
Dynamic Properties of Minimal Algorithms for
Coevolution

Pablo Funes1 and Enrique Pujals2

1 Icosystem Corporation, 10 Fawcett St., Cambridge, MA, USA
pablo@icosystem.com

2 Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, RJ, Brasil
enrique@impa.br

Abstract. One characteristic that differentiates coevolution from regular evolu-
tion is the existence of intransitivities (rock-scissors-paper). It is only recently
that abstract models have begun to be used to study coevolution. Numbers Games
in particular, have been studied by several authors as minimal models of intransi-
tivities.
Here we carry out an analytical study of the dynamics of basic coevolutionary
algorithms in the presence of intransitivities, focusing on two-dimensional num-
bers games. Rather than testing out different algorithms, we focus on using formal
proofs.
We show that depending on the nature of the problem, the coevolutionary hill-
climber C(1+1) either makes progress with constant average speed or behaves
as a random walk, wondering aimlessly. Also, depending on the space, optimal
elements exist but are never reached. Larger populations make the analysis more
difficult and do not bring qualitative changes into those dynamics, except on spe-
cific cases.

1 Coevolutionary Games

Coevolutionary algorithms share with evolutionary ones the same setup with finite pop-
ulation and mutation, recombination and selection stages. Selection however, is not
defined by the usual fitness function f : Y ��� , where Y the genotype, or “state”
space[1]. Instead, in coevolution a weaker relative fitness function

f : Y ν ��� ν

defines preferences within the members � y1 ��������� yν 	 of the current generation.
A frequent kind of coevolutionary setup takes place when one can compare pairs of

individuals. This happens, for example, in two-player games. Players A and B challenge
each other and the outcome is a winner and a loser — thus one has a fitness function
which compares a pair of individuals and decides on a win, lose or tie:

f : Y 
 Y ���� 1 � 0 � 1 �
such that

f � A � B 	��
�� � 1 if B wins 1 if B loses

0 otherwise



Definition 1. We shall use the name coevolutionary game in a (genotype) state space
Y to describe any function f : Y 
 Y ���� 1 � 0 � 1 � .3
It is usually the case that when “A beats B” we can also say that “B loses against A”.
This is the symmetry property:

Definition 2. A coevolutionary game f : Y 
 Y �  1 � 0 � 1 is symmetric if for every
pair � y � y � 	 � Y ,

f � y � y � 	 �  f � y � � y 	 (1)

Remark 1. A symmetric coevolutionary game defines a partial order in the genotype
space Y :

y � y
���

f � y � y � 	 � 1

and symmetrically, any partial order � on Y defines a symmetric coevolutionary game
by

f � y � y � 	 �
�� � 1 if y � y

� 1 if y � y
�

0 otherwise
(2)

In the remainder of the paper we use the f and the � notations interchangeably.

1.1 Intransitivity

One puzzling consequence of coevolution is the possibility of having internal cycles or
“intransitivities”, as in the well-known rock, paper, scissors game,

rock paper scissors B
rock 0 1 -1
paper -1 0 1

scissors 1 -1 0
A f � A � B 	

Intransitivity problems were found in early works in coevolution, giving rise to the
name “Red Queen Effect”: the fact that individuals in the current generation are able to
beat those on the previous one does not mean that they are improving in general. The
landscape is changing so it is conceivable that the evolutionary algorithm, like the Red
Queen of Lewis Carrol, is going nowhere fast.

Definition 3. A coevolutionary game is transitive if A beats B and B beats C implies
that A shall beat C:

y � y
�
	

y
� � y

� � ��� y � y
� �

(3)

and intransitive if it is not transitive.

3 In this paper we limit ourselves to deterministic games. In many cases however, pairs of strate-
gies define instead just the probabilities of winning or losing, therefore adding an extra layer
to the problem[12,10,8].



