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Abstract

In this paper we investigate complex uniruled varieties X whose ra-

tional curves of minimal degree satisfy a special property. Namely, we as-

sume that the tangent directions to such curves at a general point x ∈ X

form a linear subspace of TxX. As an application of our main result, we

give a unified geometric proof of Mori’s, Wahl’s, Campana-Peternell’s and

Andreatta-Wísniewski’s characterizations of P
n.

1 Introduction

Let X be a smooth complex projective variety, and assume that X is uniruled,
i.e., there exists a rational curve through every point of X . Let H be a covering
family of rational curves on X having minimal degree with respect to some
fixed ample line bundle. For each x ∈ X denote by Cx the subvariety of the
projectivized tangent space at x consisting of tangent directions to rational
curves from H passing through x. We are interested in varieties X for which
Cx is a linear subspace of P(TxX) for general x ∈ X . We prove the following
result.

Theorem 1.1. Suppose Cx is a d-dimensional linear subspace of P(TxX) for a
general point x ∈ X. Then there is a dense open subset X0 of X and a Pd+1-
bundle ϕ0 : X0 → T 0 such that any curve from H meeting X0 is a line on a
fiber of ϕ0.

In fact we prove a stronger result, as we allow Cx to be a union of linear
subspaces of P(TxX) for general x ∈ X (see Theorem 3.1). We remark that
the variety Cx has been studied in a series of papers by Hwang and Mok (see
[Hwa01]).

As an application, we provide a unified geometric proof of the following
characterization of Pn.
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Theorem 1.2. Let X be a smooth complex projective n-dimensional variety.
Assume that the tangent bundle TX contains an ample locally free subsheaf E
of rank r. Then X ∼= Pn and either E ∼= OPn(1)⊕r or r = n and E = TPn.

The first instance of this theorem, namely the case E ∼= TX , was proved by
Mori in [Mor79]. In his proof, Mori recovers the projective space by studying
rational curves of minimal degree passing through a general point of X . Then,
in [Wah83], Wahl settled the case that E is a line bundle. Wahl’s proof is
very different from Mori’s. It relies on the theory of algebraic derivations in
characteristic zero. It does not make any use of the geometry of rational curves
on X . Recently Druel gave a geometric proof of Wahl’s theorem in [Dru04].
His proof is based on studying the foliation by curves defined by the inclusion
E ↪→ TX , and applying a criterion for algebraicity of the leaves. In [CP98],
Campana and Peternell proved the theorem in the cases r = n, n− 1 and n− 2.
The proof was finally completed by Andreatta and Wísniewski in [AW01]. Their
proof uses the geometry of minimal covering family of rational curves on X . It
relies, on one side, on Mori’s theorem, and on the other side, on Wahl’s theorem.

Our proof follows the lines of Mori’s proof of the Hartshorne conjecture
in [Mor79]. Here is the outline. An n-dimensional variety X whose tangent
bundle contains an ample locally free subsheaf is uniruled. So we fix a covering
family of rational curves of minimal degree on X , and consider the variety
Cx ⊂ P(TxX) of tangent directions to curves passing through x ∈ X . We
translate the existence of an ample locally free subsheaf of TX into projective
properties of the embedding Cx ↪→ P(TxX), and show that Cx is a linear subspace
of P(TxX) for general x ∈ X . By Theorem 1.1, there is a Pd+1-fibration on a
dense open subset of X , which can be extended in codimension 1 following an
argument in [AW01]. If d + 1 < n, then the relative tangent bundle of such
fibration inherits the ampleness properties of TX . We reach a contradiction by
applying a result by Campana and Peternell ([CP98]).

Throghout the paper we work over C. In section 2 we gather some properties
of minimal families of rational curves and the embedding Cx ↪→ P(TxX). In
section 3 we investigate varieties X for which Cx is a union of linear subspaces
of P(TxX) for general x ∈ X . In section 4 we give a unified proof of Theorem 1.2.

Notation. In our discussion on rational curves we follow the notation of [Kol96].
By a general point of a variety X , we mean a point in some dense open subset of
X . If E is a vector bundle on a variety X , we denote by P(E) the Grothendieck
projectivization ProjX(Sym(E)). If V is a complex vector space, we denote by
P(V ) the natural projectivization of V . (So P(V ) = P(V ∨).)

2 Tangent directions to rational curves of mini-

mal degree

Let X be a smooth complex projective variety, and assume that X is uniruled.
Let H be an irreducible component of RatCurvesn(X). We say that H is a
covering family if the corresponding universal family dominates X . A covering
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family H of rational curves on X is called minimal if, for a general point x ∈ X ,
the subfamily of H parametrizing curves through x is proper. It is called unsplit
if H itself is proper.

