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Abstract

A contracting Lorenz attractor is obtained from the geometric Lorenz
attractor replacing the usual expanding condition A3+ A1 > 0 in the eigen-
values Ay < A3 < 0 < Ap at the origin by a contracting condition Ag+X; < 0
[R]. In this paper we analyse the appearence of contracting Lorenz attrac-
tors in the unfolding of certain resonant double homoclinic loops in dimen-
sion three. We prove that the corresponding unfolding yields contracting
Lorenz attractors in a positive Lebesgue measure set of parameters, an-
swering a question posed in [Robl].

1 Introduction

A contracting Lorenz attractor is obtained from the geometric Lorenz at-
tractor replacing the usual expanding condition A3+ A; > 0 in the eigenval-
ues Ao < A3 < 0 < Ap at the origin by a contracting condition A3 + A1 <0
[R]. In this paper we analyse the appearence of contracting Lorenz attrac-
tors in the unfolding of certain resonant double homoclinic loops in dimen-
sion three. We prove that the corresponding unfolding yields contracting
Lorenz attractors in a positive Lebesgue measure set of parameters, an-
swering a question posed in [Robl, Remark 5.1, p. 138]. Indeed, in the
serie of papers [Robl, Rob2, Rob3] Robinson studied the existence of tran-
sitive attractors of Lorenz type in generic unfoldings of resonant double
homoclinic loops in dimension three. For instance, Theorem 3.1, p. 130, in
[Robl] says that under certain conditions such unfoldings produce transi-
tive weak attractors containing the singularity. This result was generalized
in [MPS], where we obtained attractors insteady of weak attractors and
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enlarged the region where there are expanding Lorenz attractors in the
unfolding. Here we shall consider parametrized families of vector fields
unfolding a resonant double homoclinic loop at n = 79 as in [MPS]. We
assume the same hypotheses (A1)-(A7) of [MPS], except for (A4) and (A5)
that we replace, respectively, by

Ass(M0) = As(m0) + 2Au(mo) <0, and  Ags(mo) < 2X5(mo), (1)
and ot B
O + oy

Ciio Cro

where Cnff) are defined as in that paper: the constants Cnff) measure the
change in area within a certain bundle over I', the resonant double homo-
clinic loop. Condition (A4) here implies the existence of C? strong stable
foliations in a neighborhood of the loop. The proof is based first on rescal-
ing techniques [PT] to obtain convergence to non-continuous maps, and
second on a BC-type argument [BC1] to show that the parameters corre-
sponding to contracting Lorenz attractors have positive Lebesgue measure.

We point out that besides the papers cited above, there are many other
concerning Lorenz attractors and its bifurcations. We refer to the inter-
ested reader [MPS] and the references therein for a survey on this.

In order to describe our results in a precise way, let us introduce some
notations and definitions. By attractor we mean a transitive set which is
maximal invariant in a positively invariant open set. A set is transitive if
it is the omega-limit set of one of its orbits.

B= <1,

1.1 Owur hypotheses

Let us state our hypothesis in a precise way. In what follows X, is a family
of C", r > 1, vector fields on R?® unfolding a resonant double homoclinic
loop at n = ng, see Figure 77, satisfying the following conditions:

(A1) For every n, X, has a hyperbolic singularity @, such that the eigen-
values of DX, (Qy) are real with Ag(n) < As(n) < 0 < Ay(n), and
with eigenvectors v*%, v*, and v, respectively.

With this assumption, there are several invariant manifolds for the singu-
larity @,. We denote the one-dimensional unstable manifold tangent to v*
by W*(Qy,n), and the two-dimensional stable manifold tangent to v** and
v® by W*(Qy,n). Next, there is a one-dimensional strong stable manifold
W*%(Qy,n). This latter manifold is made of points which converge to @, at
an asymptotic rate determined by the eigenvalue \;;. All these manifolds
are C" if the vector field is C". Finally, there is a two-dimensional central
stable manifold tangent to v* and v*, which we denote by W*(Q,,n). The
later manifold is at least C''. With this notation we can make the second
assumption about the existence of a double homoclinic connection.



(A2) For the bifurcation value 7, there is a double homoclinic connection
with the unstable manifold of @, contained in the stable manifold
but outside the strong stable manifold,

I'= WU(QUO’UO) C WS(Q’I]oanO) \ Wss(Q’f}oanO)'

In fact, we assume that the two branches I't of I' \ {Qy,} are contained
in the same component of W*(Qy,,m0) \ W**(Qyy,m0). Note that I' =
{QuuTHuT—.

(A3) For g, the central manifold W(Qy,, o) is transverse to the stable
manifold W#*(Qy,,n0) along T

Let
P(q) = Tqu(QanIO) for /S L.

The transversality condition in (A3) with condition

Wu(Q’f]oa 770) N Wss(Qnoa 770) = Qno

in Assumption (A2) implies that P(q) converges to P(Qy,) as g converges to
@y along T' by the Inclination Lemma [dMP]. Therefore, {P(q) : ¢ € T'}
is a continuous bundle over I'. Considering one half of the homoclinic
connection I'" U Qp, let v = 1 if the bundle {P(q) : ¢ € I'" U Qp,}
is orientable and v* = —1 if the bundle is nonorientable. In the same
way considering the other half of the homoclinic connection I'™ U @y, let
v~ = =£1 whenever the bundle {P(q) : ¢ € I'" U @, } is orientable or
nonorientable respectively.

(A4) We assume that

Ass(n0) — As(no) + 2Au(m0) <0, and Ags(nm0) < 2X5(no)-

We shall use the notation a(n) = —iigz)) and B(n) = —)‘S:(").

