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ABSTRACT. Let M be a compact complex manifold equipped with
n = dim(M) meromorphic vector fields that are independant at a
generic point. The main theorem is the following. If M is not
bimeromorphic to an algebraic manifold, then any codimension
one complex foliation F with a codimension 2 singular set satisfies
the following alternative: either F is the meromorphic pull-back of
an algebraic foliation on a lower dimensional algebraic manifold, or
F is transversely projective outside a compact hypersurface. The
ingredients are essentially the Algebraic Reduction Theorem for
M, Lie’s classification of geometries on the line and algebraic ma-
nipulations with the (meromorphic) Godbillon-Vey sequences asso-
ciated to the foliation. We also derive from our study (even in the
case M algebraic) several sufficient conditions on the Godbillon-
Vey sequence insuring such alternative. For instance, if there exists
a finite Godbillon-Vey sequence or if the Godbillon-Vey invariant
is zero, then either F is the pull-back of a foliation on a surface, or
F is transversely projective. We illustrate our results with many
examples.
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1. INTRODUCTION

Let M be a compact connected complex manifold of dimension n >
2. A (codimension 1 singular holomorphic) foliation F on M will be
given by a covering of M by open subsets (U;);e; and a collection
of integrable holomorphic 1-forms w; on Uj, w; A dw; = 0, having
codimension > 2 zero-set such that, on each non empty intersection
U; N Uy, we have

(*) Wi = Gjk * Wk, with gjk € O*<U] N Uk)

Let Sing(w;) = {p € U; ; w;(p) = 0}. Condition (*) implies that
Sing(F) := U,e,sSing(w;) is a codimension > 2 analytic subset of M. If
w is an integrable meromorphic 1-form on M, w A dw = 0, then we can
associate to w a foliation F,, as above. Indeed, at the neighborhood of
any point p € M, one can write w = f-& with f meromorphic, sharing
the same divisor with w; therefore, @ is holomorphic with codimension
> 2 zero-set and defines F, on the neighborhood of p.
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The manifold M is called pseudo-parallelizable, if there exist n mero-
morphic vector fields Xi,...,X,, on M that are independent at a
generic point. On such a manifold, differential calculus can be done
likely as on an algebraic manifold and a foliation F is always defined
by a global meromorphic 1-form w (satisfying w A dw = 0). Indeed,
given a meromorphic vector field on M which is not identically tan-
gent to F, then w is the unique meromorphic 1-form defining F and
satisfying w(X) = 1. We will denote F = F,.

The notion of pseudo-parallelizable manifolds is invariant by bimero-
morphic transformations; more generally, if f : M --» M is meromor-
phic and generically étale, and if M is pseudo-parallelizable, then M
is also. Besides algebraic manifolds, one can find complex tori, Hopf
manifolds and homogeneous spaces among examples of such manifolds.
Of course, even among surfaces, there are manifolds which are not
pseudo-parallelizable.

We say that F,, is transversely projective if there exist meromorphic
1-forms wy = w, wy; and we on M satisfying

du)() = Wy N\ w1
(1) dwl = Wy N W9
dwg = w1 A Wa

This means that, outside the polar and singular set of the w;’s, the
foliation F is (regular and) transversely projective in the classical sense
(see [7] or section and this projective structure has “reasonable
singularities”. When wy = 0 (i.e. dw; = 0) or w; = 0 (i.e. dwy = 0),
we respectively say that F,, is actually transversely affine or euclidian.
Now, denote by a(M) the algebraic dimension of M, that is the tran-
scendence degree over C of the field M (M) of meromorphic functions
on M. The algebraic Reduction Theorem (see [22] or section [2.5)) pro-
vides a meromorphic map f : M --» N onto a projective manifold N
of dimension a(M) such that M (M) identifies with f*M(N). In fact,
the fibers of f are the maximal subvarieties on which every meromor-
phic function on M is constant. Of course, the map f is unique up to
birational modifications of N. We will denote by red : M --+ red(M)
this map. There exist pseudo-parallelizable manifolds M of arbitrary
dimension n > 2 with arbitrary algebraic dimension 0 < a(M) < n.
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When M is not algebraic (up to a bimeromorphism), i.e. a(M) < n,
our main result is the following “Foliated Reduction Theorem”.