Fix a minimal covering family H of rational curves on X (for instance, one
can take H to be a covering family having minimal degree with respect to some
fixed ample line bundle on X).

Let x ∈ X be a general point and denote by Hx the normalization of the
subscheme of H parametrizing rational curves passing through x. Let πx : Ux →
Hx and ηx : Ux → X be the universal family morphisms,

Ux
ηx

−−−−→ X,

πx





y

Hx

so that Ux is normal and πx is a P1-bundle (see [Kol96, II.2.12]). Denote by
locus(Hx) the closure of the image of ηx (with the reduced scheme structure).
We remark that a rational curve smooth at x is parametrized by at most one
element of Hx.

Notation 2.1. Let f : P1 → X be a morphism birational onto its image
such that f(o) = x. We denote by [f ] the element of V (or Vx) parametrizing
f . Sometimes we also denote by [f ] the point ϕx([f ]) ∈ Hx parametrizing the
image of f . It should be clear from the context whether we view [f ] as a member
of Hom(P1, X) or RatCurvesn(X).

Next we gather some important properties of minimal covering families of
rational curves.

Proposition 2.2. Let the notation be as above and x ∈ X a general point .

1. For every [f ] ∈ Hx, f∗TX
∼=

n
⊕

i=1

O(ai), with all ai ≥ 0.

2. Hx is a smooth projective variety of dimension d := deg(f ∗TX) − 2.

3. If [f ] is a general member of any irreducible component of Hx, then
f∗TX

∼= O(2) ⊕O(1)⊕d ⊕On−d−1.

4. Every curve parametrized by Hx is immersed at x (i.e., dfo is nonzero for
every o ∈ P1 such that f(o) = x).

5. The dimension of the subscheme of Hx parametrizing curves singular at
x is at most the dimension of the subscheme of Hx parametrizing curves
with cuspidal singularities (not necessarily at x).

6. If all the curves parametrized by Hx are smooth at x, then the restriction
of ηx to each irreducible component of Ux is birational onto its image.
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Proof. Property (1) follows from [Kol96, II.3.11] and the assumption that x
is a general point. Property (2) follows from [Kol96, II.1.7, II.2.16] and the
assumption that H is a minimal covering family. Property (3) follows from
[Kol96, IV.2.9].

Properties (4) and (5) can be found in [Keb02]. Property (5) is not explicitly
stated in [Keb02], but follows from the proof of [Keb02, Theorem 3.3].

Property (6) is due to Miyaoka (see [Kol96, V.3.7.5]).

Definition 2.3. Define the tangent map τx : Hx 99K P(TxX) by sending a
curve that is smooth at x to its tangent direction at x.

Define Cx to be the closure of the image of τx in P(TxX).

Theorem 2.4. Let the notation be as above. Then

1. ([Keb02]) τx : Hx → Cx is a finite morphism,

2. ([HM04]) τx : Hx → Cx is birational, and thus

3. τx : Hx → Cx is the normalization.

Notice that Cx comes with a natural projective embedding into P(TxX). It
turns out that, for a general member [f ] ∈ Hx, the “positive” directions of f∗TX

at x determine the tangent space of Cx at τx([f ]). This is made precise in the
next proposition.

Definition 2.5. Let f : P1 → X be a morphism birational onto its image such
that x = f(o). Define the positive tangent space at x ∈ X with respect to f to
be the following linear subspace of TxX :

TxX+
f := im[H0(P1, f∗TX(−1)) → (f∗TX(−1))o

∼= TxX ].

Proposition 2.6. Let [f ] ∈ Hx be a general element. Then P(TxX+
f ) ⊂ P(TxX)

is the projective tangent space of Cx at τx([f ]).

Proof. See [Hwa01, Proposition 2.3] or [AW01, Lemma 2.1].

From the splitting type of f∗TX one can check whether τx is an immersion
at [f ].

Proposition 2.7. The morphism τx is an immersion at [f ] ∈ Hx if and only
if f∗TX

∼= OP1(2) ⊕OP1(1)⊕d ⊕O⊕n−d−1
P1 , where d = deg(f∗TX) − 2.