These are open conditions and so do not add a codimension to the
bifurcation. The first inequality in (A4) assures the existence of C? strong
stable foliations in a neighborhood of the loop while the second one assures
that W (Qpy,m0) is C2.

Let ¢*(¢) be a parametrization of the solution along T'* and divy (g™ (t))
the Jacobian of X, at t restricted to T+ W*“. Define Cnio by

O = exp( / " diva(qE (1)) dt).

The quantity C,:)% is the change in area within the -planes P(q) along the
whole length of I'F,



(A3)
+ —
B=mt %
CroCng
(A6) There is a one-to-one resonance between the unstable and weak
stable eigenvalue for 7:

Au(no) + As(mo) = 0.

Observe that condition (A6) means a(n) = 1. This condition is needed to
have (A5) satisfied see [Robl]. This resonance condition is a co-dimension
one condition; in total, the conditions of 7y are co-dimension three, (two
conditions are from the double homoclinic connection and resonance gives
the third and final co-dimension). The final assumption is related to the
unfolding of the bifurcation. We assume that the parameter space is is
large enough in order to break the double homoclinic loop in a correct
way.

(A7) Let N C X'(R?) be the three-submanifold defined by conditions
(A1)-(A6). We assume that the family {X,} is transverse to N at

No-

1.2 The main result

It is now possible to announce our main result. Given a set A, Cl(A)
denotes the closure of A.

Theorem A. Let {X,} be a C*-parametrized family of C"-vector fields
(r,k > 3) satisfying (A1) to (A7). Then, there is a positive Lebesgue
measure set L in the parameter space with ny € CI(L) such that X, has a
contracting Lorenz attractor for alln € L.

The tools used in the proof are reduction of the dynamics to a one-
dimensional Poincaré map and the existence of a suitable rescaling for
such maps with a well defined limit dynamics. The limit map obtained is
peacewise differentiable, with two critical values corresponding to only one
critical point. We use these maps to control both the forward orbit as well
the derivative along it of the critical values. Once we have that, we use
a BC-type argument [BC1, BC2] to choose a positive Lebesgue measure
set of parameters such that the corresponding maps present a contract-
ing Lorenz attractor. Convergence to non-continuous maps via rescaling
was also considered in [MPu, MSV, MPS], while a BC-type argument for
discontinuous maps was also considered in [R, MSV].



1.3 Sketch of the proof

Let us present the idea of the proofs. As in [Robl], we observe that (A1l)-
(A3) imply the existence of a strong stable invariant foliation close to the
loop. By (A4) the C" Section Theorem [S] implies that such a foliation is
C? and varies C? with the parameters. As usual we consider the Poincaré
map along the homoclinic loop. Using the strong stable foliation we reduce
the dynamics of the return map to a one-dimensional map f, (7). We denote
a the order of f,(7) at the discontinuity point. Clearly o depends on 7.
In Lemma 2.2 we fix a@ and prove the existence of good parameters values,
i.e., parameters for which the critical values f,,(0%) of f, are either fixed or
pre-fixed or periodic (with period 2) expanding points. Such parameters
are solution of certain equations that can be solved only for a > 1 because
of (A5). Using the critical values we construct, for those good parameters,
a fy-invariant closed interval [p,q] containing 7 = 0. Afterward we use
rescaling techniques [PT]: we take a suitable parameter-depending change
of coordinates in a neighborhood of [p, ¢] and, at the same time, we rescale
the parameter space in a small neighborhood of those good parameters.
This yields a new family g, (u, v, z) and new good parameters (u(), v(a)).
In Lemma 3.5 we prove the following bounds for the derivative of g, (u, v, z)

_ 0 _
Ki 2 "] 2 ga(,vi0) [< Kp | 2171 and 2
a—2 82 a—2
K|z |*"<] %Qa(w/;m) < Ko |z|*7%. (3)

These bounds are used to prove that g, (i, v, ) converges (in a C%-sense
to be defined below) to a map g(u, v, -) as a — 1. The limit map g(u, v, -)
is piecewise linear expanding that looks like the one in Figure ?7?7. In the
same lemma we show that the limit lim, ,i+(u(), (@) = (u(1),v(1))
exists.

The maps g(u,v, ) above do not have trapping regions, but they can
be approximated in our family by ones having them. This is proved in
Theorem 4.1 where we verify that g, (u, v, -) has trapping regions for o > 1
close to 1 and for (u,v) close to (u(a),v(a)). The existence of trapping
regions is an open property, and so, trapping regions of the flow do exist in
an open set of parameters accumulating 79. To finish the proof of Theorem
A we use Theorem 5.1 that imply transitiveness of the maximal invariant
set in the trapping region for a positive Lebesgue measure set.



2 One-dimensional reduction and good
parameters

Consider a cross-section ¥ of X, close to @, transversal W*(Q,,) in-
tersecting both branches of W*(Q,). There is a neighborhood V of
ENW?*(Qy,) in X such that the positive orbit of every point at V\W*(Qy,)
intersects ¥ for every parameter 7 near enough 7y, defining in this way a
Poincaré map

F:V\W*Qy) CX = X.

As X, satisfies conditions (A1)-(A4), the standard stable manifold
theory applies to show the existence of a C? stable foliation in a small
neighborhood (that for convenience we assume equals to V) of W*(Q,)
varying C? with the parameter. As in [Rob2] the existence of a C” stable
foliation (r > 1) depends on the relation

CgeT(Ass(Wo)*/\s(’flo))(eT)\u(ﬂo))T <1.

