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Abstract

 

—Various issues in the theory of optimization problems with complementarity constraints are
examined. Along with a survey of well-known constraint qualifications and optimality conditions, a
number of new results concerning second-order optimality conditions for such problems are given.
These results are used in the core of this paper, which is devoted to the sensitivity theory for abnormal
optimization problems and its applications to problems with complementarity constraints.

 

1. INTRODUCTION

It can be said without exaggeration that, in the last decade, enormous activity of experts has been directed
at mathematical programs with equilibrium constraints, including complementarity constraints. Numerous
examples of such problems arising in applications can be found in [1, 2] and the literature referenced
therein. The most important applications are related to the so-called bilevel optimization problems [3]. In
addition to its unquestionable applied value, this class of optimization problems is also of substantial math-
ematical interest. The matter is that the special structure of constraints makes these problems difficult to treat
from the point of view of the conventional optimization theory; they are also resistant to efficient numerical
solution. Naturally, these two aspects are closely connected with one another. This paper is devoted to the
theoretical aspect. For the latest progress in the numerical solution of problems with complementarity con-
straints, see, for example, [4, 5].

2. SOME RESULTS ON THE SENSITIVITY OF OPTIMIZATION PROBLEMS

We first consider the “conventional” optimization problem, or the mathematical program (MP)

 

(2.1)

 

where

 

(2.2)

 

Here, 

 

f

 

 

 

: 

 

�

 

n

 

  

 

� 

 

is a smooth function and 

 

F

 

 : 

 

�

 

n

 

  

 

�

 

l

 

 and 

 

G

 

 : 

 

�

 

n

 

  

 

�

 

m

 

 

 

are smooth mappings.

 

2.1. Constraint Qualifications and Optimality Conditions

 

We remind the reader of certain concepts and facts from the MP theory (e.g., see [6]). The Lagrangian
function of problem (2.1), (2.2) is introduced by
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problem (2.1), (2.2), and let a constraint qualification (see below) be satisfied at this solution. Then, there
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Denote by 
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 of this problem is the following set of equations and inequalities:

This system specifies stationary points of problem (2.1), (2.2) and the corresponding multipliers.
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Define the cone
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which is the first-order outer approximation of the tangent cone of 

 

D

 

 at 

 

 

 

∈

 

 

 

D. The critical cone of problem
(2.1), (2.2) at  is defined by

(2.5)

If  is a stationary point of problem (2.1), (2.2), then, for each (λ, µ) ∈ �, it holds that

(2.6)

If the LICQ is fulfilled at , then we have the following second-order necessary condition (SONC) for the
local optimality of  in problem (2.1), (2.2):

This necessary condition is associated with the second-order sufficient condition (SOSC)

Furthermore, in the analysis below, we use the so-called strong second-order sufficient condition (SSOSC)

where

(cf. (2.6)). Second-order necessary conditions for optimality in the case where the LICQ (and even the
MFCQ) is not fulfilled can be found in [7]. Here, we limit ourselves to the corresponding sufficient optimal-
ity conditions that are not related to constraint qualifications. Indeed, it is these sufficient conditions that we
need in what follows.

We introduce the cone

(2.7)
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which is the second-order outer approximation of the tangent cone of D at  ∈ D (cf. the cone T in [8]). It
is shown in [8, Lemma 3] that if � = ∅ (which is possible when the MFCQ is violated), then the following
first-order sufficient condition (FOSC) is a natural sufficient condition for the local optimality of :

(2.8)

We emphasize that

and (2.8) is a first-order condition in the sense that it uses only the first derivative of the objective function.
The FOSC is sufficient for the linear growth condition (LGC) to be fulfilled; the latter condition means that
there exists a positive γ > 0 such that

in a neighborhood of . Note that QD = LD, provided that the MFCQ is fulfilled; hence, QD ∩ C = LD ∩
C = C, and the FOSC (2.8) takes the form

. (2.9)

(In particular, it becomes a true first-order condition). Moreover, under MFCQ this condition is necessary
for the LGC (see [9, Proposition 6.2]).

If � ≠ ∅, then the following is a natural form of using the SOSC:

(2.10)

This is sufficient for the quadratic growth condition (QGC) to be fulfilled; the latter means that there exists
a positive γ > 0 such that

in a neighborhood of . By [8, Lemma 3], if � ≠ ∅, then the cone C in (2.10) can be replaced by QD ∩ C
(the corresponding two conditions are equivalent). Moreover, if the MFCQ is fulfilled, then SOSC (2.10) is
necessary for the QGC (see [9, Theorem 6.3]).

2.2. Sensitivity Analysis when an Estimate for the Distance 
to the Feasible Set of a Perturbed Problem is Available

Assume that the function f and the mappings F and G (and, hence, all the quantities they determine)
depend on a parameter σ ∈ �s

. In particular, with each value of this parameter, we associate the perturbed
problem

(2.11)

(2.12)

Let  be a local solution to problem (2.11), (2.12) associated with the base value σ =  ∈ �
s
. Through-

out this paper, we assume that the set A is specified at  exactly for this base value of the parameter. Let
B = B( ) be a ball of a small radius centered at  (we mean that the radius of this ball is as small as required

in all of the assertions below). For each σ ∈ �
s
, consider the restriction of problem (2.11), (2.12) to B:

Define the minimum value ω(σ) and the solution set S(σ) of this problem:

The behavior of ω : �
s
  � and the multifunction mapping S : �

s
  2B is the subject of the local sen-

sitivity theory.

x

x

QD C∩ 0{ }.=

QD C∩ ξ QD ∈  f ' x( ) ξ,〈 〉 0≤{ }=

f x( ) f x( ) γ x x– x D∈∀+≥

x

C 0{ }=

ξ C\ 0{ } λ µ,( ) � : 
∂2L

∂x2
-------- x λ µ, ,( ) ξ ξ,[ ] 0.>∈∃∈∀

f x( ) f x( ) γ x x– 2 x D∈∀+≥

x

f σ x,( ) min, x D σ( ),∈

D σ( ) x �
n
 ∈  F σ x,( ) 0 G σ x,( ) 0≤,={ }.=

x σ
x

x x

f σ x,( ) min, x D σ( ) B.∩∈

ω σ( ) f σ x,( )
x D σ( ) B∩∈

inf , S σ( ) x D σ( ) B ∩∈  f σ x,( ) ω σ( )={ }.= =



1148

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 44     No. 7      2004

IZMAILOV

In this section, we do not impose any constraint qualifications. Instead, we assume that the following
estimate is fulfilled: for a certain p ∈ (0, 1], it holds that

(2.13)

for σ ∈ �
s
. In particular, this assumption presupposes that D(σ) is nonempty for all σ sufficiently close to

. According to Robinson’s stability theorem [10, Corollary 1], estimate (2.13) is valid for p = 1, provided
that the MFCQ is fulfilled at . Under the weaker conditions given in [11, Theorem 4], one can obtain esti-
mate (2.13) with p = 1/2 and even, in certain special cases, with p = 1.

