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Abstract

We make use of VU-space decomposition theory to connect three min-
imization-oriented objects. These objects are U-Lagrangians obtained from
minimizing a function over V-space, proximal points depending on minimiza-
tion over IRn = U⊕V, and epi-derivatives determined by lower limits associated
with epigraphs. We relate second-order epi-derivatives of a function to the Hes-
sian of its associated U-Lagrangian. We also show that the function’s proximal
points are on a trajectory determined by certain V-space minimizers.
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1 Introduction and motivation

In his seminal work from 1980 [Lem80, Sec 5.5.3 Information du second ordre], C.
Lémarechal addressed the question of defining generalized second-order objects for
functions lacking second-order derivatives:

Existe-t-il une géneralisation adéquate de la notion de Hessien? . . . Cette
question est la plus passionnante qui se pose actuellement, et une réponse
satisfaisante marquerait probablement pour longtemps une étape décisive
dans les recherches fondamentales en programmation mathématique.1

Indeed, the need for defining second-order objects for lower semicontinuous (lsc)
functions appears both for theoretical and algorithmic reasons. An important theo-
retical example is given by “second-order” optimality conditions, such as in [BTZ82],
[HU79], [HU82], [Roc89b]. As for algorithmic reasons, they are essentially related to
the extension of Newton-like methods for minimization of functions that are not con-
tinuously differentiable, [LS94], [BGLS95], [Qi94], [CF99], [FQ96], [QC97], [Mif96],
[MSQ98], [BQ00], [LS97b], [RF00].

Second-order Nonsmooth Analysis is a vast and complex subject. Without go-
ing into details, we mention here that, depending on the choice of tangent cone
and/or convergence notion, it is possible to define B-derivatives [Rob87]; proto-
derivatives [Roc89a], epi-derivatives; pseudo-derivatives [CC90], [Com91]; second-
order sub-derivatives, [Iof91]; graphical derivatives; sub-Hessians, [Pen94]; as well as
other second-order objects. Chapter 13 in [RW98] gives an exhaustive presentation
and unification of these (many) concepts.

In this paper, we focus on another approach, that was suggested early on in [LM82]
and [Mif91]. Consider the graph of a convex function f , near a point x̄ ∈ IRn. Two
distinctively different situations, calling for different techniques, may appear:

– Either graph f is a smooth curve, which for n = 1 means it is U -shaped (here, a
Newton method, employing successive quadratic models for f is suitable)

– Or graph f is “sharp”, which for n = 1 gives a V -shaped graph (here, a cutting-
plane method, using successive piecewise-linear models for f is preferable).

As a result, it seems reasonable to look for second-order derivatives only where f is
not “sharp”, i.e., only on the U -subspace, perpendicular to the V-subspace, which is
parallel to ∂f(x̄). This is the basis for the so-called U -Lagrangian theory, introduced
in [LS97a] and formalized in [LOS00] for convex functions. Later on, in [HP01],
[MS03a], and [MS03b], VU -space decomposition theory was extended to certain non-
convex functions. In particular, [HP01] develops the quadratic sub-Lagrangian (cf.
(5) below) as an extension of the U -Lagrangian to prox-regular functions ([PR96])
that are prox-bounded.

1“Does an adequate generalization for the notion of a Hessian exist? . . . This is today’s most
interesting question, to which a satisfactory answer would probably start a new, long-lasting and
decisive era for basic research in Mathematical Programming.”
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For our development we consider trajectories χ(u) parameterized by u ∈ U which
are given by the quadratic sub-Lagrangian. These trajectories converge to x̄ and
are tangent to U there. When the sub-Lagrangian has a Hessian at 0 ∈ U (i.e.,
when f has a “U -Hessian”), f has second-order epi-derivatives which agree with
the sub-Lagrangian Hessian on U . Furthermore, those trajectories that are C2 give
a second order expansion for f(χ(u)). We also show that, near a minimizer, the
proximal mapping sends points onto a particular trajectory. This is an important
result, because it is known that a bundle mechanism can approximate proximal points
with any desired accuracy; see [CL93], [HUL93].

