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1 Introduction

The study of solutions of polynomial equations over �nite �elds has a long
history in mathematics, going back to C.F. Gauss. In case these polynomials
de�ne a one-dimensional object (i.e., they de�ne a curve or equivalently an
algebraic function �eld), we have the famous result of A. Weil (see [17]) bounding
the number of such solutions having all coordinates in the �nite �eld. This
bound is given in terms of the cardinality of the �nite �eld and the genus
of the curve, and it is equivalent to the validity of the Riemann Hypothesis
for the associated Congruence Zeta Function. When the genus is large with
respect to the cardinality of the �nite �eld, Ihara (see [14]) noticed that Weil's
bound cannot be reached. This observation led to the consideration of towers
of function �elds over a �xed �nite �eld.

The interest on towers was enhanced after Tsfasman-Vladut-Zink showed
(using towers and a construction of linear codes from function �elds due to
Goppa) the existence of sequences of codes with limit parameters (transmission
rate and relative distance) above the so-called Gilbert-Varshamov bound (see
[16]).

In this paper we present several topics in the theory of towers of function
�elds over �nite �elds. We will omit most proofs, since these are already given
in other papers by the authors. We will give references to these papers when
necessary.

After starting with basic de�nitions and �rst properties of towers of function
�elds over �nite �elds, we study the limit of a tower and give several examples in
order to illustrate the concept of towers. In Section 3 we present two interesting
new examples of asymptotically good towers, one of them over the �eld of car-
dinality q2, the other over the �eld of cardinality q3. In the last two sections we
use methods from graph theory to investigate the splitting behaviour of places
in a recursive tower. We obtain a functional equation which gives in many cases
further insight in completely splitting places.

2 The limit of a tower

In this section we discuss some properties of towers of function �elds over �nite
�elds, and we also give some examples. Let Fq be the �nite �eld with q elements.
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A function �eld F over Fq is a �nitely generated �eld extension F=Fq of trans-
cendence degree one, with Fq algebraically closed in the �eld F . We denote by
g(F ) the genus of the function �eld F . A tower F over Fq is an in�nite sequence
F = (F1 ⊂ F2 ⊂ F3 ⊂ · · · ) of function �eld extensions Fn+1=Fn for all n ∈ N,
satisfying:

a) Each extension Fn+1=Fn is �nite and separable.

b) We have g(Fn) → ∞ as n→ ∞.

Let N(Fi) denote the number of rational places of Fi=Fq. We are interested
in the limit �(F) of a tower F over Fq, i.e., by de�nition

�(F) := lim
i→∞

N(Fi)

g(Fi)
:

It is an easy consequence of Hurwitz's genus formula that the limit above
exists (see [9]). Towers are specially interesting if they have many rational places
with respect to the genera; we then say that the tower F is good over Fq if its
limit �(F) satis�es �(F) > 0, otherwise F is said to be bad. It is a non-trivial
problem to �nd such good towers over �nite �elds, since in most cases it happens
that either g(Fi) increases too fast or N(Fi) does not grow fast enough. We
therefore divide the study of the limit �(F) into two limits:

1) The genus (F) of F over F1

(F) := lim
i→∞

g(Fi)

[Fi : F1]
:

2) The splitting rate �(F) of F over F1

�(F) := lim
i→∞

N(Fi)

[Fi : F1]
:

The two limits above do exist (see [12]) and we clearly have:

0 < (F) ≤ ∞; 0 ≤ �(F) ≤ N(F1); and �(F) = �(F)
(F) :

In particular, the tower F is good over Fq if and only if �(F) > 0 and (F) <∞.
Let F be a function �eld over Fq and let P be a rational place of F over

Fq; i.e., the degree of the place P satis�es degP = 1. We say that the place
P splits completely in the �nite extension E=F if there are [E : F ] places of E
above the place P . Let F = (F1 ⊂ F2 ⊂ F3 ⊂ · · · ) be a tower over Fq and let
P be a rational place of the �rst �eld F1 in the tower F . We say that the place
P splits completely in the tower if the place P splits completely in the extension
Fn+1=F1 for all n ∈ N. We denote

t(F=F1) = t(F) := #{P a rational place of F1 ; P splits completely in F}:
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We clearly have �(F) ≥ t(F), for any tower F . Hence if the tower is completely
splitting (i.e., if we have t(F) > 0) then �(F) > 0. Let us also denote by F the
limit �eld of the tower; i.e., let

F :=
[
n∈N

Fn:

Complete splitting is a reasonable condition; we have a partial converse of
the statement above (see [11]). If for some value of n ∈ N the �eld extension
F=Fn is Galois, then the condition �(F) > 0 implies that the tower is completely
splitting over Fn (i.e., �(F) > 0 implies that t(F=Fn) > 0).

Next we consider the genus (F) of the tower F over the �rst �eld F1. It
is useful to observe that the genus (F) does not change under constant �eld
extensions, so we can replace the function �elds Fi=Fq by the function �elds
F i=Fq := (Fi · Fq)=Fq, where Fq denotes the algebraic closure of the �nite �eld
Fq. We clearly have [Fn+1 : Fn] = [Fn+1 : Fn], for each n ∈ N. A place P of
F 1 = F1 · Fq is rami�ed in Fn+1 if there exist fewer than [Fn+1 : F1] places of
Fn+1 above the place P . We then de�ne the rami�cation locus of F over F 1 by

V (F) := {P place of F 1 ; P rami�es in Fn+1 for some n ∈ N}:
Let E=F be a separable extension of function �elds over the algebraic closure

Fq . Let P be a place of the �eld F and let Q1; Q2; : : : ; Qr be all places of E
above P . There are natural numbers e(Qi|P ) called rami�cation indices of Qi

over P , for all 1 ≤ i ≤ r, and the following fundamental equality holds:

rX
i=1

e(Qi|P ) = [E : F ]:

The place P is called tame in E=F if the characteristic p does not divide e(Qi|P ),
for all 1 ≤ i ≤ r. Otherwise P is called wild. The extension E=F is called tame
if all places P of the �eld F are tame places. We call a tower F over Fq a tame
tower if the extensions Fn+1=F 1 are tame extensions, for all n ∈ N.