The following theorem (on the stability and an upper bound for the minimum value) can be proved by a
standard argument.

Theorem 1. Assume that, for a certain p ∈ (0, 1], estimate (2.13) is fulfilled for σ ∈ �
s
. Then, the func-

tion ω is continuous at the point  and S(σ) ≠ ∅ for any σ ∈ �s
 sufficiently close to . Moreover,

and it holds that

(2.14)

In particular, if  is a strict local solution to problem (2.11), (2.12) for σ = , then

The following two theorems yield estimates for solutions to perturbed problems and lower bounds for ω,
provided that the FOSC and the SOSC are fulfilled, respectively.

Theorem 2. Assume that sequences {σk} ⊂ �
s
 and {xk} ⊂ �

n
 are such that {σk}   and {xk} 

 as k  ∞, xk ∈ S(σk) for all k, and

(2.15)

for some p ∈ (0, 1].
Then,
(a) if FOSC (2.8) is fulfilled, we have

(b) if (2.9) is fulfilled, we have

(2.16)

(2.17)

(c) if FOSC (2.8) is fulfilled and, for any sufficiently large k, there exists a uk ∈ �
n
 such that

(2.18)

(2.19)

then estimates (2.16) and (2.17) hold true.
We singled out assertion (c), because this case is typical (in a certain sense) for problems with comple-

mentarity constraints (see below).
Proof. Assertions (a) and (b) can be justified by a small modification of the proof in [8, Theorem 5] or

the proof of assertion (c) given below.
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Suppose that (2.16) does not hold. Without loss of generality, we can assume that

(2.20)

Define ξk = (xk – )/|xk – |. It can be assumed that the sequence {ξk} converges to a certain ξ ∈ �
n
\{0};

moreover,

This relation, combined with (2.4) and (2.20), implies that ξ ∈ LD (recall that p ∈ (0, 1]). Furthermore, in
view of (2.18) and (2.19), we have

Now, taking into account (2.7), (2.20), and the fact that the image of a finite-dimensional linear operator
is closed, one can easily show that ξ ∈ QD.

On the other hand, by virtue of (2.15), we have

In view of (2.20), this implies that  ≤ 0. Therefore, by (2.5), ξ ∈ (QD ∩ C)\{0}, which con-

tradicts FOSC (2.8).

Thus, estimate (2.16) is proved. Estimate (2.17) is an immediate implication of (2.16). The theorem is
proved.

Theorem 3. Assume that, under the hypotheses of Theorem 2 � ≠ ∅, SOSC (2.10) is fulfilled. Then, we
have

The proof of this theorem is essentially the same as that of Theorem 6 in [8].

If the MFCQ is assumed to hold, then one can give a subtler sensitivity analysis, which includes “quan-
titative” results for perturbations in a given direction in the parameter space. The relevant theory is presented
in [9, 12, 13] and is used below.
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3. FORMULATION OF THE MATHEMATICAL PROGRAM WITH COMPLEMENTARITY 
CONSTRAINTS

The basic (and generally accepted) formulation of a mathematical program with complementarity con-
straints (MPCC) is as follows:

(3.1)

where

(3.2)

Here, f : �
n
  � is a smooth function and G, H : �

m
  �

m
 are smooth mappings. This is an important

particular case of the mathematical program with equilibrium constraints, in which the feasible set is spec-
ified by a variational inequality. The constraints may also include “conventional” equalities and inequalities;
however, this extension does not involve any additional fundamental difficulties and is not considered here.
The meaning of the complementarity constraints is as follows: the feasible points are those where all com-
ponents of G and H are nonnegative; moreover, in each pair of the corresponding components of G and H,
at least one component is zero.

Example 1. Assume that n = 2, m = 1, f(x) = a1x1 + a2x2, G(x) = x1 , and H(x) = x2 , where x ∈ �
2
 and a1

and a2 are scalar parameters.
The feasible set is formed by two rays (the so-called branches; see below), namely, the nonnegative coor-

dinate half-axes. If a1 ≥ 0 and a2 ≥ 0, then  = 0 is a solution to MPCC (3.1), (3.2).
This model example is repeatedly used below.

We set I = {1, 2, …, m}. Let  ∈ �
n
 be a feasible point of problem (3.1), (3.2). Define the related index

sets

Necessarily, IG ∪ IH = I,

(3.3)

(3.4)

The following interpretation of MPCC constraints can be helpful in local considerations: in the intersec-
tion with a neighborhood of ,

(3.5)

The equality I0 = ∅ is called the strict complementarity condition (SCC). If the SCC is fulfilled, then
(3.5) implies that

i.e., the feasible set D near  is specified by smooth equalities, and the complementarity structure of con-
straints is lost. Therefore, in local considerations, the case where the SCC is fulfilled is simple and of little
interest (in the sense that it is treated by conventional tools). It is more important, however, that the SCC at
an MPCC solution is considered a too restrictive assumption. That is why this assumption is usually not
imposed in the modern literature.

In Example 1, the SCC is fulfilled at any feasible point except  = 0, where IG = IH(= I = I0). Note that,
when a1 > 0 and a2 > 0 in this example, the point  = 0 is a unique solution. If at least one of the numbers
a1 and a2 is negative, then there are no solutions. This is an illustration of the fact that the SCC is often vio-
lated at an MPCC solution.