Proof. Let H ′
x be an irreducible component of Hx. Let Vx be the corresponding

irreducible component of Hom(P1, X, o 7→ x), i.e., Vx parametrizes morphisms
(birational onto their images) whose images are parametrized by H ′

x. By Propo-
sition 2.2(4), every morphism parametrized by Vx is an immersion at o. So we
can define the morphism Tx : Vx → P(TxX) by setting Tx([f ]) = P(dfo(ToP1)).
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We have the following commutative diagram:

Vx

ϕx

��

Tx // P(TxX),

H ′
x

τx

::
v

v
v

v
v

v
v

v
v

where ϕx is a smooth morphism with fibers isomorphic to Aut(P1, o).

Fix [f ] ∈ Vx and write f∗TX
∼=

n
⊕

i=1

O(ai), with a1 ≥ · · · ≥ an ≥ 0, a1 ≥ 2,

and
n
∑

i=1

ai = 2 + d. Let us describe the tangent map dTx([f ]) : T[f ]Vx →

TTx([f ])P(TxX) explicitly.
There are isomorphisms T[f ]Vx

∼= H0(P1, f∗TX ⊗Io), where Io denotes the

ideal sheaf of o in P1 (see [Kol96, II.1.7]), and TTx([f ])P(TxX) ∼= TxX/T̂x([f ]),

where T̂x([f ]) denotes the 1-dimensional subspace of TxX corresponding to the
point Tx([f ]) ∈ P(TxX).

Fix a local parameter t of the local ring of o on P1. If v is a global section
of f∗TX vanishing at o, then dTx([f ])(v) is given by

dTx([f ])(v) =

[

d

dt
v(t)

∣

∣

∣

∣

t=o

]

∈ (f∗TX)o/ToP
1 ∼= TxX/T̂x([f ]).

So we see that im dTx([f ]) ∼= TxX+
f /T̂x([f ]).

Set l = dim im dTx([f ]) = ]{ai|ai > 0} − 1. Then l ≤ d =
n
∑

i=1

ai − 2, and

equality holds if and only if τx is an immersion at ϕx([f ]). Since a1 ≥ 2 and
ai ≥ 1 for 1 ≤ i ≤ l+1, this is equivalent to a1 = 2 and ai = 1 for 1 < i ≤ d+1,
i.e., f∗TX

∼= O(2) ⊕O(1)⊕d ⊕O⊕n−d−1.

Corollary 2.8. If every irreducible component of Cx is smooth, then

1. all curves parametrized by Hx are smooth at x, and

2. the restriction of the universal family morphism ηx : Ux → X to each
irreducible component of Ux is birational onto its image.

Proof. Since every irreducible component of Cx is smooth, τx is an immersion
by Theorem 2.4 (in fact, the restriction of τx to each irreducible component of
Hx is an isomorphism). Thus, by Proposition 2.7, f ∗TX = OP1(2)⊕OP1(1)⊕d⊕
O⊕n−d−1

P1 for every member [f ] ∈ Hx. From the splitting type of f∗TX we see
that no curve parametrized by Hx has a cuspidal singularity. The corollary then
follows from Proposition 2.2(5)–(6).
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3 The distribution defined by linear Cx

Let X be a smooth uniruled complex projective variety. Let H be a minimal
covering family of rational curves on X , and let Cx be the subvariety of P(TxX)
defined in section 2. In this section we study varieties X for which Cx is a union
of linear subspaces of P(TxX) for general x ∈ X .

Denote by π : U → H and η : U → X the universal family morphisms.
Consider the Stein factorization of η:

X ′

ρ

��
U

η
//

η′
22

π

��

X.

H

We may view H as a minimal covering family of rational curves on X ′.
The main result in this section is the following.

Theorem 3.1. Suppose that Cx is a union of d-dimensional linear subspaces of
P(TxX) for general x ∈ X. Let X ′ be as defined above. Then there is a dense
open subset U0 of X ′ and a Pd+1-bundle ϕ0 : U0 → T 0 such that any curve on
X ′ parametrized by H and meeting U 0 is a line on a fiber of ϕ0.

For a general point x ∈ X , denote by H i
x, 1 ≤ i ≤ k, the irreducible

components of Hx, and by Ci
x the image of H i

x under τx. Suppose that each Ci
x

is a d-dimensional linear subspace of P(TxX).
Viewing H as a minimal covering family of rational curves on X ′, Hx′ is

irreducible and Cx′ is a linear subspace of P(Tx′X ′) for a general point x′ ∈ X ′.
Moreover X ′ is smooth along locus(Hx′) (for η is smooth along π−1(Hx′) by
[Kol96, II.3.5.3, II.2.15]).

We obtain a rank d + 1 distribution D on a dense open subset of X ′ as
follows. For a general point x′ ∈ X ′, set Dx′ = Ĉx′ , the linear subspace of Tx′X ′

corresponding to Cx′ ⊂ P(Tx′X ′).