Here is a simple suÆcient criterion for the �niteness of the genus (F) of a
tower (see [11]): if the tower F is a tame tower with a �nite rami�cation locus
(i.e., #V (F) <∞), then it has a �nite genus (F) <∞.

The statement above is false in general when F is a wild tower; i.e., when
the tower F is not tame. Before giving some examples F of tame and wild
towers, and before discussing the splitting rate �(F) and the genus (F) in
these examples, we introduce the concept of recursive towers. We say that a
tower F is recursively given by a polynomial f(X;Y ) ∈ Fq [X;Y ], if F1 = Fq(x1)
is the rational function �eld and, for each n ∈ N, the �eld Fn+1 is de�ned by

Fn+1 := Fn(xn+1); with f(xn; xn+1) = 0:

Further we demand that [Fn+1 : Fn] = degY f(X;Y ) for all n ∈ N. The polyno-
mial f(X;Y ) should have balanced degrees; i.e., degX f(X;Y ) = degY f(X;Y ).
Otherwise the limit �(F) of the tower is equal to zero (see [10]).
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An upper bound for the limit �(F) of a tower F over the �nite �eld Fq is
the following bound due to Drinfeld-Vladut (see [7]):

�(F) ≤ √
q − 1:

We now give some examples of towers:

Example 2.1 (see [12]) Consider the tower F over F4 given recursively by the
polynomial

f(X;Y ) = Y 3 + (X + 1)3 + 1 ∈ F4[X;Y ]:

This is a tame tower with #V (F) = 4 and t(F) = 1 (the place at in�nity of
F1 = F4(x1) splits completely). Its limit satis�es

�(F) = 1 =
√
4− 1;

i.e., it attains the Drinfeld-Vladut bound.

Example 2.2 (see [9]) Consider the tower F over Fq2 , de�ned recursively by

f(X;Y ) = (Xq−1 + 1)(Y q + Y )−Xq ∈ Fq2 [X;Y ]:

This is a wild tower F satisfying

�(F) = q2 − q and (F) = q:

In particular it attains the Drinfeld-Vladut bound; i.e.,

�(F) = q − 1:

For wild towers it is in general very hard to decide if the genus (F) is �nite
or not. This is the case in Example 2.2 where to show that (F) = q involves
long and technical computations.

For simplicity we say for example that the tower over Fq2 in Example 2.2 is
given by the equation

Y q + Y =
Xq

Xq−1 + 1
:

Example 2.3 (see [2, 3]) Consider the tower F over Fq with q = pp (p an odd
prime number) de�ned by the following equation

Y p − Y =
(X + 1)(Xp−1 − 1)

Xp−1 :

The tower F is wild, and its rami�cation locus V (F) is a �nite set. Also t(F) ≥ p
(the places of F1 = Fq(x1) which are the zeros of the polynomial xp1−x1−1 are
completely splitting in the tower F). Nevertheless we have �(F) = 0 for p ≥ 3.
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If one considers the tower in Example 2.3 in the case p = 2, one can show
that it is the same tower as in Example 2.2 with q = 2. In fact just consider the
substitutions X 7→ X + 1 and Y 7→ Y + 1.

Example 2.4 (see [11]) Consider the tower F over Fq , with q = p2 and p an
odd prime number, de�ned recursively by the equation

Y 2 =
X2 + 1

2X
:

It is easy to see that F is a tame tower with (F) = 2. The hard part here
is to show that �(F) = 2(p − 1). From this we conclude that F attains the
Drinfeld-Vladut bound over the �nite �eld Fp2 ; i.e., we conclude

�(F) = p− 1:

The proof that �(F) = 2(p − 1) involves the investigation of Fq-rationality
of the roots of Deuring's polynomial

H(t) :=

p−1

2X
j=0

�
p−1
2

j

�2
tj ∈ Fp[t]:

The roots ofH(t) parametrize supersingular elliptic curves in Legendre's normal
form.

Now we consider some speci�c classes of polynomials f(X;Y ) ∈ Fq [X;Y ]
which lead to good towers over Fq in many cases. A tower over Fq is a Kummer
tower if it can be de�ned recursively by an equation as below

Y m = f(X); with f(X) ∈ Fq(X) and (m; q) = 1:

If m divides (q−1), each step Fn+1=Fn in a Kummer tower is cyclic of degreem.
Example 2.4 above is a Kummer tower. A more speci�c class of towers consists
of towers of Fermat type which are given by

Y m = a(X + b)m + c; with a; b; c ∈ Fq:

The equation above de�nes a tower if and only if abc 6= 0 (see [18]). The
diÆculty here is to show that the equation remains irreducible in each step
Fn+1=Fn in the tower. In case abm + c = 0, this is easily seen, since the place
x1 = 0 of F1 = Fq(x1) is totally rami�ed in the tower. In case abm + c 6= 0,
no place rami�es totally throughout the tower and the proof that the equation
remains irreducible in each step, is more involved.