The nature of the fundamental difficulties inherent in the theoretical analysis and an efficient numerical
solution of the MPCC is explained in the following section.

f x( ) min, x D,∈

D x �
n
 ∈  G x( ) 0 H x( ) 0 G x( ) H x( ),〈 〉 0=,≥,≥{ }.=

x

x

IG IG x( ) i I   Gi x( ) 0=∈{ }, IH IH x( ) i I   Hi x( ) 0=∈{ },= = = =

I0 I0 x( ) IG IH.∩= =

Gi x( ) 0 i I\IG∈∀> IH\IG IH\I0,= =

Hi x( ) 0 i I\IH∈∀> IG\IH IG\I0.= =

x

D

=  x �
n

Gi x( ) 0 i IG\IH Hi x( ) 0 i IH\IG Gi x( ) 0 Hi x( ) 0 Gi x( )Hi x( ) 0 i I0∈,=,≥,≥,∈,=,∈,=∈{ }.

D x �
n
  Gi x( ) 0 i IG Hi x( ) 0 i IH∈,=,∈,=∈{ },=

x

x
x
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4. THE LACK OF CONVENTIONAL REGULARITY AND STATIONARITY 
CONCEPTS 

The constraints in problem (3.1), (3.2) are irregular at any feasible point even if this point satisfies the
SCC (this fact was, probably, first mentioned in [3]). Namely, if IG = IH(= I0 = I) (as at the point  = 0 in
Example 1), then the gradient of the equality constraint is equal to zero and the MFCQ cannot be fulfilled.
Otherwise (as at feasible points distinct from zero in Example 1), this gradient is given by

(4.1)

while the gradients of the active inequality constraints are

(4.2)

In this case, the MFCQ implies that there exists an element  ∈ �
n
 such that

(4.3)

which is impossible, since, according to (3.3), (3.4), and (4.3), all the terms in the sums on the left-hand side
of this equality are positive. Thus, the MFCQ cannot be fulfilled; hence, the LICQ and other constraint qual-
ifications that are stronger than the MFCQ cannot be fulfilled as well.

In general, the MFCQ implies the existence of feasible points at which all inequality constraints are ful-
filled as strict inequalities. There are no such points in the case of the MPCC.

According to what has been said, the (local) optimality of  in problem (3.1), (3.2) does not, in general,

entail the KKT optimality condition. Here, the KKT means the existence of multipliers µG, µH ∈ �
m
 and

ν ∈ � such that

(4.4)

(4.5)

where

is the Lagrangian function of problem (3.1), (3.2). Nevertheless, we show below that this is a quite reason-
able stationarity concept for MPCC. From now on, we assume that � consists of triplets (µG, µH, ν) ∈ �

m
 ×

�
m
 × � satisfying (4.4) and (4.5).

With a given feasible point  of problem (3.1), (3.2), we associate two conventional MPs. The relaxed
MP (RMP) is

(4.6)

where

(4.7)

Its constraints are obtained by removing the equality constraints from (3.5).

x

G' x( )( )ÚH x( ) H' x( )( )ÚG x( )+ Hi x( )Gi' x( )
i I \ IH∈
∑ Gi x( )Hi' x( )

i I \ IG∈
∑+=

=  Hi x( )Gi' x( )
i IG\ IH∈
∑ Gi x( )Hi' x( ),

i IH \ IG∈
∑+

Gi' x( ), i IG∈ , Hi' x( ), i IH.∈

ξ

Gi' x( ) ξ,〈 〉 0 i IG, Hi' x( ) ξ,〈 〉 0 i IH,∈∀>∈∀>

Hi x( ) Gi' x( ) ξ,〈 〉
i IG\ IH∈
∑ Gi x( ) Hi' x( ) ξ,〈 〉

i IH \ IG∈
∑+ 0,=

x

∂L
∂x
------ x µG µH ν, , ,( ) 0,=

µG 0, µG G x( ),〈 〉≥ 0, µH 0, µH H x( ),〈 〉≥ 0,= =

L x µG µH ν, , ,( ) f x( ) µG G x( ),〈 〉 µH H x( ),〈 〉– ν G x( ) H x( ),〈 〉 ,+–=

x �
n
, µG µH �

m
, ν �,∈∈,∈

x

f x( ) min, x DRMP,∈

DRMP DRMP x( )=

=  x �
n
  Gi x( ) 0 i IG\IH Hi x( ) 0 i IH\IG Gi x( ) 0 Hi x( ) 0 i I0∈,≥,≥,∈,=,∈,=∈{ }.
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The tightened MP (TMP) is

(4.8)

where

(4.9)

Here, the constraints are obtained by replacing all of the inequality constraints in (3.5) by equations (and by
removing the equality constraints in (3.5) that become redundant).

It is obvious that, in the intersection with a neighborhood of , we have the inclusions

(4.10)

moreover,  is a feasible point for all of these problems. We define the MPCC Lagrangian of problem (3.1),
(3.2) by

It is clear that this is the conventional Lagrangian function for the TMP and RMP if the inequalities

(4.11)

which are inactive at , are formally added to the constraints in these problems. If the KKT optimality con-
dition is fulfilled at  for the RMP (4.6), (4.7) (respectively, the TMP (4.8), (4.9)), then we say that  is a
strongly stationary (respectively, weakly stationary) point for the original MPCC (see [14]). Thus, weak sta-
tionarity implies the existence of multipliers λG, λH ∈ �m

 such that

(4.12)

(4.13)

The strong stationarity means that, in addition,

(4.14)

According to the left inclusion in (4.10), the local optimality of  in the MPCC implies its local opti-
mality in the TMP. In particular, weak stationarity is a necessary optimality condition for the MPCC if the
MPCC linear independence constrained qualification (MPCC-LICQ) is fulfilled. The latter requires that the
gradients in (4.2) be linearly independent (which is equivalent to the LICQ fulfilled at  for the TMP). How-
ever, in general, this concept of stationarity is too weak. It may appear that strong stationarity is, on the con-
trary, a too strong stationarity concept for the MPCC. However, this concept is considered quite reasonable
and natural in the sensitivity analysis and in justifying Newton-type methods for the MPCC. The reason for
this is as follows. If the MPCC-LICQ is fulfilled, then strong stationarity (as well as the weak one) is a nec-
essary optimality condition for the MPCC (see [14, Theorem 4] and Theorem 4 below). At the same time,
the MPCC-LICQ is a generic condition [15], in contrast to the SCC. We emphasize that the MPCC-LICQ
is the same as the conventional LICQ for both TMP and RMP.

It can be directly verified (see [4, Proposition 4.1]) that strong stationarity is equivalent to the KKT opti-
mality condition fulfilled for the original MPCC (3.1), (3.2). To be more exact, one can easily prove the fol-
lowing assertion.

