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Abstract: We consider the optimal scheduling of hydropower plants in a hydrothermal interconnected system. This 
problem, of outmost importance for large-scale power systems with a high proportion of hydraulic generation, requires 
a detailed description of the so-called hydro unit production function. In our model, we relate the amount of generated 
hydropower to nonlinear tailrace levels; we also take into account hydraulic losses, turbine-generator efficiencies, as well 
as multiple 0-1 states associated with forbidden operation zones. Forbidden zones are crucial to avoid nasty phenomena 
such as mechanical vibrations in the turbine, cavitation, and low efficiency levels. The minimization of operating costs 
subject to such detailed constraints results in a large-scale mixed-integer nonlinear programming problem. By means of 
Lagrangian Relaxation, the original problem is split into a sequence of smaller and easy-to-solve subproblems, coordi-
nated by a dual master program. In order to deal better with the combinatorial aspect introduced by the forbidden 
zones, we derive three different decomposition strategies, applicable to various configurations of hydro plants (with few 
or many units, which can be identical or different). We use a Sequential Quadratic Programming algorithm to solve 
nonlinear subproblems. We assess our approach on a real-life hydroelectric configuration extracted from the south sub 
region of the Brazilian hydrothermal power system. 

Keywords: Hydrothermal Systems, Unit Commitment Problems, Lagrangian Relaxation, Sequential Quadratic Pro-
gramming. 

1. Introduction 

The optimal generation scheduling is an important daily activity for electric power generation companies. 
The goal is to determine which units are to be used in order to generate enough power to satisfy demand 
requirements and various technological constraints, with minimum operating cost. In particular, hydro-
thermal systems must consider the stream-flow equations for reservoirs. These equations couple all the res-
ervoir along a hydro-valley, because the amount of outflow waterTP

1
PT released by one power plant affects water 

volumes in all the plants downstream. Furthermore, water travel times and alternative uses of water, such as 
irrigation or flood control, for example, must also be taken into account. 

The optimal scheduling of hydropower plants is called the Hydro Unit Commitment (HUC) problem. To 
solve the HUC problem, a highly sophisticated modeling for the operation of hydro plants is required. Spe-
cifically, a hydropower plant may be composed of several turbine-generator groups, referred to in this work 
as “units”. The amount of power generated by one hydro unit depends on the efficiency of both the turbine 
and the generator, as well as on the net head and the unit turbined outflow. In turn, the net head is a nonlin-
ear function of the storage and of the reservoir outflow. The joint turbine-generator efficiency varies with the 
water net head and the unit turbined outflow. In addition, the existence of forbidden operation regions pre-
vents the unit from generating power in a wide and continuous range. These regions, modeled by 0-1 vari-
ables, aim at avoiding vibrating modes that may produce unwanted power oscillations, cavitation phenom-
ena, and low levels of efficiency. Thermal power plants have simpler production functions, but they need 
start-up and shut-down times and they often present nonlinear operating costs. 

As a result, the hydrothermal unit commitment problem is a large-scale mixed-integer nonlinear program-
ming problem which can only be effectively solved by applying decomposition techniques. Lagrangian Re-
laxation (LR) is particularly suitable for this type of problems, [1-5], although some other methodologies 
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have also been proposed [6]. However, so far none of the works in the area has considered a modeling as 
comprehensive as ours, with representation of hydraulic losses, nonlinear tailrace levels, turbine-generator 
efficiencies, and forbidden operation zones. 

With respect to the solution method, our contribution consists in a thorough analysis of three different de-
composition schemes, all derived from LR. The first strategy relies on a complete enumeration of all possible 
0-1 operating states of the units composing a hydropower plant. This approach is suitable for plants with a 
low number of identical units. The second strategy, requiring less computation effort, is applicable for plants 
with many units that are different and have many forbidden regions. The third strategy combines the two 
other approaches, and can be used in systems with both types of hydro plants. 

Many of the subproblems resulting from our decomposition schemes are Nonlinear Programs (NLP) of small 
size. We solve them by a Sequential Quadratic Programming (SQP) method [7,8], in a quasi-Newton variant 
[9,10], which presents good convergence properties. 

Our work is organized as follows. In Section 2 we give the hydro plants and units modeling. Section 3 is 
devoted to the mathematical formulation of the optimal scheduling problem. The solution strategy, with the 
three decomposition schemes, is given in Section 4. In Section 5 we report numerical results on a hydrother-
mal system corresponding to Brazil’s southern electric sub region. We end in Section 6 with some concluding 
remarks. 

2. Hydro Generating Units 

For a unit j, the generated power, ph BjB, expressed in [MW], depends on the unit turbined outflow, qBjB, on the 
net water head, hlBjB, and on joint turbine and generator efficiency, η BjB: 

39,81 10j j j jph hl q−= × η  (1) 

The net water head has the expression: 
2( , )j j jhl fcm fcj Q s k q= − −  (2) 

Here, fcm stands for the forebay level. For short term horizon problems, as in our case, the forebay level re-
mains practically constant, specially in the Brazilian case, whose huge reservoirs have typical regularization 
levels of a couple of years. Therefore, we consider fcm constant. By contrast, the downstream level fcj(.) var-
ies abruptly in short times, mainly due to the plant turbined outflow, Q, given by the addition of the out-
flows of all the units composing the plant. For some power plant configurations, fcj also varies with the res-
ervoir spillage, s. In (2), the term kBjBqBjPB

2
P represents hydraulic losses resulting from friction of the water in pen-

stock, with kBjB a constant in sP

2
P/mP

5
P [11]. 

The unit efficiency, depending on hlBjB and qBjB, is usually represented by hill diagrams given by the factory; see 
Figure 1. We estimate it by interpolation; see [12], using a polynomial function: 

2 2
0 1 2 3 4 5j j j j j j j j j j j j jq hl hl q q hlη = ρ + ρ + ρ + ρ + ρ + ρ  (3) 

where the coefficients ρ B0jB,..., ρ B5jB have been computed beforehand. 
 