By the first eigenvalue inequality in (A4) we have the above relation for
r = 2. Then, using [S, Theorem 5.18] in the same way as in [Rob2], via
projection along the leaves of the strong stable foliation, the problem is
reduced to a one-dimensional Poincaré map

fo: VI \{eg} C[=1,1] = [-1,1].

Here ¢, is the projection of W*(Q,,) NV onto V'. We assume ¢, = 0 for
every 7). Denote ai = lim, 9 fp(7), 7 € [-1,1]. As in [Rob2] we have
the following

Lemma 2.1. There is an interval J, 0 € J such that for every n sufficiently
near to no, the map f,:J C [-1,1] — [—1,1] has the following form:

() = aj{ + V+C';'|T|a’7 + Opi(|7|*) if 7>0
KARE a, —v=Co|T|* + Opa(|7|*7) if T <0,

2 . 2 - : 077,7;(56) —_
where Oy ; are C*, varying C* with respect to n, and limg_,o =2~~~ = 0
uniformly on n. Moreover, CgE depends C? on 1.

From now on we assume that X, is a three-parameter family, for which
there is an open set U C R? such that for n € U, Xy, satisfies conditions
(A1)-(A7).

From the transversality hypothesis (A7) we have that the map n —
(@, ary) is a diffeomorphism from a neighborhood of 79 onto a neighbor-
hood of (1,0, 0). So, we can reparametrize X, by (a,a™,a”) — n(a,at,a")
=a".

. _ _|_ _ + —
in such away that aya,a+4-) = @, Upaata) = @ and Aylasat,a)



The next lemma is analogous to the corresponding one [Lemma 3.2] in
[MPS], and so we shall not give its proof. We point out that here the good
parameters depend on « > 1 while there the good parameters depend on
a < 1. The reason for this difference comes from the fact that here B < 1
while there B > 1, where B is given in condition (A5).

Lemma 2.2. There are A > 0, an open full Lebesgue measure set O C
(1,1 4+ A), and C* maps a*,a " ,p,q: O — R with p(a) < 0 < g(a) such
that for n = n(a,a(a),a” (a)) the following hold:

(a) if v© =v7 =1 then fy(p(e)) = p(a), fola(@)) = q(a), fr(0F) =
p(a); and f,(07) = ¢(),

(b) if v" = v = =1 then fy(p(e)) = g(a), fy(g(a)) = p(a), fH(07) =
q(a), and f,(0) = p(a),

(c) if vi = —v= =1 then fy(p(e)) = q(e), fy(a(a)) = g(@), and
fn(07) = f4(07) = p(e),

(d) if vt = —v™ = —1 then fy(p(e)) = p(a), fyle(a)) = p(a), and
fa(0F) = £(07) = q(e)

In any case, limgy1 [p()|/q(e) = Cjf /Cro, limg 41 g(@) = 0 = limg 1 p(a),
and limg Q(a)a_l = limg 1 |p(a)‘a—1 = B.

Notation 2.3. Let O be as in Lemma 3.2. We shall calln = n(a,a™ (), a™ (a))
for a € O the good parameters of Xj,.

3 Rescaling

In this section we perform rescaling techniques [PT]. Keeping the notation
p,q in Lemma 3.2 we take suitable parameter-depending change of coor-
dinates in a neighborhood of [p,¢q| and, at the same time, we rescale the
parameter space in a small neighboorhod of the good parameters in No-
tation 2.3. This yields a new family g, (u, v, z) and new good parameters
(u(@),v()). The goal of this section is to prove that go(u,v,-) converges
to a map g(u,v,-) in some sense to be described below.

To start, consider a parametrized family {X,} satisfying the hypotheses
described in Section 1.1.

Given a € O let a (), a*(a), p(a) and g(a) be as in the previous

lemma. Define (u(c),v(@)) = (%@ ¢ @y and (u,v) = (2, 2 ) ina
)

q(a) ? q(a) q(a)’ gq()
neighborhood of (a™(a),a™ (a)) onto a neighborhood of (u(a),v()), and
the family of maps

1
ga(uaya CL') = @fﬂ(Q(a)x)’ (4)

where n = n(a, ¢(a@)u, g(a)v). We set Dom(g,) for the domain of g,.



Remark 3.1. Observe that for each fized o, this change of variables renor-
malizes the parameters a® with a* = g(a)p and a= = q(a)v. Moreover,
by Lemma 2.2, limy_,1 p(a) and limy_y1 v(a) ezist and we denote them by
(1) and v(1) respectively.

Definition 3.2. Let g : R? x (R\ {0}) — R. We say that go — g in the
C° topology in compact sets of R® as a — 1 if

(a) Dom(g,) — R? x (R\ {0}) as a — 1, that is, for all R > 0 there
is 1 < ag such that if 1 < a < ap then Br(0) N (R? x (R\ {0}) C
Dom(gy), where Br(0) is the ball of radius R centered at (0,0,0).

(b) for every compact set K C R® and every e > 0 there is § > 0 such
that if |a — 1| < § then

sup l9a(y) — 9(y)| <e.
yEKN(R2x (R\{0}))

Definition 3.3. Let g : R? x (R\ {0}) — R. We say that g, — g in the
C* topology in compact sets of R? x (R\ {0}) if
(a) Dom(g,) — R? x (R\ {0}) as a — 1,

(b) for every compact set K C R? x (R\ {0}) and every e > 0 there is
0 > 0 such that if |a — 1| < § then

sup  [D'ga(y) — D'g(y)| < e.
1€{0,1},yeK

Note that with these notions, C' convergence does not imply C° con-
vergence.