Proposition 1. If  ∈ D is a stationary point of MPCC (3.1), (3.2) in the sense that there exist multipliers

µG, µH ∈ �
m
 and ν ∈ � satisfying (4.4) and (4.5), then  is a strongly stationary point of this problem.

Moreover, as multipliers satisfying (4.12)–(4.14), one can take

(4.15)

(4.16)

f x( ) min, x DTMP,∈

DTMP DTMP x( ) x �
n
  Gi x( ) 0 i IG Hi x( ) 0, i IH∈=,∈,=∈{ }.= =

x

DTMP D DRMP,⊂ ⊂

x

� x λG λH, ,( ) f x( ) λG G x( ),〈 〉 λH H x( ),〈 〉 , x �
n
, λG λH �

m
.∈,∈––=

Gi x( ) 0, i IH\IG, Hi x( ) 0, i IG\IH,∈≥∈≥

x
x x

∂�
∂x
-------- x λG λH, ,( ) 0,=

λG( )iGi x( ) 0, λH( )iHi x( ) 0, i I .∈= =

λG( )i 0, λH( )i 0, i I0.∈≥≥

x

x

x

x

λG( )i µG( )i νHi x( ), i IG\IH, λH( )i∈( )– µH( )i νGi x( ), i IH\IG,∈–= =

λG( )i µG( )i, i IH, λH( )i∈ µH( )i, i IG.∈= =
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Conversely, if  is a strongly stationary point of MPCC (3.1), (3.2) (i.e., there exist multipliers λG, λH ∈
�

m
 satisfying (4.12)–(4.14)), then  is a stationary point of this problem. Moreover, any multipliers µG,

µH ∈ �
m
 and ν ∈ � related by (4.15), (4.16), and the inequality

(4.17)

satisfy (4.4) and (4.5). In addition, for all ξ ∈ �
n
, we have

(4.18)

However, the existence of multipliers µG, µH and ν satisfying (4.4) and (4.5) is insufficient for justifying
Newton-type methods. To prove superlinear convergence, one must either modify conventional methods in
a special way [5] or use very special assumptions and arguments [4]. Also, from a theoretical viewpoint, it
is desirable to have as subtle optimality conditions as possible (i.e., subtler than strong stationarity), and
results of this kind do exist (see the next section). It must be kept in mind though that, besides being subtle,
the optimality conditions should also be sufficiently simple in the sense that they should be convenient to
use (in, say, numerical methods).

The most lucid, simple, and natural approach to the MPCC (including the derivation of subtle and proper
optimality conditions) is described in the following section. At the same time, this approach can be an illus-
tration of the fact that the desire of maximum conceptual simplicity and the “correctness” of resulting opti-
mality conditions may limit their practical utility.

5. PIECEWISE ANALYSIS

Denote by � = �( ) the set composed of the partitions of I0 , i.e., pairs of index sets (I1, I2) such that I1 ∪

I2 = I0 and I1 ∩ I2 = ∅. It is clear that � is a finite set and |� | = . For each pair (I1, I2) ∈ �, the branch
 of D is defined as

(5.1)

It is obvious that, in the intersection with a neighborhood of , the set D splits into branches of this kind.
More specifically, the inclusion chain (4.10) can be supplemented as follows: for all (I1, I2) ∈ �,

(5.2)

and  belongs to each branch.
The cone LD defined by (2.4) has the form

(5.3)

We introduce the cone

(5.4)

which is obtained from (3.5) by linearizing G and H at . By simple calculations, one can verify that this
cone and the cone QD defined by (2.7) satisfy QD ⊂ BD; moreover, if the MPCC-LICQ is fulfilled at ,
then we have the equality QD = BD.

A point  of the MPCC is called B-stationary (or piecewise stationary) if

x

x

ν max max
λG( )i

Hi x( )
------------–  i IG\IH∈

 
 
 

max
λH( )i

Gi x( )
------------–  i IH\IG∈

 
 
 

,
 
 
 

≥

∂2
L

∂x2
--------- x µG µH ν, , ,( ) ξ ξ,[ ] ∂

∂x2
-------- x λG λH, ,( ) ξ ξ,[ ] 2ν Gi' x( ) ξ,〈 〉 Hi' x( ) ξ,〈 〉 .

i I∈
∑+= ∂2�

x

2
I0

D I1 I2,( )

D I1 I2,( ) x �
n
  Gi x( ) 0 i IG\IH Hi x( ) 0 i IH\IG∈,=,∈,=∈ ,{=

Gi x( ) 0 Hi x( ) 0 i I1 Gi x( ) 0 Hi x( ),≥,∈,≥, 0 i I2∈,= = }.

x

DTMP D J1 J2,( ) D I1 I2,( ) D⊂ ⊂
J1 J2,( ) �∈
∩ D J1 J2,( )

J1 J2,( ) �∈
∪ DRMP,⊂= =

x

LD

=  ξ �
n
  Gi' x( ) ξ,〈 〉 0 i IG\IH Hi' x( ) ξ,〈 〉 0 i IH\IG Gi' x( ) ξ,〈 〉 0 Hi' x( ) ξ,〈 〉 0 i I0∈,≥,≥,∈,=,∈,=∈{ }.

BD BD x( ) ξ LD  Gi' x( ) ξ,〈 〉 Hi' x( ) ξ,〈 〉 0 i I0∈,=∈{ },= =

x
x

x

f ' x( ) ξ,〈 〉 0  ξ BD∈∀≥
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(see [1, 14]; however, note that this concept of B-stationarity does not quite conform to that used for con-
ventional optimization problems [16]). It is easy to see that

(5.5)

where, for each partition (I1, I2) ∈ �, the cone

is again defined by (2.4). Hence, B-stationarity is equivalent to the KKT optimality condition fulfilled at 
in the piecewise problem

(5.6)

for each partition (I1, I2) ∈ �; i.e., there exist multipliers λG, λH ∈ �
m
 satisfying (4.12), (4.13), and the rela-

tions

(5.7)

This and the second inclusion in (5.2) imply that B-stationarity is a necessary optimality condition for the
MPCC if, say, the piecewise MFCQ (i.e., the MFCQ for the constraints specifying each branch  ((I1,

I2) ∈ �) is fulfilled at . Note that the MPCC-LICQ is equivalent to the LICQ fulfilled for each branch;
hence, the MPCC-LICQ implies the piecewise MFCQ. Also, note that the strong stationarity of  in prob-
lem (3.1), (3.2) implies its B-stationarity, and B-stationarity entails the weak stationarity of this point.

