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ABSTRACT
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1 Introduction

We consider the optimization problem

minimize f(x)
subject to F (x) = 0, G(x) ≤ 0,

(1.1)

where f : Rn → R is a smooth function, F : Rn → Rl and G : Rn → Rm are smooth
mappings. Specifically, for a local solution x̄ of (1.1), we assume that f , F and G are twice
differentiable at x̄. The stationary points of problem (1.1) and the associated Lagrange
multipliers are characterized by the Karush–Kuhn–Tucker (KKT) optimality system

∂L

∂x
(x, λ, µ) = 0, F (x) = 0, µ ≥ 0, G(x) ≤ 0, 〈µ, G(x)〉 = 0, (1.2)

where
L : Rn ×Rl ×Rm → R, L(x, λ, µ) = f(x) + 〈λ, F (x)〉+ 〈µ, G(x)〉,

is the standard Lagrangian function of problem (1.1).
Let M(x̄) be the set of Lagrange multipliers associated with x̄. In this paper, we do not

invoke any specific constraint qualifications, but the main line of our discussion presumes that
the multiplier set M(x̄) is nonempty. This setting has been lately receiving much attention
in the literature, e.g., [7, 1, 11, 6, 17], with one of the important motivations coming from
optimization problems with complementarity constraints. We shall further assume a (first or
second order) sufficient condition for optimality, so that x̄ is a strict local solution of problem
(1.1).

In this setting, a (primal) local error bound is the following property:

‖x− x̄‖ = O(δ(x, λ, µ)), (1.3)

where δ : Rn ×Rl ×Rm → R+. The function δ should be (easily) computable and should
provide a reasonable upper bound for the distance from x to x̄. For example, it should tend
to zero when (x, λ, µ) tends to {x̄} ×M(x̄), or to a given point of this set. Moreover, it is
desirable that the bound should be sharp, i.e., not improvable under the given assumptions.
The point (x, λ, µ) in (1.3) can either be arbitrary or can be generated by some (primal-dual)
algorithm for solving (1.1) (so that there is a certain relation between x and (λ, µ), in which
case δ may also depend on parameters involved in the algorithm). In the former case, we shall
call the error bound algorithm-independent, and in the latter case — algorithm-based. We
refer the reader to [14] for a survey of error bounds and their applications. The setting of an
arbitrary (x, λ, µ) is somewhat more traditional in the study of error bounds. Nevertheless,
the case when the error bound holds along trajectories generated by some specific algorithm
is also of interest and importance. The significance of an algorithm-based error bound in the
context of the algorithm being considered, is essentially the same as that of an algorithm-
independent bound. In particular, both provide quantitative information about convergence
and, as a consequence, a reliable stopping test for the algorithm (without a valid error bound,
a stopping test based on the corresponding residual says nothing about how close we are to
a solution of the problem). Furthermore, it can be possible to obtain an algorithm-based
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error bound under assumptions weaker or different from the ones required for an algorithm-
independent bound, as discussed next.

Let C(x̄) be the critical cone of problem (1.1) at x̄, that is,

C(x̄) = {ξ ∈ Rn | F ′(x̄)ξ = 0, 〈G′i(x̄), ξ〉 ≤ 0, i ∈ A(x̄), 〈f ′(x̄), ξ〉 ≤ 0},

where A(x̄) = {i = 1, . . . , m | Gi(x̄) = 0} is the set of indices of inequality constraints active
at x̄. It is known ([8, Lemma 2], [5, Theorem 2]) that an algorithm-independent bound holds
in a neighbourhood of (x̄, λ̄, µ̄) satisfying the second-order sufficient condition〈

∂2L

∂x2
(x̄, λ̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C(x̄) \ {0}. (1.4)

In that case, (1.3) holds with δ being the norm of the natural residual of the violation of the
KKT conditions (1.2). We note that the cited result assumes only the above second-order suf-
ficient condition, and in particular does not require any constraint qualifications. There exist
also other error bounds under assumptions which subsume some constraint qualifications, see
[12] for a detailed discussion and comparisons.

In the sequel, we shall derive algorithm-based error bounds related to the classical aug-
mented Lagrangian and Lagrangian relaxation algorithms. We shall further provide examples
showing that the given estimates are sharp, i.e., that they cannot be improved. Our analysis
will assume either the first-order sufficient condition (FOSC):

C(x̄) = {0}, (1.5)

or the second-order sufficient condition (SOSC):

∀ ξ ∈ C(x̄) \ {0} ∃ (λ, µ) ∈M(x̄) s.t.