Theorem 1.1. Let F be a complex codimension one singular foliation
on a pseudo-parallelizable compact complex manifold M. Then

e cither F is the pull-back by the reduction map M --» red(M)
of an algebraic codimension one foliation F defined on red(M),
e or F is transversely projective.

More precisely, we are in the former case when the fibers of the
map M --» red(M) are contained in the leaves of F. In other words,
Theorem says that only algebraic foliations may have complicated
transverse dynamics. In the case a(M) = 0 (ie. M(M) = C) or
a(M) = 1, we have no alternative (if F is the pull-back of a foliation
by points on a curve, then it is automatically transversely euclidean)

Corollary 1.2. Let F and M be as above and assume a(M) =0 or 1.
Then F s transversely projective.

When M is simply connected and a(M) = 0, it follows that F nec-
essarily admits an invariant hypersurface, that is the singular set of
the projective structure. Indeed, if the projective structure were not
singular, the development map of the structure would provide a non
constant meromorphic function on M, thus contradicting a(M) = 0.
In the case M is a surface, we get the more precise statement

Corollary 1.3. Let F be a singular foliation on a pseudo-parallelizable
compact surface S. If a(M) < dim(M), then F is transversely affine.

In section [3.4] we also give a precised statement in the case of three-
folds. One of the ingredients for the proof of Theorem [1.1]is the follow-
ing algebraic version of Lie’s Lemma for which we did not found any
reference.

Lemma 1.4. Let L be a finite dimensional Lie algebra over a field
K of characteristic 0. If L has a codimension one Lie subalgebra L',
then there exists a non trivial morphism ¢ : L — sl(2,K) such that the
kernel of ¢ is contained in L'.

We thank D. Arnal who gave us an alternate algebraic proof of this
result in case K = C.
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The other ingredient for the proof of Theorem [I.1]is the global differ-
ential calculus. We call a Godbillon-Vey sequence for F any sequence

of meromorphic 1-forms (wg, w1, ..., wg,...) on M such that wy defines
F and the formal 1-form
k=0

is integrable: Q/\dQA: 0. In this sense, 2 defines a formal development
of F on the space (C,0) x M. This condition is equivalent to

k
l
(3) dwy, = wo A Wi41 + ; (k) Wy A Wig1-7 -
One can see that wy; is well defined by wp, w1, . .., wg up to the addition
by a meromorphic factor of wy. Conversally, wo, w1, ..., wk, wrr1+ f-wo

is the begining of another Godbillon-Vey sequence for any f € M(M).

When M is pseudo-parallelizable, then any foliation F admits a
Godbillon-Vey sequence. Indeed, let X be a meromorphic vector field
which is not identically tangent to F and w be the meromorphic 1-form
satisfying w(X) = 1 and defining the foliation F. Then we define a
Godbillon-Vey sequence for F by setting

(4) Wy = Lgl;)w,

where Lgl;)w denotes the k™ Lie derivative along X of the form w (we
have df) = Q A %). In fact, Theorem is still true when we can
replace the assumption “pseudo-parallelizable” by the existence of a
non zero meromorphic vector field X which is tangent to the fibers of
the algebraic reduction.

Theorem 1.5. Let F be a foliation on a pseudo-parallelizable compact
complex manifold M. Assume that the meromorphic 3-form woAwy Aws
1s zero for some Godbillon-Vey sequence associated to F. Then

e cither F 1is the pull-back by a meromorphic map ® : M --» S
of a foliation F on an algebraic surface S,
e or F 1is transversely affine.