.
0.92

0.90
0.88

0.86
0.84

0.82

0.80

0.80

Tu
rb

in
ed

O
ut

fl
ow

(m
3 /s

)

Net Head (m)
Maximum Net Head

(48 m)
Minimum Net Head

(32 m)

Net Head
41,5 m

0.7870 MW

80 MW

90 MW

100 MW

110 MW

120 MW
 MAXIMUM

GENERATOR OUTPUT

Generator Output

Efficiency (ηt.ηg)

180

200

220

240

260

280

300

320

340

 MAXIMUM
TURBINED OUTFLOW

.

.

4241,540

ηmáx = 0.94

Forbidden
Generation

Zone

 

Figure 1 – Hill Diagram. 
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Figure 1 also displays some important operating constraints on the turbine-generator group. For example, 
for net head values smaller than the nominal level (41,5 m), the turbine is unable to make the generator at-
tain its nominal power (120 MW). On the other hand, for values higher than 41,5 m, the power limit is given 
by the generator capabilities, because the turbine could effectively reach power levels beyond 120 MW. Since 
at some power levels cavitation phenomena and nasty mechanic vibrations may appear, in order to extend 
the lifetime of the unit and to avoid power oscillations, such power levels are forbidden. For example, Figure 
1 shows a forbidden operation region ranging from 70 to 90 MW. 

By combining (1)–(3) we obtain our model for the hydro production function: 
3 2 2

0 1 2 3 4 59,81 10 ( )j j j j j j j j j j j j j j jph q hl hl q q hl hl q−= × ρ + ρ + ρ + ρ + ρ + ρ  (4) 

For the Brazilian case, fcj(Q,s) is represented by a fourth degree polynomial. Therefore, from (4) we see that 
ph BjB is a polynomialTP

2
PT of degree 12 on the variables Q and s, and of order 7 in the variable qBjB.  

At first sight our model may appear as “too complicated”; however, it is important to realize that only such a 
detailed description can accurately represent the diverse amounts of power generated by a unit at different 
operating states. 

3. Problem Formulation  

The objective function for the thermal-HUC problem has the expression: 

1 1
( )

T I

it it
t i

c pt
= =

+α∑∑  (5) 

Here, the planning horizon is composed by T time steps, the thermal mix has I plants, c Bit B(.) represents the 
operating cost of the i-th thermal plant at time step t, and α stands for the system expected future cost at the 
end of the planning horizon; see (8) below. Frequently c Bit B(.) includes fixed costs as well as fuel costs related to 
start-up and nominal generation of thermal units [2],[5].  

We formulate the thermal-HUC constraints by splitting them into three different subsets, CBH B, CBT Band CBHTB, 
corresponding to the respective variables involved namely, hydraulic, thermal, or both. Each subset is char-
acterized by a specific type of coupling, such as units in the same power plant along different time steps 
(time coupling), or different power plants in a given time step (space coupling). 

We now proceed to give each constraint in detail. 

4.1 Constraints involving only hydraulic variables (CBH B) 

• Stream-flow balance equation: 

( )
, 1 , ,( )

mr mr
r

r t rt rt m t m t rt rt
m

v Q s Q s v y
+

+ −τ −τ
∈ℜ

+ + − + − =∑   (6) 

We use the index r for reservoirs, v is the reservoir storage, y is the incremental inflow, ℜ B+PB

(r)
P is a set gathering 

all reservoirs upstream the r-th, and τ BmrB is the water travel time between reservoirs m and r. 

• Maximum v BrBBPB

max
P and minimum v BrBBPB

min
P storage, and maximum spillage s BrBBPB

max
P per reservoir: 

min max
, 1r r t rv v v+≤ ≤  

max0 rt rs s≤ ≤   (7) 

• Expected future cost function, given by longer term planning models, and estimating the cost of using 
today water that might become necessary (and expensive) in the future; see [13]. It is a piecewise affine 
function that depends on the final levels of stocked water, v BrT B: 

( )rTf vα =   (8) 

• Penstock water balance equation per reservoir: 
( )

1

J r

rt jrt
j

Q q
=

= ∑   (9) 

J(r) is the number of generating units in reservoir r. 

                                        
TP

2
PT Since hl BjB=f(q BjPB

2
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• Power limits, given for each operating region of the unit: 

1 1
( , , )

jr jr
mín máx
jkrt jkrt jrt jrt rt rt jkrt jkrt

k k
ph z ph q Q s ph z

Φ Φ

= =

≤ ≤∑ ∑   (10) 

Φ BjrB denotes the total number of non-forbidden regions of the j-th unit in reservoir r; k is the corresponding 
index, and ph Bjkrt PB

min,max 
Pstand for the minimum and maximum power limits. The binary variable zBjkrt B is 1 if the j-

th unit in reservoir r is operating in the k-th region at time step t, and it is set to 0 otherwise. 