〈
∂2L

∂x2
(x̄, λ, µ)ξ, ξ

〉
> 0. (1.6)

Obviously, (1.6) is a weaker assumption than (1.4), as the latter needs existence of the
“universal” multiplier (λ̄, µ̄) ∈M(x̄), suitable for all ξ ∈ C(x̄) \ {0}. But perhaps even more
importantly, even if the universal multipliers exist, we shall make no assumption of the dual
sequence generated by the the given algorithm converging to the set of universal multipliers.
In other words, the dual sequence will be allowed to approach the multipliers which do not
satisfy (1.4), as long as (1.6) holds. In this situation, the algorithm-independent bound based
on (1.4) is not applicable along the trajectory of the algorithm.

Of course, FOSC (1.5) implies both (1.4) and (1.6). But we shall consider FOSC sepa-
rately, because it allows to obtain a better estimate. Note also that ifM(x̄) = ∅, then FOSC
and SOSC are formally equivalent.

2 Some Sensitivity Results

In this section, we state some recent sensitivity results [10], adapted for our purposes.
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Let x̄ ∈ Rn be a strict local solution of (1.1), and let f , F and G be twice differentiable
at x̄. Fix some ε > 0 such that x̄ is the unique (global) solution of the problem

minimize f(x)
subject to F (x) = 0, G(x) ≤ 0, x ∈ Bε(x̄),

(2.1)

where Bε(x̄) = {x ∈ Rn | ‖x− x̄‖ ≤ ε}.
For each pair (y, z) ∈ Rl ×Rm, consider the following perturbation of problem (2.1):

minimize f(x)
subject to F (x) = y, G(x) ≤ z, x ∈ Bε(x̄).

(2.2)

Let ω(y, z) and S(y, z) stand for the optimal value and the solution set of problem (2.2),
respectively.

In Theorem 2.1 below, we assume that for (y, z) ∈ Rl ×Rm, the following upper bound
on the optimal value ω(y, z) holds:

ω(y, z) ≤ f(x̄) +O(‖(y, z)‖). (2.3)

If the point x̄ satisfies the Mangasarian–Fromovitz constraint qualification, then (2.3) holds
for arbitrary perturbations. However, in the absence of constraint qualifications, this property
does not hold for arbitrary perturbations. But, as we show below, (2.3) is satisfied in the
context of this paper. This is precisely the advantage of algorithm-based setting, which
induces rather specific perturbations.

The following theorem is a direct consequence of [10, Theorems 2, 3].

Theorem 2.1 Assume that (2.3) is satisfied.
Then for (y, z) ∈ Rl ×Rm, the following assertions hold:

(i) If FOSC (1.5) holds, then

sup
x∈S(y, z)

‖x− x̄‖ = O(‖(y, z)‖),

ω(y, z) = f(x̄) +O(‖(y, z)‖). (2.4)

(ii) If SOSC (1.6) holds, then

sup
x∈S(y, z)

‖x− x̄‖ = O(‖(y, z)‖1/2),

and (2.4) holds as well.
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3 Augmented Lagrangian

In this section, all norms are 2-norms. Let c > 0. The augmented Lagrangian for problem
(1.1) is given by

Lc : Rn ×Rl ×Rm → R, Lc(x, λ, µ) = f(x) + 〈λ, F (x)〉+
c

2
‖F (x)‖2

+
1
2c

m∑
i=1

((max{0, cGi(x) + µi})2 − µ2
i ).

Given some c > 0 and (λ, µ) ∈ Rn ×Rm
+ , consider the associated subproblem

minimize Lc(x, λ, µ)
subject to x ∈ Rn.

(3.1)

We next establish the relationship between (3.1) and perturbations of the original problem
(1.1).

Proposition 3.1 For any (λ, µ) ∈ Rn ×Rm
+ and c > 0, the point xλ, µ, c which solves (3.1)

is a solution of

minimize f(x)
subject to F (x) = F (xλ, µ, c),

Gi(x) ≤ max{−µi/c, Gi(xλ, µ, c)}, i = 1, . . . , m.
(3.2)

Proof. Clearly, xλ, µ, c is feasible in (3.2). Assume that there exists x̂ which is also feasible
in (3.2) and it holds that f(x̂) < f(xλ, µ, c).