Our paper is organized as follows: Section 2 reviews Variational Analysis, VU -
theory and U - and sub- Lagrangian definitions and results. Section 3, with our main
results, is divided into two parts. In Subsection 3.1 we give the tangency property
of a trajectory, the second-order expansion for its corresponding sub-Lagrangian,
and show that the second-order epi-derivative of f and the U -Hessian are equivalent
second-order objects. Finally, in Subsection 3.2 we give the connection between
proximal points and a special trajectory, that we call a proximal-track.

2 Basic definitions and previous results

Here we recall from previous work important concepts and relations that we use in
our development. We start with some basic Variational Analysis definitions. Then
we review some elements of VU -space decomposition and U -Lagrangian theory from
[LOS00], as well as results for quadratic sub-Lagrangians from [HP01].

Our notation essentially follows that of [RW98] and [OR70]. In particular, from
[OR70], given a sequence of vectors {zk} converging to 0,

– ζk = o(|zk|) ⇐⇒ ∀ε > 0 ∃kε > 0 such that |ζk| ≤ ε|zk| for all k ≥ kε.

– ζk = O(|zk|) ⇐⇒ ∃C > 0 such that |ζk| ≤ C|zk| for all k ≥ 1.

2.1 Some notions from Variational Analysis

For a set C ⊂ IRn and a point x ∈ C:

– A vector v is normal to C at x if there are sequences xν →C x and vν → v such
that 〈vν , z − xν〉 ≤ o(|z − xν |) for all z ∈ C.

– A set C is said to be Clarke regular at x ∈ C when C is locally closed at x and
each normal vector v satisfies 〈v, z − x〉 ≤ o(|z − x|) for all z ∈ C.

Let f : IRn → ĪR be an lsc function, so that its epigraph, denoted and defined by
epi f := {(x, β) ∈ IRn × IR : β ≥ f(x)}, is a closed set in IRn+1. Take x̄ ∈ IRn where
f is finite-valued.

– We use the Mordukhovich subdifferential ([Mor76]) denoted by ∂f(x̄) in [RW98];
see p. 301 and Definition 8.3 therein.

– The function f is said to be subdifferentially regular at x̄ if epi f is a Clarke regular
set at (x̄, f(x̄)); see [RW98, Def. 7.25, p. 260]. For such a function, the set ∂f(x̄)
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is convex.

– The function f is said to be prox-regular at x̄ for a subgradient ḡ ∈ ∂f(x̄) (with
parameter ρ) if there exists ρ > 0 such that

f(x′) ≥ f(x) + 〈g, x′ − x〉 − ρ

2
|x′ − x|2

whenever x and x′ are near x̄ with f(x) near f(x̄) and g ∈ ∂f(x) near ḡ.
When this property holds for all subgradients in ∂f(x̄), the function is said to be
prox-regular at x̄; see [PR96], [RW98, Def. 13.27, p. 610]. Moreover, in this case
it can be shown that f is subdifferentially regular at x̄, [Har00].

Convex functions are both subdifferentially regular and prox-regular, and in this case
∂f is the subdifferential from Convex Analysis. Lower C2 and strongly amenable
functions are also prox-regular; see [RW98, p. 613 and 612].

The epigraphical convergence theory developed in [RW98, Ch. 7] includes the
following useful characterization of epi-limits:

– Let {qν} be a sequence of functions on IRn, and let w be any point in IRn. The
value q(w) is the epi-limit of the sequence qν at w if and only if{

liminfν q
ν(wν) ≥ q(w) for every sequence wν → w ,

limsupν q
ν(wν) ≤ q(w) for some sequence wν → w .

For a function h : IRn → IR and point x̄ with h(x̄) finite we consider the second-order

difference quotient: h(x̄+τ ·)−h(x̄)−τ〈y,·〉
1
2
τ2 for τ > 0 and y ∈ IRn.

– The second subderivative of h at x̄ relative to y in the direction w is denoted and
defined by

d2h(x̄|y)(w) := liminf
τ↘0 ,w′→w

h(x̄+ τw′)− h(x̄)− τ 〈y, w′〉
1
2
τ 2

.

When the second-order difference quotient has an epi-limit at w as τ ↘ 0 then
d2h(x̄|y)(w) is this limit and it is then called the second epi-derivative of h at x̄
relative to y in the direction w.