Lemma 3.2. Suppose that Cx is a union of linear subspaces of P(TxX) for
general x ∈ X. Let X ′ and D be as defined above. Then the distribution D is
tangent to locus(Hx′) for a general point x′ ∈ X ′. In particular, locus(Hx′) is
smooth at x′.

Proof. Let x′ ∈ X ′ be a general point and set Y := locus(Hx′). By Frobenius’
Theorem, we are done if we can show that TyY = Dy = Ĉy for a general point
y ∈ Y .

Let [f ] ∈ Hx′ be a general member and let y be a general point in the image
of f . Let o, p ∈ P1 be such that f(o) = x′ and f(p) = y. Let Vx′ be the
irreducible component of Hom(P1, X, o 7→ x′) corresponding to Hx′ . We have
the following commutative diagram:
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P1 × Vx′

��

//

F

%%
Ux′

πx′

��

ηx′

// X ′.

Vx′

ϕx′

// Hx′

By generic smoothness, the tangent space TyY is the image in TyX
′ of the

differential dF(p,[f ]). From the description of dF(p,[f ]) given in [Kol96, II.3.4],

together with Proposition 2.6, we see that this is precisely TyX
′+
f = Ĉy.

Next we describe locus(Hx′) for general x′ ∈ X ′.

Lemma 3.3. Suppose that Cx is a union of d-dimensional linear subspaces of
P(TxX) for general x ∈ X. Let X ′ be as defined above. Then, for a general
point x′ ∈ X ′, the normalization of locus(Hx′) is isomorphic to Pd+1. Under
this isomorphism, the rational curves on locus(Hx′) parametrized by Hx′ come
from lines on Pd+1 passing through a fixed point.

Proof. Set Y = locus(Hx′) and let n : Ỹ → Y be the normalization.
The subfamily HY = {[f ] ∈ H |f(P1) ⊂ Y } is a minimal covering family

of rational curves on Y . Moreover, x′ is a general point of Y (indeed, Y =
locus(Hy) for a general point y ∈ Y by Lemma 3.2). The subfamily HY,x′ of
HY parametrizing curves through x′ is just Hx′

∼= Pd.
Denote by πx′ : Ux′ → HY,x′ and ηx′ : Ux′ → Y the universal family mor-

phisms. Since πx′ is a P
1-bundle, Ux′ is smooth. Moreover, ηx′ is birational by

Proposition 2.2(6). We have the commutative diagram

Ỹ

n

��
Ux′

ηx′

//

η̃
x′

11

πx′

��

Y.

HY,x′

Since Y is smooth at x′, there is a unique point x̃ ∈ Ỹ such that n(x̃) = x′,
and Ỹ is smooth at x̃.

Let σ ⊂ Ux′ be the section of πx′ that is contracted to x̃ ∈ Ỹ by η̃x′ .
Then η̃x′ : Ux′ → Ỹ is a surjective birational morphism and restricts to an
isomorphism on Ux′ \ σ. In particular Ỹ is smooth. In this setting, a standard
argument by Mori (see [Kol96, V.3.7.8]) yields the result.

Proof of Theorem 3.1. Let X ′ be as defined above. By Lemmas 3.2 and 3.3,
together with Frobenius’ Theorem, there exists a dense open subset U 0 ⊂ X ′

and a morphism ϕ0 : U0 → T 0 such that the normalization of the closure of
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the general fiber of ϕ0 is isomorphic to Pd+1. By enlarging U0 if necessary, we
may assume that X ′ \ U0 is the indeterminacy locus of ϕ0. If d = n − 1, there
is nothing to prove. So we assume that dim T 0 ≥ 1.

Suppose that the general fiber of ϕ0 is not proper (so that its closure in-
tersects X ′ \ U0). Let t ∈ T 0 be a general point. Then there exists a point
y ∈ X ′ \ U0 and a positive dimensional irreducible subvariety T ′ ⊂ T 0 contain-
ing t such that y lies in the closure of every fiber of ϕ0 over T ′. Let Hy be the
subscheme of H parametrizing curves passing through y.

Let t′ ∈ T ′ be a general point, and x′ a general point in the fiber over t′.
By Lemma 3.3, the normalization of locus(Hx′) is isomorphic to Pd+1, and the
curves parametrized by Hx′ come from lines in Pd+1. This has two consequences.
First, there is an element [f ] ∈ Hx′ parametrizing a curve passing through y.
Since x′ is general, f∗TX′

∼= OP1(2)⊕OP1(1)⊕d⊕O⊕n−d−1
P1 , and thus dim[f ] Hy =

d by [Kol96, II.1.7, II.2.16]. Second, locus(Hx′) ⊂ locus(Hy). Since this holds
for a point x′ in a general fiber over T ′, we have that dim[f ] Hy ≥ d + 1,
contradicting the equality obtained above.