• Reservoir power balance: 
( )

1
( , , )

J r

rt jrt jrt rt rt
j

PH ph q Q s
=

= ∑   (11) 

• Reserve constraints: 
( )

1
1 1

jrJ r
máx
j rt jkrt rt rt

j k
ph z PH rh

Φ

= =

⎛ ⎞
− ≥⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑   (12) 

rh Brt B is the minimum reserve of reservoir r at time step t. 

• Integrality constraints: 

{0,1}jkrtz ∈  
1

1   
jr

jkrt
k

z
Φ

=

≤∑  (13) 

In the sequel, to alleviate notation, we write constraints CBH B above in the abstract form  

CBH B = CBHH B(Q,s,V) ∩ CBHUC B(z,q,Q,s,PH),  

where the vectors z, q, Q, s, PH and V gather the respective variables. The set C BHH B represents constraints 
given by (6)-(8), modeling the reservoirs, while CBHUC B represents the unit constraints, i.e., (9)-(13). In this ab-
stract formulation, α = α(V). 

4.2 Constraints involving only thermal variables (CBTB) 

• Power limit for each unit: 
min max
i it it i itpt u pt pt u≤ ≤   (14) 

Here pt BiPB

min,max
P stand for the minimum and maximum power limits of unit i. The binary variable u Bit B is 1 if the 

unit is operating at time step t, and it is set to 0 otherwise. 

• Reserve constraints: 
max
i it it itpt u pt rt− ≥   (15) 

rt Brt B is the reserve of unit i at time step t. 

• Minimum up-time, t BiBBPB

up
P, and downtime, t BiBBPB

down
P, for each unit: 

⎧ ≤ <
⎪= ≥ > −⎨
⎪
⎩

1 if 1
0 if  1

0 or 1 otherwise

up
it i

down
it it i

x t
u x t  

, 1

, 1

max( ,0) 1,   if  1,
min( ,0) 1,    if  0,

i t it
it

i t it

x u
x

x u
−

−

+ =⎧
= ⎨ − =⎩  (16) 

where the non zero integer variable x Bit B counts the number of time steps the unit was on previous time step t. 

• Ramp constraints: 

, 1 , 1 , 1( , ) ( , )i i t it it i t i i t itu x p p u x− − −δ ≤ − ≤ ∆   (17) 

δBiB(.) and ∆BiB(.) are the maximum allowed variations of generation of the unit between two time steps. 

In a abstract formulation, constraints in the set CBTB correspond to CBTB(u,pt), where u and pt are vectors gather-
ing all binary and continuous thermal variables, respectively. 

4.3 Constraints involving both hydraulic and thermal variables (CBHTB) 

• Satisfaction of demand, per time step and subsystem: 
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( )
e e e

it rt let elt et
i I r R l

pt PH Int Int D
∈ ∈ ∈Ω

+ + − =∑ ∑ ∑   (18) 

The interconnected hydrothermal system is divided into subsystems, indexed by e. Accordingly, all thermal  
units (reservoirs) of subsystem e are gathered in the index set I Be B(RBeB). There are ΩBeB subsystems interconnected 
with subsystem e, the corresponding exchange of energy, from and to subsystem l, is given by Int Belt B. for each 
time step t. Finally, D Bet B is the demand of subsystem and at time t. 

• Subsystems exchange limits, from e (l) to l (e), at time t, Int Belt BBPB

max
P, (Int Blet BBPB

max
P): 

0 max
let letInt Int≤ ≤  0 max

elt eltInt Int≤ ≤   (19) 

In our abstract notation, the set CBHTB is written as CBHT B(pt,PH,Int), where the vector Int gathers the subsystem 
exchanges.  

The above description confirms the level of complexity of the optimization problem to be solved. We now 
address the solution strategy adopted in this work. 

4. Solving the HUC Problem 

The economic impact of the optimal scheduling of power plants is undeniable. Because of their solid theo-
retical background, LR techniques appear in this area as the preferred solution method. In particular, multi-
pliers associated to demand constraints given by (18) are used to price energy.  

The divide to conquer approach of LR, also called price decomposition [9], is well known. Essentially, coupling 
constraints are relaxed via Lagrange multipliers whose corresponding dual problem is decomposable into 
simpler subproblems (called local subproblems). The coordination of subproblems is then done by a master 
program, which finds new multipliers by making one iteration of a nonsmoth algorithm that maximizes the 
dual function.  

There are many ways of relaxing coupling constraints. An important criterion for deciding how to proceed is 
the resulting duality gap, which should be the smallest possible. In this matter, the introduction of artificial 
variables to uncouple constraints appears as a good choice; see [14], and also [5,15] for an application to the 
thermal UC problem. For this reason, we apply a similar approach in this work, and derive three different 
decomposition schemes, adapted to different unit configurations in the Brazilian hydrothermal system.  

