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1. Introduction

We study in this paper compact Kähler manifolds whose tangent bundle splits
as a sum of two or more subbundles. The basic result that we prove is the following
theorem.

Theorem 1.1. Let M be a compact connected Kähler manifold. Suppose that its
tangent bundle TM splits as D⊕L, where D ⊂ TM is a subbundle of codimension
one and L ⊂ TM is a subbundle of dimension one. Then:

(i) If D is not integrable then L is tangent to the fibres of a P-bundle;
(ii) If D is integrable then M̃ , the universal covering of M , splits as Ñ × E,

where E is a connected simply connected curve (D,C or P). This splitting
of M̃ is compatible with the splitting of TM , in the sense that TÑ ⊂ TM̃

is the pull-back of D and TE ⊂ TM̃ is the pull-back of L.

This result will be the main ingredient in the proof of the following one. See also
Section 4 for a more general statement.

Theorem 1.2. Let M be a compact connected Kähler manifold whose tangent
bundle splits as a sum of line bundles:

TM = L1 ⊕ . . .⊕ Ln.

Then the universal covering M̃ is isomorphic to a product of curves:

M̃ = Pr × Cs × Dt

for suitable integers r, s, t, r + s + t = n. Moreover, if all the codimension one
subbundles L1 ⊕ . . .⊕ Lj−1 ⊕ Lj+1 ⊕ . . .⊕ Ln, j = 1, ..., n, are integrable, then the
above splitting of M̃ is compatible with the one of TM .

The problem of relating splitting properties of the tangent bundle of a compact
complex manifold with splitting properties of the universal covering has been re-
cently studied by Beauville [2], Druel [9], Campana–Peternell [7]. The point of view
of these papers consists in analysing the interplay between splitting of the tangent
bundle and some known differential-geometric or algebraic-geometric properties of
the manifold. For instance, in [2] one makes use of Kähler–Einstein metrics, whereas
in [9] and [7] a main tool is the geometry of rational curves on a projective variety
(Mori theory).

Our point of view is completely independent on the geometry of the underlying
manifold. On the contrary, it is completely dependent on the geometry of the
foliations by curves generated by one dimensional subbundles of the tangent bundle.
In some sense, we replace the Mori theory used in [7] with the “foliated” Mori theory
funded by Miyaoka [3]. But also we like to work on compact Kähler manifolds which
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are possibly nonprojective, so that the algebraic point of view of [3] must be replaced
by the more analytic one of [5] and [6], which moreover gives some useful metric-
type information. Other simple but essential tools are the integrability criterion
for codimension one distributions of [8] and the construction of holonomy invariant
metrics for codimension one foliations of [4].

Roughly speaking, in the setting of Theorem 1.1 our method consists in con-
structing a special metric on the line bundle L. Then, in the setting of Theorem
1.2 and still roughly speaking, we shall obtain a special metric on M by summing
the special metrics on the line bundles Lj , and this special metric on M will give
the desired uniformisation. In this perspective, Theorem 1.2 should be compared
with Simpson’s uniformisation theorem [13, Cor. 9.7] (see also [2]), even if our
construction of special metrics is completely different. In fact, we already have by
free a special metric, given by the leafwise Poincaré metric, and we have just to
verify that it is the good one.

2. One dimensional foliations with a transverse distribution

Let M be a compact connected Kähler manifold. Suppose that the tangent
bundle TM splits as a sum of a one dimensional subbundle L and a codimension
one subbundle D:

TM = D ⊕ L.

The line subbundle L is tangent to a holomorphic one dimensional foliation L. Each
leaf of L is uniformized either by P (rational leaf) or by C (parabolic leaf) or by
D (hyperbolic leaf). By a well known argument (Reeb stability plus compactness
of the cycles space [11]), if some leaf is rational then every leaf is rational, and
L is a locally trivial P-bundle over some compact connected Kähler manifold N ,
dim N = dim M − 1.