Even this simple looking class of towers of Fermat type presents examples
with quite interesting behaviour. Example 2.1 belongs to this class and it attains
the Drinfeld-Vladut bound over F4. We now give other examples in this class:
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Example 2.5 (see [12]) Consider the tower F over F9 de�ned by the equation

Y 2 = −(X + 1)2 + 1:

We have #V (F) = 3 and t(F) = 1, since the place at in�nity of F1 = F9(x1)
splits completely in this tower. We also have

�(F) = 2 =
√
9− 1;

i.e., this tower attains the Drinfeld-Vladut bound.

Example 2.6 Consider the tower F over the prime �eld F3 de�ned by the
equation

Y 2 = (X + 1)2 − 1:

In this tower the place at in�nity of F1 = F3(x1) splits completely and one can
check that the rami�cation locus V (F) is in�nite. It is not likely, but if it turns
out that this tower has a �nite genus (F), then this would be the �rst example
of an explicit good tower over a prime �eld.

Another interesting class of recursive towers is the class of towers of Artin-
Schreier type. These towers can be given by an equation

'(Y ) =  (X);

where '(Y ) ∈ Fq [Y ] is an additive separable polynomial and where  (X) ∈
Fq(X) is a rational function. If the additive polynomial '(Y ) has all its roots in
the �nite �eld Fq, then each step Fn+1=Fn is an elementary abelian p-extension
with [Fn+1 : Fn] = deg'(Y ). Rami�cation in this class of towers is always
wild. Examples 2.2 and 2.3 give towers belonging to this class. Another very
interesting example is the following:

Example 2.7 (see [13]) Consider the tower F over F8 de�ned recursively by

Y 2 + Y =
X2 +X + 1

X
:

We have t(F) = 6, since the places corresponding to x1 = � with � ∈ F8\F2 are
completely splitting in the tower. The hard thing here is to prove that (F) = 4
and hence

�(F) ≥ t(F)
(F) =

3

2
:

This is the �rst explicit tower F over the �nite �eld Fp3 , with p a prime
number, satisfying Zink's bound (see [19]):

�(F) ≥ 2(p2 − 1)

p+ 2
:
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It is then natural to look for towers F of Artin-Schreier type, given by
'(Y ) =  (X) as above, satisfying �(F) > 0. For a �xed additive polynomial
'(Y ) ∈ Fq[Y ] with all roots in Fq, there are however just a few possibilities for
the rational functions  (X) ∈ Fq(X) which may lead to good towers over the
�nite �eld Fq (see [2]). To illustrate this assertion, consider a recursive tower F
over Fq given by an equation

Y p + �Y =  (X); with � ∈ F
∗
q and  (X) ∈ Fq(X):

If the tower F is a good tower (i.e., if �(F) > 0), then we just have 3 possibilities
for the rational function  (X) ∈ Fq(X):

(1)  (X) = a + (X + b)p=f(X); with a; b ∈ Fq and f(X) a polynomial with
deg f ≤ p.

(2)  (X) = f(X)=(X+ b)p; with b ∈ Fq and f(X) a polynomial with deg f ≤ p.

(3)  (X) = a+ 1=f(X); with a ∈ Fq and f(X) a polynomial with deg f = p.

We believe that case (3) above can be discarded; i.e., case (3) would always
lead to �(F) = 0. The examples already given here (see Examples 2.2 and 2.7)
belong to case (1). The tower given in Example 2.3 satis�es �(F) = 0, since its
rational function

 (X) =
(X + 1)(Xp−1 + 1)

Xp−1

does not belong to any of the three cases above for p 6= 2. In characteristic p = 2
it belongs to case (1) with a = 0, b = 1, and f(X) = X . A natural problem
here is the determination of the polynomials f(X) with deg f(X) ≤ p leading
to a �nite genus (F) <∞ and even better leading to �(F) > 0.

We �nish this section with two conjectures:

Conjecture 1 Let F be a recursive tower over a �nite �eld. If �(F) > 0, then
t(F) > 0.

In other words, Conjecture 1 says that recursive towers with a positive split-
ting rate are completely splitting. A re�nement of Conjecture 1 would be that
the equality �(F) = t(F) always holds for any recursive tower F over a �nite
�eld.

Conjecture 2 Let F be a recursive tower over a �nite �eld. If (F) < ∞,
then #V (F) <∞.

In other words, Conjecture 2 says that recursive towers with a �nite genus have
a �nite rami�cation locus.

Both Conjecture 1 and Conjecture 2 are false without the hypothesis that
the tower F is a recursive tower (see [8]). We will give a partial answer to
Conjecture 1 in Section 4 below.
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3 Two new non-Galois towers

The aim of this section is to present two new towers, one over �nite �elds Fq2

with square cardinality and the other over �nite �elds Fq3 with cubic cardinality.
The new feature of these two towers of function �elds is that each step Fn+1=Fn
is non-Galois for q 6= 2.