Now assume that  is a B-stationary point of problem (3.1), (3.2) and the MPCC-LICQ is fulfilled at this
point. Then, for each partition (I1, I2) ∈ �, there exists a unique set of multipliers (λG, λH) satisfying (4.12),
(4.13), and (5.7). Moreover, as noted above, the MPCC-LICQ is equivalent to the LICQ for the TMP, which
implies that there exists only one set of multipliers satisfying (4.12) and (4.13). Thus, the sets of multipliers
are the same for all piecewise problems, and they are identical with the unique set of multipliers for the TMP.
Moreover, (5.7) implies that this set satisfies (4.14); i.e.,  is a strongly stationary point.

Summarizing what has been said, we arrive at the following theorem (cf. [14, Theorem 4]), which
describes the relation between different concepts of stationarity for the MPCC, provided that the MPCC-
LICQ is fulfilled.

Theorem 4. Let the MPCC-LICQ be fulfilled at  ∈ D. If  is a local solution to problem (3.1), (3.2),
then  is a B-stationary point of this problem; moreover, the B-stationarity of  is equivalent to its strong

stationarity, and the corresponding pain of multipliers ( , ) is uniquely determined. Furthermore, the
weak stationarity condition and the stationarity condition for  in the piecewise problem (5.6), (5.1) for any
partition (I1, I2) ∈ � can be fulfilled only with this pair of multipliers.

Summarizing, we can say that B-stationarity is the most natural stationarity concept among those dis-
cussed above, because it takes into account the combinatorial character of the feasible set inherent in the
MPCC. At the same time, it is this feature that makes B-stationarity difficult to use in practice. Indeed, to

verify this condition, one needs to verify the KKT optimality conditions for  “conventional” optimiza-
tion problems, and this number is often enormous in applications. Various approaches that allow one to get
rid of the combinatorial character of the B-stationarity condition while still keeping the resulting stationarity
concept natural were examined in [16–19]. Necessary optimality conditions for the MPCC that use Mor-
dukhovich’s generalized derivatives were proposed in [20, 21]; however, these concepts are also of a com-
binatorial nature.

On the other hand, verifying weak or strong stationarity reduces to the verification of the KKT optimality
conditions for a single conventional optimization problem, namely, for the TMP and the RMP, respectively.
Furthermore, the analysis presented above shows that if the generic MPCC-LICQ condition is fulfilled, then
strong stationarity is equivalent to B-stationarity, which makes the latter much easier to verify in these prob-
lems.

BD LD I1 I2,( ),
I1 I2,( ) �∈
∪=

LD I1 I2,( ) ξ �
n
  Gi' x( ) ξ,〈 〉 0 i IG\IH( ) I1 Hi' x( ) ξ,〈 〉 0 i IH\IG( ) I2,∪∈,=,∪∈,=∈{=

Gi' x( ) ξ,〈 〉 0 i I2 Hi' x( ) ξ,〈 〉 0 i I1∈,≥,∈,≥ }

x

f x( ) min, x D I1 I2,( )∈

λG( )i 0, i I2, λH( )i 0, i I1.∈≥∈≥

D I1 I2,( )

x
x

x

x

x x
x x

λG λH

x

2
I0
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In Example 1, the MPCC-LICQ is fulfilled at  = 0. For a1 ≥ 0 and a2 ≥ 0, this is a strongly stationary

point with the unique multipliers λG =  = a1 ≥ 0 and λH =  = a2 ≥ 0. Note that this point satisfies the

KKT optimality condition (4.4), (4.5) with the same multipliers µG =  and µH =  and an arbitrary ν.
Also, note that BD is the union of nonnegative coordinate half-axes and B-stationarity is actually equivalent
to strong stationarity in this example.

6. SECOND-ORDER NECESSARY CONDITION 
AND SUFFICIENT OPTIMALITY CONDITIONS

Using (2.5) and (5.3), we determine the critical cone C of the MPCC at a point  ∈ D. We begin with
second-order conditions, provided that the MPCC-LICQ is fulfilled. Recall that the MPCC-LICQ at 
ensures that the LICQ is fulfilled at this point for each piecewise problem (5.6). This, combined with the
SONC and SOSC (see Subsection 2.1), equality (5.5), and Theorem 4, implies the following MPCC second-
order necessary condition (MPCC-SONC) and the corresponding MPCC second-order sufficient condition
(MPCC-SOSC) for the local optimality of  in the MPCC (cf. [14, Theorem 7]).

Theorem 5. Let the MPCC-LICQ be fulfilled at a point  ∈ D. Then:

(a) if  is a local solution to problem (3.1), (3.2), then the pair of multipliers ( , ) described in The-
orem 4 satisfies the relation

(the MPCC-SONC);

(b) if  is a strongly stationary point of problem (3.1), (3.2) and the corresponding pair of multipliers

( , ) satisfies the relation

(6.1)

(the MPCC-SOSC), then  is a strict local solution of problem (3.1), (3.2).
Note that, according to (5.5),

(6.2)

where

is the critical cone of the piecewise problem (5.6), (5.1) at  defined by (2.5). It is obvious that the MPCC-
SOSC is equivalent to the SOSC

(6.3)

fulfilled for the piecewise problem for any partition (I1, I2) ∈ �. Note that, in general, the MPCC-SOSC does
not imply the SOSC for the TMP even if the MPCC-LICQ is fulfilled (see [14]), though the critical cones
of these problems do coincide.