We first show that

max{0, cGi(x̂) + µi} ≤ max{0, cGi(xλ, µ, c) + µi} , i = 1, . . . , m. (3.3)

The relation obviously holds if cGi(x̂) + µi ≤ 0. Suppose cGi(x̂) + µi > 0. Then Gi(x̂) >
−µi/c, and the fact that x̂ is feasible in (3.2) implies that Gi(x̂) ≤ Gi(xλ, µ, c). Therefore,
(3.3) holds also in that case.

Using (3.3) and the fact that F (x̂) = F (xλ, µ, c), we further obtain

Lc(x̂, λ, µ) = f(x̂) + 〈λ, F (x̂)〉+
c

2
‖F (x̂)‖2 +

1
2c

m∑
i=1

((max{0, cGi(x̂) + µi})2 − µ2
i )

< f(xλ, µ, c) + 〈λ, F (xλ, µ, c)〉+
c

2
‖F (xλ, µ, c)‖2

+
1
2c

m∑
i=1

((max{0, cGi(xλ, µ, c) + µi})2 − µ2
i )

= Lc(xλ, µ, c, λ, µ),

which contradicts the definition of xλ, µ, c.
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The augmented Lagrangian algorithm (or the method of multipliers), see [9, 15, 16, 2, 4],
is the following procedure. Given some (λk, µk) ∈ Rn ×Rm

+ and ck > 0, the primal iterate
xk is generated by solving (3.1) with (λ, µ) = (λk, µk), c = ck. After this, the multiplier
estimates are updated by

λk+1 = λk + ckF (xk), µk+1
i = max{0, µki + ckGi(xk)}, i = 1, . . . , m, (3.4)

the parameter ck is possibly adjusted, and the process is repeated.
Assuming that the iterative process described above generates a primal sequence {xk}

converging to the strict local solution x̄, and a bounded dual sequence {(λk, µk)}, we are
interested in quantifying the convergence, i.e., obtaining an estimate of the distance from xk

to x̄ in terms of a known quantity. Recalling (3.2), for each k define

δk =

(
‖F (xk)‖2 +

m∑
i=1

(max{−µki /ck, Gi(xk)})2

)1/2

. (3.5)

Theorem 3.1 Let ck ≥ c̄ for all k, where c̄ > 0 is arbitrary. Suppose that the sequence
{(λk, µk)} generated according to (3.4) is bounded. For each k, let xk be a solution of (3.1)
with (λ, µ) = (λk, µk), c = ck. Suppose that the sequence {xk} converges to x̄, which is a
solution of (1.1).

Then the following assertions hold:

(i) If FOSC (1.5) holds, then
‖xk − x̄‖ = O(δk), (3.6)

f(xk) = f(x̄) +O(δk). (3.7)

(ii) If SOSC (1.6) holds, then
‖xk − x̄‖ = O(δ1/2

k ), (3.8)

and (3.7) holds as well.

Proof. Since {xk} converges to x̄, we can assume that xk ∈ Bε(x̄) for all k, where ε is
the same as in (2.1). We first show that under the given assumptions, δk → 0 as k → ∞.
Clearly, {F (xk)} → 0. For i ∈ A(x̄), since Gi(xk) → 0 while µki /ck ≥ 0, it holds that
max{−µki /ck, Gi(xk)} → 0 as k →∞. Let i 6∈ A(x̄). Then for all k large enough, say k ≥ k̄,
it holds that Gi(xk) ≤ −β, where β > 0. Suppose that there exists an infinite subsequence
of indices {kl} such that µkli > 0 for all l. For kl > k̄, we obtain that

0 < µkli = µkl−1
i + ckl−1Gi(xkl−1) = µk̄i +

kl−1∑
j=k̄

cjGi(xj) ≤ µk̄i − c̄β(kl − 1− k̄),

which results in a contradiction for l sufficiently large (so that kl is sufficiently large). We con-
clude that µki = 0 for all i 6∈ A(x̄) and k sufficiently large. Therefore, max{−µki /ck, Gi(xk)} =
0 for all i 6∈ A(x̄) and k sufficiently large. This concludes the proof that δk → 0.

5



Next, note that for any a, b ∈ R and c > 0, it holds that

1
2c

(
(max{0, ca+ b})2 − b2

)
=
c

2
(max{−b/c, a})2 + bmax{−b/c, a}.