Example 3.1 (see [5]) Consider the tower F over Fq2 de�ned recursively by
the equation

Y − 1

Y q
=
Xq − 1

X
:

It is easily seen that t(F) = q, since the places of F1 = Fq2(x1) which are zeros
of xq1 + x1 − 1 are completely splitting in the tower F over Fq2 . The hard part
here is to show that (F) = q=(q − 1). Hence we conclude

�(F) ≥ t(F)
(F) = q − 1;

i.e., the tower F attains the Drinfeld-Vladut bound over Fq2 . This fact can
also be seen from the fact that our new tower F is a subtower of the tower in
Example 2.2. Indeed denoting by E the tower over Fq2 de�ned recursively by

W q +W =
V q

V q−1 + 1
;

and setting

X :=
1

V q−1 + 1
and Y :=

1

W q−1 + 1
;

one checks easily that these functions X and Y satisfy the equation de�ning the
tower F ; i.e.,

Y − 1

Y q
=
Xq − 1

X
:

Being a subtower, we have (see [9])

�(F) ≥ �(E) = q − 1; and hence �(F) = q − 1:

One can also go the other way around; i.e., knowing that �(F) = q − 1, one
can deduce that �(E) = q − 1. In order to do this we will need the concept
of a composite tower. Let F = (F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · ) be a tower and
let E1=F1 be a tame function �eld extension which is linearly disjoint from
Fn+1 over F1 for all n ∈ N. Let E denote the composite tower; i.e., the tower
E = (E1 ⊂ E2 ⊂ E3 ⊂ · · · ) where the �eld En is the compositum En := E1 ·Fn,
for all n ∈ N. Under certain hypotheses (see [12]) one has the following genus
formula:

2g(E1)− 2(E)− 2 = [E1 : F1](2g(F1)− 2(F)− 2) + Æ;
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where (E) is the genus over E1 of the tower E , where (F) is the genus over F1
of the tower F , and where Æ is the degree of the part of the di�erent Di� (E1=F1)
supported above the rami�cation locus V (F) of the tower F . If one assumes
furthermore that the whole of the di�erent Di� (E1=F1) is supported at places
of E1 lying above places of F1 belonging to V (F), then we have

Æ = degDi� (E1=F1)

in the above genus formula. In this situation, from the classical Hurwitz genus
formula, we conclude:

(E) = [E1 : F1](F):
We now return to the towers E and F as in Example 3.1. One checks easily

that the tower E is the composite tower of F with the extension E1 = F1(v1),
where

vq−11 =
1− x1
x1

:

From the discussion above we then conclude that

(E) = [E1 : F1](F) = (q − 1) · q

q − 1
= q:

Also one sees easily that t(E) = q2 − q, since the places of E1 = Fq2(v1) corre-
sponding to the elements of Fq2\Fq are completely splitting in the tower E over
Fq2 . Hence

�(E) ≥ t(E)
(E) =

q2 − q

q
= q − 1:

Example 3.2 (see [6]) Consider the towerF over Fq3 , with q any prime power,
de�ned recursively by the equation

1− Y

Y q
=
Xq +X − 1

X
:

Let
A := {� ∈ Fq ; �

q+1 = �− 1}
and let


 =

�
! ∈ Fq ;

!q + ! − 1

!
= �; for some � ∈ A

�
:

One checks easily that

#
 = q(q + 1) and 
 ⊂ Fq3 ;

and also that t(F) ≥ q(q + 1) since the places of F1 = Fq3(x1) which are zeros
of (x1 − !), for ! ∈ 
, are completely splitting in the tower F over Fq3 . Much
harder here is to show that the genus (F) is given by
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(F) = q

q − 1
· q + 2

2
:

The limit �(F) then satis�es:

�(F) ≥ t(F)
(F) =

q(q + 1)
q

q−1 · q+2
2

=
2(q2 − 1)

q + 2
:

In fact we will show in Section 5 below that the limit of the tower F is equal
to �(F) = 2(q2 − 1)=(q + 2). This tower F over Fq3 gives in particular a
generalization of a theorem of T.Zink (see [19]) for non-prime values of q (see
also Example 2.7).

4 Graphs and recursive towers

Suppose we are given a tower F of function �elds recursively given by the
polynomial f(X;Y ). Throughout this and the following section we will assume
that degX f(X;Y ) = degY f(X;Y ), which is not a real restriction according to
the remark before Example 2.1. In this section we will associate to an absolutely
irreducible polynomial f(X;Y ) ∈ Fq[X;Y ] a combinatorial object, a graph, that
will be useful in the description of the places of the function �elds in the tower
F . In particular the behaviour of completely splitting places will be clearer in
many cases. For proofs of the results in Sections 4 and 5 we refer to [1].

We �rst give some standard facts and notations concerning graphs. For more
information about graphs see for example [4]. We de�ne a directed graph � to
be a triple (V;A; e), where

i) V is a set of elements called vertices,

ii) A is a set of elements called arcs, and

iii) e : A→ V × V is a map.

Observe that in the literature a directed graph is sometimes de�ned as a
tuple (V;A), with A a subset of V × V . We will not use that de�nition here,
since we want to allow multiple arcs from one vertex to another. For a ∈ A
write e(a) = (v; w). We say that the arc a connects v with w, and that it starts
at v and it ends in w. Note that the map e need not be injective, allowing the
possibility of multiple arcs. With slight abuse of notation we say that (v; w)
occurs as an arc in � if there exists an a ∈ A such that e(a) = (v; w).

If it is possible to write V as a disjoint union of non-empty sets V1 and V2
such that no arcs exist connecting a vertex in V1 to a vertex in V2 or vice versa,
then we call the graph decomposable. The induced graphs with vertex sets V1
and V2 are called components of �. Any directed graph can be divided into
indecomposable components.

Assume for the moment that the sets V and A are �nite. We de�ne the
in-degree degin v (resp. out-degree degout v) of a vertex v of the graph � to be
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the number of arcs of � ending in (resp. starting at) v. Given an ordering
v1; v2; : : : ; vk of the vertex set, we de�ne the adjacency matrix M = (mij) of the
graph � = (V;A; e) to be the k × k matrix given by:

mij := the number of arcs a ∈ A with e(a) = (vi; vj).