4.1 First Decomposition Strategy – D1 

In the abstract notation, the thermal HUC problem becomes: 

, , , , , , ,
minimize   ( ) ( )

u pt z q Q s PH Int
c pt V+α  
∩ ∩ ∩T HT HH HUCon: C ( , ) C ( , , ) C ( , , ) C ( , , , , )pt u pt PH Int Q s V z q Q s PH  

(20) 

To achieve decomposition, we introduce artificial variables pta and PHa, which duplicate, respectively, pt 
and PH. Variables pta and PHa are used in constraints CBHTB to replace pt and PH. In addition, artificial vari-
ables Qa and sa duplicate Q and s, respectively. Qa and sa replace Q and s in CBHH B. With these additional vari-
ables, (20) is rewritten as follows: 

, , , , , , , , , , ,
minimize   ( ) ( )

u pt pta z q Q Qa s sa PH PHa Int
c pt V+α  

∩ ∩ ∩T HT HH HUCon: C ( , ) C ( , , ) C ( , , ) C ( , , , , )pt u pta PHa Int Qa sa V z q Q s PH   

               pt pta PH PHa Q Qa s sa= = = =   

(21) 

In (21) the newly introduced artificial constraints hold the coupling of the problem. Hence, we relax them by 
associating Lagrange multipliers λ BPTB, λ BPHB, λ BQB, λ BSB and writing the corresponding dual problemTP

3
PT: 

λ λ λ λ
⎡ ⎤+ α + λ − + λ − + λ − + λ −⎣ ⎦

T T T T

, , , , , , , , , , , ,
maximize  minimize  ( ) ( ) ( ) ( ) ( ) ( )  

PT PH Q s
PT PH Q Su pt pta z q Q s PH PHa Int

c pt V pt pta PH PHa Q Qa s sa  
 T HT HH HUCon: C ( , ) C ( , , ) C ( , , ) C ( , , , , )pt u pta PHa Int Qa sa V z q Q s PH∩ ∩ ∩  

(22) 

Problem (22) can be rewritten as follows: 

                                        
TP

3
PT From now on, the Euclidean inner product of two vectors, λ and v, will be denoted by λ P

T
Pv = Σ BiBλ B iBv BiB . 
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T HT HH HUC
[ , , , ]

maximize  D1( ) : D1 ( )+D1 ( )+D1 ( )+D1 ( )
PT PH Q Sλ= λ λ λ λ

λ = λ λ λ λ  (23) 

where: 
T

T ,
D1 ( ) min  ( ) PTu pt

c pt ptλ = +λ  
 Ton: C ( , )pt u  

(24) 

T T
HT , ,

D1 ( ) min  PT PHpta PHa Int
pta PHa⎡ ⎤λ = − λ +λ⎣ ⎦  

 HTon: C ( , , )pta PHa Int  
(25) 

T T
HH ,

D1 ( ) min  ( ) Q sQa sa
V Qa saλ = α −λ −λ  

 HHon: C ( , , )Qa sa V  
(26) 

T T T
HUC , , , ,

D1 ( ) min  PH Q sz q Q s PH
PH Q sλ = λ + λ +λ  

 HUCon: C ( , , , , )z q Q s PH  
(27) 

In the LR approach, the primal problem (20) is replaced by the dual problem (23) whose objective function 
D1(λ), can be split as the sum of four terms, corresponding to subproblems (24)-(27). Subproblem (24) is a 
nonlinear optimization problem with continuous and binary variables, coupled along time steps, but not 
along plants. It can be solved by a classic Dynamic Programming method; as in [1],[5]. Subproblem (25) is a 
standard linear programming problem, coupled along plants, but not along times steps, which can be solved 
by any Linear Programming (LP) commercial solver. Subproblem (26) is also an LP problem, coupled both in 
time and space via the stream-flow constraints given by (6). Even though (26) can be large-scale, it can still be 
solver by an LP solver. Finally, subproblem (27) is a nonlinear mixed-integer optimization problem, uncou-
pled both in time and units. This subproblem corresponds to the commitment of hydro units, for a given 
reservoir and time step. The higher J(r) and Φ BjrB (the number of units in the reservoir and of operating zones, 
respectively) are, the bigger computational effort will be required to solve (27).  

Each sub-subproblem in (27), for each time step and for a given power plant, is a mixed-integer NLP prob-
lem, with binary variables corresponding to different operating modes in the plant. The total number of pos-
sible operating modes is given by the product of all combinations of the operating modes of all the units 
composing the plant. Each combination of a unit is a configuration where the corresponding binary variables 
are fixed to one of the feasible values. Once the binary values are fixed, the problem becomes a nonlinear 
program, whose size is dependent on J(r).  

Generally, hydropower plants have identical units, and each unit has a single operating zone. In this case, 
the total number of modes is no longer 2P

J(r)
P, but J(r)+1 and, thus, a complete enumeration of modes seems a 

good strategy. Sometimes, however, there are power plants with many different types of units, and several 
operating modes. For these configurations, an enumeration procedure may become too expensive from the 
computational point of view. We now introduce an alternative decomposition scheme, adapted to such 
situations. 