2.2 VU-space decomposition

For a function f at a point x̄ ∈ IRn where f is finite, let g be any subgradient in
∂f(x̄). Then, letting linY denote the linear hull of a given set Y , the orthogonal
subspaces

V := lin(∂f(x̄)− g) and U := V⊥ (1)

define the VU -space decomposition at x̄ of [LOS00, §2]. We use the compact notation
⊕ for such decomposition, and write IRn = U ⊕ V , as well as

IRn 3 x = xU ⊕ xV ∈ U × V .
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From (1), the relative interior of ∂f(x̄), denoted by ri∂f(x̄), is the interior of ∂f(x̄)
relative to its affine hull, a manifold that is parallel to V (cf. [LOS00, Def. 2.1 and
Prop. 2.2]). Accordingly,

ḡ ∈ ri∂f(x̄) =⇒ ḡ +
(
B(0, η) ∩ V

)
⊂ ∂f(x̄) for some η > 0, (2)

where B(0, η) denotes a ball in IRn centered at 0, with radius η.
Throughout the following we assume that dim U ≥ 1 and dimV ≥ 1.

2.3 U-Lagrangians for convex functions

Suppose f is a convex function on IRn. Given a subgradient ḡ ∈ ∂f(x̄) with V-
component ḡV , the U -Lagrangian of f , depending on ḡV , is defined by

U 3 u 7→ LU(u; ḡV) := inf
v∈V

{
f(x̄+ u⊕ v)− 〈ḡV , v〉V

}
, (3)

where 〈·, ·〉V(U) denotes a scalar product induced in the subspace V(U), and similarly
for the norms. When the infimum in (3) is attained, the set of corresponding V-space
minimizers is defined by

W (u; ḡV) :=
{
v ∈ V : LU(u; ḡV) = f(x̄+ u⊕ v)− 〈ḡV , v〉V

}
.

When W (u; ḡV) is nonempty, the associated U -Lagrangian is a convex function that
is differentiable at u = 0 with

∇LU(0; ḡV) = ḡU = gU for all g ∈ ∂f(x̄). (4)

Finally, when ḡ ∈ ri∂f(x̄), W (u; ḡV) is nonempty with W (0; ḡV) = {0} and each
w(u) ∈ W (u; ḡV) being o(|u|U), see [LOS00, Corollary 3.5]. In Lemma 2 below we
extend this result to prox-regular functions, via the quadratic sub-Lagrangian from
[HP01], which is the subject of our next subsection.

2.4 Quadratic sub-Lagrangians for prox-regular functions

Suppose f is a function that is finite at x̄. Given a subgradient ḡ ∈ ∂f(x̄) with V-
component ḡV , the quadratic sub-Lagrangian of f , depending on a positive parameter
R, is defined by

U 3 u 7→ ΦR(u; ḡV) := inf
v∈V

{
f(x̄+ u⊕ v)− 〈ḡV , v〉V +

R

2
|v|2V

}
. (5)

In Lemma 1 below we give conditions for the corresponding set of V-space minimizers

WR(u; ḡV) :=

{
v ∈ V : ΦR(u; ḡV) = f(x̄+ u⊕ v)− 〈ḡV , v〉V +

R

2
|v|2V

}
(6)
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to be nonempty.
The envelope function ΦR extends many properties of the U -Lagrangian to certain

nonconvex functions f . The following lemma states some of these properties, that
are relevant for our development.

Lemma 1 Suppose that f is subdifferentially regular x̄ ∈ IRn and prox-regular there
for ḡ ∈ ∂f(x̄) with parameter ρ > 0, and that

∀x ∈ IRn f(x) ≥ f(x̄) + 〈ḡ, x− x̄〉 − ρ

2
|x− x̄|2. (7)

Then for any R ≥ ρ, the function ΦR(·; ḡV) is well defined with ΦR(0; ḡV) = f(x̄).
Furthermore, the following hold for any R > ρ:

(i) ΦR(·; ḡV) is strictly continuous and strictly differentiable at 0 (see Defs. 9.1 and
9.17 in [RW98]), with ∇ΦR(0; ḡV) = ḡU .