Any other ordering of the vertex set gives a matrix that di�ers from M only
by a conjugation with a permutation matrix. We have the following elementary
lemma connecting in- and out-degrees with the adjacency matrix.

Lemma 4.1 Let � = (V;A; e) be a directed graph with #V = n < ∞. Let M
be the adjacency matrix of � with respect to some ordering v1; v2; : : : ; vk of the
vertices. Then for all 1 ≤ i ≤ k we have

degout vi =

kX
j=1

mij

and

degin vi =

kX
j=1

mji:

Now we come to the de�nition of the graphs we will use in connection to the
theory of recursive towers. Let f(X;Y ) ∈ Fq[X;Y ] be an absolutely irreducible
polynomial. We denote by Fq the algebraic closure of Fq and by F a �eld
satisfying Fq ⊂ F ⊂ Fq . Denote by F(x; y) the function �eld de�ned by f(x; y) =
0 and let g ∈ F(x; y) be a function and R an F-rational place of F(x; y). If the
function g does not have a pole at the place R, we denote as usual by g(R) the
evaluation of g in R (i.e. the unique element � of F such that g ≡ � (mod R)).
If the function g has a pole at the place R we de�ne g(R) := ∞.

De�nition 4.2 We de�ne the graph

�(f;F) := (V;A; e)

as follows:

V := F ∪ {∞};

A := PF(F(x; y)); and

e(R) = (x(R); y(R)); for R ∈ PF(F(x; y)):

Here PF(F(x; y)) denotes the set of F-rational places of the function �eld F(x; y).
Of course the sets V and A in the above de�nition depend on F and on f(X;Y ).
If we want to make this explicit we will write V (f;F) (resp. A(f;F)) instead of
V (resp. A). Note that the number of arcs of the graph �(f;F) is by de�nition
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the same as the number of F-rational places of the function �eld F(x; y), while
the number of vertices equals the number of F-rational places of the rational
function �eld F(x).

For � and � in F, the tuple (�; �) occurs as an arc in the graph �(f;F) only
if f(�; �) = 0. The converse implication need not be true, as can be seen by
taking for example f(X;Y ) = X3+X2+XY +Y 2 over the �eld F2. In this case
f(0; 0) = 0, but there does not exist an arc in the graph �(f;F2) connecting 0
to 0. Such an arc only appears if we extend the constant �eld to F4. On the
other hand if we know that F = Fq , we have f(�; �) = 0 if and only if there
exists a place R ∈ PF(F(x; y)) such that (x(R); y(R)) = (�; �).

Example 4.3 In this example we consider the absolutely irreducible polyno-
mial Y 3+(X+1)3+1 ∈ F4[X;Y ] (see also Example 2.1). We write F4 = F2(�),
with �2 = �+ 1. After some calculations we �nd that the graph �(f;F4) looks
as follows:

u�
u0
u �2

u
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�
�

�
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�
�

�
��

@
@
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@@

	

	

R

R

����

�����
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u
∞
�������
���

&%
'$�

Using the ordering 1; �; �2; 0;∞ of the vertices, we �nd that the adjacency
matrix M of �(f;F4) is given by:

M =

0
BBBB@

1 1 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 3

1
CCCCA :

We de�ne a path of length n in a graph � = (V;A; e) to be a sequence of arcs
a1; a2; : : : ; an such that for all 1 ≤ i ≤ n − 1 the second coordinate of e(ai) is
equal to the �rst coordinate of e(ai+1). Corresponding to such a path, we have
the sequence of visited vertices v1; v2; : : : ; vn+1; i.e., e(ai) = (vi; vi+1). We also
say that a1; a2; : : : ; an is a path from vertex v1 to vertex vn+1.

Now we consider a path a1; a2; : : : ; an of length n in the graph �(f;F) con-
sidered above. An arc ai in this graph is by de�nition an F-rational place of the
function �eld F(x; y) (where f(x; y) = 0). The fact that a1; a2; : : : ; an is a path
in this graph implies that y(ai) = x(ai+1) for 1 ≤ i ≤ n− 1. Therefore we have
for the sequence of visited vertices v1; v2; : : : ; vn+1:

12



f(vi; vi+1) = 0; for 1 ≤ i ≤ n;

where we do allow the possibility that vj is in�nity for some values of j. In this
sense a path in the graph �(f;F) gives rise to a solution over F of the above
system of equations. Note that di�erent paths may yield the same solution and
that, conversely, any solution with coeÆcients in Fq ∪ {∞} can be found by
considering an appropriate path in the graph �(f;Fq).

Now we return to a tower F over Fq recursively de�ned by a polynomial
f(X;Y ) ∈ Fq[X;Y ]. The function �eld Fn can be described as Fq(x1; x2; : : : ; xn)
with the relations f(xi; xi+1) = 0; for 1 ≤ i ≤ n − 1. An Fq-rational place P
of the function �eld Fn therefore gives rise to a path of length n−1 in the graph
�(f;Fq). The corresponding sequence of visited vertices is x1(P ); : : : ; xn(P ).
The number of paths of length n−1 in the graph therefore gives some information
on the number of Fq-rational places of the function �eld Fn. We will now give
some facts about paths in graphs. The following lemma is well-known in graph
theory (see [4]).