Indeed, if a ≤ −b/c, then the right-hand side of the relation above becomes b2/(2c)− b2/c =
−b2/(2c), which is the same as the left-hand side. If a > −b/c, then the right-hand side is
equal to (c2a2 + 2cab)/(2c) = ca2/2 + ab, which is the same as the left-hand side.

Using the above relation in the definition of Lck , we obtain

f(xk) = Lck(xk, λk, µk)− 〈λk, F (xk)〉 − ck
2
‖F (xk)‖2

−ck
2

m∑
i=1

(max{−µki /ck, Gi(xk)})2 −
m∑
i=1

µki max{−µki /ck, Gi(xk)}

≤ Lck(x̄, λk, µk)− 〈λk, F (xk)〉 − ck
2
‖F (xk)‖2

−ck
2

m∑
i=1

(max{−µki /ck, Gi(xk)})2 −
m∑
i=1

µki max{−µki /ck, Gi(xk)} (3.9)

≤ Lck(x̄, λk, µk)− 〈λk, F (xk)〉 −
m∑
i=1

µki max{−µki /ck, Gi(xk)}. (3.10)

Observe that

Lck(x̄, λk, µk) = f(x̄) +
1

2ck

m∑
i=1

(
(max{0, ckGi(x̄) + µki })2 − (µki )

2
)
.

For i ∈ A(x̄), we have max{0, ckGi(x̄) + µki }) = max{0, µki } = µki , because µki ≥ 0.
For i 6∈ A(x̄), we have max{0, ckGi(x̄) + µki } = max{0, ckGi(x̄)} = 0 = µki , which holds

for all k sufficiently large, because for such k, as shown above, we have that µki = 0.
It follows that for all k sufficiently large,

Lck(x̄, λk, µk) = f(x̄).

Hence, from (3.10) we obtain that

f(xk) ≤ f(x̄)− 〈λk, F (xk)〉 −
m∑
i=1

µki max{−µki /ck, Gi(xk)}

= f(x̄) +O(δk),

where we have taken into account the boundedness of {(λk, µk)}, and where δk is defined by
(3.5).

Taking into account Proposition 3.1 and applying Theorem 2.1 to the perturbation (3.2)
of problem (1.1), we obtain the announced results.

We note that in the given context, a sufficient condition for the dual sequence {(λk, µk)}
generated according to (3.4) to be bounded is the Mangasarian–Fromovitz constraint qual-
ification at x̄. Indeed, by the necessary optimality condition for problem (3.1), we have
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that

0 =
∂Lck
∂x

(xk, λk, µk)

= f ′(xk) + (F ′(xk))Tλk + ck(F ′(xk))TF (xk) +
m∑
i=1

max{0, ckGi(xk) + µki }G′i(xk)

= f ′(xk) + (F ′(xk))Tλk+1 +
∑

i∈A(x̄)

µk+1
i G′i(x

k), (3.11)

where we have taken into account that µki = 0 for all k large enough and i 6∈ A(x̄), as
shown above. If {xk} → x̄ while {(λk, µk)} is unbounded, dividing the above relation by
‖(λk+1, µk+1)‖ and passing onto the limit as k → ∞ (possibly along an appropriate subse-
quence), we obtain the existence of some (λ̄, µ̄) ∈ (Rl ×R|A(x̄)|

+ ) \ {0} such that

0 = (F ′(x̄))Tλ̄+
∑

i∈A(x̄)

µ̄iG
′
i(x̄),

which contradicts the (dual form of) Mangasarian–Fromovitz constraint qualification at the
point x̄.

In Theorem 3.1, we do not assume that M(x̄) 6= ∅, but in fact, this must be the case
under the stated assumptions. Indeed, from (3.11) we obtain that for every limit point (λ̄, µ̄)
of {(λk, µk)}, it holds that

f ′(x̄) + (F ′(x̄))Tλ̄+
∑

i∈A(x̄)

µ̄iG
′
i(x̄) = 0.

Moreover, as mentioned above, for all k large enough we have µki = 0 for all i 6∈ A(x̄), and
µk ≥ 0 according to (3.4). Hence, (λ̄, µ̄) ∈M(x̄).

The following observation can also be useful. By the direct computation, from (3.4) it
can be seen that

δk =
1
ck
‖(λk+1 − λk, µk+1 − µk)‖.

From this representation of δk, it is evident that δk → 0 provided {(λk, µk)} is bounded while
ck → ∞, or provided {(λk, µk)} is convergent while ck is bounded away from zero, without
any assumptions on {xk}. Note, however, that the assumptions of Theorem 3.1 above are
different, and so δk → 0 had to be established by other considerations.