We conclude that the general fiber of ϕ0 is proper. By shrinking U0 and T 0

if necessary we get that ϕ0 : U0 → T 0 is a Pd+1-bundle.

When Hx is irreducible and Cx is a linear subspace of P(TxX), Theorem 3.1
yields a dense open subset X0 ⊂ X and a Pd+1-bundle ϕ0 : X0 → T 0. If
we further assume that H is an unsplit family, then ϕ0 can be extended in
codimension 1, as we show below.

Theorem 3.4. Suppose H is an unsplit family and Cx is a linear subspace
of P(TxX) for general x ∈ X. Then there is an open subset X0 ⊂ X whose
complement has codimension at least 2 in X, and a Pd+1-bundle ϕ0 : X0 →
T 0 over a smooth base satisfying the following property. Every rational curve
parametrized by H and meeting X0 is a line on a fiber of ϕ0.

Proof. We follow an argument in [AW01].
Let ϕ0 : X0 → T 0 be the Pd+1-bundle from Theorem 3.1. Let T → Chow(X)

be the normalization of the closure of the image of T 0 in Chow(X), and let U
be the normalization of the universal family over T . Denote by p : U → T and
q : U → X the universal family morphisms.

Let 0 ∈ T be any point. Set U0 = p−1(0) and let x, y ∈ U0 be arbitrary
points. We can find a 1-parameter family of fibers Ut = p−1(t), together with
points xt, yt ∈ Ut, such that Ut

∼= P
d+1 for t 6= 0, and limt→0(Ut, xt, yt) =

(U0, x, y).
Let lt ⊂ Ut be the curve parametrized by H joining xt and yt. Since H

is unsplit, the limit limt→0[lt] lies in H . It parametrizes an irreduclible (and
reduced) rational curve l ⊂ U0 joining x and y. This shows that U0 is irreducible.

Notice that q : U → X is birational and T has dimension n − d − 1. Let
E ⊂ U be an irreducible component of the exceptional locus E ′ of q. Since X
is smooth, E has codimension 1 in U . Set pE = p|E and E = p(E) ⊂ T .

Let Ut be an arbitrary fiber of p and assume that Ut ∩ E 6= ∅, i.e., t ∈ E .
Since E misses the general fiber of p, dim E ≤ dim T − 1 = n − d − 2. Set
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Et = p−1
E (t). Then d + 1 = dimUt ≥ dim Et ≥ dim E − dim E ≥ d + 1. Hence

dimUt = dim Et. Since Ut is irreducible, this implies that Ut = Et and thus
Ut ⊂ E.

Set S = q(E′) ⊂ X . This is a set of codimension at least 2 in X . The
restriction q|U\E′ : U \ E′ → X \ S is an isomorphism. The proper morphism
p|U\E′ : U \ E′ → T \ p(E′) induces a proper morphism X \ S → T \ p(E ′)
extending ϕ0. We replace X0 with X \ S and T 0 with T \ p(E′), obtaining a
proper morphism ϕ0 : X0 → T 0 with codim(X \ X0) ≥ 2, and whose general
fiber is isomorphic to Pd+1. By shrinking T 0 we may assume that it is smooth.
(For this we need to remove from T 0 a subset of codimension at least 2, and so
we still have codim(X \ X0) ≥ 2.)

Let C be a curve in T obtained as the intersection of n − d − 2 general
very ample divisors. Set C0 = C ∩ T 0 and XC0 = (ϕ0)−1(C0). By Bertini
Theorem, both C0 and XC0 are smooth. Moreover, the general fiber of the
induced fibration ϕC0 : XC0 → C0 is isomorphic to Pd+1. Since dim C0 = 1,
there exists a ϕC0-ample line bundle L on XC0 such that the restriction of L
to a general fiber of ϕC0 is isomorphic to OPd+1(1). Thus we can apply [Fuj75,
Corollary 5.4] and conclude that ϕC0 : XC0 → C0 is in fact a Pd+1-bundle.
By Bertini, after removing from T 0 a subset of codimension at least 2, we may
assume that ϕ0 : X0 → T 0 is in fact a Pd+1-bundle.

4 Proof of Theorem 1.2

Let X be a smooth complex projective n-dimensional variety. In this section
we assume that the tangent bundle TX contains a rank r ample locally free
subsheaf E and prove that X ∼= Pn.