Lemma 4.4 Let � = (V;A; e) be a directed graph and suppose that the sets A
and V are �nite. Let M be the adjacency matrix of � for some ordering of the
vertices. Then the number of paths from vertex vi to vertex vj of length n is
equal to the ij-th element of the matrix Mn.

It is also well-known that given a square matrix M with entries in C, the
growth of the entries of the matrixMn depends on the largest eigenvalue ofM .
Therefore we de�ne

�(M) := max{|�| ; � ∈ C is an eigenvalue of M}:
This number is also called the spectral radius of the matrix M . We have the
following lemma.

Lemma 4.5 Let M be a square matrix with entries in C and denote by mij(n)
the ij-th entry of the matrix Mn. Then for any � > 0 we have

lim
n→∞

|mij(n)|
(�(M) + �)n

= 0:

The above lemma follows for example quite easily using the Jordan normal
form of a matrix. IfM is the adjacency matrix of a graph � with �nite vertex set
and with �nite arc set, andM ′ the adjacency matrix of the graph corresponding
to a di�erent choice of the ordering of the vertex set, we have �(M) = �(M ′).
Therefore it makes sense to speak of �(�), the spectral radius of the graph �.
We have the following proposition:

Proposition 4.6 Let � be a graph with �nite arc and vertex set. Then for any
� > 0 we have:

13



lim
n→∞

#{paths in � of length n}
(�(�) + �)n

= 0:

We can sharpen the above proposition for the graphs �(f;F), since for any
vertex v of such a graph we have degout v ≤ degY f(X;Y ) and degin v ≤
degX f(X;Y ). Recall that we always assume degX f(X;Y ) = degY f(X;Y ).
For graphs with this property we have the following proposition:

Proposition 4.7 Let � = (V;A; e) be an indecomposable directed graph with
�nitely many vertices and arcs. Suppose that there exists a natural number m
such that all out-degrees are less than or equal to m. Then we have

�(�) ≤ m:

If �(�) = m and all in- and out-degrees are bounded from above by m, then all
in- and out-degrees are equal to m.

The two propositions above imply the following corollary.

Corollary 4.8 Let f(X;Y ) ∈ Fq[X;Y ] be an absolutely irreducible polynomial
such that m := degX f(X;Y ) = degY f(X;Y ). Then we have

lim
n→∞

#{paths of length n in �(f;Fq)}
mn

> 0

if and only if there exists an indecomposable component � of �(f;Fq) whose
vertices all have in- and out-degree equal to m.

A graph � as in the corollary above has the property that it is a �nite
indecomposable component of the graph �(f;Fq), since the number of arcs that
occur in � is the maximal possible number.

Using the above results, we can prove a partial answer to Conjecture 1 (see
end of Section 2). We need some preliminaries. Consider a tower F recursively
de�ned over the �eld Fq by the polynomial f(X;Y ). We can extend the constant
�eld to Fq. After doing so we can interpret the rami�cation locus V (F) as a
subset of Fq ∪ {∞}, hence as a subset of the vertex set of the graph �(f;Fq).
In the same way we can interpret the rami�cation locus V (G) of the dual tower
G given by the polynomial f(Y;X) (also see [3]), as a subset of the vertex set
of the graph �(f;Fq).

We denote by W (F) the vertex set of the smallest component � of �(f;Fq)
whose vertex set contains V (F) ∪ V (G). In other words: any indecomposable
component of the graph � has at least one element of V (F) or V (G) among
its vertices. The set W (F) ⊂ Fq ∪ {∞} can be interpreted as a set of places
of the function �eld Fq(x1). One associates to � ∈ W (F) the place that is
the unique zero of the function x1 − � if � 6= ∞ and the unique pole of x1 if
� = ∞. It is easy to see that the set of places we have obtained in this way can
be reinterpreted as a set of (possibly non-rational) places of the function �eld
F1 = Fq(x1). Hence we may view W (F) as a set of places of F1.
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De�nition 4.9 Let F be a tower over the �eld Fq, then we de�ne

�(F) := lim
n→∞

#{Fq-rational places P of Fn above W (F)}
[Fn : F1]

:

Using these concepts we obtain a partial answer to Conjecture 1:

Theorem 4.10 Let F = (F1; F2; : : : ) be a tower over Fq recursively given by a
polynomial f(X;Y ). Suppose that �(F) = 0. Then t(F) = �(F).
Proof. As usual we de�ne m := degX f = degY f . Further we denote by
F = (F 1; F 2; : : : ) the tower of function �elds obtained from F by extending the
constant �eld of the tower to Fq . We �rst consider the graph �(f;Fq). Recall
that vertices of this graph are elements of Fq ∪ {∞} and that arcs in this graph
are places of the function �eld Fq(x; y) where f(x; y) = 0. Also recall that any
place of the function �eld Fn+1 gives rise to a path of length n, namely the path
P ∩ Fq(x1; x2); P ∩ Fq(x2; x3); : : : ; P ∩ Fq(xn; xn+1). We implicitly assume the
relations f(xi; xi+1) = 0 for all 1 ≤ i ≤ n. Conversely given a path a1; : : : ; an
of length n in the graph �(f;Fq) we can construct at least one place P of Fn+1

such that P ∩ Fq(xi; xi+1) = ai for all 1 ≤ i ≤ n (this follows for example
inductively from [18, Lemma 2.1.3]).