The next result is more in the spirit of penalty methods. We do not consider any specific
rule for updating the dual variables, and in particular, they can even be fixed (the classical
penalty method is formally obtained by setting (λk, µk) = 0 for all k in the definition of Lck).
In that setting, to ensure convergence it in general must hold that ck → +∞ as k →∞.

Theorem 3.2 Suppose that the sequence {(λk, µk)} is bounded and that ck → +∞ as k →
∞. For each k, let xk be a solution of (3.1) with (λ, µ) = (λk, µk), c = ck. Suppose that the
sequence {xk} converges to x̄, which is a solution of (1.1).

Then both assertions of Theorem 3.1 hold. Moreover, under (3.7) (in particular, if SOSC
(1.6) holds), we have that

δk = O(1/ck). (3.12)
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Proof. Again, we can assume that xk ∈ Bε(x̄) for all k. Because {µk} is bounded
and ck → +∞, it holds that µki /ck → 0. Since {G(xk)} → G(x̄) ≤ 0, we conclude that
max{−µki /ck, Gi(xk)} → 0 for all i = 1, . . . ,m. Taking also into account that {F (xk)} → 0,
it follows that δk → 0 as k → ∞ (alternatively, the argument preceding the theorem could
be used here).

As in the proof of Theorem 3.1, we have the relation (3.10). However, it now holds that

Lck(x̄, λk, µk) = f(x̄) +
1

2ck

m∑
i=1

(
(max{0, ckGi(x̄) + µki })2 − (µki )

2
)

= f(x̄)− 1
2ck

∑
i6∈A(x̄)

(µki )
2 (3.13)

≤ f(x̄),

where the second equality follows from the fact that ckGi(x̄) + µki < 0 for all i 6∈ A(x̄) and
all k large enough (recall that ck → +∞ while {µk} is bounded).

Combining this relation with (3.10), we again obtain that

f(xk) ≤ f(x̄)− 〈λk, F (xk)〉 −
m∑
i=1

µki max{−µki /ck, Gi(xk)}

= f(x̄) +O(δk),

and the assertions of Theorem 3.1 follow.
Suppose now that (3.7) holds. Then combining (3.9) and (3.13), we obtain that

f(x̄) +O(δk) = f(xk)

≤ f(x̄)− 1
2ck

∑
i6∈A(x̄)

(µki )
2 − 〈λk, F (xk)〉 − ck

2
‖F (xk)‖2

−ck
2

m∑
i=1

(max{−µki /ck, Gi(xk)})2 −
m∑
i=1

µki max{−µki /ck, Gi(xk)}

= f(x̄)− 1
2ck

∑
i6∈A(x̄)

(µki )
2 − ck

2
‖F (xk)‖2 − ck

2

m∑
i=1

(max{−µki /ck, Gi(xk)})2 +O(δk).

Hence,

1
2ck

∑
i6∈A(x̄)

(µki )
2 +

ck
2
‖F (xk)‖2 +

ck
2

m∑
i=1

(max{−µki /ck, Gi(xk)})2 = O(δk). (3.14)

Evidently, for all i 6∈ A(x̄) and each k large enough, it holds that

max{−µki /ck, Gi(xk)} = −µki /ck.

Hence,
1

2ck

∑
i6∈A(x̄)

(µki )
2 =

ck
2

∑
i6∈A(x̄)

(max{−µki /ck, Gi(xk)})2,
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and recalling the definition of δk, it now follows from (3.14) that

ckδ
2
k = O(δk).

Therefore, (3.12) holds.

Note that while M(x̄) 6= ∅ is not assumed in Theorem 3.2, this is again the case in the
setting of (3.7) (the second part of Theorem 3.2). Indeed, defining the auxiliary sequences

λ̃k = λk + ckF (xk), µ̃ki = max{0, µki + ckGi(xk)}, i = 1, . . . , m, (3.15)

it can be seen by direct computation that

δk =
1
ck
‖(λ̃k − λk, µ̃k − µk)‖. (3.16)

The last assertion of Theorem 3.2 implies that the sequence {ckδk} is bounded. Hence, (3.16)
combined with boundedness of {(λk, µk)} implies boundedness of {(λ̃k, µ̃k)}. The fact that
every limit point of the latter sequence belongs to M(x̄) can be established the same way
as its counterpart for the method of multipliers; see the discussion following the proof of
Theorem 3.1.