In this case, the transverse distribution D may be integrable or not. If it is
integrable, then foliation D generated by D can be described as a suspension of a
representation of π1(N) into Aut(P), see [10, Ch. I]. It follows that M̃ , the universal
covering of M , splits as Ñ × P, the splitting being compatible with the splitting of
TM .

If D is not integrable and M is projective, a more subtle argument [7, §2] shows
that M̃ still splits as Ñ×P (but now, of course, this splitting is no more compatible
with TM = D⊕L). Probably the same holds also in the Kähler nonprojective case,
but we don’t know a proof.

Let us now turn to the more interesting case in which no leaf is rational. We
shall distinguish two different possibilities:

(a) There is a hyperbolic leaf;
(b) Every leaf is parabolic.

The following Proposition completes the proof of Theorem 1.1.

Proposition 2.1. In both cases (a) and (b) the distribution D is integrable, and
generates a codimension one foliation D. The holonomy of this foliation preserves
a transverse hermitian metric of constant curvature κ, with κ = −1 in case (a)
and κ = 0 in case (b). The universal covering M̃ splits as Ñ ×E, compatibly with
TM = D ⊕ L, and E = D in case (a) or E = C in case (b).
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2.1. The hyperbolic case. If some leaf of L is hyperbolic, we shall rely on the
main result of [5]: the leafwise Poincaré metric on L induces on T ∗L (= L∗) a
singular hermitian metric whose curvature is a closed positive current.

Let us fix an open covering {Uj} of M , with holomorphic vector fields vj ∈
H0(Uj , ΘM ) generating L and holomorphic 1-forms (a priori, not necessarily inte-
grable) ωj ∈ H0(Uj , Ω1

M ) generating D. We may suppose, by the transversality
condition, that ivj

ωj ≡ 1. On overlapping charts we therefore have

vi = gijvj ωi = g−1
ij ωj

where gij : Ui∩Uj → C∗ are holomorphic functions forming a cocycle which defines
the line bundle L∗.

For every j, set
hj = log ‖vj‖2Poin

where ‖vj(z)‖Poin is the norm of vj(z) with respect to the Poincaré metric on the leaf
of L through z. The result of [5] recalled above says that hj is a plurisubharmonic
function. Recall also that, by definition, the Poincaré “metric” on a parabolic leaf
is identically zero. Thus hj may have poles, corresponding to the trace of parabolic
leaves on Uj .

The arguments are very close to [4] and [8]. In fact, the integrability of D
follows from [8] (L∗ is the conormal bundle of D, and it is pseudoeffective), and
the existence of a transverse metric invariant by the holonomy follows from [4, §6-
7]. But let us give anyway some detail for the sake of completeness and reader’s
convenience.

From vi = gijvj we deduce that hi−hj = log |gij |2, and from ωi = g−1
ij ωj we see

that the (1, 1)-form locally defined by

η =
√−1ehj ωj ∧ ωj

is indeed a well defined global positive (1, 1)-form (with L∞loc-coefficients) on M .
We may compute

√−1∂∂η, as a current. It turns out that it is a positive current.
Indeed, by the usual decomposition properties of positive forms, by η ∈ L∞loc,

and by Fubini’s theorem, it is sufficient to verify that for every local embedding
ι : D2 → M the current

√−1∂∂(ι∗η) is positive (that is, a positive measure on D2).
If ι(D2) is tangent to D then ι∗η ≡ 0. If ι(D2) is not tangent to D then the trace of
D on ι(D2) defines a foliation outside a discrete subset Γ ⊂ D2. Thus, ι∗ωj outside
Γ can be written, in suitable local coordinates (z, w), as fdz, for some holomorphic
function f . Consequently, ι∗η = eh|f |2√−1dz ∧ dz and

√−1∂∂(ι∗η) =
√−1∂∂(eh+log |f |2) ∧√−1dz ∧ dz

which is positive because h + log |f |2 is plurisubharmonic.
This gives the positivity of

√−1∂∂(ι∗η) on D2 \ Γ. To obtain the positivity on
the whole D2 we may simply use the extension theorem of [1]. The form ι∗η has
bounded coefficients, so that if Θ is a Kähler form on D2 then ι∗η−cΘ is a negative
current for c À 0, whereas

√−1∂∂(ι∗η − cΘ) =
√−1∂∂(ι∗η) is positive outside Γ.