4.2 Second Decomposition Strategy – D2 

In order to avoid the enumerative process required to solve subproblem (27), we eliminate the coupling be-
tween the binary variable z and the continuous variables [q,Q,s] which appear in CBHUC B. Therefore, we rewrite 
(20) as follows: 

, , , , , , ,
minimize   ( ) ( )

u pt z q Q s PH Int
c pt V+α  

T HT HH HUCa HUCb HUCreson: C ( , ) C ( , , ) C ( , , ) C ( , , , ) C ( , , , ) C ( , )pt u pt PH Int Q s V q Q s PH z q Q s z PH∩ ∩ ∩ ∩ ∩  
(28) 

Now the set CBHUCaB gathers constraints given by (9) and (11), C BHUCb B contains (10) and (13) and C BHUCres B corre-
sponds to the reserve constraint (12). Besides the artificial variables used in (21), we use pha to replace the 
hydro production function ph(q,Q,s) in the set CBHUCb B, and rewrite (28) as: 

, , , , , , , , , , ,
minimize   ( ) ( )

u pt pta z q Q Qa s sa PH PHa Int
c pt V+α  

T HT HH HUCa HUCb HUCreson: C ( , ) C ( , , ) C ( , , ) C ( , , , ) C ( , ) C ( , )pt u pta PHa Int Qa sa V q Q s PH z pha z PH∩ ∩ ∩ ∩ ∩  

                  ( , , )pt pta PH PHa Q Qa s sa ph q Q s pha= = = = =   

(29) 
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Now not only the artificial constraints, but also the constraint set C BHUCres B keep the problem coupled. Hence, 
we relax these constraints by introducing multipliers λ BPTB, λ BPHB, λ BQB, λ BSB, λ Bph B and λ BRes B and writing the dual prob-
lem: 

T T T T

, , , , , , , , , , , , , ,
maximize  minimize  ( ) ( ) ( ) ( ) ( ) ( )

PT PH Q s
PT PH Q Su pt pta z q Q Qa s sa PH PHa Int

c pt V pt pta PH PHa Q Qa s sa
λ λ λ λ

⎡ + α + λ − + λ − + λ − + λ − +⎣  

 T T max
Re[ ( , , ) ] [ ]ph sph q Q s pha PH ph z rh ⎤λ − + λ − + ⎦  

 T HT HH HUCa HUCbon: C ( , ) C ( , , ) C ( , , ) C ( , , , ) C ( , )pt u pta PHa Int Qa sa V q Q s PH z pha∩ ∩ ∩ ∩  

(30) 

Here, ph P

max
P and rh are vectors corresponding to a unit’s maximum capacity and to reserve levels for the 

plant, respectively. Separability in (30) has now the expression: 

Re

T
T HT HH HUCa HUCb Re

[ , , , , , ]
maximize  D2( ) : D1 ( ) D1 ( ) D1 ( ) D2 ( ) D2 ( )  

PT PH Q S ph s
srh

λ= λ λ λ λ λ λ
λ = λ + λ + λ + λ + λ +λ  (31) 

where D1 BTB(λ), D1 BHTB(λ), D1 BHH B(λ) are the dual functions from (24), (25) and (26). The remaining terms are: 
T T T T

HUCa Re, , ,
D2 ( ) min  ( , , )s ph Q sq Q s PH

PH ph q Q s Q sλ = λ +λ + λ +λ  
 HUCaon: C ( , , , )q Q s PH  

(32) 

T T max
HUCb Re,

D2 ( ) min  ph sz pha
pha ph z⎡ ⎤λ = − λ + λ⎣ ⎦  

 HUCbon: C ( , )z pha  
(33) 

Subproblem (32) is an NLP problem (with only continuous variables), for each time step and power plants. 
Subproblem (33) is a mixed-integer linear program on variables corresponding to a single unit, which can be 
solved by enumeration of the operating zones. 

4.3 Third Decomposition Strategy – D3 

Our last decomposition combines D1 and D2. Accordingly, we employ D1 for those plants with a reduced 
number of units and operating zones, while D2 is applied for plants for which D1 would be too expensive. 
We split the hydro plants index set into R(Γ) and R(Ξ), corresponding, respectively, to plants where (27)  and 
(32)-(33) is applied: 

, , , , , , ,
minimize   ( ) ( )

u pt z q Q s PH Int
c pt V+α  

( ) ( )
T HT HH HUC HUCaon: C ( , ) C ( , , ) C ( , , ) C ( , , , , ) C ( , , , )r R r Rpt u pt PH Int Q s V z q Q s PH q Q s PH∈ Γ ∈ Ξ∩ ∩ ∩ ∩ ∩  

 ( ) ( )
HUCb HUCresC ( , , , ) C ( , )r R r Rz q Q s z PH∈ Ξ ∈ Ξ∩  

(34) 

We proceed like for D1 and D2, but splitting the reservoir index sets: 

, , , , , , , , , , ,
minimize   ( ) ( )

u pt pta z q Q Qa s sa PH PHa Int
c pt V+α  

( ) ( )
T HT HH HUC HUCaon: C ( , ) C ( , , ) C ( , , ) C ( , , , , ) C ( , , , )r R r Rpt u pta PHa Int Qa sa V z q Q s PH q Q s PH∈ Γ ∈ Ξ∩ ∩ ∩ ∩ ∩  

 ( ) ( )
HUCb HUCresC ( , , , ) C ( , )r R r Rz q Q s z PH∈ Ξ ∈ Ξ∩  

            ( , , ) , ( )pt pta PH PHa Q Qa s sa ph q Q s pha r= = = = = ∈ Γ Ξ  

(35) 

After relaxation, the dual problem of (35) is: 

Re
T HT HH HUC HUCa HUCb

[ , , , , , ]
maximize  D3( ) : D1 ( ) D1 ( ) D1 ( ) D1 ( ) D2 ( ) D2 ( ) 

PT PH Q S ph sλ= λ λ λ λ λ λ
λ = λ + λ + λ + λ + λ + λ  (36) 

The dual functions D1 BTB(λ), D1 BHTB(λ), D1 BHH B(λ) are those in (24), (25) and (26), respectively. The dual function 
D1 BHUC B(λ) from (27) only applies for reservoirs with index r ∈ R(Γ). The remaining dual functions in (36) ap-
ply to reservoirs r ∈ R(Ξ), and are given by subproblems (32)-(33). 