In what follows, we say that the MPCC strong second-order sufficient condition (MPCC-SSOSC; see
[22]) is fulfilled at  if the SSOSC

(6.4)

x

λG λH

λG λH

x
x

x

x

x λG λH

∂2�

∂x2
---------- x λG λH, ,( ) ξ ξ,[ ] 0 ξ BD C∩∈∀≥

x

λG λH

∂2�

∂x2
---------- x λG λH, ,( ) ξ ξ,[ ] 0 ξ BD C∩( )\ 0{ }∈∀>

x

BD C∩ ξ BD  f ' x( ) ξ,〈 〉 0≤∈{ } C I1 I2,( ),
I1 I2,( ) �∈
∪= =

C I1 I2,( ) C I1 I2,( ) x( ) ξ LD I1 I2,( )  f ' x( ) ξ,〈 〉 0≤∈{ }= =

=  ξ LD I1 I2,( )  λG( )i Gi' x( ) ξ,〈 〉 0 i I2 λH( )i Hi' x( ) ξ,〈 〉 0 i I1∈,=,∈,=∈{ }

x

∂2�

∂x2
---------- x λG λH, ,( )ξ ξ, 0 ξ C I1 I2,( )\ 0{ }∈∀>

x

∂2�

∂x2
---------- x λG λH, ,( )ξ ξ, 0 ξ C I1 I2,( )

+ \ 0{ }∈∀>
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is fulfilled for the piecewise problem (5.6), (5.1) for any partition (I1, I2) ∈ �. Here,

If we do not assume that the MPCC-LICQ is fulfilled at , then it is natural to use the MPCC-SOSC in
the form

(6.5)

The following proposition shows, in particular, that this definition of the MPCC-SOSC conforms to the
corresponding definition in Theorem 5, provided that the MPCC-LICQ is fulfilled.

Proposition 2. Let the MPCC-LICQ be fulfilled at  ∈ D. Assume that  is a strongly stationary point

of problem (3.1), (3.2) and ( , ) is the corresponding pair of multipliers.

Then, (6.1) is fulfilled if and only if (6.5) is fulfilled. Moreover, it holds that,

(a) for any ξ ∈ BD, ( , µG, µH, ν)[ξ, ξ] is independent of the choice of (µG, µH, ν) ∈ �; in particular,

condition (6.5) is equivalent to 

(b) condition (6.5) is equivalent to the existence of a universal triplet (µG, µH, ν) ∈ � such that

Proof. If ξ ∈ LD, then, by Proposition 1 (and, in particular, by formula (4.18)) and definition (5.3), we
have

(6.6)

for any triplet of multipliers (µG, µH, ν) ∈ �
m
 × �m

 × � satisfying (4.15)–(4.17) with λG =  and λH = ;
moreover, the set � contains such and only such triplets of multipliers. In particular, if ξ ∈ BD, then (5.4)
implies the equality

which proves the equivalence of (6.1) and (6.5), as well as assertion (a).
To prove (b), we fix ε > 0 such that

where

(The existence of such a number can easily be derived from formulas (5.3) and (5.4) and condition (6.5),

C I1 I2,( )
+ C I1 I2,( )

+ x( ) ξ �
n
  Gi' x( ) ξ,〈 〉∈{ 0 i IG\IH( ) I1 Hi' x( ) ξ,〈 〉,∪∈, 0 i IH\IG( ) I2,∪∈,= = = =

λG( )i Gi' x( ) ξ,〈 〉 0, i I2 λH( )i Hi' x( ) ξ,〈 〉,∈ 0 i I1∈,= = }.

x

ξ BD C∩( )\ 0{ } µG µH ν, ,( )∃ � : 
∂2L

∂x2
-------- x µG µH ν, , ,( ) ξ ξ,[ ]∈ 0.>∈∀

x x

λG λH

∂2L

∂x2
-------- x

∂2L

∂x2
-------- x µG µH ν, , ,( ) ξ ξ,[ ] 0 ξ BD C∩( )\ 0{ }, µG µH ν, ,( )∀ �;∈∈∀>

∂2L

∂x2
-------- x µG µH ν, , ,( ) ξ ξ,[ ] 0 ξ C\ 0{ }.∈∀>

∂2L

∂x2
-------- x µG µH ν, , ,( ) ξ ξ,[ ] ∂2�

∂x2
---------- x λG λH, ,( ) ξ ξ,[ ] 2ν Gi' x( ) ξ,〈 〉 Hi' x( ) ξ,〈 〉

i I0∈
∑+=

λG λH

∂2L

∂x2
-------- x µG µH ν, , ,( ) ξ ξ,[ ] ∂2�

∂x2
---------- x λG λH, ,( ) ξ ξ,[ ],=

∂2�

∂x2
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∑∈
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which is equivalent to (6.1), as proved above). Then, we choose a ν β> 0 satisfying (4.17) and the relation

Next, we determine the multipliers µG and µH from (4.15) and (4.16). Then, according to (6.6), it holds that

for any ξ ∈ C\Uε such that |ξ| = 1. The required assertion is an immediate implication of this inequality and
the facts established above. The proposition is proved.

Taking into account the inclusion QD ⊂ BD and what was said in Subsection 2.1, we conclude that
MPCC-SOSC (6.5) implies that the SOSC is fulfilled at  for the MPCC; hence, the QGC is also fulfilled.

We also introduce the MPCC first-order sufficient condition (MPCC-FOSC)

(6.7)

By (6.2), this condition is equivalent to the FOSC

fulfilled for the piecewise problem (5.6), (5.1) for any partition (I1, I2) ∈ �.
From the inclusion QD ⊂ BD, we conclude that MPCC-FOSC (6.7) implies the fulfillment of FOSC

(2.8) at  for the MPCC; hence, the LGC is also fulfilled.

7. SENSITIVITY ANALYSIS IN THE PRESENCE OF A REGULAR BRANCH

Now assume that f, G, and H (and, hence, all the quantities determined by f, G, and H) depend on a
parameter σ ∈ �

s
 that describes perturbations. Note that we mean only perturbations in G and H rather than

arbitrary perturbations of the problem (i.e., the perturbed problems retain the MPCC structure). In this and
the next sections, we assume that  is a local solution to the MPCC associated with the base value σ =  ∈
�

s
 and the index sets IG, IH, and I0 are specified at  for this base value of the parameter. Let the ball B, the

local minimum value function ω : �
s
  �, and the point-to-set mapping S : �

s
  2B, which specifies

the solutions to the perturbed MPCC restricted to B, be defined in accordance with Subsection 2.2.