By [1], this last one is positive on the full D2. Whence the positivity of
√−1∂∂η

on M .
By Stokes Theorem, the exact positive measure

√−1∂∂η ∧ Θn−2 (Θ is now a
Kähler form on M , and n = dim M) must be identically zero, so that

√−1∂∂η is
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also identically zero: √−1∂∂η ≡ 0.

Looking again at the local restriction ι∗η, ι : D2 → M , we obtain that the function
eh+log |f |2 is harmonic in the w-variable. Because h+log |f |2 is w-subharmonic, the
only possibility is that h + log |f |2 is w-constant: the exponential of a nonconstant
subharmonic function is strictly subharmonic. This implies that ι∗η is not only
∂∂-closed, but also d-closed. By varying the embedding ι : D2 → M , we obtain:

dη ≡ 0.

This means two things:

(i) the distribution D = ker η is integrable, and hence generates a codimension
one foliation D;

(ii) on the transversals to D, η induces a measure invariant by the holonomy.

Remark that all of this uses only the fact that L∗, the conormal bundle of D, is
pseudoeffective, i.e., the functions hj are plurisubharmonic. But, by the normaliza-
tion ivj ωj ≡ 1 and the definition of hj , we see that the restriction of η to the leaves
of L is nothing but than the area form of the hyperbolic metric on those leaves.
Therefore, the holonomy of D preserves that hyperbolic metric.

In order to complete the proof of Proposition 2.1, case (a), it remains only to
prove the splitting property of M̃ . This will follow from a general Splitting Lemma
which we postpone to Section 3.

2.2. The parabolic case. If all the leaves of L are parabolic, the leafwise Poincaré
metric is identically zero and we cannot say, a priori, that L∗ is pseudoeffective
(unless M is projective, by [3]). But we shall see that indeed it is, and it is even
flat, thanks to the existence of the transverse distribution D.

The starting point is the following one [6]: if T ⊂ M is a codimension one
disc transverse to L, then the associated covering tube UT (union of the universal
coverings of the leaves through T ) is holomorphically trivial: UT ' T×C. This fact
can be reformulated in the following way. Take a foliated chart U ' T × D ⊂ M
around T = T ×{0}. Then any nonvanishing section v0 of TL|T (i.e. a vector field
tangent to L at points of T ) can be extended to a section v of TL|U in a canonical
way: for every t ∈ T , we simply require that v|{t}×D is the restriction to the plaque
{t} × D of a complete nonsingular vector field on the leaf of L containing {t} × D.
This is well defined, because on a parabolic leaf the space of complete nonsingular
vector fields is one dimensional. In other words, v is obtained from v0 by “parallel
transport”, using the natural affine structure on the leaves. Now, the trivialization
UT ' T × C means exactly that if v0 is holomorphic then v also is holomorphic.

We may cover M with charts Uj = Tj × D as above, and generate L with
holomorphic vector fields vj as above. Thus vi = gijvj on Ui ∩ Uj . A moment of
reflection shows that the cocycle gij is constant along the (local) leaves of L. In
particular, L∗ is flat along the leaves of L.

We also choose holomorphic 1-forms ωj ∈ H0(Uj , Ω1
M ) generating D and nor-

malized by ivj ωj ≡ 1, so that ωi = g−1
ij ωj . Hence

dωi = −dgij

gij
∧ ωi + g−1

ij dωj
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and by contracting with vi, thanks to dgij(vi) ≡ 0, we find

dgij

gij
= ividωi − ivj dωj .