4.4 Nonlinear Programming Subproblems 

A crucial issue for an effective application of LR is the fast resolution of subproblems giving the dual func-
tion for a fixed multiplier λ. Since many of such subproblems are nonlinear programs, we implemented a 
Sequential Quadratic Programming (SQP) quasi-Newton method. More precisely, each iteration k of the 
algorithm generates a direction p P

k
P by solving the quadratic programming problem: 

( )TTminimize  ( ) 0.5
k

k k k k k

p
 f x p p M p∇ +  

 s.t.: T( ) ( ) 0k k k
e ec x p c x∇ + =  

T( ) ( ) 0k k k
i ic x p c x∇ + ≤  

(37) 
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Here, f(x P

k
P), c BeB(x P

k
P) and c BiB(x P

k
P) represent, respectively, the objective and equality and inequality constraint func-

tions at a point x P

k
P. The matrix M P

k
P estimates the Lagrangian Hessian for the NLP, L P

k
P. In order to avoid the 

calculation of second-order derivatives, and to preserve positive definiteness of the sequence of quasi-
Newton matrices, we use a BFGS (Broyden-Fletcher-Goldfarb-Shanno) [16,17], formula, appended with a 
Powell correction [16]: 

T T
1

T T

( ) ( )
( ) ( )

k k k k k k
k k

k k k k k

M s s M r zM M
s M s s r

+ = − +  (38) 

where: 
1k k ks x x+= −  

1k k k
x xz L L+=∇ −∇  (39) 

(1 )k k k k k kr z M s= θ + −θ  (40) 
T T

T
T T

T T

1 ( ) 0,20( )
0,8( ) ( ) 0,20( )

( ) ( )

k k k k k

k k k k
k k k k k

k k k k k

se s z s M s
s M s se s z s M s

s M s s z

⎧ ≥
⎪θ = ⎨

<⎪ −⎩
 (41) 

Globalization of the method is achieved by performing a line search on the following functionTP

4
PT: 

#( , ) ( ) ( )k k k kx f x c x
∞

φ σ = +σ
 (42) 

known as Han’s TP

 
PTmerit function [9]. Since φ(x P

k
P,σ P

k
P) is an exact penalty function, there is a finite positive value 

Uσ UP

k
P such that an unconstrained minimum of φ(x P

k
P,σ P

k
P) solves the original NLP for all σ P

k
P ≥ Uσ UP

k
P. We update the 

parameter σ P

k
P accordingly. More precisely, the directional derivative of the merit function along the direction 

satisfies the relation: 
T # T T #[ ( , ); ] ( ) ( ) ( ) ( ) ( ) ( )k k k k k k k k k k k k k kD x p f x p c x p M p c x c x

∞ ∞
φ σ ≤∇ −σ ≤ + ζ −σ  (43) 

where ζ is the Lagrange multiplier associated with constraints in (37). For any stationary point of (42), such 
as p P

k
P, it can be shown that the estimate in (43) gives a descent direction for φ if M P

k
P is positive definite and σ P

k
P is 

updated in order to satisfy: 
k k

∞
σ ≥ ζ +δ

 0>δ  (44) 

We exit the line search when the Armijo [18] condition is satisfied: 
( ) ( )k k k k k kx p xφ +α ≤φ +ωα∆  (45) 

here, ω ∈]0,1/2[ and α is the positive stepsize. Ideally, ∆P

k
P should be the exact value of the directional deriva-

tive. We estimate it by the upper bound from (43): 
T #: ( ) ( )k k k k kf x p c x

∞
∆ =∇ −σ  (46) 

Finally, we add an extra term to p P

k
P in order to avoid Maratos effect [19]. This phenomenon may impair the 

superlinear local convergence rate by rejecting unit stepsizes when close to a solution. The corrected direc-
tion p PU

k
UP, as shown in [9], ensure that asymptotically there is enough constraint reduction. The extra constraint 

evaluations required by our correction is compensated by the robustness and efficiency gained by the 
method. 

5. Numerical Results 

We assess the three decomposition schemes on a real-life hydroelectric configuration extracted from the 
Southern region of the Brazilian hydrothermal power system. More precisely, we consider a system with 121 
generating units whose maximum installed capacity is 31.129,2 MWTP

5
PT. Figure 2 reports the data for the sys-

tem, where power plants numbered #3, #4, #6 and #14 have production functions independent of spillage. 
Values between brackets in Fig. 2 correspond to water travel times, expressed in hours. For this configura-
tion, the biggest power plants are #7 and #16, with 20 units each one, while the smallest plant, #14, has only 
2 units. The planning horizon of two days is discretized in hourly time steps, yielding T=48. Initial reservoir 

                                        
TP

4
PT The symbol P

#
P is used to denote only active constraints at x P

k
P. 