We begin by noticing that X is uniruled. This follows from a theorem by
Miyaoka (see [Miy87] or Shepherd-Barron’s article in [Kol92]). We fix a minimal
covering family H of rational curves on X and set d = deg(f ∗TX) − 2, where
[f ] is any member of H . For a general point x ∈ X , consider the tangent map
τx : Hx → Cx ⊂ P(TxX), defined in section 2. Denote by H i

x, 1 ≤ i ≤ k, the
irreducible components of Hx, and by πi

x : U i
x → H i

x and ηi
x : U i

x → X the
corresponding universal family morphisms. Denote by locus(H i

x) the image of
ηi

x, and by Ci
x the image of τx|Hi

x
.

We use the description of Tτx([f ])Cx given in Proposition 2.6 to study the
projective embedding Cx ⊂ P(TxX) for general x ∈ X .

Proposition 4.1. Let the notation and assumptions be as above. Then, for a
general point x ∈ X, the following holds.

1. For every i ∈ {1, . . . , k}, Ci
x is a d-dimensional linear subspace of P(TxX).

Moreover, P(Ex) ⊂
k
⋂

i=1

Ci
x.

2. For every i ∈ {1, . . . , k}, the restriction τx|Hi
x

: H i
x → Ci

x is an isomor-
phism. As a consequence, all curves parametrized by Hx are smooth at x
and ηi

x : U i
x → X is birational onto its image for every i ∈ {1, . . . , k}.
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Proof. Fix an irreducible component H i
x of Hx, and let [f ] ∈ H i

x be a general
element. There is an injection of sheaves f ∗E ↪→ f∗TX

∼= OP1(2)⊕OP1(1)⊕d ⊕
O⊕n−d−1

P1 . Since E is ample, f∗E is a subsheaf of the positive part of f ∗TX ,

f∗T+
X = im[H0(P1, f∗TX(−1))⊗O → f∗TX(−1)]⊗O(1) ∼= OP1(2)⊕OP1(1)⊕d,

and so Ex ⊂ TxX+
f . Hence for a general element [f ] ∈ H i

x we have P(Ex) ⊂

Tτx([f ])Ci
x ⊂ P(TxX).

Now we apply Lemma 4.2 and conclude that each irreducible component C i
x

of Cx is a cone in P(TxX) whose vertex contains P(Ex).
But we also know that Hx is smooth and that τx : Hx → Cx is the nor-

malization. Therefore Lemma 4.3 implies that each Ci
x is a linear subspace of

P(TxX), and τx|Hi
x

is an isomorphism. The second part of (2) follows from
Corollary 2.8.

Lemma 4.2. Let Z be an irreducible closed subvariety of Pm. Assume there is
a dense open subset U of the smooth locus of Z and a point z0 ∈ Pm such that
z0 ∈

⋂

z∈U

TzZ. Then Z is a cone in P
m and z0 lies in the vertex of this cone.

Proof. We may assume that dim Z > 0. Consider the projection from z0, πz0
:

Z 99K Pm−1. Since z0 ∈ TzZ for general z ∈ Z, the tangent map to πz0
has

rank dim Z − 1 at a general point. So πz0
has 1-dimensional fibers, and thus

Z is a cone whose vertex contains z0. (Notice that in this proof we use the
characteristic 0 assumption).

Lemma 4.3. If Z is an irreducible cone in Pm and the normalization of Z is
smooth, then Z is a linear subspace of Pm.

Proof. Let x0, . . . , xm be the projective coordinates of Pm. We may assume that
Z is a cone with vertex P = (0 : · · · : 0 : 1) over a closed irreducible subvariety
V contained in the hyperplane section (xm = 0) of Pm.

Let IV ⊂ C[x0, . . . , xm−1] be the homogeneous ideal defining V in (xm =
0) ∼= Pm−1. By changing m if necessary we may assume that V is nonde-
generate in Pm−1. Then Z \ (xm = 0) has affine coordinate ring S(V ) =
C[x0, . . . , xm−1]/IV , and the integral closure of S(V ) is S ′ =

⊕

l≥0

H0(V, OV (l)).