1.2 Coevolutionary games in � 2

There has been a recent interest in studying coevolutionary “number games” in which
the genotype space is � 2 [13,9,3,11,4,7]. Watson [13, eq. 3] proposed the Intransitive
Numbers Game (ING),

� x1 � y1 	 � � x2 � y2 	�� �
�� � � x1

 x2
� � � y1

 y2
�
and x1 � x2

or�
x1
 x2

� � � y1
 y2

�
and y1 � y2

(4)

ING was a good way to start a formalized discussion on the issues around coevo-
lution and intransitivity. This game was designed to illustrate the fact that, even though
there is a straightforward way to “improve” — namely, increasing the values of both
x and y — there is a catch. Two points are compared only on the basis of their most
similar dimension. If they are closer on x they will be compared with respect to x and
if they are closer in y they will be compared in y. There is no confusion if one player
beats the other in both dimensions, but if one pair is better than the other only in one
dimension, then it is the most similar that prevails. This rule leads to intransitivities, for
example: � 0 � 0 	 � �  1 � 2 	 and �  1 � 2 	 � � 2 � 1 	 but � 2 � 1 	 � � 0 � 0 	 .

Bucci [4] studies the intransitive numbers game as well as the focusing game he
defines, which is not symmetric:

f ��� x1 � y1 	 � � x2 � y2 	�	�� 1 � �
�� � x2 � x1

or
y2 � y1

(5)

For contrast we can define the sum game, a game that is both transitive and sym-
metric4, � x1 � y1 	 � � x2 � y2 	�� � x1 � y1 � x2 � y2 (6)

1.3 Positive Region

Coevolutionary games like the ones above are characterized by their positive regions.

Definition 4. The positive region of a fixed point y0
� Y is the set of all elements in the

genotype space that are better,

C � � y0 	�� � y � Y : y0 � y � (7)

and conversely, C � � y0 	 � � y � Y : y0 � y �
Positive regions for the three games above (and two others) are shown in figure 1.
All of them are examples of pie games, where winning regions are defined by angular
relationships between y0 and y �

4 Also in [13, eq. 2]
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Fig. 1. Positive regions: (a) Watson’s intransitive numbers game (eq. 4); (b) Bucci’s focusing
game (eq. 5); (c) sum game; (d) a balanced game and (e) deceiving game (e). A pair � x � y � at
the center, is defeated by all strategies in the gray area (positive region), and in turn defeats the
strategies in the white area (negative region). Game (b) is asymmetric – A beats B does not imply
that B loses to A — because opposite areas do not have opposite colors. (c) is symmetric and
transitive. (a) is symmetric but not transitive. The x marks the center of mass (see text).

2 C(1+1) Coevolutionary Algorithms

In order to do an analytical study of the dynamics of coevolution in the presence of
intransitivities, we begin by investigating the simplest kind of coevolutionary algorithm
we could think of :

Definition 5. The coevolutionary hillclimber C � 1 � 1 	 is the following algorithm:
For a coevolutionary game f : Y 
 Y � �  1 � 0 � 1 �

1. Take an initial point y
� Y

2. Repeat forever:

(a) Generate a random mutation y
�
of y

(b) Replace y with y
�
whenever y � y

�

We only need to consider steps in the positive regions of the game. That is, even though
all mutations are equally likely to occur, only those which improve the fitness are kept.
Therefore it is useful to think only in terms of the steps taken,

Definition 6. C � � 1 � 1 	 is the following algorithm: Replace step 2(a) in def. 5 above
with

2 (a)’ Generate a random mutation y
�
of y such that y

�
beats y

that is, in C � we only increment the generation counter when the mutation has been
successful.

All the sample games we have talked about, share the property that the positive
regions for different points are congruent. This is the uniformity property.

Definition 7. A coevolutionary numbers game f is uniform if for all y , y’ and z,

f � y � y � 	�� f � y � z � y � � z 	 (8)



Remark 2. A uniform coevolutionary game f can be defined by a one-variable fitness
function g : M0

� �  1 � 0 � 1 � .
g � y 	 � f � 0 � y 	 (9)

where M0 is the co-domain of the mutation operation. Throughout this paper we use
random mutations in the unitary ball, so M0 � B0 � 1 	 � � � x � y 	 :

� � � x � y 	 � � � 1 � .
3 Evolution or Random Walk?

There are several ways we could try to characterize the evolutionary progress, or lack
thereof, in coevolutionary algorithms.

– Victories: are the new generations increasingly likely to defeat the old ones?
– Exploration: will the evolving population wander aimlessly around the space or

will it make progress in certain areas?