TP

5
PT This amount corresponds to about 49% of the total hydraulic capacity of Brazil. 



9 

 

volumes were taken at 50% of the usable volumes, TP

 
PTwhile the inflows were considered null. We do not ad-

dress here the dual solution in detail, we refer to [5] for this subject. Instead, we fixed Lagrange multipliers 
for each reservoir and time step, λ BPHrt B, and use a proximal quasi-Newton variant of a bundle method to op-
timize the remaining multipliers; see Ch. 9 in [9]. The values for λ BPHrt B are chosen based on generation costs 
associated with typical demand curves, i.e., with higher values for peak times with high demandTP

6
PT. 
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Figure 2 – Hydroelectric Configuration. 

 

We implemented the three dual subproblems D1 BUCH B, D2 BUCH B, D3 BUCH B, corresponding respectively to (27), (32)-
(33) and (36). For the dual solution we use N1CV2 code; see [20].  Subproblem D1 BUCH B has (R+Rv)×T vari-
ables, where Rv denotes the number of reservoirs with production function depending on spillage. Since 
T=48, R=18 and Rv =14, subproblem (27) has 1536 variables. In (32)-(33) subproblem D2 BUCH B has 
(2×R+Rv+ngmix)×T=8208 variables, where ngmix = 121 denotes the total number of units in the mix. The size 
of subproblem D3 BUCH B depends on the decomposition scheme. The LP given by D1 BHH B (26), as well as other 
LPs are solved using ILOG CPLEX 7.1 solver. For D1 BUCH B there are, in addition, 6288 NLP problems. Finally, 
for D2 BUCH B there are R×T = 864 NLP and T×ngmix = 5808 easy mixed-integer LP problems TP

7
PT. 

For D1 BUCH B we found an optimal value of $ -17.339.230,0, after 175 iterations, that took 180 minutes of CPU 
times in a Pentium III 550 MHz computer with 128 Mb of RAM memory. For D2 BUCH B the optimal value found 
was $ -17.450.168,0, after 325 iterations in 50 minutes. Since the dual value in D2 BUCH B is smaller than the one 
from D1 BUCH B, and dual values give lower bounds for the primal optimal value, we can conclude that primal 
variables associated with D1 BUCH B are better than those associated with D2BUCH B.  

To further assess the previous remark, we now consider in more detail some selected primal variables, for 
some specific reservoirs. Figures 3 and 4 show the values for Q and Qa obtained at the last iteration of both 
D1 BUCH B and D2 BUCH B for Sobradinho #18 power plant. We also show the value of λ BPHrt B (price) used to solve the 
subproblems. 

                                        
TP

6
PT These costs presented values between 0 and 45 $/MW. 

TP

7
PT These are indeed easy to solve problems, with only two variables (one integer, one continuous), and two constraints. 



10 

 

0

1000

2000

3000

4000

1 7 13 19 25 31 37 43
Stages (h)

Tu
rb

in
ed

 O
ut

flo
w 

(m
3/

s)

0

5

10

15

20

25

30

35

40

Pr
ic

e (
$/

M
W

)

Price Q Qa

 
Figure 3 – Sobradinho Power Plant #18 – D1 BUCHB. 
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Figure 4 – Sobradinho Power Plant #18 – D2 BUCHB. 

It can be seen in the figures that Qa takes mostly two values: 0 and 4278 mP

3
P/s (maximum value). This bang-

bang behaviour is explained by the linear nature of subproblem (26). The values for Q exhibit a different be-
haviour, closer to the price profile, i.e., to λ BPHrt B. From the comparison of D1 BUCH B and D2 BUCH B we see that the 
relaxed primal constraintTP

8
PT is more violated for D2 BUCH B, a problem that contains a higher number of relaxed 

constraints. However, infeasibility becomes smaller for time steps with bigger λ BPHrt B, i.e., for peaks of demand. 
For these time steps, primal points obtained with D2 BUCH B are good approximations to those from D1 BUCH B, re-
quiring a computational effort that can be up to 3 times bigger. For lower prices, both problems give primal 
points that are even more infeasible, the worse values being associated with D2BUCH B.  

The results observed for Sobradinho power plant are typical for all the plants in the mix, with variations in 
the computed primal infeasibility. In general, we observed that for reservoirs downstream, that tend to op-
erate with outflows near to the nominal values, primal points obtained from D2 BUCH B were close to those from 
D1 BUCH B. We report this behaviour in Figures 5 and 6, with the results for Ilha Solteira – 7 power plant. 

                                        
TP

8
PT The difference between Q and Qa. 



11 

 

0

2000

4000

6000

8000

10000

1 7 13 19 25 31 37 43
Stages (h)

Tu
rb

in
ed

 O
ut

flo
w 

(m
3/

s)

0

5

10

15

20

25

30

35

40

Pr
ic

e (
$/

M
W

)

Price Q Qa

 
Figure 5 – Ilha Solteira Power Plant #7 – D1 BUCHB. 
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Figure 6 – Ilha Solteira Power Plant #7 – D2 BUCHB. 

We conclude from our experiments that, in terms of primal solutions, subproblem D1 BUCH B is a better option. 
However, since average hourly CPU times for D1 BUCH B are 3.5 higher than D2 BUCH B, the enumerative process 
required by D1 BUCH B should not be used for power plants with complex configurations, such as #7 and #16. In 
Table 1 we report the main results for the third decomposition scheme, D3BUCH B, where for R(Ξ)={7,16} we 
applied the scheme corresponding to (32)-(33). We also give, for comparison purposes, the previously ob-
tained values for D1 BUCH B and D2 BUCH B.  