The global 2-form Ω locally defined by

Ω =
1

2π
√−1

d(ivj
dωj)

represents, in De Rham’s sense, the Chern class of L∗, c1(L∗) ∈ H2(M,R). This
class must belong, at the same time, to H1,1(M,C) (as any Chern class) and to
H2,0(M,C) ( because Ω is holomorphic). Since M is Kähler it follows from Hodge
decomposition theorem that H1,1(M,R) ∩ H2,0(M,C) = {0}. Hence we deduce
that c1(L∗) = 0, that is L∗ is flat.

Now we may proceed as in the hyperbolic case. By flatness, we have

log |gij |2 = hi − hj

where hj are suitable pluriharmonic functions on Uj . Then the (1, 1)-form

η =
√−1ehj ωj ∧ ωj

is, as in the previous section , a closed (1, 1)-form. It is worth noting that the com-
putations here are much more simple, because hj = log |Hj |2 for some holomorphic
Hj , so that η =

√−1(Hjωj) ∧ (Hjωj) and
√−1∂∂η = d(Hjωj) ∧ d(Hjωj).

The closedness of η gives the integrability of D and the transverse metric invari-
ant by the holonomy. This transverse metric is flat because the functions hj are
pluriharmonic.

Finally, the splitting property of M̃ follows from the Splitting Lemma of Section
3 below.

Remark 2.1. We have used here only the fact that L∗ is defined by a cocycle lo-
cally constant on the leaves of L. This is equivalent to say that the leaves of L have
an affine structure depending holomorphically on the leaf. A priori, such a property
is much weaker then the parabolicity of leaves: any noncompact curve possesses an
affine structure, because it possesses a submersion to C! But a posteriori, and using
the transverse distribution D, we obtain that the leaves of L are necessarily para-
bolic because the flat metric transverse to D induces on each leaf of L a complete
flat hermitian metric. We don’t know, and would like to know, if such a property
still holds without the transverse distribution D. That is: given a foliation L on a
compact Kähler manifold, such that its leaves have an affine structure depending
holomorphically on the leaf, is it true that these leaves are parabolic? Note that
there are counterexamples in the non-Kähler case, e.g. foliations on Inoue surfaces
[4]. The problem is that an affine structure is not necessarily unimodular, and so
it does not necessarily correspond to a flat metric.

A dual problem is: given a codimension one foliation on a compact Kähler
manifold, admitting a transverse affine structure invariant by the holonomy, is it
true that this structure is unimodular? The conormal bundle of such a foliation is
by definition flat, and the proof above shows that the answer is affirmative. The
reader may find more material on these aspects in [12].
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3. The Splitting Lemma

Lemma 3.1. Let M be a compact connected complex manifold whose tangent bun-
dle TM splits as

TM = D ⊕ L1 ⊕ . . .⊕ Lk

where L1, ..., Lk have dimension one and D has codimension k. Suppose that:
(i) for every j = 1, ..., k the codimension one subbundle

D(j) = D ⊕ L1 ⊕ . . .⊕ Lj−1 ⊕ Lj+1 ⊕ . . .⊕ Lk

is integrable, and generates a codimension one foliation D(j);
(ii) for every j = 1, ..., k, the foliation D(j) admits a transverse hermitian met-

ric of constant curvature invariant by the holonomy.

Then the universal covering M̃ of M splits as

M̃ = Ñ × E1 × . . .× Ek

where each Ej is either D or C or P, and where TÑ ⊂ TM̃ is the pull-back of
D ⊂ TM . Moreover, if L1⊕ . . .⊕Lk is integrable then TEj ⊂ TM̃ is the pull-back
of Lj ⊂ TM , for every j.