In this section, we assume that, for at least one partition (I1, I2) ∈ �, the MFCQ is fulfilled at  for the
corresponding piecewise problem; i.e., the gradients

are linearly independent and

(7.1)

Then, the application of Robinson’s stability theorem [10, Corollary 1] to the corresponding branch 
of the feasible set yields the estimate

Moreover, it is easy to verify that the second equality in (5.2) remains true under perturbations; i.e., for any

2νε ∂2�

∂x2
---------- x λG λH, ,( ) .>

∂2L

∂x2
-------- x µG µH ν, , ,( ) ξ ξ,[ ] 2νε ∂2�

∂x2
---------- x λG λH, ,( ) 0>–≥

x

BD C∩ 0{ }.=

C I1 I2,( ) 0{ }=

x

x σ
x

x

∂Gi

∂x
-------- σ x,( ), i IG\IH( ) I1,

∂Hi

∂x
--------- σ x,( ), i IH\IG( ) I2,∪∈∪∈

ξ �
n
 : 

∂Gi

∂x
-------- σ x,( ) ξ,∈∃ 0 i IG\IH( ) I1,∪∈∀=

∂Hi

∂x
--------- σ x,( ) ξ, 0 i IH\IG( ) I2,∪∈∀=

∂Gi

∂x
-------- σ x,( ) ξ, 0 i I2,

∂Hi

∂x
--------- σ x,( ) ξ, 0 i I1.∈∀>∈∀>

D I1 I2,( )

dist x D I1 I2,( ) σ( ),( ) O σ σ–( ).=
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σ ∈ �
s
 sufficiently close to , it holds that

(7.2)

in the intersection with a neighborhood of . Hence, estimate (2.13) is valid with p = 1 for the feasible set
of the perturbed MPCC. It follows that we can apply the sensitivity results stated in Subsection 2.2. In par-
ticular, Theorem 1 implies the following assertion.

Theorem 6. Assume that, for at least one partition (I1, I2) ∈ �, the gradients

are linearly independent and (7.1) is fulfilled. Then, ω is continuous at the point , and S(σ) ≠ ∅ for any

σ ∈ �
s
 sufficiently close to . Moreover,

and it holds that

In particular, if  is a strict local solution to the unperturbed problem (3.1), (3.2), then

This theorem and Theorems 2 and 3 yield the following estimates for solutions to the perturbed problems
and lower bounds for ω, provided that the MPCC-FOSC and the MPCC-SOSC, respectively, are fulfilled.

Theorem 7. Assume that, for at least one partition (I1, I2) ∈ �, the gradients

are linearly independent and (7.1) is fulfilled. Let MPCC-FOSC (6.7) be fulfilled.

Then, for σ ∈ �
s
, we have

Proof. According to assertion (c) in Theorem 2, it is sufficient to prove that, for any σ ∈ �
s
, there exists

u ∈ �
n
 such that

(7.3)

(7.4)

(7.5)

(see formulas (4.1) and (4.2) for the gradient of an equality constraint and the gradients of active inequality
constraints).

σ

D σ( ) D I1 I2,( ) σ( )
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x
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x x–
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The linear independence condition on the gradients

implies the existence of  ∈ �
n
 such that

Then, (7.1) implies that, for any scalar t, the vector u =  + t  satisfies (7.3) and the inequalities (which are
fulfilled as equalities) in (7.4) and (7.5) that correspond to i ∈ (IG\IH) ∪ I1 and i ∈ (IH\ IG) ∪ I2 , respectively.
Moreover, the remaining inequalities in (7.4) and (7.5) can also be satisfied by choosing a sufficiently large
t > 0. The theorem is proved.

Theorem 8. Assume that, for at least one partition (I1, I2) ∈ �, the gradients

are linearly independent and (7.1) is fulfilled. Let MPCC-SOSC (6.5) be fulfilled.

Then, for σ ∈ �
s
, we have

The following example shows that the estimates in Theorem 8 cannot be improved even in the case where
the problem is perturbed in a given direction in the parameter space (cf. [9, Example 4.3]).

Example 2. Assume that s = 1, n = 4, m = 2, f(σ, x) = –x2 + (  + )/2, G(σ, x) = (–x2 –  + σ, –x2 +

), and H(σ, x) = (x3, x4), where σ ∈ � and x ∈ �
4
.

It is easy to see that  = 0 is a solution to the unperturbed MPCC for σ =  = 0. Moreover, for this solu-
tion, the MFCQ is fulfilled for the branch D(∅, I) (and only for this branch). Furthermore,

and MPCC-SOSC (6.5) is fulfilled even with a universal multiplier (e.g., with (µG)1 = 1, (µG)2 = 0, and ν =
0). Moreover, for σ > 0, we have

8. SENSITIVITY ANALYSIS UNDER THE MPCC-LICQ

Assume now that the MPCC-LICQ is fulfilled at a solution  of the unperturbed MPCC. Then, the sen-
sitivity results given above can be refined and amplified.

Recall that, under the assumptions made, there exist unique multipliers λG = , λH =  ∈ �
m
 satisfy-

ing (4.12) and (4.13); they also satisfy (4.14). Moreover, for each piecewise problem, the LICQ is fulfilled
at its local solution ; hence, the conventional sensitivity theory for MPs (see [9, 12, 13]) is applicable to
these problems.

∂Gi
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∂Hi
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∂Hi
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ũ ξ
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sup O σ σ– 1/2( ),=
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x3
2 x4
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x1
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x σ
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2

�
2

�  µG( )1 µG( )2 1 µG( )1 0 µG( )2 0≥,≥,=+××∈{ },=
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x

λG λH
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For a partition (I1, I2) ∈ �, the local minimum value function  : �
s
  � and the mapping

 : �
s
  2B, which specifies solutions to the perturbed piecewise problem restricted to B, are defined

in accordance with Subsection 2.2. It follows from [9, Proposition 4.3] that the upper bound

(8.1)

holds for any partition, any direction d ∈ �
s
, and for t ≥ 0. (Recall that � is the Lagrangian for each piece-

wise problem and ( , ) is the unique pair of Lagrange multipliers corresponding to the local solution
 to this problem). In the derivation of this bound, we use the following linearization of the piecewise prob-

lem (with respect to both the variable and the parameter):

(8.2)

Here,

(8.3)

Using the assumptions made above and the duality theory for linear programming, one can easily show that

the minimum value in this problem is equal to ; in particular, this value is indepen-

dent of (I1, I2).