Table 1 – Numerical Results. 
Dual Problem D1 BUCH B D2 BUCH B D3 BUCH B 

Cost ($) -17.339.230 -17.450.168 -17.359.077 
Iteration 175 275 220 

Time (minutes) 180 50 70 
Variables 1536 8208 2592 

Number of PNLTP

9
PT 6288 864 4560 

The computational effort required for solving subproblems involving the big plants #7 and #16 (with identi-
cal 20 units each), is clear in Table 1. Even though D3 BUCH TPB

 10
PT needs to solve 27,50% NLP problems less than 

D1 BUCH B, in terms of CPU times the gain was of 61,11%. Another important matter shown by Table 1 concerns 
dual optimal values: the (absolute value) difference between D2 BUCH B and D1 BUCH B is of $ 110.938, while the dif-
ference between D3 BUCH B and D1 BUCH B is $ 19.847, i.e., about 5.5 smaller. 

Finally, it should be kept in mind that the approach presented here only addresses the dual solution, whose 
associated optimal primal points are infeasible for the original problem. In order to recover primal feasibility, 
a purification-like phase should be executed afterwards. Such processes are often based on heuristics de-
pending on the particular problem structure; see for example [21,22]. In particular, for the Brazilian case, 

                                        
TP

9
PT Total number of NLP problems solved at each iteration. 

TP

10
PT Ilha Solteira #7 and Tucuruí #16 power plants are the only ones where (27), requiring the enumerative process, was not employed; we 

use (32)-(33) instead. 



12 

 

general-purpose combinatorial optimization heuristics are not suitable. An augmented Lagrangian tech-
nique seems in this case better, we refer to [5] for a description of this technique in a similar context. 

5.1  Sequential Quadratic Programming Algorithm 

In our work, NLP problems have ng+2 variables and 2ng+2 constraints, where ng is the number of generat-
ing units in the considered configuration (in our example ng ≤ 20). SQP algorithms do not need starting fea-
sible points; in our implementation starting points only satisfy constraints (6) and (10) (i.e., both the penstock 
stream-flow equations and power limit constraints), but not the reserve constraint (12). In addition, to pre-
vent the starting quadratic program (37) to be infeasible, we introduced additional constraints on the direc-
tion obtained from (37), aimed at satisfying physical operating bounds. Such bounds are related to each unit 
maximum turbined outflow, as well as maximum spillage levels. We mention that more sophisticated alter-
natives would be possible, for instance considering active constraints as [23], or introducing slack variables 
in a trust-region SQP, as in [24].  

To solve each quadratic program (37), we use the Fortran code PLCBAS, an active set QP solver described in 
[25]. Once the direction is computed, the algorithm checks validity of (45) and then performs, if needed, two 
different correction strategies to avoid Maratos effect. More precisely, we first implemented a correction on 
the constraint reduction. With this correction, the algorithm was sometimes stalling and stopped after hav-
ing attained the maximum number of simulations. We then implemented a second correction, to be used 
only after a certain number of simulations has been done inside of the same iteration. This correction accepts 
higher values of the merit function, if close to a solution. With this combination of corrections, the efficiency 
of the method was sensibly improved. 

We use the following stopping test: 
#_ ( )k kopt test L c x eps

∞ ∞
= ∇ + ≤

 (47) 

with eps = 1,0×10 P

-8
P. Emergency exits, after 300 iterations of 600 simulations were also implemented. The ob-

served average values for achieving convergence were of 8 iterations and 10 simulations. 

In order to assess our self-made algorithm, we compare its performances the NLP solver Easy!, available for 
academic applications from the TOptimization Group of Campinas [26] T. This solver uses the augmented La-
grangian method described in [27]. We obtained identical results, with inferior CPU times than those em-
ployed by Easy!. However, we did not take advantage of all resources available in Easy! solver TP

11
PT. Further-

more, our own implementation was tailored for the structure of our specific problem. We mention that more 
sophisticated alternatives would be possible, for instance considering active constraints as [23], or introduc-
ing slack variables in a trust-region SQP, as in [24].  

 

6 Concluding Remarks 

We address in this work the problem of optimal commitment of hydraulic generating units in a hydrother-
mal power system. Two main topics were discussed, namely the modeling and solution strategy for the hy-
draulic problem. We gave a detailed modeling for the production function of each hydro unit, which takes 
into account the effect of variable efficiency rates, hydraulic losses, tailrace levels, as well as multiple operat-
ing zones. With respect to the solution methodology, we gave an LR decomposition approach using variable 
duplication to uncouple difficult constraints. We assessed the decomposition method by implementing our 
approach and testing it on a real-life hydraulic configuration, extracted from the Brazilian system. Our im-
plementation focused on the hydraulic subproblems. We analyzed in detail the practical applicability of 
three decomposition schemes, in terms of CPU times and obtained primal points. For our configuration, the 
enumerative process appeared preferable for most power plants. For the whole Brazilian system, double in 
size to our test, this approach might become too expensive and a combined strategy, like the one given in 
our third decomposition scheme, may be preferable. 

                                        
TP

11
PT Easy! solver is more efficient when analytic derivatives are available for the simulations; otherwise a finite difference approximation 

needs to be estimated at each simulation. 
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