Definition 3.4. We say that g, — g in the C? topology in z-compact sets
of R\ {0} uniformly in compact set of R? if

(a) Dom(g,) — R? x (R\ {0}) as a — 1,

(b) for every compact K C R? x (R\ {0}) and every e > 0 there is § > 0
such that if |o — 1| < then

sup |3;9a(Pa .T) - a;g(pa .’L‘)| <€
iE{O,I,Q},(p,.’L‘)EK

We have the following result.
Lemma 3.5. Let g, be as in (4) and define

(v, 7) = p+vtCrBz if x>0
JWVT) = Y4 v=CpBr if <0

where ng = n(1,0,0). Then



(i) go — g in the C° topology in compact sets of R® as a — 1, a € O,
(ii) go — g in the C* topology in compact sets of R x (R\{0}) as a — 1,
a € 0.
(iii) go — g in the C? topology in compact sets of R? x (R\ {0}) as o — 1,
a€ 0.
Moreover, for any ¢ > max{1, C,%/C%}, there are constants Ag > 0, 0 <
K1 < Ky such that for « € ON[1,1+ Ag] we have
(a) [—¢,c]* x ([~¢,c] \ {0}) C Dom(ga),
(b) I{l|x|0¢_1 < |%9a(l¢a V;$)| < K2|‘T|a_la V(M,V, (E) € [—C, C]QX([—C, C]\
{0})-
(c) Ki]z|*~% <
{03}).

Proof: The proof of (i), (ii), (a) and (b) are similar to the proofs in [MPS,
Lemma 3.3] and we shall not do them here.

To prove (iii), put k£ = ¢(«a), where ¢g(«) is given by Lemma 2.2. Recall
k — 0 as @« — 17. Now note that

2 galivio)| < Kalz* 2, ¥(u,,3) € [—e, P x ([, ]\

v O ol — 1k a|*2 + Of (ke *)e?k>e | +
/ a a—2
2 _ ) Opa(lkz|®)aa = 1)]kz|**k for >0
Bxga(ﬂ,v, iE) —I/_C;a(a _ 1)ka_1|$|a_2 _ 05,2(|k$|a)a2k|k‘$|2(a_1)—
;772(|kx|a)a(a —1)|kz|* 2k for z<0.

By Lemma 2.1 Oy; is C* and so Oy ;(|kz|*) is uniformly bounded in K.
By Lemma 2.2 we have that k2 — 0, k! — B, and (a — 1) — 0 as
a — 1. Since |z|>**7! is uniformly bounded in K we finally obtain that
0290 (p,v,2) — 0 as @ — 1 in compact sets of R? x (R \ {0}). Now note
that the expression above for 92g,(u, v, z) together with the bounds for k,
k2@ k2! imply (c). All together conclude the proof of Lemma 3.5.

O

Remark 3.6. Observe that |¢'| = |C$EB|. Since |V:|:C;%B| > 1 we obtain
that g is an expanding map.

4 Trapping region

In this section we prove the existence of trapping regions for g, (u, v, -), for
a € O close to 1 and (i, v) close to (u(a),v(e)) chosen in an appropriated
way (recall the notation in Section 4). A trapping region for g, (u,v,.) is
a closed interval J such that g, (u,v,J) C Int(J), where Int(J) stands for
the interior of J. We shall prove the following theorem.



Theorem 4.1. There is an open set O C IR® such that the properties below
hold:

1. (o, p(a),v(a)) € ClO) for all a € O;

2. If 0 = (a,p,v) € O then there is a closed interval Iy C IR with
0 € int(Iy) such that go(p,v,x) C int(Iy) for all x € Iy.

To prove Theorem 4.1 we proceed as in [MPS]: we define an auxiliary
function F, : IR?> — IR?, which is used to find the required trapping regions.
This function involves the critical and the fixed points of gq(u,v,-). As
in [MPS] it is possible to prove that Fj, is locally one-to-one. Once we
have that, the parameters V,, corresponding to maps with trapping regions
are obtained as F,(V,) = Wy N {(z,y),z > 0,y < 0} where W, is a
neighborhood of (0,0). For the detailed proof see [MPS, Theorem 4.1].

Remark 4.2. Observe that for any a € O the set Oy = {(p,v) : (o, p,v) €
O} contains a cone with vertices at (u(a),v(a)). This property will be a
key point in the next section.

5 One-dimensional analysis

In this section we will prove a one-dimensional theorem from which Theo-
rem A follows. To announce in a precise way this theorem recall that by
hypothesis (A7) the map  + (ay, a;F, a,)) is a submersion from a neighbor-
hood of 79 onto a neighborhood of (1,0,0). So, we can assume that X,, is a
three-parameter family and we can reparametrize X, by (a,a™,a”) —
n(e,at,a”) in such away that aygete) = @, a;'(a,aJr,a_) = a™ and
a;(a,aJr,a_) = a~. Moreover it was obtained an invariant strong stable

foliation that induces a one-dimensional family f, for which a* and a~
are the critical values, recall Lemma 2.1. In Lemma 2.2 it was obtained
a set O such that for each a € O, it was defined the a-dependent points
p(a) and g(a), and a-dependent parameters a™(«) and a™ (). Using these
we rescaled the family f, and obtained a new family g, (u,v, ) with new
parameter space. In Sections 3 and 4 we defined the a-dependent points
z(a) and y(a), and a-dependent parameters u(a) and v(«@) in a such way
that z(a) and y(«a) are fixed or pre-fixed points of g, (u(a),v(a),-), and the
dynamics of g, (1(), v(),) is one of the displayed at Figure ??. Further-
more, for the limit function g(u,v,-) there are a unique limit parameters
values 1(1), (1) and unique limit points z(1),y(1), which are fixed or pre-
fixed by the expansive piecewise linear map g(u(1),v(1),-), see Figure ?7.