(ii) WR(u; ḡV) is nonempty for all u near 0, WR(0; ḡV) = {0}, and WR(·; ḡV) is outer
semicontinuous at 0.

Proof. Condition A in [HP01, p. 1120] gathers together our assumptions. The
facts that ΦR(·; ḡV) is well defined and WR(0; ḡV) = {0} come from Theorem 5 in
[HP01]. Item (i) is part of Theorem 14 in [HP01]. Nonemptiness and outer semi-
continuity of WR(·; ḡV) follow, respectively, from Proposition 6 in [HP01] and the
continuity in item (i) combined with Theorem 7 in [HP01]. ut

Condition (7) above is a strong form of prox-boundedness for f , see [RW98, Def.
1.23, p. 20]. This property is required for the proximal point mapping of a prox-
regular function to be single valued; see Lemma 5 below.

Finally, we mention that for the case of convex functions, quadratic sub-
Lagrangians can be traced back to the function φV in [LS97a, 3.2], which corre-
sponds to ΦR with R = 1 in the notation of this paper. Later on, in [LOS00, Sec. 5],
the same function was shown to agree up to second order with LU . More precisely,
Lemma 5.1 in [LOS00] (whose proof holds using R instead of 1 to define φV) gives
the following relation: If f is convex and ḡ ∈ ri∂f(x̄) then

∀ε > 0∃δ > 0 : |u|U ≤ δ =⇒ |ΦR(u; ḡV)− LU(u; ḡV)| ≤ ε|u|2U ; (8)

In particular, from (4), this means that ∇ΦR(0; ḡV) = ḡU , an equality which is con-
sistent with item (i) in Lemma 1. Also, if LU(·; ḡV) has a Hessian at 0, then ΦR(·; ḡV)
has the same one; see Remark 4 below.

3 Main results

The results presented so far show how VU decomposition theory provides a set of
smoothness for f , via the envelope functions LU and ΦR. Because of relation (4)
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and its left hand equality analog for ΦR in Lemma 1(i), the gradient ḡU is called the
U-gradient of f at x̄. Similarly, whenever the Hessian ∇2ΦR(0; ḡV) exists, we call it
a U-Hessian for f at x̄ relative to ḡ and R.

We now show how the quadratic sub-Lagrangian captures a function’s second-
order epi-differential behavior with respect to U via ordinary second derivatives.

3.1 U-Hessians give 2nd-order epi-derivatives

We start by showing U -tangency properties of trajectories of the form χ(u) := x̄ +
u⊕v(u), where v(u) is a V-space minimizer defining a sub-Lagrangian corresponding
to a particular subgradient at x̄. A similar result can be found in [Har00, Ch. 4].

Lemma 2 Suppose that f is subdifferentially regular x̄ ∈ IRn and prox-regular there
for ḡ ∈ ∂f(x̄) with parameter ρ > 0, and that (7) holds. Also, suppose that ḡ ∈
ri∂f(x̄) and for R > ρ consider a V-space minimizer function v(u) ∈ WR(u; ḡV) from
(6). Then the following hold for all u small enough:

(i) v(u)→ 0 as u→ 0.

(ii) If, in addition, ΦR(·; ḡV) has a Hessian at 0, then v(u) = O(|u|2U) and

f(x̄+ u⊕ v(u)) = f(x̄) + 〈ḡ, u⊕ v(u)〉+
1

2
〈u,Hu〉U + o(|u|2U), (9)

where H := ∇2ΦR(0; ḡV).

Proof. The first assertion is straightforward from item (ii) in Lemma 1, since it
implies that v(u)→ WR(0; ḡV) = 0 as u→ 0.
To see (ii), use Lemma 1 to write the following second-order expansion for ΦR(·; ḡV):

ΦR(u; ḡV) = ΦR(0; ḡV) + 〈∇ΦR(0; ḡV), u〉U +
1

2
〈u,Hu〉U + o(|u|2U)

= f(x̄) + 〈ḡU , u〉U +
1

2
〈u,Hu〉U + o(|u|2U).