The following observation is also worth mentioning. Suppose that under the assumptions
of Theorem 3.2,M(x̄) is a singleton, i.e.,M(x̄) = {(λ̄, µ̄)}. Then {λ̃k, µ̃k} must converge to
this (λ̄, µ̄), whatever one takes as {(λk, µk)}. Moreover, if good multiplier approximations
are used, i.e., {(λk, µk)} → (λ̄, µ̄), then estimate (3.12) can be sharpened. Specifically, from
(3.16) it follows that

δk = o(1/ck). (3.17)

We complete this section with two examples demonstrating that the estimates obtained
above are sharp. The first example below satisfies FOSC, while the second satisfies SOSC. It
is interesting to note that the second example does not satisfy constraint qualifications (the
multiplier set is unbounded).

Example 3.1 Let n = l = 1, m = 0, f(x) = x + x2/2, F (x) = x. The only feasible
point (and hence, the only solution) of (1.1) is x̄ = 0. Furthermore, M(x̄) = {−1}, and
C(x̄) = kerF ′(x̄) = {0}, that is, FOSC (1.5) holds.

It can be easily seen that for each λ ∈ R and c > 0, the only solution of (3.1) is given by
xλ, c = −(λ+ 1)/(c+ 1).

We first consider the case when {λk} ⊂ R is generated according to the first equality in
(3.4), while c > 0 is fixed. Let xk = xλk, c for each k. Then

λk+1 + 1 = λk + cxk + 1

= λk − cλ
k + 1
c+ 1

+ 1

=
λk + 1
c+ 1

,
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and since c > 0, it is now evident that {λk} → λ̄ = −1, which is the only multiplier associated
with x̄. Hence, {xk} → x̄, δk = |xk| → 0, f(xk) = xk + o(|xk|), and the estimates (3.6), (3.7)
are exact (for the latter, note that for each k, xk = δk if λ0 < −1, and xk = −δk if λ0 > −1).

We next consider the case when λ ∈ R is fixed, while ck → +∞. Let xk = xλ, ck for each
k. All the conclusions for the previous case remain valid (note that for each k, xk = δk if
λ < −1, and xk = −δk if λ > −1). Moreover, for each k,

λ̃k =
λ+ 1
ck + 1

,

where λ̃k is defined according to the first equality in (3.15). Clearly, {λ̃k} → λ̄. Finally,
estimate (3.12) obviously holds and is in general sharp (it can be improved if we let λ tend
to λ̄, in which case (3.17) is valid).

Example 3.2 Let n = l = 2, m = 0, f(x) = x1 + x2
1/2 + x4

2/2, F (x) = (x1, x
2
2). The only

feasible point (and hence, the only solution) of (1.1) is x̄ = 0. Furthermore,M(x̄) = {−1}×R,
and it can be easily verified that SOSC (1.6) holds.

It can be easily seen that for each λ ∈ R2 and c > 0, the only solution of (3.1) is given by

xλ, c =


(
−λ1+1

c+1 , 0
)

if λ2 ≥ 0,(
−λ1+1

c+1 , ±
(
−λ2
c+1

)1/2
)

if λ2 < 0.

Consider the case when {λk} ⊂ R2 is generated according to the first equality in (3.4),
while c > 0 is fixed. Let xk = xλk, c for each k. Let λ̄ = (−1, 0) ∈ M(x̄). Then, assuming
that λk2 < 0, we obtain

λk+1 − λ̄ = (λk1 + cxk1, λ
k
2 + c(xk2)2)− λ̄

=

(
λk1 − c

λk1 + 1
c+ 1

, λk2 − c
λk2
c+ 1

)
− λ̄

=

(
λk1 + 1
c+ 1

,
λk2
c+ 1

)

=
λk − λ̄
c+ 1

.

In particular, if λ0
2 < 0, then λk2 remains negative for each k, and since c > 0, it is evident

that {λk} → λ̄. Hence, {xk} → x̄ and

δk =
((λk1 + 1)2 + (λk2)2)1/2

c+ 1
→ 0.