Before we announce the main theorem in this section let us recall that
fn has positive Lyapunov exponent at a if there exists A > 1 such that
|(f¥)(a)| > A¥ for every k > 0. Given A C R, convezh(A) denotes the
convex hull of the set A and CI(A) denotes the closure of A.

10



For the family f, described above we have the following:

Theorem 5.1. For each o € O close enough to 1, there exists a Lebesgue
positive measure set Ey in the (a™,a™)-parameter space such that:

1. For (a™,a”) € E,, the critical values a* and a~ of the function f,
where n = (a,a™,a"), have positive Lyapunov ezponents.

2. For every (a*,a") € E,, we have
CL{fa)*(a") Yren) = CU{ [ (a ") }ren) = convezh{fy(a*), fola),a*,a"}.

Before we proof the above theorem, let us finish the proof of Theorem

A.

Proof of Theorem A.

For simplicity, denote ©,, = convezh{f,(a™), fr(a~),a™,a~}. For each
7 in the positive Lebesgue parameter subset given by {n = (a,a™,a7) :
a € 0,(at,a”) € E,}, let us consider the projection 7 along the invariant
stable foliation for f,. Then the set

Qn=_0,,Y. Xn(m ' (©y))

is the required attractor. Indeed, existence of a trapping region for @,
follows from the fact that ©,, is an attractor for f, and the fact that the
invariant foliation defining f;, is contracting. That @), is transitive follows
from the same reasons as before.

5.1 Proof of Theorem 5.1.

First we outline the proof of Theorem 5.1. For each § > 0 consider the
straight line Ly ¢ in the (u,v)-plane given by

Lo = {(1,v) /v = 81 — p(@)) + v(a)}.

By Remark 4.2 there is a positive measure set of angles # such that some
subset of L, g is contained in O,. Let m and my be the Lebesgue mea-
sure in the (y, v)-plane and in L, g respectively. Using Benedicks-Carleson
techniques, for a € O close to 1 (see [BC1, BC2, MV, R]) we will be able
to show the existence of a mg-positive measure subset E’a, 9 of Lq g, having
(u(a),v(@)) as a density point and satisfying Theorem 5.1 in the (u,v)-
parameter setting. Once we have this, we consider E, = LéJE’a,g. Note

that Fubini’s theorem implies m(E,) > 0. Now, since the reparametriza-
tion (a*,a") — (u,v) is an affine map, we get a positive measure set F,
in the (a™,a”)-parameter space satisfying Theorem 5.1 because f, and
ga(p,v,+) for n = (a,a™,a™) are conjugated by an affine map.

11



To set up E~'a79 described above, we follow the steps in [R] proving
first that the maximal orbits outside a neighbourhood of the critical point
have exponential growth. This fact is established in Lemma 5.5. Here we
point out that this fact is a key step in order to apply Benedicks-Carleson
techniques. In Lemma 5.6 we will show that under the basic assumption
(BA) the increasing in the derivative after a binding period (see definitions
before Lemma 5.6) fully compensates the small factor introduced in the
derivative along the segment of orbit of the critical value passing close to
the critical point. As a consequence, we can establish, via an inductive
argument, condition (FA), given before Lemma 5.7, to guarantee the ex-
ponential growth of the derivative at the critical values. This is stablished
in Lemma 5.7.

To prove that the maximal orbits outside a neighbourhood of the critical
values have exponential growth we follow [R]. We observe that the result
is obtained easier here due to the expanssiviness of the limit dynamics.

Now we start with the proof of Theorem 5.1. From now on («, u,v)
will be always a parameter in the set O given by Theorem 4.1.

The next lemma, assures the growth of the derivative of g, with respect
to the space variable for points outside a small interval containing the
critical value for parameters close to (u(a),v(a)). Its proof is an easy
consequence from the fact that g, converges to a piecewise expanding linear
map.

Lemma 5.2. There is \1 > 1 such that for every small §y there are con-
stants a1 = a1(dp) > 1 and a1 = a1(dy) such that for every a < oy in O,
for every (u,v) with |(u,v) — (u(a),v(e))| < a1, and z such that |z| > &y,
then |(ga(p, v, 2))'| > A1.

Proof: By Lemma 3.5, g4(-,,*) — g(-,-,-) with g(-, -, -) piecewise expand-

+
ing linear map with slope |C,j’f)B | > 1 because B = Citn g0 Figure 77.

Let 1 < XA < min{|C} B|,|Cy, B|}. So, given §y > 0 take oy = a1 (do)
such that for a < g, themapgq(-,-,-) is sufficiently near g(-,-,-). Taking
a; small enough we conclude the proof of Lemma 5.2 L.

Remark 5.3. Lemma 1.2 in [R] is the corresponding to Lemma 5.2 and its
proof is much more involved because the limit map there is not expanding.

The next result gives that uniformly along finite number of iterates
outside a small interval containing the critical point the derivative grows
exponentially, for parameter values sufficiently near u(a), v(a).

Lemma 5.4. Given &y small enough there exist ay = aa(dy) > 1 and
A2 > 1 independing on &y, with the following property: for § < dy there is
ag = ag(8) > 0 such that for every a < ag in O and for any (u,v) with
|(p,v) — (u(a),v(a)| < az, and z, § < |z| < do, there is | = l(az, z, dp)
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such that gﬂ(p, 1/,33)‘ > dgfor 3 =1,...,1 and |(gfx(u,l/,:v))" > A, . Fur-
thermore, there are constants L = L(dy) and M = M(4, dy) such that
L<i< M.