We thus introduce the following “undesirable properties”:

Definition 8. Red Queen Property (RQ) Let y0 � y1 ��������� yn ������� be the sequence of the
(best) individuals from each generation in a coevolutionary run. The sequence has the
Red Queen Property if an early generation k beats an infinite number of future genera-
tions: �

n � k : P ��� m � n : yk defeats ym � � 1 (10)

This definition agrees with the well-known notion, first proposed by Cliff and Miller
[6], that coevolutionary progress can be measured by the increased frequency by which
the best individual of the last generation beats the best individuals of earlier generations.
RQ is the opposite property: no matter the number of generations, we keep coming back
to a losing situation with nonvanishing frequency.

Definition 9. Random Walk (RW) y0 � y1 ������� yn ������� is a random walk if an early gener-
ation k is very close to an infinite number of future generations:

�
ε � 0 : P ��� m � � � yk

 ym
� � � ε � � 1 (11)

In fact, for all examples in this papers a stronger definition is useful5,

Definition 10. Random Walk (RW’) y0 � y1 ������� yn ������� is an open random walk when for-
ever it keeps going to any arbitrary open set U:

�
n0 � U P ��� n � n0 : yn

�
U � � 1 (12)

Remark 3. For uniform games in � n , each point starts an identical stochastic process,
thus the RW and RQ properties above are valid for all k � 0 if and only if they are valid
for a single k.

5 We use the name “random walk” somewhat loosely here: random walks are usually restricted
to lattices.



The number games have been defined geometrically. We intuitively consider that progress
must mean movement in some direction, and this is in fact the case:

Theorem 1. If a uniform game’s negative regions are open, then RW � RQ

Proof. If there are ever n1 � n2 such that yn1 � yn2 then, given that yn1 is inside a losing
region of yn2 � there is an ε such that Byn2

� ε 	�� C � � yn1 	 . This neighborhood of losers is
visited an infinite number of times, because of the RW property.

Theorem 2. Let g : B � 0 � 1 	 � �� 1 � 0 � 1 � be a uniform coevolutionary game in � 2 . Then
the algorithm C(1+1):

1. Is RW if and only if the center of mass is zero (and RW’ for games with open
negative regions)

2. Moves in the direction of the center of mass with speed proportional to the norm of
the center of mass .

3. Is RQ if and only if the center of mass lies outside C �

Proof. Proof Let Yn be a random variable representing the n-th generation element of
C � � 1 � 1 	 and let Xn � Yn � 1

 Yn. Then � Xn � n � N is a sequence of independent, identi-
cally distributed random variables. The average, or expected value E � X 	 of the mutation
operator is the center of mass,

E � X 	 � ���
x � y �	� C 
�� B0

�
1 � � x � y 	 dxdy

By the law of large numbers we know that

1
n

n

∑
i � 1
� Xi
 E � Xi 	�	 � N � 0 � 1 	

If E � X 	 � 0 then this means 1
nYn

� N � 0 � 1 	 , thus Yn is not only centered around
zero, but it “vibrates” around it with variance  n, thus is a random walk. If the negative
regions are open, then the steps taken in fact “vibrate” in all directions, and thus the
associated stochastic process visits every open set in the plane (see [5,2]). This proves
part 1.

On the other hand, if E � X 	 is nonzero, then it is 1
n � Yn

 nE � X 	�	 � N � 0 � 1 	 , the
expected location after n steps is nE � X 	 with a variance of  n (point 2).

Finally, if the center of mass is in the interior of the winning region for (0,0), the
distance between nE � X 	 and the winning region grows linearly, but the variance only
with the square root of n, therefore the probability of the process visiting the losing
region approaches zero. Conversely, if the center of mass is in the losing region of
zero, or the border, then the probability that Yn is beaten by zero approaches 0 or 1

2 ,
respectively.



3.1 Comments

Theorem 2 is the main result of this paper. We have shown that the basic coevolutionary
algorithm moves in a reasonable direction, with linear speed, avoiding the red queen
effect, for many problems.

Well-behaved problems include the original ING and Bucci’s focusing game and
of course, all transitive problems. Looking back at figure 1, we can characterize the
behavior of a pie game by looking at the position of x that indicates the center of mass.
“Good problems” are those for which the circle is inside a gray region.

