transcendental leaf of FD the set H has cardinality two while the Néron-Severi
group has dimension zero, i.e., is the trivial group.

Acknowledgements: I am largely indebted to Steven Kleiman who brought to
my attention the results of A. Vistoli and B. Totaro. I am also indebted to Mar-
cos Sebastiani who explained to me some properties of the cohomology of compact
complex manifolds. A special thanks goes to Burt Totaro and to the anonymous
referee whose criticism on preliminary versions of the present paper allowed me
to clarify both the arguments and the exposition. I have also profited from inter-
esting conversations with Marco Brunella and Frank Loray about the closure of
transcendental leaves.

References

[1] W. Barth; C. Peters and A. Van de Ven, Compact complex surfaces, Springer-Verlag, 1984.
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Appendix by Laurent Meersseman

It is a natural question to ask if the results of this paper are still true if we replace Γ(M)
by the Néron-Severi group of M(the group of divisors modulo homological equivalence)
in the statements of the Theorems. The aim of this appendix is to give a negative answer
to this question, at least for Theorems 2 and 3. In other words, the group Γ(M) is really
the good object to consider in these problems.

Theorem 5. There exists a compact, complex 5-manifold N with three pairwise disjoint
smooth hypersurfaces H1, H2 and H3 such that

(a) The Néron-Severi group of N is reduced to zero.
(b) The manifold N does not admit a holomorphic map onto a smooth curve.
(c) The universal coverings of H1 and H3 are not homotopically equivalent.

The example of the Theorem comes from the family of compact, complex manifolds
constructed and studied in [3] as a generalization of [2]. Let us first recall very briefly this
construction. Let n > 2m be positive integers. Let Λ = (Λ1, . . . , Λn) be a configuration
of n vectors of Cm. Assume it is admissible, i.e. that it satisfies
- the Siegel condition: 0 ∈ Cm belongs to the (real) convex hull of (Λ1, . . . , Λn).
- the weak hyperbolicity condition: if 0 belongs to the convex hull of a subset of
(Λ1, . . . , Λn), then this subset has cardinal strictly greater than 2m.

Consider the holomorphic foliation F of the projective space Pn−1 given by the following
action

(T, [z]) ∈ Cm × Pn−1 7−→ [exp〈Λ1, T 〉 · z1, . . . , exp〈Λn, T 〉 · zn] ∈ Pn−1

where the brackets denote the homogeneous coordinates in Pn−1 and where 〈−,−〉 is the
C-bilinear inner product of Cn. Define

NΛ = {[z] ∈ Pn−1 |
n∑

i=1

Λi|zi|2 = 0}

which is a smooth manifold due to the weak hyperbolicity condition. Then, there exists
an open dense subset V ⊂ Pn−1 such that the restriction of F to V is regular and admits
NΛ as a global smooth transverse. Therefore, NΛ can be endowed with a structure of
(compact) complex manifold as leaf space of F restricted to V . We denote by NΛ this
compact complex manifold. It has dimension n−m− 1 and is not Kaehler if n > 2m + 1
(see [3], Theorem 2).

The standard action of the torus (S1)n onto Cn leaves NΛ invariant and the correspond-
ing quotient space is easily seen to identify with a simple convex polytope (see [1], Lemma
0.11; simple means dual to a simplicial polytope). We denote by PΛ the combinatorial
type of this convex polytope. It has some remarkable properties:
(i) Rigidity: there is a 1 : 1 correspondence between the combinatorial classes of simple
convex polytopes and the classes of manifolds NΛ up to C∞ equivariant diffeomorphism
and up to product by circles, see [1], Theorem 4.1.
(ii) Realization: given any simple convex polytope P , there exists NΛ such that PΛ = P ,
see [3], Theorem 13.
(iii) Submanifolds: a codimension p face F of PΛ corresponds to a codimension 2p holo-
morphic submanifold NΛ′ of NΛ such that PΛ′ = F , see [3], §V.

We are now in position to construct our example.

Proof. Consider the convex polyhedron P obtained from the cube by cutting off two adja-
cent vertices by a plane (cf [1], Example 11.5). It has two triangular facets (corresponding
to the vertices which were cut off), two rectangular ones, two pentagonal ones and finally
two hexagonal ones. By (ii), there exists manifolds NΛ such that PΛ = P . Here NΛ can
moreover be assumed to be 2-connected (see [3], Theorem 13). Then, n is equal to 8,
and m to 2 so that NΛ has complex dimension 5. By (i), for all such choices of Λ, the
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C∞-diffeomorphism type of NΛ is the same. Fix such a Λ and set N = NΛ. By Corollary
4.5 of [1], we may assume that Λ is generic (in the sense of condition (H) of [3], IV).
The two triangular facets correspond by (iii) to two smooth hypersurfaces H1 and H2.
Choose a rectangular facet of P , and let H3 denote the corresponding hypersurface of
N . Notice that H1, H2 and H3 are pairwise disjoint since the corresponding facets are
pairwise disjoint.

Since N is 2-connected, its Néron-Severi group is reduced to zero. This proves (a).
Since Λ is generic, by [3], Corollary of Theorem 4, then the manifold N does not have

any non-constant meromorphic function. So cannot admit a holomorphic projection onto
an algebraic curve. This proves (b).

Finally, using (i) and [3], VIII, we have that H1 and H2 are diffeomorphic to S5×(S1)3,
whereas H3 is diffeomorphic to S3×S3× (S1)2. Now, the universal coverings of these two
manifolds are not homotopy equivalent. This finishes the proof. � �

Notice that Theorem 3 implies that the rank of Γ(N) is greater than or equal to 2.
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