Together with the fact that, by (6),

ΦR(u; ḡV) = f(x̄+ u⊕ v(u))− 〈ḡV , v(u)〉V +
R

2
|v(u)|2V ,

we obtain that

f(x̄+ u⊕ v(u)) = f(x̄) + 〈ḡ, u⊕ v(u)〉 − R

2
|v(u)|2V +

1

2
〈u,Hu〉U + o(|u|2U). (10)

From (2) we have that for η > 0 sufficiently small

γ := ḡ +

(
0⊕ ηv(u)

|v(u)|V

)
∈ ∂f(x̄),

which, by prox-regularity (with η sufficiently small to have γ near enough to ḡ),
implies that
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f(x′) ≥ f(x̄) + 〈γ, x′ − x̄〉 − ρ

2
|x′ − x̄|2

for all x′ close x̄ such that f(x′) is close to f(x̄). In particular, for x′ = x̄+ u⊕ v(u)
(10) and item (i) imply that f(x′)→ f(x̄) as u→ 0, so

f(x̄+ u⊕ v(u)) ≥ f(x̄) +

〈
ḡ +

(
0⊕ ηv(u)

|v(u)|V

)
, u⊕ v(u)

〉
− ρ

2
|u⊕ v(u)|2

= f(x̄) + 〈ḡ, u⊕ v(u)〉+ η|v(u)|V −
ρ

2

(
|u|2U + |v(u)|2V

)
.

Together with (10), the last inequality gives, after rearrangement of terms,

1

2
〈u,Hu〉U +

ρ

2
|u|2U + o(|u|2U) ≥ η|v(u)|V +

R− ρ
2
|v(u)|2V ,

which implies that v(u) = O(|u|2U). Then the desired result (9) follows from (10). ut

In the epigraphical setting, the second-order epi-derivative provides a second-
order approximation in the sense of closeness of the epigraphs of the second-order
difference quotient function and d2f(x̄|y)(·); see [PR95]. In contrast, a quadratic
sub-Lagrangian ΦR(u; ḡV) can provide a second-order approximation with respect to
u in the classical sense, of local uniform convergence.

We now establish a relation between these second-order objects.

Theorem 3 Suppose that f is subdifferentially regular at x̄ ∈ IRn and prox-regular
there for ḡ ∈ ∂f(x̄) with parameter ρ > 0, and that (7) holds. Also, suppose that
ḡ ∈ ri∂f(x̄) and for R > ρ the sub-Lagrangian ΦR(·; ḡV) has a Hessian at 0. Then
the second-order epi-derivative of f at x̄ relative to ḡ for each w ∈ U is given by

d2f(x̄|ḡ)(w) =
〈
w,∇2ΦR(0; ḡV)w

〉
U .

Proof. For convenience, we let H := ∇2ΦR(0; ḡV) and χ(u) := x̄+u⊕ v(u), where
v(u) ∈ WR(u; ḡV). Then for all v ∈ V

ΦR(u; ḡV) = f(χ(u))− 〈ḡV , v(u)〉V +
R

2
|v(u)|2V ≤ f(x̄+ u⊕ v)− 〈ḡV , v〉V +

R

2
|v|2V .

Subtracting f(x̄) + 〈ḡU , u〉U from both sides of the inequality gives

f(χ(u))−f(x̄)−〈ḡ, χ(u)−x̄〉+R

2
|v(u)|2V≤f(x̄+u⊕ v)−f(x̄)−〈ḡ, u⊕ v〉+R

2
|v|2V .

(11)

Then, since the left hand side above involves ΦR(u; ḡV), which can be expanded up
to second order as in (9) of Lemma 2(ii), we obtain that for all u ∈ U small enough
and all v ∈ V

1

2
〈u,Hu〉U + o(|u|2U) ≤ f(x̄+ u⊕ v)− f(x̄)− 〈ḡ, u⊕ v〉+

R

2
|v|2V . (12)
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Suppose w ∈ U so that w = wU ⊕ 0. Take any sequence (w′, τ) with w′ → w and
τ ↘ 0, and let u′ := w′U . Then

w′ = w′U ⊕ w′V = u′ ⊕ w′V
and

x̄+ τw′ = x̄+ τ
(
u′ ⊕ w′V

)
= x̄+

(
τu′
)
⊕
(
τw′V

)
.