Proof. The integrability of all D(j) gives the one of D = ∩k
j=1D

(j), so that D

is tangent to a codimension k foliation D (= ∩k
j=1D(j)). Similarly, D ⊕ Lj is

integrable for every j, so that the holonomy of D preserves the splitting of its
normal bundle induced by L1 ⊕ . . . ⊕ Lk = TM/D. By hypothesis (ii), we may
put on the leaves of Lj (the foliation generated by Lj) an hermitian metric gj

of constant curvature κj ∈ {−1, 0, 1}, preserved by the holonomy of D(j). Then
g = ⊕k

j=1gj is a homogeneous hermitian metric on TM/D preserved by D.
The general theory of transversely homogeneous foliations [10, Ch. III] gives a

submersion
π : M̃ → E1 × . . .× Ek

whose fibres are the leaves of D̃, with Ej = D (if κj = −1), C (if κj = 0) or P
(if κj = 1). The distribution L̃1 ⊕ . . . ⊕ L̃k ⊂ TM̃ is transverse to the fibres of π,
and each summand L̃j projects isometrically to TEj , with the appropriate constant
curvature metric.

Consider the restriction of π over some curve:

c = (c1, ..., cj−1, cj+1, ..., ck) ∈ E1 × . . .× Ej−1 × Ej+1 × . . .× Ek

Ec
j = {(z1, ..., zk) ∈ E1 × . . .× Ek | zi = ci, i 6= j}

M̃c
j = π−1(Ec

j )

πc
j : M̃c

j → Ec
j .

The foliation L̃j is tangent to M̃c
j , and there it is transverse to the fibres of πc

j .
On each leaf of L̃j the projection πc

j is a local isometry to Ec
j . Now, the basic

fact is that the metric on the leaves of L̃j , arising from the metric on the leaves of
Lj , is complete, by compactness of M . It follows that on each leaf of L̃j , πc

j is a
covering map, hence a global isometry of the leaf with Ec

j . Therefore the foliation
L̃j induces a trivialization

M̃c
j ' Ñ × Ec

j
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where Ñ is a fibre of πc
j (all the fibres are now isomorphic). This splitting is, by

construction, compatible with TM̃c
j = D̃ ⊕ L̃j .

By the same argument, if L1 ⊕ . . .⊕ Lk is integrable we obtain

M̃ = Ñ × E1 × . . .× Ek

in a way compatible with TM̃ = D̃ ⊕ L̃1 ⊕ . . . ⊕ L̃k. But we claim that such
a splitting (without compatibility) exists even in the nonintegrable case, by an
“iterated integral” argument.

Indeed, fix a fibre Ñ of π, over some point (c1, ..., ck) ∈ E1 × . . . × Ek. We
already know that M̃c

1 , c = (c2, ..., ck), is a product, in a canonical way induced by
L̃1. Thus we have a canonical family of isomorphisms

ϕa1 : π−1(a1, c2, ..., ck) → Ñ , a1 ∈ E1.

For every a1 ∈ E1 we also know that M̃c′
2 , c′ = (a1, c3, ..., ck), has a product struc-

ture induced by L̃2. Thus we have, for every a1, a canonical family of isomorphisms

ϕa2
a1

: π−1(a1, a2, c3, ..., ck) → π−1(a1, c2, ..., ck), a2 ∈ E2

and consequently

ϕa1,a2 = ϕa1 ◦ ϕa2
a1

: π−1(a1, a2, c3, ..., ck) → Ñ .

By iterating this process, we find for every (a1, ..., ak) an isomorphism

ϕa1,...,ak : π−1(a1, ..., ak) → Ñ

canonically defined by the foliations. This isomorphisms depend holomorphically
on (a1, ..., ak) (this is just the holomorphic dependence on the initial condition of
the solution of a holomorphic ODE), and they provide the desired product structure
on M̃ .

L
1

   ~ L2
  ~

z’’

(c  ,c  )1 2

(a  ,a  )1 2(a  ,c  )1 2

E2

E1

M 1

c2  ~

M 2

a1  ~

zz’

z′ = ϕa2
a1

(z) z′′ = ϕa1(z′) = ϕa1,a2(z)
¤

There are evident generalizations of this Lemma. We have done just the minimal
amount of work for our purposes.
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4. Total Splitting

Theorem 1.2 is a special case (with D = {0}) of the following more general result.