Fix an arbitrary θ > 0 and take λ0 = (−1± θ, −θ). Then

λk =
(
−1 +

±θ
(c+ 1)k

, − θ

(c+ 1)k

)
,
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xk =

(
∓θ

(c+ 1)k+1
,

(
θ

(c+ 1)k+1

)1/2
)
,

f(xk) =
∓θ

(c+ 1)k+1
+ o

(
1

(c+ 1)k+1

)
,

δk =
√

2θ
(c+ 1)k+1

,

and the estimates (3.7), (3.8) are exact.
Consider now the case when λ ∈ R2 is fixed, while ck → +∞. Fix an arbitrary θ > 0 and

take λ = (−1 ± θ, −θ). Let xk = xλ, ck for each k. All the conclusions for the previous case
remain valid. Moreover, for each k,

λ̃k =
(
−1 +

±θ
ck + 1

, − θ

ck + 1

)
,

where λ̃k is defined according to the first equality in (3.15). Clearly, {λ̃k} → λ̄. Finally,
estimate (3.12) obviously holds and is in general sharp (it can be improved if we let λ tend
to λ̄, that is, let θ to tend to 0, in which case (3.17) is valid).

Finally, consider the case when λ = (−1, −1). For each k, set xk = xλ, ck , and note that
xk1 = 0 while xk2 6= 0. At (xk, λ), the residual of the optimality system (1.2) is of order
(xk2)2. Hence, the algorithm-independent error bound of [8] does not hold along the sequence
{(xk, λ)}. At the same time, δk = (xk2)2, and the estimate (3.8) holds and is exact. The same
conclusions apply if λk is not fixed at λ = (−1, −1), but the generated dual sequence tends
to this λ.

4 Lagrangian Relaxation

The approach of Lagrangian relaxation [3, Chapter 7] is a useful tool for solving various
classes of optimization problems [13]. It consists of solving (1.1) via solving its dual

maximize ϕ(λ, µ)
subject to (λ, µ) ∈ ∆,

(4.1)

where
∆ = {(λ, µ) ∈ Rl ×Rm

+ | ϕ(λ, µ) > −∞},

ϕ : Rl ×Rm
+ → R, ϕ(λ, µ) = inf

x∈Rn
L(x, λ, µ).

The dual problem (4.1) is a concave maximization problem, in general nonsmooth, which
is solved by appropriate subgradient or bundle methods [3, Chapter 7]. Bundle methods
are in general more reliable and practical, although the subgradient methods are also some-
times useful, thanks to their simplicity of implementation. Below we shall consider explicitly
the subgradient method only, because introducing the more sophisticated bundle methods
would have required an extensive discussion which is secondary to the subject of this paper.
However, we believe that bundle methods can also be treated within our framework.
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We shall assume that the problem

minimize L(x, λ, µ)
subject to x ∈ Rn (4.2)

has a solution xλ, µ for every (λ, µ) ∈ Rl ×Rm
+ of interest (artificial bounds on x are often

introduced to guarantee this, so that the dual function ϕ is finite everywhere).
The following relation between (4.2) and perturbations of the original problem (1.1) is

well known (we include its short proof for completeness).

Proposition 4.1 [3, Theorem 10.1] For any (λ, µ) ∈ Rn ×Rm
+ , a point xλ, µ which solves

(4.2), is a solution of

minimize f(x)
subject to F (x) = F (xλ, µ),

Gi(x) ≤
{
Gi(xλ, µ), if µi > 0,
max{0, Gi(xλ, µ)}, if µi = 0,

i = 1, . . . , m.

(4.3)

Proof. For any x ∈ Rn which is feasible in (4.3), we obtain that

f(xλ, µ)− f(x) ≤ f(xλ, µ)− f(x) +
∑
µi>0

µi(Gi(xλ, µ)−Gi(x))

= f(xλ, µ)− f(x) + 〈λ, F (xλ, µ)− F (x)〉+ 〈µ, G(xλ, µ)−G(x)〉
= L(xλ, µ, λ, µ)− L(x, λ, µ).

Since xλ, µ is feasible in (4.3), the assertion follows.

As is well known [3, Chapter 7] and easy to see, solving (4.2) provides not only the value of
ϕ at the point (λ, µ), but also (at no additional cost) of one of its subgradients. In particular,
it holds that

(F (xλ, µ), G(xλ, µ)) ∈ ∂ϕ(λ, µ). (4.4)

The subgradient Lagragian relaxation based method is the following iterative procedure.
Given some (λk, µk) ∈ Rl ×Rm

+ , the first part of the iteration consists of solving the mini-
mization problem (4.2) with (λ, µ) = (λk, µk). This generates a primal point, which we shall
denote xk. After this, the dual variables are updated by the projected subgradient step

(λk+1, µk+1) = PRl×Rm
+

(
(λk, µk) + αkg

k
)
, gk ∈ ∂ϕ(λk, µk), αk > 0,

where PRl×Rm
+

denotes the orthogonal projection onto the set Rl×Rm
+ , and αk is the stepsize.