Now suppose we work in a component � of �(f;Fq) such that any vertex
v of � has in- and out-degree m. A necessary and suÆcient condition for this
property is that the vertex set of � is disjoint from the set W (F). Clearly
the number of paths of length n starting in a vertex � is mn. Conversely, the
number of places of Fn+1 lying above the place P1 of F 1 de�ned by x1 = � is
also mn. We see that paths of length n in � correspond bijectively to places
P of Fn+1 such that x1(P ) is a vertex of �. Moreover one can show that such
a place P is Fq-rational if and only if its corresponding path in � is de�ned
over Fq (i.e., all arcs P ∩ Fq(xi; xi+1) are Fq-rational). This means that there
is a bijective correspondence between Fq-rational places P of Fn+1 such that
x1(P ) is a vertex of � and paths of length n in the graph �∩�(f;Fq) (i.e., the
subgraph of � consisting of all vertices and arcs of � de�ned over Fq).

We are now ready to prove the theorem. By the above observations, we
can count the number of Fq-rational places of Fn+1 not lying above W (F) by
counting suitable paths of length n in the graph �(f;Fq). On the other hand,
since we assumed �(F) = 0, the amount of Fq-rational places lying aboveW (F)
do not contribute to �(F) asymptotically. If �(F) = 0, there is nothing to prove.
Hence from now on we suppose that �(F) > 0. By Corollary 4.8, we conclude
that �(F) > 0 if and only if there exists a component of �(F) with all in- and
out-degrees equal to m. More precisely, writing � for the maximal component
of �(f;Fq) with the property that any vertex of � has in- and out-degree equal
to m, we have �(F) = # vertices of �. But it is then clear that any place P1
of the function �eld F1 with x1(P ) a vertex of � is completely splitting, i.e., we
have �(F) = t(F). 2
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5 The functional equation

From now on we assume that the recursive tower F over Fq can be de�ned by
an equation of the form:

'(Y ) =  (X); with '(t) and  (t) ∈ Fq(t) rational functions.

We still assume that the equation is balanced; i.e., deg'(t) = deg (t). This
condition can now also be expressed as:

[Fq(t) : Fq('(t))] = [Fq(t) : Fq( (t))]:

We will reformulate the results of the previous section for this special case.
We write

'(t) =
'1(t)

'2(t)
; with '1(t) and '2(t) ∈ Fq[t] relatively prime polynomials.

Similarly we write

 (t) =
 1(t)

 2(t)
; with  1(t) and  2(t) ∈ Fq[t] relatively prime polynomials.

We saw in Section 4 that �nite components of the graph �(f;Fq) are in-
teresting, particularly when all in- and out-degrees are maximal. We have the
following lemma.

Lemma 5.1 Let f(X;Y ) =  2(X)'1(Y ) −  1(X)'2(Y ) ∈ Fq[X;Y ] be an ab-
solutely irreducible polynomial such that degX f(X;Y ) = degY f(X;Y ) =: m.
Let � be a component of the graph �(f;Fq) and suppose that any vertex of �
has in- and out-degree equal to m. Then there exists a homogeneous polynomial
H(t; s) ∈ Fq [t; s] and a non-zero constant c such that the following functional
equation is satis�ed:

H('1(T ); '2(T )) = c ·H( 1(T );  2(T )):

More speci�cally, writing S for the vertex set of � and setting '(t) := '1(t)='2(t),
one can choose

H(t; s) :=
Y
�∈S

(t− '(�)s);

with the convention that (t−∞s) := s.

We call a homogeneous polynomial H(t; s) satisfying the equation in the
above lemma, a solution of the functional equation for '(t) and  (t).

Now suppose we are given a tower F over Fq de�ned by the equation
'(Y ) =  (X) as above and write f(X;Y ) =  2(X)'1(Y )−  1(X)'2(Y ). The
signi�cance of components � of the graph �(f;Fq) satisfying the assumptions
of Lemma 5.1 has also become apparent in the proof of Theorem 4.10; in fact,
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if one can �nd such a component, then t(F) > 0 (and hence �(F) > 0). More
general, suppose that there exists a �nite component � of the graph �(f;Fq)
such that any vertex has maximal in- and out-degree. Denote by F the smallest
extension of Fq over which all vertices and arcs of � are de�ned, and denote by
F ′ the tower of function �elds obtained from F by extending the constant �eld
to F. Then we have t(F ′) > 0.

We have seen that if a tower over Fq recursively de�ned by f(X;Y ) = 0,
satis�es �(F) = 0 and �(F) > 0, then the graph �(f;Fq) will have a �nite
component with maximal in- and out-degrees. If the polynomial f(X;Y ) has
the special form as in Lemma 5.1, we will �nd a solution of the functional
equation. We will now give some examples.

Example 5.2 Consider, as in Example 2.2, the tower F over Fq2 de�ned re-
cursively by the equation

Y q + Y =
Xq

Xq−1 + 1

and de�ne f(X;Y ) := (Xq−1+1)(Y q+Y )−Xq. One can check that the graph
�(f;Fq2) has a �nite component satisfying the conditions of Lemma 5.1 with
vertex set S = {� ∈ Fq2 ; �q + � 6= 0}. In this case the polynomial H(t; s)
mentioned in Lemma 5.1 isY

�∈S
(t− (�q + �)s) =

�
tq−1 − sq−1

�q
:

In this case one can check Lemma 5.1 directly by showing

(T q + T )q−1 − 1 = (T q)q−1 − (T q−1 + 1)q−1;

i.e., we can also choose tq−1 − sq−1 as a solution.