Moreover, S′ can be written as S′ = C[y0, . . . , yM−1]/I ′ for some M > 1 and
some homogeneous ideal I ′ ⊂ C[y0, . . . , yM−1]. By changing M we may assume
that V ′ = ProjS′ is nondegenerate in P

M−1. Let C(V ′) = Spec S′ ⊂ A
M be the

affine cone over V ′. Then C(V ′) → Z \(xm = 0) is the normalization morphism.
Assume Z is nonlinear. Since V is nondegenerate in Pm−1, this is the same

as assuming that IV is generated by elements of degree ≥ 2.
Now consider the inclusion of graded rings S(V ) = C[x0, . . . , xm−1]/IV ↪→

S′ = C[y0, . . . , yM−1]/I ′, and denote by ϕi the image of xi in S′
1. Since

x0, . . . , xm−1 are linearly independent in S(V )1, ϕ0, . . . , ϕm−1 are linearly inde-
pendent in S′

1. But then M ≥ m > dim Z = dim C(V ′). Since we assume that
V ′ is nondegenerate, this implies that C(V ′) is a nonlinear cone, and hence not
smooth.
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The next step is to prove that Hx is in fact irreducible for general x ∈ X .
The idea is to produce a curve C through x such that, for every i ∈ {1, . . . , k},
there exists an element [fi] ∈ H i

x parametrizing C. Since C is smooth at x (by
Proposition 4.1(2)) there exists a unique point in Hx parametrizing C, and Hx

must be irreducible.
By Proposition 4.1(1), Cx is the union of linear subspaces of P(TxX) for

general x ∈ X . Fix x ∈ X and let i ∈ {1, . . . , k}. Set Yi = locus(H i
x). By

Lemma 3.3, the normalization of Yi is isomorphic to Pd+1. Under this isomor-
phism, the rational curves on Yi parametrized by H i

x come from the lines on
Pd+1 passing through a fixed point x̃i ∈ Pd+1. Let ni : Pd+1 → Yi be the
normalization morphism.

We claim that the vector bundle E|Yi
pulls back to a subsheaf of TPd+1 .

Indeed, the injection E ↪→ TX induces a map ΩX → E∨ of maximal rank. By
restricting to Yi, we get a map ΩX |Yi

→ E∨|Yi
of maximal rank. This map

factors through ΩYi
→ E∨|Yi

. (This is because the composite map IYi
/I2

Yi
→

ΩX |Yi
→ E∨|Yi

vanishes identically.) Lemma 4.4 below asserts that there is a
map ΩPd+1 → n∗

i E
∨|Yi

factoring n∗
i ΩYi

→ n∗
i E

∨|Yi
. By dualizing we get a sheaf

injection n∗
i E|Yi

↪→ TPd+1 .
Thus, n∗

i E|Yi
is an ample vector bundle on Pd+1 that is a subsheaf of TPd+1 .

So either n∗
i E|Yi

∼= OPd+1(1)⊕r, or r = d + 1 and n∗
i E|Yi

∼= TPd+1 .
In any case, there exists an r-dimensional linear subspace Mi of P

d+1, passing
through x̃i, for which (n∗

i E|Yi
)|Mi

↪→ TPd+1 |Mi
factors through TMi

↪→ TPd+1 |Mi
.

Set Z = ni(Mi) ⊂ Yi ⊂ X . Then Z is an r-dimensional subvariety of X
containing x and tangent to E along its smooth locus. By Frobenius’ Theorem,
Z is the unique subvariety of X with these properties. Hence Z = ni(Mi) for
every i ∈ {1, . . . , k}. Let C be the image in Z of a line through x̃i on Mi for
some i. Then, for every i, C comes from a line through x̃i on Mi, and thus there
exists an element [fi] ∈ H i

x parametrizing C. This shows that Hx is irreducible
as we noted above.

Lemma 4.4. Let Z be a variety, n : Z̃ → Z the normalization, and E a
vector bundle on Z. Assume there is a map ΩZ → E∨. Then the induced map
n∗ΩZ → n∗E∨ factors through n∗ΩZ → ΩZ̃ .

Proof. This result follows from a theorem by Seidenberg, which asserts that a
derivation of an integral domain over a ground field of characteristic 0 extends
to its normalization.

Let U = Spec A ⊂ Z be an affine open subset over which E is trivial, and
fix an isomorphism E|U ∼= O⊕r

U , where r = rankE.

Let Ã be the integral closure of A.
The restricted map ΩU → E|U ∼= O⊕r

U induces a homomorphism ΩA → A⊕r.
By composing with the r natural projections, pi : A⊕r → A, 1 ≤ i ≤ r, we obtain
r derivations Di : A → A, 1 ≤ i ≤ r. By the main theorem in [Sei66], each
of these derivations extends uniquely to a derivation D̃i : Ã → Ã. Such D̃i’s
determine a homomorphism ΩÃ → Ã⊕r extending ΩA → A⊕r.