Proof: Let us suppose that v+ = —1 and v~ = +. The other cases are
similar. Define

M, = M (o, p,v) = max{|(ga(,u,1/,:c))'| s z(a) —e <z < z(a)+e}
and
me = me (o, p,v) = min{|(ga, (4, v, 2)'| : 2(a) —e < z < z(a) + €}

When o — 1, we have that g, (u, v, ) converges uniformly on compact sets
to g1(u,v,-). Hence, given ( > 0, there are constants 7 > 0, > 0 and
ag > 1 such that |(u,v) — (u(1),v(1))] < 7, € < g, a < ag, which implies
that 1 — ¢ < 7¢ < 1.

From this, and since @ > 1, we can choose constants ay, > 0, ¢ > 0,
and A > 1, such that if @ > ag and |(u,v) — (u(a),v(a))| < az then

1—a

meM:* > X > 1. Note that A does not dependent on §y. Next, let g be
a small positive constant and fix 4, 0 < § < §.

To simplify notation, write g = go(p, v, -). Given z and 6 < y < dy, let
I be the first positive integersuch that ¢'(¢%(z)) > z(a) + . Notice that
from the uniform convergence of g, (u(a),v(a),-) to gi1(u(1),v(1),-), recall
Lemma 3.5, there are constants g > 1, L = L(dp) and M = M (4, dp) such
that for o < ap we have L <[ < M. Now observe that for o close to 1 and
as small enough get |g(0%) — y(a)| + ‘gl(g(y(a))) - a:(oe)| arbitrarily small
because go(u(a),v(a),z(a)) = z(a) and go(u(a),v(a),y(a)) = z(a). Re-
call that here g(0") = lim,_,o+ g(z) = p and g(0~) = lim,_,o- g(z) = v
which are near y(«).

Thus, by the chain rule and the Mean Value Theorem we get

€ <gl(92($))—$(04)
< g'(g*(2)) — g"(g%(0%))| + |¢' (g% (0%)) — g (9(y()))| + |g* (9(y(e))) — ()|
< M!Cy Ky |z +M’Cz|9(0) y(a)| + |9 (9(y(a))) — ()|

(1), v(

where Cy is a positive constant close to |[(gq(p(1),v(1),y(1))’| , and K7 and

K, are given by Lemma 3.5.
Solving the inequality above for |z| we obtain

o> { 5 1o~ M Cala(0%) ~ y(a)| - o latu(@) ~ vta)] ]

Furthermore, for a positive constant C close to |(g1(u(1),v(1),y(1))'] we
also have |(gl+2)'(:1:)‘ > mlC1 K |z|* and hence,

|6 (@) 2

13



1=a t a))) — z(a o
il ) K Ky {W o) ] - 00— )\}

Now, if we consider this last inequality for 4 = p(a) , v = v(a) and L
large (this condition occurs with dp small), then for some A; > 1 we obtain

1—a\! . 1\ 1-a 1-a
‘(gH'Q)'(.T)‘ > <m Mg"‘) K= 010" K
— — a— l-a 1-a
> OMN, with C=¢" K,* C1Cy° K
> A2

Since L <[ < M, taking as small enough, we can find Ao, 1 < Ao < Ay,
independent of dg, such that for (u,v) with |(u,v) — (u(@),v(a))| < az we
have |(g't2)'(z)| > A5P2. This ends the proof of the lemma. O

Lemmas 5.2 and 5.4 imply the next result that guarantees that the
derivative of g, with respect to the phase space is bigger than 1 at each
return of the orbit to a small interval containing the critical point.

Lemma 5.5. There exist A\g > 1 satisfying the following property: for
every § > 0 small enough, there ezist ap = ao(6) and g = ap(d) such that
for every a < «p, and (u,v) with |(u,v) — (u(a),v(a))| < ag, and x such
that |ga(,u,1/,x)| >0 fori=0,....k—1 but |g§(,u,1/,:c)| < 0, then

> Ak

[(gh (v )

Proof: The proof follows directly from Lemmas 5.2 and 5.4. Indeed,
let 0 < k1 < kg < ... < kp < kpy1 = k the iterates of x such that
gk (1, v, )| < 6p. By Lemma 5.4 there is I; such that | (g% (u, v, z))'| > A4

On the other hand, |(ga"™ ™" (v, gk (., w))" > A THTH and

|(g5 (v, 2)'| > IA¥1 " Then choosing A smaller than A\; and Ay we obtain
the result. |

Now we start the construction of the set E, described in the sketch of
the proof. To simplify notation, given (u,v) € Lqg set g = ga(p, v, ")

For a small v > 0, let us define E,4(y) C Lqg U O, as the set of
parameters (u,v) satisfying the following basic assumption:

g% )| =€ and g, ()] e Vji>1. (BA)

Let 8 >0, (p,v) € Ea,g(’)’), and § > 0 small. For a positive integer k such
that ‘ g’fL (,u)| < 4, define the binding period associated to the parameter

14



(u,v) for the return g’Z (u) of the critical value y as the maximal interval
[k +1, k+ s] such that for 1 < j <s

‘g’,i“(u) —gﬂ_l(V)‘ <e P, it gh(w) <0
or
‘g’ffj(u) —g’,'fl(u)‘ <e it gb(u>0
holds.
Thus, during the binding period, the orbit of g’fﬁl(u) is close to that
of u or v depending on above conditions. In the same way, we define the

binding period associated to the parameter (u,v) for the return g’zt (v) of
the critical value v.