If  is a strict local solution to the unperturbed piecewise problem, then (8.1) is a sharp bound (see [9,
Theorem 4.5]). This can be expressed by the following equality for the directional derivative of  at

the point  in the direction d:

(8.4)

In particular, this function is Gâteaux differentiable at , and its derivative is independent of (I1, I2).
We use equality (7.2) to adapt these results to the original MPCC. It follows that

(8.5)

(8.6)

From what has been said above and equality (8.5), one can easily derive the following: the upper bound

(8.7)

holds for any direction d ∈ �
s
 and any t ≥ 0; moreover, if  is a strict local solution to the unperturbed

MPCC, then (8.7) is sharp; i.e., ω is Gâteaux differentiable at , and its derivative is given by

Here, we took into account the fact that the right-hand side in (8.4) is independent of (I1, I2).
The last assertion is the essence of Corollary 1 in [22]. (In addition, the authors prove the Lipschitz prop-

erty of ω near  and another property, which they call the strict differentiability of ω at .) Similar results
presented in terms of Mordukhovich’s generalized derivatives are obtained in [23]. It is quite remarkable
that, under the MPCC-LICQ, the formula for the first derivative of the minimum value function is in no way
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related to the combinatorial nature of the MPCC. However, a further analysis (dealing, say, with the calcu-
lation of the second directional derivatives [22]) inevitably reveals this combinatorial nature.

Indeed, for each partition (I1, I2) ∈ � and each direction d ∈ �
s
, denote by SL  = SL ( ,

) the solution set of the linearized problem (8.2), (8.3). Consider the auxiliary problem

(8.8)

According to [9, Theorem 7.1], the upper bound (8.1) can be refined by using the minimum value in this
problem: for t ≥ 0,

(8.9)

This inequality, combined with (8.5), implies the following refinement of the upper bound (8.7):

(8.10)

Here, a combinatorial nature is explicitly present.

A further analysis requires that either growth conditions or sufficient optimality conditions are invoked.
For instance, suppose that, for a given partition (I1, I2) ∈ �, the corresponding unperturbed piecewise prob-
lem satisfies SOSC (6.3) at . Applying [9, Proposition 6.4] (or [13, Theorem 4.55]), we obtain the linear
bound

where d ∈ �
s
 is a given direction and t ≥ 0. Then, applying [9, Theorem 7.2], we infer that (8.9) is a sharp

bound; i.e.,

Moreover, the solution set of problem (8.8) is the same as the set of h ∈ �
n
 such that the perturbed piecewise

problem has an o(t2)-solution of the form  + th + o(t) at σ = + td. Now, assume that the FOSC rather than
the SOSC is fulfilled for the piecewise problem. Then, it is easy to verify that the linearized problem (8.2),
(8.3) has a unique solution, problem (8.8) loses its optimization content, and the formulations become less
cumbersome. We stress that the SOSC does not guarantee that problem (8.2), (8.3) is uniquely solvable (see
Example 3 below).

Suppose that MPCC-SOSC (6.5) is fulfilled. Then, from what has been said above and equality (8.6),
one can derive the following bound for the solution to the perturbed MPCC:

P I1 I2,( ) d, P I1 I2,( ) d, σ
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∂ σ x,( )2
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Here, d ∈ �
s
 and t ≥ 0. Moreover, (8.5) implies that (8.10) is a sharp bound; i.e.,

A similar bound was obtained in [22, Theorem 3]. Furthermore, the union of the solution sets of problem
(8.8) over all partitions (I1, I2) ∈ � such that

is identical with the set of h ∈ �n
 for which the perturbed MPCC has an o(t2)-solution of the form  + th +

o(t) at σ =  + td.

Finally, assume that, for a given partition (I1, I2) ∈ �, the unperturbed piecewise problem satisfies

SSOSC (6.4) at . According to [9, Proposition 5.4] (or [13, Proposition 5.38]), ( , , ) is a strongly
regular solution (in the sense of Robinson; see [24]) to the corresponding KKT system. This and Robinson’s
well-known result on perturbations of strongly regular solutions [9, Theorem 5.1] (or [13, Theorem 5.13];
see also Proposition 5.2 in [9], where this result is specialized for KKT systems) imply the following: for
any σ ∈ �

s
 sufficiently close to , the perturbed piecewise problem has a unique local solution (σ) in a

neighborhood of ; this solution is associated with a unique pair of multipliers ( (σ), (σ)); and the

mapping σ  ( (σ), (σ), (σ)) : �
s
  �

m
 × �

m
 × �

m
 is Lipschitz continuous near . Combining

this and what has been said above about the Gäteaux differentiability of , one can easily prove that

this function is continuously differentiable near .

If the MPCC-SSOSC is fulfilled, then the argument given above and equality (8.5) additionally imply
that ω is a piecewise smooth function (see [22, Theorem 1]). Suppose that the upper level strict complemen-
tarity condition (ULSCC) is fulfilled; i.e.,

(see [14]). Then, one can guarantee that all perturbed piecewise problems have the same unique local solu-
tion in a neighborhood of ; in that neighborhood, this is a unique local solution to the perturbed MPCC
[14, Theorem 11].

The situation examined above does not seem to be typical for the MPCC (see [22]). However, let us get
back to Example 1 with perturbations “in the right-hand sides.” Assume that s = 2, G(σ, x) = x1 – σ1, and

H(σ, x) = x2 – σ2 , where σ, x ∈ �
2
 and  =  = 0. If a1 > 0 and a2 > 0, then  is a strict local solution to

the unperturbed MPCC (3.1), (3.2). Moreover, we have  > 0 and  > 0; i.e., the ULSCC is fulfilled.
This implies that the MPCC-SSOSC is equivalent to the MPCC-SOSC. The latter is obviously fulfilled,
because even the MPCC-FOSC holds. This agrees with the results presented above. Indeed, one can easily
verify that the equalities

hold for any σ ∈ �
2
 in this example. In particular, the perturbed MPCC has a unique solution, which linearly

depends on the parameter. The minimum value function is linear, and its gradient has the form

ω σ td+( ) ω σ( )
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+
1
2
---
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σ
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x

σ x x
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Note that h = d is a solution to the linearized problem (8.2), (8.3) for both possible partitions (I1, I2) of I0 and

for any d ∈ �
2
.

Example 3. Let the constraints be the same as in Example 1, but f(x) = x1 + /2, x ∈ �
2
. As above, we

assume perturbations “in the right-hand sides” for G and H and set  =  = 0.

Here, the MPCC-SSOSC (hence, MPCC-SOSC) is fulfilled, whereas the MPCC-FOSC and the ULSCC
do not hold. It is easy to see that the equalities

are valid for any σ ∈ �
2
, which is in agreement with the theory presented above. Note that, for I2 = ∅ and

any d ∈ �
2
, we have SL  = L  and problem (8.8) is essential for determining the asymptotic

behavior of solutions.
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