However, problems with center of mass at zero are hopeless random walks and the
generations will drift aimlessly throughout the � 2 universe. Fortunately, this can only
happen in a perfectly balanced problem. This characteristic has a probability zero in
the realm of all possible coevolutionary games. We shall thus say that generically the
algorithm C(1+1) at least goes somewhere.

Problems with the center of mass in the wrong place (e.g. the “deception” problem
of fig. 1e), confused by opposing intransitivities, go deep into the losing region. This
is the worst kind of intransitivity, with the probability of losing vs. earlier generations
approaching one.

Can we use larger populations to escape from RW/RQ behavior? Below we analyze
two algorithms, C(1+N) — where instead of a random opponent it is the winner of a
tournament of mutants that is chosen, and also C � � N � 1 	 which tries to escape RQ by
accepting new mutants only if they can beat all previous generations.

4 C(1+N)

The first improvement we can make to C(1+1) is to generate several mutants, instead of
one, and choose the winner of a round-robin tournament as the next generation.

The result is that the new center of mass concentrates on the edge of the largest
winning sector (if it exists), thus escaping the “deception” explained above, but not the
RW when the center of mass is zero.

Note: the proofs in this and the next section are difficult. We have full proofs for
three-sector, symmetric pie problems, but we can only fit a sketch of each in the avail-
able space.

Given a pie with sectors C1 � C2 � C3 we define the vector vi � � Ci
� x � y 	 dxdy.

Definition 11. We say that the property G (for generic) holds if there is i such that
m � Ci 	 � m � C j 	 for any j �� i. We named the associated vector vi as vM �

C � 1 � N 	 is the following algorithm: given an initial point Y , repeat forever

1. let X1 ��� � � � XN be N points chosen randomly in B � and take Z as the the best of
X1 ��� � � � XN , meaning that Z � Xi if and only if � � j : Xi � X j � ��� � j : Xk � X j � for
any k and i � k in case that � � j : Xi � X j � � � � j : Xk � X j �

2. replace Y by Y � Z.

We define the measure mN over as mN � U 	 � P � Z �
U 	 .



k=1 k=5 k=10 k=50

Fig. 2. Probability density of beating (0,0) plus k random opponents for increasing k in ING (A)
and a balanced problem (B). Directionality concentrates for larger populations but cannot avoid
the random walk problem in (B).

After a series of computations we find that,

mN � U 	 � Σk � N � 2Dkµ � U 	 k � 1  µ � U 	�	 N � 1 � k (13)

where µ � U 	 � �
�
x � y �	� U m ��� C � � � x � y 	�	�� B � 	 dxdy and Dk is the number of all possi-

ble arrangement of events � X1 ��� � � � XN � with the property that the best scores exactly k
points. Observe that the best has at least to score N � 2 points (see fig. 2) . Then, we
define the expectation vector related to this measure EN � � B 
 � x � y 	 dmN �
Theorem 3. The following results hold:

1. If C � 1 � 1 	 is a random walk then EN � 0 for any N
2. If the property G holds then mN

� δ vM�
vM
� and EN

� vM�
vM
� , where δis the Dirac dis-

tribution concentrated on the single point vM�
vM
� .

Now we proceed to prove the Theorem. To get to point 1 we start with the following
lemma.

Lemma 1. Let g be a positive map over B0 � 1 	 such that g � v 	 � g � Ri
2π
3
� v 	�	 for any

v � B1; where Ri
2π
3
� v 	 is the rotation of v by 2π

3 . Then
�

B0

�
1 � � x � y 	 g � x � y 	 dxdy � � 0 � 0 	 .

To finish the proof of the first part, we have to show that assuming E1 � � 0 � 0 	 , then den-
sity gN associated to the measure mN (i.e.: mN � U 	 � � U gNdxdy) verifies the hypothesis
of the previous lemma. Recalling that mN is the sum of different powers of µ and 1  µ
and the distribution of µ is given by f � x � y 	 � m ��� C � � � x � y 	�	�� B � 	 , it is enough to
show the hypothesis of the Lemma for f � x � y 	 . In fact, if E1 � � 0 � 0 	 and having three
sectors, it follows that if � x � y 	 � B � then Ri

2π
3
� x � y 	 � B � . Using this and the expression

of f by straight calculation we conclude the proof.