Theorem 3.1 yields a dense open subset X0 of X and a Pd+1-bundle ϕ0 :

11



X0 → T 0. Since an ample vector bundle of rank r on a rational curve has degree
at least r, either H is an unsplit family, or d = 0, r = 1, and f ∗E ∼= OP1(2) for
every [f ] ∈ H . We analyse these two cases separately.

Case 1 (H is an unsplit family).
In this case we can apply Theorem 3.4 and assume that T 0 is smooth and

codim(X \ X0) ≥ 2.
Suppose that dim T 0 > 0. Let C ′ ⊂ X0 be a general smooth projective curve

such that C = ϕ0(C ′) is also a smooth projective curve. (Such a curve exists
because X and T 0 are smooth and X \ X0 has codimension at least 2.) Then
XC := (ϕ0)−1C → C is a Pd+1-bundle. Since C ′ is general, there is a sheaf
inclusion E|XC

↪→ TX |XC
. For general x ∈ XC we have Ex ⊂ (TXC/C)x ⊂ TxX .

The cokernel of the map TXC/C ↪→ TX |XC
is torsion free. Hence E|XC

is in fact
a subsheaf of the relative tangent sheaf TXC/C . But this contradicts Lemma 4.5
below, due to Campana and Peternell. Therefore T 0 is a point, X ∼= Pn and
under this isomorphism either E = TPn or E ∼= OPn(1)⊕r.

Lemma 4.5 ([CP98, Lemma 1.2]). Let T be a smooth complex projective
variety of positive dimension, E a vector bundle of rank k + 1 on T , and X =
P(E) → T the corresponding Pk-bundle. Then the relative tangent sheaf TX/T

does not contain any ample locally free subsheaf.

Case 2 (H is not proper, d = 0, r = 1 and f ∗E ∼= OP1(2) for every
[f ] ∈ H).

We have dim H > 0. Let C ′ ⊂ H be a general curve. Let C be the normal-
ization of the closure of C ′ in Chow(X). (Notice that, since H is not proper,
some points of C may parametrize nonintegral curves.) Let S be the normal-
ization of the universal family over C and denote by p : S → C and n : S → X
the universal family morphisms.

Let S′ = n(S) ⊂ X . Then n : S → S′ is birational. Since dim Hx = 0
for general x ∈ X , n does not contract any curve dominating C. Neither does
it contract any curve contained in a fiber of p. Hence n is the normalization.
By Lemma 4.4, the injection E|S′ ↪→ Ω∨

S′ lifts to an injection n∗E ↪→ Ω∨
S . For

convenience set L = n∗E.
The idea is to reach a contradiction as follows. We look at the minimal

resolution of S and contract the (−1)-curves that do not dominate C. In this
way we obtain a P1-bundle over C. We show that L induces an ample line
bundle on the resulting P1-bundle that is a subsheaf of the relative tangent
sheaf. But this is impossible by Lemma 4.5.

So let r : Y → S be the minimal resolution of S and set LY = r∗L (notice
that LY is an ample line bundle on Y ). By [BW74, Proposition 1.2], there is

a natural isomorphism r∗TY

∼=
−→ Ω∨

S . Therefore, from the natural isomorphism
HomY (LY , TY ) ∼= HomS(L, r∗TY ) (see [Har77, II.5]), we see that the map L →
Ω∨

S lifts to an injection LY ↪→ TY .
The induced morphism pY : Y → C can be obtained from a suitable P

1-
bundle pZ : Z → C by a composition of blowups, q : Y → Z. Set LZ = q∗LY .
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By pushing forward to Z and applying the projection formula, we see that
the inclusion LY ↪→ TY induces an inclusion LZ ↪→ TZ .

To show that LZ is an ample line bundle, it is enough to assume that q :
Y → Z is the inverse of a single blowup (then use induction on the number
of blowups). First note that LZ is in fact a line bundle on Y (it is reflexive
except possibly at finitely many points, and hence reflexive). So we can write
LY = q∗LZ + aD, where D is the exceptional curve, and a = −aD2 = −LY ·D
is a negative integer. The ampleness of LZ then follows from Nakai’s criterion.

For any fiber F of pZ we have LZ ·F > 0. Hence, for a general fiber F ∼= P1,
the map LZ |F ↪→ TZ |F ∼= OP1(2) ⊕OP1 factors through OP1(2) ∼= TF ↪→ TZ |F .
Since the cokernel of the map TZ/C ↪→ TZ is torsion free, this implies that there
is an inclusion LZ ↪→ TZ/C factoring LZ ↪→ TZ .

We have shown that LZ is an ample line bundle on Z that injects into TZ/C .
This is a contradiction as we noted above. So case 2 does not occur.
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