From (12) with u = τu′ ∈ U , τ small enough and v = τw′V ∈ V we obtain

1

2
〈τu′, Hτu′〉U + o(|τu′|2U) ≤ f(x̄+ τw′)− f(x̄)− τ 〈ḡ, w′〉+

R

2
|τw′V |2V . (13)

Dividing both sides of this inequality by 1
2
τ 2 yields

〈u′, Hu′〉U +
o(τ 2|u′|2)

1
2
τ 2

≤ f(x̄+ τw′)− f(x̄)− τ 〈ḡ, w′〉
1
2
τ 2

+R|w′V |2V .

Note that since w′ → w ∈ U , w′V → 0, and the definition of u′ implies that u′ → wU .
Hence, passing to the limit as w′ → w and τ ↘ 0 and using the fact that w = wU ⊕ 0
gives the following inequality involving the second subderivative:

〈w,Hw〉U ≤ d2f(x̄|ḡ)(w).

To show that the left hand side is an epi-limit for w ∈ U we reexamine the above
proof concentrating on the left hand sides of the inequalities. Given w ∈ U we define
a sequence wτe converging to w as follows: Let uτ be any sequence such that uτ → wU
as τ ↘ 0 and let

wτe := uτ ⊕ 1

τ
v(τuτ ) which implies x̄+ τwτe = χ(τuτ ).

From Lemma 2(ii) we have
v(τuτ ) = O(|τuτ |2U), (14)

so 1
τ
v(τuτ )→ 0 with τ and, hence, wτe → wU ⊕ 0 = w.

Furthermore, since x̄+τwτe = χ(τuτ ), the left hand side in (11) with u = τuτ , divided
by 1

2
τ 2, can be written as[

f(x̄+ τwτe )− f(x̄)− τ 〈ḡ, wτe 〉
1
2
τ 2

]
+

R
2
|v(τuτ )|2V

1
2
τ 2

.

By the above argument, as τ ↘ 0 this two term expression converges to 〈w,Hw〉U .
Its second term converges to zero by (14). Therefore, its first term converges to
〈w,Hw〉U and the proof is complete. ut

Similar expressions are given in [MS02b] for convex finite max functions and in
[MS03a] for more general “pdg-structured” functions. In addition, the first reference
gives second order epi-derivatives for three specific examples while the second gives
them for an example that is not prox-regular, cf. [HL03, Sec. 7].
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Remark 4 Suppose in the statements of Lemma 2 and Theorem 3 we replace the
first sentence by the assumption that f is convex on IRn and replace WR, ΦR, R, and
ρ by W , LU , 0, and 0, respectively. Then we can conclude that if LU(·, ḡV) has a
Hessian at 0 for some ḡ ∈ ri∂f(x̄) then for all w ∈ U

d2f(x̄|ḡ)(w) =
〈
w,∇2LU(0; ḡV)w

〉
U ,

using in the proofs the ΦR-like properties of LU from Subsection 2.3.

3.2 Proximal points correspond to V-space minimizers

The following Lemma, extracted from [RW98, Prop. 13.37, p. 617], gives basic
properties of the proximal point mapping for a prox-regular function; see also [PR96].
It depends on condition (7), that implies prox-boundedness.

Lemma 5 Suppose that f is prox-regular at x̄ ∈ IRn for ḡ = 0 ∈ ∂f(x̄) with pa-
rameter ρ > 0 and that (7) holds. Then for each µ > 0 sufficiently large there is a
neighborhood of x̄ on which the proximal point mapping

pµ(x) := argminw

{
f(w) +

µ

2
|w − x|2

}
is well defined, single valued and Lipschitz continuous. In addition,

gµ(x) := µ (x− pµ(x)) ∈ ∂f(pµ(x)) and pµ(x̄) = x̄.ut

We now relate the proximal point mapping to a very particular trajectory x̄ +
u⊕ v∂f(u), where the V-space minimizer function v∂f(u) is the same for all relative
interior subgradients at x̄.