For the second part of the theorem, roughly speaking, we want to show that the
measure mN is concentrated in the biggest sector. First we observe that if the property
G holds, then the global maximum of f � x � y 	 � m ��� C � � � x � y 	�	 � B � 	 is equal to vM�

vM
�

and so the measure µk is most concentrated over vM�
vM
� . On the contrary, � 1  µ � U 	�	 N � 1 � k

is most concentrated over the minimum of f . But since k � N � 2 we get that µ � U 	 k � 1 
µ � U 	�	 N � 1 � k is most concentrated over vM�

vM
� . Moreover, as N increases, the number of

terms that contribute to vM�
vM
� goes up. Again, the previous assertions follow from straight

calculation.

5 C ��� N � 1 �
Definition 12. C � � N � 1 	 is the following algorithm: given a set of initial points � Y1 ��� � � � YN �
such that Yk � Yj for any k � j, repeat

1. Take XN � 1
�

B � such that YN � 1 � YN � XN � 1 verifies that YN � 1 � Yk for any k;
2. Replace � Y1 ��� � � � � � YN � with � Y2 ��� � � � � � YN � 1 � .

We define the measure mN over B � as mN � U 	�� P � XN � 1
�

U 	 � Moreover, observe that
YN � 1 is obtained as Y1 � ZN with ZN

�
B � � N 	 where B � � N 	�� B � N 	 � C �0 and B � N 	 is

the ball of center 0 and radius N � Also, ZN � X2 � X3 � � � � � XN � 1 such that Xi
�

B � and
are chosen in B � with probability mN � So, given mN we also have a measure in B � � N 	
defined as m̄N � V 	�� P � ZN

�
V 	

These probability measures mN and m̄N are defined by induction; assuming that we
have defined mN � 1 and m̄N � 1 then

mN � U 	 � P � XN � 1
�

U 	 � �
z � B 


�
N � 1 � m

�
N � 1 � � U � � C �0  z 	�	 dm̄

�
N � 1 � � z 	

Now, we define the expectation vector EN � � B 
 � x � y 	 dmN �
Theorem 4. The following results hold:

1. If C � 1 � 1 	 is a random walk then EN � � 0 � 0 	 for any N;
2. If the property G holds then mN

� δ vM�
vM
� and EN

� vM�
vM
� �

From this theorem, we conclude that if C � 1 � 1 	 is a random walk, then C � � N � 1 	 also
behaves as a random walk. More precisely, since EN � � 0 � 0 	 we have the same kind
of Red Queen behavior. On the other hand, we know that (generically) the algorithm
C � � N � 1 	 explores the same sectors as C � 1 � N 	 �

To prove the theorem, we will use similar arguments as used in the case of C � 1 � N 	 �
In fact, we use the lemma 1 after showing that the distribution associated to the measures
mN and m̄N verify the hypothesis of the lemma. This is immediate for m2 � U 	 � P � X3

�
U 	 � �

�
x � y �	� B 
 m1 �U � � C �0  � x � y 	�	�� dx. The rest follows by induction.

For the second part, again we want to show that the measures concentrate in the
biggest C j . In fact, the measures concentrated at vM

vM
. For N � 2 we have to check the

map x � m � U � � C �0  x 	�	 and by symmetry it is the same situation for the measure
associated with C � 1 � 2 	 � The rest, holds by induction.



5.1 Comments

The previous theorems show that there is no chance of avoiding the random walk behav-
ior using larger populations. However, for generic examples the previous algorithms can
be extremely useful with large enough populations . Although the red queen is avoided
generically, all we can achieve so far is to explores the same region. Mutations make
progress only in the direction of the largest cone, leaving other secondary regions un-
explored.

There is a correlation between the mass of a sector and the score that a typical point
in it scores against a (large) set of random opponents. In a similar fashion as being a
total winner becomes associated with being in the largest sector, a partial winner shall
land in a minority region, if it exists.

We have shown that an algorithm C � 1 � N � λ 	 that keeps players that achieve a
certain ratio λ of wins vs. losses will land in a secondary area of the pie, provided there
is one with corresponding mass. For instance, for λ � 0 we keep only loses and manage
to move in the direction of the smallest slice of pie. This comes from the fact that each
the measure associated is D0 � 1  µ � U 	�	 N � 1 (with the same symbols as eq. 13).