Lemma 5.6. For a suitable choice of v, and d, there are positive con-
stants K, D > 1, A, k1, and 7, depending only on v and 3, such that for
both critical valuesn = p orn =v of gy = ga (s, v, ), with (u,v) € Eqp(7),
we have: If gﬁ(n) € (e7%,8) for some k > ki and ‘(g,ﬂ)'(n)‘ > N,
j=1,...,k—1 for some A\1,1 < A1 <Xy (Ao as in Lemma 5.5), then
|y @) = |
1. — < —— < A for all z,y € converh{g’," (1), v} and 1 < j <
A J\1
[eAZe]
s, where s is the binding period associated to the parameter (u,v) for
the return g’z (n) of the critical value n of g, .

T ra—log(KA™Y)
L ——1<s< =gk .
b1 0 P )
logh1 a-1

5\t ah)] = rews | ( 8) s+ > 1

Similar results can be obtained ifgﬁ(n) € (—8, —e~*7), but in this case

we have to change convexh{gh ™ (n),v} by  convexh{gh™ (n), u} in

conclusion 1 above.

(67

Proof: Let us suppose that v = —1 and v~ = 1, the other cases
are similar. First, observe that taking v < 8 we get e Ut < =97,
Since ‘g,ﬂ(u)‘ > €777 and s is the binding period associated to (u,v) for
the return g% (n) of the critical value n of g, , we conclude that 0 ¢
convemh{gﬁ+1+j(n),gﬂ(u)} for 7 < s. Consequently, if z € (gﬁ“(n),,u )

then 0 ¢ convezh{gh(x),gh()} C convezh{gs™' ™ (n),gh(1)}. From (b)
in Lemma 3.5, for all j < s — 1 we can find ¢ € convezh{g}(z), g/ (p)}

such that
G (G (@) = g, (gh )] < Kale*2 |gh (@) = gl ()

< Ko |¢°2 g () - gh(w)

7
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and hence

(9% @) =g (gh ()] < Koe @25 | () — (1)

< Kye Ma2)j—(+1)8

a—1

Furthermore, ‘glu (gju (n))‘ > K, ‘gju (n) > Kie—ia-1),

Now,

Gy @] _ H 14 190 Gu@)] - 9, (g (n))l]
|(9) (m)| \g'u (g% ()]
< e Ellg'u (g%, (x)) 9y (g, (n))l]
=0 ‘glu (g% (71))‘
< o i-1 2K, e—v(fx'—?)z—(ﬂrl)ﬂ]
B =0 Kie (el
exp %e—ﬂiie(v—ﬁ)i]
A.

(Ghy@|

In a similar way we obtain > —, and assertion 1 of the lemma
(ghym| ~ A
follows.
Integrating inequality ( ) in Lemma 3.5, we obtain a constant K,0<
K < 1, such that |g’”‘1 —u‘ > K |gl’j(n)‘a. Now, applying the Mean

Value Theorem to gj,, assertion 1 obtained before, and the hypothesis we
get

gk ) =W ()| > AT e, <k,

From the binding period definition, for 7 < s and j < k we have

7 — log(KA™!
e P > A7 M Ke™"®, which implies that j < 7"0416 +Oli(g()\1) )
—2 log(KA™!
Next, choosing v and 3 such that 2ya < 8 and fixing k1 > %,
1

then for j and & as in the hypotheses of the lemma we obtain j <
—log(KA™Y)  ~ka—log(KA™Y) &k

,3 + log (A1) B+ log(A1) 2’
If s > k then the inequality above holds for j = k—1 but this implies k—

k
1< ok which is a contradiction. Hence, s < k and we can replace j = s in
—log(KA™Y)
B+ log(A1)

. .. . . . T
the inequality above, obtaining the right inequality s <
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To establish the left hand side of inequality in 2 of the lemma, let
= max{‘g;t(w)| tz(a) —e <z <yla)+e, p} > 1. Applying the Mean
Value Theorem and the binding period definition once again, we obtain a
point £ € (O,Qﬁ(n)) such that:

Ds“‘gﬁ(n‘ [(g5™)' (¢ I‘gu —0‘

g (gh () — g ()| > e~

which implies —(s + 1)8 < (s + 1) log(D) — r, and the left hand side of
inequality 2 follows.

and take

In order to obtain assertion 3, put ¢ = Ll =1+
a—

S () — g5 ()]

‘gﬁ“(n) - u‘

Note that |( 9, k"'l(n))‘ > A1 ‘(gu )| implies

¢ € (RET(n), 1) such that (g5)'(¢) = 9

(G ™ )| > A7 (g ()| > AN

(since s < k). Thus,
[ k| = |yl o) [ e

4 o
> |(g3) (o™ )| [(o3) ok D) |* " K gk
1
> A7 (g2 ©)] |2 GhH )| KER gk m) —
1
> AT KK gt () — g% ( ng (gEt(m)| "™

~ - _s ~ log A 1
> ATVKTR e A0+ Aa1 A5~ = AU KIK e a1 exp [(M - 5) (s+ 1)]
(0%

-1

— 7texp [(l;’gAl —ﬂ) (s + )] .