Theorem 6 Suppose that f is prox-regular at x̄ ∈ IRn with parameter ρ > 0 and that
(7) holds for all ḡ ∈ ri∂f(x̄). In addition, suppose 0 ∈ ri∂f(x̄) and for some R > ρ
there is a function v∂f : U → V such that, for all u small enough, v∂f(u) ∈ WR(u; ḡV)
for all ḡ ∈ ri∂f(x̄). Then, for all µ > 0 sufficiently large and x close enough to x̄,

pµ(x) = x̄+ πU(x)⊕ v∂f
(
πU(x)

)
where πU(x) := (pµ(x)− x̄)U .

Proof. For x close enough to x̄, we write its proximal point using VU coordinates,
as follows:

pµ(x) = x̄+ πU(x)⊕ πV(x) where πU(x) := (pµ(x)− x̄)U and πV(x) := (pµ(x)− x̄)V .

By Lemma 5, as x→ x̄, x−pµ(x)→ x̄−pµ(x̄) = 0, and likewise, for the components
πU(x) and πV(x). Since πU(x) → 0, by Lemma 2(i), for any relative interior ḡ, any
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v ∈ WR(πU(x); ḡV) converges to 0. In particular, v∂f
(
πU(x)

)
→ 0. As a result, the

function γV : IRn → V defined by

γV(x) := µ(x̄− x)V +

(
R− µ

2

)(
v∂f
(
πU(x)

)
+ πV(x)

)
converges to 0 as x→ x̄. From (2) written with ḡ = 0 ∈ ri∂f(x̄), we obtain that

γ := 0⊕ γV(x) ∈ ∂f(x̄) for x close enough to x̄

(in fact, γ ∈ ri∂f(x̄), by definition of relative interior). Thus, by Lemma 1, the
function ΦR(·; γV(x)) corresponding to the subgradient γ is well defined. In particular,
at u = πU(x), using (6) and letting χ(πU) := x̄+ πU(x)⊕ v∂f

(
πU(x)

)
,

ΦR

(
πU(x); γV(x)

)
= f(χ(πU(x)))−

〈
γV(x),v∂f

(
πU(x)

)〉
V +

R

2
|v∂f
(
πU(x)

)
|2V .

Since πV(x) ∈ V , definition (5) of the sub-Lagrangian implies that

ΦR

(
πU(x); γV(x)

)
≤ f(x̄+ πU(x)⊕ πV(x))− 〈γV(x), πV(x)〉V +

R

2
|πV(x)|2V .

As a result,

f(χ(πU(x)))−
〈
γV(x),v∂f

(
πU(x)

)〉
V +

R

2
|v∂f
(
πU(x)

)
|2V ≤

f(pµ(x))− 〈γV(x), πV(x)〉V +
R

2
|πV(x)|2V . (15)

By the definition of the proximal point mapping in Lemma 5,

f(pµ(x)) +
µ

2
|pµ(x)− x|2 ≤ f(χ(πU(x))) +

µ

2
|χ(πU(x))− x|2. (16)

Combining the two inequalities above yields, after rearrangement of terms,

R

2
|v∂f
(
πU(x)

)
|2V ≤

µ

2

(
|χ(πU(x))− x|2 − |pµ(x)− x|2

)
+
〈
γV(x),v∂f

(
πU(x)

)
− πV(x)

〉
V (17)

+
R

2
|πV(x)|2V .

We now show that the inequality above is in fact an equality. To abbreviate notation,
we drop the argument “(x)” in πU(x), pµ(x), v∂f

(
πU(x)

)
, πV(x), and γV(x), and write

instead πU , pµ, v∂f(πU), πV , and γV . First we expand the leading difference of squares
term in (17) and use the fact that χ(πU) and pµ have the same U -component:

|χ(πU)− x|2 − |pµ − x|2 = 〈χ(πU)− pµ, χ(πU) + pµ − 2x〉

=
〈
v∂f(πU)− πV ,

(
χ(πU) + pµ − 2x

)
V

〉
V

= 〈v∂f(πU)− πV ,v∂f(πU) + πV − 2(x− x̄)V〉V
= |v∂f(πU)|2V − |πV |2V + 2 〈v∂f(πU)− πV , (x− x̄)V〉V .
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Then

µ

2

(
|χ(πU)− x|2 − |pµ − x|2

)
=
µ

2

(
|v∂f(πU)|2V − |πV |2V

)
− 〈v∂f(πU)− πV , µ(x̄− x)V〉V .