Theorem 4.1. Let M be a compact connected Kähler manifold whose tangent
bundle TM splits as

TM = D ⊕ L1 ⊕ . . .⊕ Lk

where D ⊂ TM is a subbundle of codimension one and Lj ⊂ TM , j = 1, ..., k, are
subbundles of dimension one. Then the universal covering M̃ admits the structure
of a (Pr×Cs×Dt)-bundle over R, for a suitable complex manifold R with dim R =
dim D, and suitable integers r, s, t, r + s + t = k. Moreover, if all the codimension
one subbundles D ⊕ L1 ⊕ . . .⊕ Lj−1 ⊕ Lj+1 ⊕ . . .⊕ Lk, j = 1, ..., k, are integrable,
as well as L1 ⊕ . . . ⊕ Lk, then M̃ splits as R × Pr × Cs × Dt, and this splitting is
compatible with the one of TM .

Proof. Suppose that one of the foliations Lj generated by Lj , say Lk, is a foliation
by rational curves, i.e. a P-bundle over some compact connected Kähler manifold
M ′, dim M ′ = dim M − 1. We claim that TM ′ splits as D′ ⊕ L′1 ⊕ . . .⊕ L′k−1.

To see this, recall that any vector bundle V on P splits as O(m1)⊕ . . .⊕O(mr),
where the multidegree (m1, ..., mr) ∈ Zr is uniquely defined up to a permutation.
It follows that if V = V1 ⊕ V2 then, necessarily, the multidegrees of V1 and V2

correspond to a decomposition in two disjoint pieces of the multidegree of V . Take
now a fibre F ' P of π′ : M → M ′, and consider TM |F , which splits as O(2) ⊕
O(0)⊕. . .⊕O(0), with O(2) = TF . It also splits as TF⊕D|F ⊕L1|F ⊕. . .⊕Lk−1|F ,
and by the previous remark the multidegree of D|F and the degrees of Lj |F , j =
1, ..., k − 1, are all equal to 0. This means that they can be projected to Tπ(F )M

′,
giving the desired decomposition of TM ′.

Suppose that another one of the foliations Lj , say Lk−1, is a foliation by rational
curves. Then the foliation L′k−1 generated by L′k−1 is also a foliation by rational
curves, and we have a P-fibration π′′ : M ′ → M ′′. Consider the composition
π′′ ◦ π′ : M → M ′′. Its fibres are P-bundles over P, but they are also leaves
of the integrable distribution of Lk−1 ⊕ Lk (integrability is just a restatement of
projectability of Lk−1 along Lk). Hence, those fibres are isomorphic to P × P. As
before, the subbundles D and Lj , j = 1, ..., k − 2, are projectable to M ′′.

By continuing in this way, we finally obtain, for some r ≥ 0, a Pr-bundle

π : M → N

such that:
(i) the fibres are tangent to those Lj generating a foliation by rational curves,

say Lk−r+1, ..., Lk;
(ii) D and Lj , j = 1, ..., k − r, are projectable to N , giving a splitting

TN = D′ ⊕ L′1 ⊕ . . .⊕ L′k−r;

(iii) no L′j , j = 1, ..., k − r, generates a foliation by rational curves.
Set

D(j) = D′ ⊕ L′1 ⊕ . . .⊕ L′j−1 ⊕ L′j+1 ⊕ . . .⊕ L′k−r

so that TN = D(j) ⊕ L′j .
By Proposition 2.1, D(j) is integrable and generates a codimension one foliation

whose holonomy preserves a transverse metric of curvature 0 or -1. By the Splitting
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Lemma, the universal covering Ñ splits as R×Cs×Dt, for a suitable R and suitable
integers s, t with s + t = k − r.

Therefore, the universal covering M̃ is a Pr-bundle over Ñ = R × Cs × Dt, and
consequently it is also a (Pr ×Cs×Dt)-bundle over R, because any Pr-bundle over
Cs × Dt is trivial.

The last sentence of the theorem is also easy to verify. ¤

Remark 4.1. If M is projective, then by [7, §2] M̃ is a trivial bundle over Ñ , and
therefore a trivial bundle over R.
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