In general if a homogeneous polynomial H(t; s) is a solution of the functional
equation mentioned in Lemma 5.1 for certain '(t) and  (t), and one can write
H(t; s) = H1(t; s)

a, then H1(t; s) is also a solution of the functional equation for
the same rational functions. There are other, similar properties. For example,
if H1(t; s) and H2(t; s) are two solutions of the functional equation for '(t) and
 (t), then their product is also a solution. Conversely, if H1(t; s) and H2(t; s)
are solutions and H1(t; s) is a multiple of H2(t; s), then H1(t; s)=H2(t; s) is also
a solution. Finally note that trivially a constant polynomial is always a solution.

We give another example to illustrate that the solutions predicted by Lemma
5.1 can be highly non-trivial.

Example 5.3 We now return to the tower F de�ned over Fp2 mentioned in
Example 2.4. In this case we have

'(t) = t2 and  (t) =
t2 + 1

2t
:
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It is not hard to check that �(F) = 0 for this tower. Since we know that
�(F) > 0, this means that there exists a solution of the functional equation for
'(t) and  (t). This solution involves Deuring's polynomial H(t). A non-trivial
result in [11] is the following equality:

H(T 4) ≡ T p−1H

 �
T 2 + 1

2T

�2!
(mod p):

We can interpret this equation as a solution to the functional equation for
t2 and (t2 + 1)=2t. Indeed, de�ne H1(t; s) ≡ sp−1H(t2=s2) (mod p). Then
H1(t; s) ∈ Fp[t; s] is a homogeneous polynomial of total degree p−1. The above
equation immediately implies

H1(T
2; 1) = H1(T

2 + 1; 2T );

and indeed there exists a non-trivial solution of the functional equation for t2

and (t2 + 1)=2t.

The point of formulating matters in terms of a functional equation, is that
one can sometimes prove a uniqueness result. We illustrate this with the fol-
lowing proposition.

Proposition 5.4 Let '(t) ∈ Fq[t] be a monic polynomial of degree m and  (t) ∈
Fq(t) be a rational function such that

 (t) =
 1(t)

 2(t)
;

with  1(t);  2(t) ∈ Fq [t] relatively prime polynomials satisfying

1) the polynomial  1(t) is monic and deg 1(t) = m,

2) 0 < deg 2(t) < m:

Then there exists a homogeneous polynomial H(t; s) ∈ Fq [t; s] such that for any
solution H1(t; s) ∈ Fq[t; s] of the functional equation for '(t) and  (t) there
exist a ∈ Fq and n ∈ N with H1(t; s) = a ·H(t; s)n.

In other words the above proposition states that there exists essentially only
one solution of the functional equation for '(t) and  (t) if the assumptions of
Proposition 5.4 hold. We give an example to illustrate the use of Proposition
5.4.

Example 5.5 We consider again the tower F over Fq3 in Example 3.2 given
by the equation

1− Y

Y q
=
Xq +X − 1

X
:

We have seen that for this tower we have
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�(F) ≥ 2(q2 − 1)

q + 2

We will show that equality holds.
Using results in [6] one can show that �(F) = 0 for this tower. As we have

seen in Theorem 4.10 this implies t(F) = �(F). Moreover, we have seen that
the completely splitting places in the tower F are described by solutions of the
functional equation for '(t) := (1− t)=tq and  (t) := (tq + t− 1)=t. If we could
show as in Proposition 5.4 that essentially only one solution H(t; s) exists, we
would be done. All possible completely splitting places P! of F1 (i.e., P! is
de�ned as the zero of x1 − !) would then be given by H(!q + ! − 1; !) = 0.
As it is, we cannot apply the proposition directly. However, we can rewrite the
de�ning equation of the tower F . De�ne V := 1=X and W := 1=Y . From the
de�ning equation of the tower we obtain

W q −W q−1 =
V q − V q−1 − 1

−V q−1 :

Hence we can apply Proposition 5.4 with '(t) = tq − tq−1 and  (t) = (tq −
tq−1− 1)=(−tq−1). We �nd that for these '(t) and  (t) there is essentially only
one solution of the functional equation. One can check that this solution can
be chosen to be H(t; s) = tq+1 − t · sq + sq+1. In particular we conclude

�(F) = 2(q2 − 1)

q + 2
:

As another illustration of the use of Proposition 5.4, we discuss the following
problem stated in [11].

Given � ∈ Fp2 such that H(�4) = 0, with H(t) Deuring's polynomial in
characteristic p. It is proved in [11] that all roots of H(t4) lie in Fp2 . We have
remarked in Examples 2.4 and 5.3 that any � ∈ Fp2 such that �2 = (�2+1)=2�
is again a root of the polynomial H(t4). Of course, we can obtain more roots
of H(t4) by iterating this procedure. A natural question is to ask if in this
way one can obtain all roots of H(t4). For convenience, we de�ne f(X;Y ) :=
2XY 2 − (X2 + 1) and � := �(f;Fp2) for the remainder of this section.

Reformulated in graph theoretical means, this question is equivalent to:
What vertices of the graph � can we reach with paths in � starting at the
vertex �?

We know (see Example 5.3 and the remarks preceding Example 5.2) that
the graph � has a component � with vertex set {� ∈ Fp2 ; H(�4) = 0} and
that any vertex of � has in- and out-degree 2. Hence by Lemma 5.1 , any
indecomposable component of � gives a solution of the functional equation for
t2 and (t2+1)=2t. However, by Proposition 5.4, there exists essentially only one
solution, which implies that � is indecomposable. In general one can show that
in an indecomposable graph with all in- and out-degrees equal to a number m,
one can reach any vertex with paths starting in a certain �xed vertex. Hence
the answer to the above question is aÆrmative.
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