Finally, if 8 is small the coefficient of (s + 1) in the exponential above
is positive, and the inequality in conclusion 3 of lemma follows for s large,
which is obtained making ¢ small ( compatible with the previous conditions
imposed on « and f3). O

A free return indez is a return index that does not belong to a binding
period associated to a previous return. Take v, and § as in Lemma, 5.6
and for any positive integer k let us consider 41 < i3 < ... < 4; < k all the
free return indices, i.e., e 7% < ‘gf}(u)‘ < 6, and let s1, s2.., $1—-1, () be the

binding periods associated to returns gf}(l/), e gyt (V),gf}(l/). Note that
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s; will be or not considered according to 4; < 4; 4+ < kori; < k <1+ s
respectively. We say that j, 7 < k is a free time for the critical value v

associated to the parameter (u,v) if ‘gjﬂ (I/)‘ >0 and j ¢ [ig, 0 + Se,

t=1,...,0—1,(1). In the same way we define free time for the critical value
p associated to the parameter (u,v).
Now, for n = s or n = v denote by F(n, k) the number given by:

F(n, k)= #{j <k : j is a free time for the critical value
n associated to the parameter (u,v)}.

Finally, fix e > 0 and define E, g = E, ¢ (7,5,6,€) by

Ea,0 = {(U,V) € E~'a,0 (7) :min{F(Uak)aF(Va k)} > (1 - E)kak € N}

As a matter-of-fact, Ea,g is the set of parameter values (p,v) € Ly g satis-
fying the basic assumption (BA) and, in addition, the number of free times
smaller than k for the critical values v, ;i associated to the parameter (u,v)

is “almost” k, in fact bigger than (1 — ¢)k, for any k& € N. Note that this
l
last condition, called free time assumption (FA) implies ) s; < ¢k.
=1

The set of free times is the union of the free intervals V; = [1,...,4; — 1],
‘/2 — [21 + S1 + ]-7 --'aiQ - 1]; a‘/l = [Z'l—l + S1—1 + 157:l - 1], (‘/l-l—l = [Zl +
s+ 1,k]).

Now we can prove the following result.

Lemma 5.7. For ,[,§ and € small enough there are A, 1 <X < Ay (Ao
as in Lemma 5.5), ap > 1 and a > 0 such that:
for a < ag in O and |(u,v) — (u(a),v(@))| < a, if (1,v) € E, g then
‘(g’fl )'(u)‘ > M and ‘(g’Z )'(1/)‘ >M k=12, ..
Proof: The proof is by induction on k.

Take 1 < A < Ag such that |¢/'(u(1),v(1),2(1))] > A (here z(1) is
the orientation preserving fixed point of g(u(1),v(1),:). Because g, =
9o (14, v, -) converges uniformly to g(u,v,-) we can find a9 > 1 and a > 0
such that for @ < o in O and (p,v) with |(g,v) — (u(a),v(a))| < a then
|(g%, )'(n)| > A*, n = p,v, k < k1, where k; is taken as in Lemma 5.6. And
then, the first step in the induction holds for k < k4.

Next, take k > k1 and assume that the conclusion holds for any iterate
of critical value n = p or n = v of order less than k. Because k > k; and
(i, v) satisfies the basic assumption (BA), Lemma 5.6 holds and it implies
that during each binding period there is not lost of derivative, in fact, the
total derivative during those periods is bigger than 1. By Lemma 5.5, it
follows that during the free time intervals we have an increasing in the
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derivative of at least )\#Vi. We can write k = >,  #Vi+ > s;and

1<i<lorl+1 1<i<l
from the choices above and (FA) we obtain
k \! #V; : 1<¢<%m+1#vi (1—e)k
Ghym> TIN5 > 207 = exp([(1-6) log Aol )

1<i<lorl+1 i=1

Taking ¢ small we obtain log A < (1 — ¢)log A¢ (this choice works for
any k) and then ‘(g’L )'(n)| > A*. This ends the proof of the Lemma 5.7.
U

To finish the~proof of Theorem 5.1 we have to prove that it is possible
to define a set F, g satisfying:

1. my(FEq,9) > 0, where mg stands for the Lebesgue measure in E, g,
and

2. For mg—almost every (u,v) € Ea,g, {g’; (7))}1ceN is equal to the con-

vex hull of {ga (1, v, 1), ga (18, v, V), s, v}, where n € {p,v}.

The set E’a,g is obtained as in [BC2, Section 2]. We shall not do it
here in details and we refer to [MV, Section 3] where this construction is
nicely done. Each Ea,g is obtained as the intersection of some sets Fj
contained in a small parameter interval having u(a) as the right extreme,
E; D E3 D ... D Ey D ..., satisfying the basic assumption (BA) and the free
time assumption (FA). To define E}, it is necessary to make some partition
Pr_1 of Ex_1 to guaranty that the maps y — gllj (u) and p — gllj (v)
(recall that v = 0( p — p(a)) + v(a)) have bounded distorsion on each
interval w € Pr_1 ([MV, Lemma 3.3] and [BC1, Lemma 5(7.2)]). This
property and Lemma 5.6 enable us to estimate the Lebesgue measure of
the set of points that will be excluded from Ej_; to define Ej, see also [R].
Thus, following the same steps as in [MV, Section 3] we obtain a set E, g
with mg(Eq,¢) > 0 satisfying the basic assumption (BA) and the free time
assumption (FA).

Finally, in order to prove that the g,-orbit of ;1 and v are dense in
the convex hull of {g, (1), gu(v), u, v} for almost every (u,v) € Eq g, we
observe that the set of parameters such that the g,-orbit of 1 do not visit
some fixed open interval is a zero Lebesgue measure set because y —
gl’j (1) have bounded distortion for all ¥ in any subinterval of Px_;. The
same conclusion holds for the critical value v. Finally, using the fact that
the topology of L, ¢ has a countable basis we conclude that the set of
parameters such that the critical values are not dense is a zero Lebesgue
measure set. Altogether proves Theorem 5.1.
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