Now we use the definition of γV to write the second right hand side term in (17) as
follows:

〈γV ,v∂f(πU)− πV〉V =

〈
µ(x̄− x)V +

R− µ
2

(
v∂f(πU) + πV

)
,v∂f(πU)− πV

〉
V

= 〈µ(x̄− x)V ,v∂f(πU)− πV〉V +
R− µ

2

(
|v∂f(πU)|2V − |πV |2V

)
Using these expressions in the right hand side in (17), we obtain that (17) holds with
equality. Since the (in)equality in (17) cannot be strict, we deduce that neither the
inequality in (15) nor the one in (16) can be strictly satisfied. In particular, since pµ(x)
is unique, from (16) we obtain that pµ(x) = χ(πU(x)), i.e., that πV(x) = v∂f

(
πU(x)

)
.
ut

Trajectories obtained using the special function v∂f(·) are called fast tracks in
[MS02a] whenever v∂f(·) and LU(·; 0) are C2 functions. The proximal-track result in
Theorem 6, obtained without requiring a second order assumption on ΦR, is similar
to the fast track results in [MS02a, Thm. 5.2] for f convex and in [MS03b, Thm.
9] for f having a strongly transversal pdg-structure. Another related result can be
found in [Har03], where it is shown that, for a convex function f , fast tracks, partly
smooth functions and identifiable surfaces are equivalent concepts. It should be
noted, however, that the proximal-track in Theorem 6 above may not be “fast” unless
ΦR(·; 0) and v∂f(·) have continuous Hessians. These are desirable VU -smoothness
conditions that are important for rapid convergence of minimization algorithms.

Remark 7 If in Theorem 6 we replace the first sentence by the assumption that f is
convex on IRn, delete ρ, and replace R, WR, and ΦR by 0, W , and LU , respectively
(which are well defined objects for all subgradients ḡ ∈ ri∂f(x̄)), we can use its proof
to obtain the same result for the proximal-track of a convex function.

Remark 8 In the nonconvex case ∂f(x̄) can be unbounded and making assumptions
for all ḡ ∈ ri∂f(x̄) may be somewhat strong. We could weaken the assumptions of
Theorem 6 as follows:

Suppose that f is prox-regular at x̄ ∈ IRn with parameter ρ > 0 and that
(7) holds for all ḡ ∈ ri∂f(x̄) near 0 ∈ ∂f(x̄). In addition, suppose 0
∈ ri∂f(x̄), and for some R > ρ, v∂f(u) ∈ WR(u; ḡV) for all ḡ ∈ ri∂f(x̄)
near 0.

Then use the fact that the subgradient γ in the proof is near enough to 0 for x close
enough to x̄ to obtain the proximal-track result.
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ily of variable metric proximal methods, Math. Program., Ser. A 68 (1995),
15–47.

[BQ00] J.V. Burke and Maijian Qian, On the super-linear convergence of the vari-
able metric proximal point algorithm using Broyden and BFGS matrix se-
cant updating, Math. Program. 88 (2000), no. 1, Ser. A, 157–181.

[BTZ82] A. Ben-Tal and J. Zowe, Necessary and sufficient optimality conditions for
a class of nonsmooth minimization problems, Math. Program. 24 (1982),
no. 1, 70–91.

[CC90] R. Cominetti and R. Correa, A generalized second-order derivative in
nonsmooth optimization, SIAM Journal on Control and Optimization 28
(1990), no. 4, 789–809.

[CF99] X. Chen and M. Fukushima, Proximal quasi-Newton methods for nondif-
ferentiable convex optimization, Math. Program. 85 (1999), no. 2, Ser. A,
313–334.
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[LM82] C. Lemaréchal and R. Mifflin, Global and superlinear convergence of an
algorithm for one-dimensional minimization of convex functions, Math.
Program. 24 (1982), 241–256.
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[LS94] C. Lemaréchal and C. Sagastizábal, An approach to variable metric bun-
dle methods, Systems Modelling and Optimization (J. Henry and J-P.
Yvon, eds.), Lecture Notes in Control and Information Sciences, no. 197,
Springer-Verlag, 1994, pp. 144–162.
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