6 Reaching Global Optima in Closed Domains

So far we have considered coevolutionary games in unbounded domains. “Progress” is
loosely defined in them; in ING we know intuitively that we should go up and to the
right; for other games it can be more difficult to think of a definition of progress.

A B

W

Fig. 3. Compact region W with maximal elements for ING. Corners A and B are optimal ele-
ments: a player in either of them beats everybody else. A coevolutionary hillclimber approaches
B but never reaches it.

If we change the domain to a bounded, compact region, then global optima can
exist. If they do, they are the target of any coevolutionary algorithm. In this section
we examine the geometric conditions for the existence of maximal elements and their
reachability.

Definition 13. Consider a pie game in a compact, convex domain W � Given a point
p
�

W we say that p is a maximal element if � C �0 � p 	 � Br � p 	 � W � /0 for some r � 0.

The question we consider is: if there are maximal points, are they found by the algorithm
C � 1 � N 	 ? The problem is strongly dependent on the oddities of the boundary.



We are interested in those cases when corners are not too bizarre. In this regard
we consider only maximal points (see fig. 3) that overlap the edge of the losing region
associated with the corner.

Observe that a maximal element locally beats all other opponents; whether or not
it is a global optimum for the problem depends on the shape of W . Moreover, not all
compact domains have maximal elements; for example, if W is a disk then it has a single
maximal element if and only if the problem is transitive.

We recall the concept of stationary distribution for a stochastic process. It describes
the distribution of the accumulation points of sequences generated by the random pro-
cess. If the stationary distribution is nonzero in all open sets, it follows that the accumu-
lation points are spread everywhere. The condition is that there needs to be a transition
probability between any pair of open sets U � V which depends only on the areas of U
and V .

Theorem 5. Let us consider the algorithm C � 1 � N 	 for an intransitive (pie) game in
the convex compact domain W. The stationary distribution of has support over open
sets.

The proof follows from the fact that we are in a compact set and that for any pair of
open neighborhoods, there is a uniform positive probability to go from one to the other.

6.1 Comments

The above theorem implies that coevolutionary hillclimbers fail to reach the problem’s
optimal values, when those exist. This problem stems from the fact that, even though
maximal points exist, and they are Nash equilibrium points, the main positive region
disappears as we approach it. Transitive problems can only move toward the maximal,
and thus reach it eventually, but intransitive ones can escape, as the alternative positive
regions become proportionally larger.

Fig. 4. Behavior of C(1+N) near a maximal point: As instances approach the maximal corner, the
area of the main region disappears outside the edge and mutations escape along the secondary
directions.

Mutation control strategies, like those found in Evolutionary Strategies and Sim-
ulated Annealing for example, might be able to avoid this problem by shrinking the
mutation region as the border gets closer. Otherwise, we are condemned to stay around,
but never reach, the maximal.



7 Conclusions and Future Work

The intransitive problems we have just analyzed might be stranger than originally thought.
Watson [13] suggested that the intransitive numbers game was just a perturbation of the
transitive case. We have seen here, however, that such perturbation complicates the very
notion of optimization.

Although we have restricted the analysis to very particular intransitive problems
(“pie problems”), this analysis is generic in the sense that any intransitive situation with
real-valued parameters and continuous fitness must end up looking like a pie — in a tiny
neighborhood at least. This means that coevolution must deal with such intransitivities
found along the way, by trying to get out of there in a constructive direction.

The simple C(1+1) coevolutionary hillclimber does have an answer, that works for
many situations: it makes steady progress in some direction — not always the best one
— increasing both x and y with constant average speed.

Using a larger population or keeping a finite number of previous generations around
can fix the focusing problem that arises when the solitary hillclimber ends up in the
losing region, undecided between conflicting sub-goals.

The quest for an algorithm that could find and explore the alternative directions of
these problems is a harder one. Bucci [4, fig. 3] proposes a form of a Pareto hillclimber
that seems to spread out, exploring several interesting directions.We shall discuss Pareto
optimization in an up-coming study.

Technically, in intransitive problems the Pareto front is everywhere, so the popula-
tion could end up being a Brownian dust. An alternative could be the use of combina-
tions of different winning rates: the highest one detects the main direction, and lower
rates follow secondary ones.
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