In particular, the implementation based on (4.4) gives

λk+1 = λk + αkF (xk), µk+1
i = max{0, µki + αkGi(xk)}, i = 1, . . . , m. (4.5)

12



Theoretically, for convergence of the subgradient projection method, the stepsize sequence
{αk} must satisfy

∞∑
k=0

αk‖gk‖ = +∞ (4.6)

and ∞∑
k=0

α2
k‖gk‖2 < +∞. (4.7)

More precisely, if the dual problem (4.1) is solvable, and conditions (4.6) and (4.7) hold, then
the method generates the trajectory which converges to a solution of (4.1). If, in addition,
the solution set of problem (4.1) is bounded, then trajectory converges to this set even if
(4.7) is replaced by a weaker condition

lim
k→∞

αk‖gk‖ = 0.

In our setting, we assume that the sequence {(λk, µk)} is bounded and the corresponding
sequence {xk} converges to x̄, the strict local solution of (1.1) under consideration. The latter
is not automatic, but can be expected to happen in some situations (for example, if convexity
and constraint qualifications are assumed). Under these assumptions, the sequence {gk} is
automatically bounded, and (4.6) implies

∞∑
k=0

αk = +∞, (4.8)

which is the condition to be used below.
In this setting, we are again interested in obtaining an estimate of the distance from xk

to x̄. Recalling (4.3), define

δk =

‖F (xk)‖2 +
∑
µki>0

(Gi(xk))2 +
∑
µki =0

(max{0, Gi(xk)})2


1/2

. (4.9)

Theorem 4.1 Suppose that the solution set of the dual problem (4.1) is nonempty and that
the sequence {(λk, µk)} is generated according to (4.5) and (4.8), where for each k, xk is a
solution of (4.2) for (λ, µ) = (λk, µk). Suppose that the sequence {xk} converges to x̄, which
is a solution of (1.1).

Then all the assertions of Theorem 3.1 hold, with δk defined by (4.9).

Proof. As before, we can assume that xk ∈ Bε(x̄) for all k. To prove that δk → 0 as
k → ∞, we first show that µki = 0 for all i 6∈ A(x̄) and all k sufficiently large. Let i 6∈ A(x̄)
and suppose the opposite, i.e., that there exists an infinite subsequence of indices {kl} such
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that µkli > 0 for all l. For all k large enough, say k ≥ k̄, it holds that Gi(xk) ≤ −β, where
β > 0. Then for kl > k̄, we obtain that

0 < µkli = µkl−1
i + αkl−1Gi(xkl−1) = µk̄i +

kl−1∑
j=k̄

αjGi(xj) ≤ µk̄i − β
kl−1∑
j=k̄

αj ,

which results in a contradiction when l→∞ (and then kl →∞), because of the first condition
in (4.8). It follows that if µki > 0 for some k large enough, then i ∈ A(x̄), so that Gi(xk)→ 0.
It now easily follows that δk → 0.

We have that

f(xk) + 〈λk, F (xk)〉+ 〈µk, G(xk)〉 = L(xk, λk, µk)
≤ L(x̄, λk, µk)
= f(x̄) + 〈λk, F (x̄)〉+ 〈µk, G(x̄)〉
≤ f(x̄),

where the first inequality is by the definition of xk, and the last follows from F (x̄) = 0,
G(x̄) ≤ 0 and µk ≥ 0. Hence,

f(xk) ≤ f(x̄)− 〈λk, F (xk)〉 − 〈µk, G(xk)〉.

In particular, taking into account the boundedness of {(λk, µk)} (this sequence converges, by
our assumptions and the properties of the subgradient projection method) and the definition
(4.9) of δk, we conclude that

f(xk) ≤ f(x̄) +O(δk).

The assertions follow from Proposition 4.1 and Theorem 2.1.

It can be verified that Examples 3.1 and 3.2 also show that the corresponding estimates
obtained for the subgradient Lagrangian relaxation based method are sharp. We shall not
provide any specifics, as conceptually the situation is very similar to the case of the augmented
Lagrangian, considered in full detail in Section 3.
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