This result has some interest even in the case M is algebraic, al-
though we do not know how to interpret geometrically the assumption.
It is a well known and easy computation (see [7]) to show that the
meromorphic 3-form wy A wy A ws, considered up to the addition by an
exact meromorphic 3-form, is closed and does not depend on the choice
of the Godbillon-Vey sequence. We do not know if the conclusion of
Theorem still holds when wg A wy A wy is only exact.
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We now define the length [(F) of a foliation F as follows. If we
write a Godbillon-Vey sequence as 2 = {wp,wy, ...}, i.e. the 1-forms
w; satisfy , then the length of ) is the smallest positive integer N
such that w; = 0 for all ¢ > N. The length of F is therefore defined by

(F) = igf{length(Q)} € NU{o0},

where () runs over all possible Godbillon-Vey sequences for F.

A foliation has length 0, 1 or 2 if, and only if, it is respectively
transversely euclidian, affine or projective in the sense above. Also,
consider an ordinary differential equation over a curve C'

N
(5) dz + Z wi2" |
k=0

(where wy, are meromorphic 1-forms defined on C'). Then, the folia-
tion defined on C' x CP(1) by equation has length < k (consider
the Godbillon-Vey algorithm given by equation {} with X = a%). Al-
though it is expected that k is the actual length of the generic equation
, this is clear only for the Riccati equations £ < 2, for monodromy
reasons. The study of foliations having finite length has been initiated
by Camacho and Scardua in [3] when the ambient space is CP(2). We
generalize their main result in the

Theorem 1.6. Let F be a foliation on a pseudo-parallelizable compact
complex manifold M. If 3 < I(F) < oo, then F is the pull-back by a
meromorphic map ® : M --+» C' x CP(1) of the foliation F defined by
an ordinary differential equation over a curve C' like above.

There are examples of foliations on CP(2) having length 0, 1 or 2 that
are not pull-back of a Riccati equation (see [12] and [21]). Therefore,
condition 3 < [(F) is necessary. Recall that the degree of a foliation F
on CP(n) is the number d of tangencies with a generic projective line.
At least, we prove the

Theorem 1.7. Every foliation of degree 2 on the complex projective
space CP(n) has length at most 3. This bound is sharp.

In particular, Jouanolou examples (see [I1]) have actually length 3.
In the same spirit, we also derive from [I3] the

Theorem 1.8. If F is a germ of foliation at the origin of C" defined
by an holomorphic 1-form with a non zero linear part, then [(F) < 3.
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From Theorems [I.6] and we immediately retrieve the following
result previously obtained by two of us in [5]:

Corollary 1.9. A degree 2 foliation on CP(n) is either transversely
projective, or the pull-back of a foliation on CP(2) by a rational map.

We do not understand the strength of the assumption [(F) < oo of
Theorem [1.6] In fact, we still do not know any example of a foliation
having length > 4. It is not excluded that the generic foliation of degree
3 on CP(2) has infinite length.

The degree of a foliation F on CP(n) is also the smallest integer
d such that F is defined in the affine chart C" by a degree d + 1
polynomial 1-form w whose homogeneous component of degree d + 1
is radial. Consider the projective space CP(N) of those 1-forms: N =

(d+n+1) (;!4(':__11))!! — 1. Therefore, the set F(n,d) of degree d foliations
on CP(n) identifies with the algebraic subset defined by integrability
condition w A dw = 0 minus the set of those 1-forms for which wyy; =0
and the degree d homogeneous component wy is radial. For n > 3, this
algebraic subset is not trivial (not the whole of CP(N)) and, up to
now, all known irreducible components are essentially of two types (see
[5]). Either the generic element is the pull-back of a generic foliation
of degree d; on CP(2) by a generic rational map CP(n) --» CP(2) of
degree ds, or the generic element is defined by a closed meromorphic
1-form. Observe that, in the pull-back case, the generic element is not
transversely projective and has length > 3. We construct in Section
a component of F(3,4) whose generic element is transversely projective
but not transversely affine (in particular, not defined by a closed 1-
form). We do not know if every foliation of this component is a pull-
back (by a non-generic rational map) or not of a foliation on CP(2).

In section 4.4] we give an example of a transversely projective foli-
ation ‘H in CP(3) (with explicit equations) which is not the pull-back
of a foliation in CP(2) by a rational map. In fact, H is the suspension
(see section of one of the “Hilbert modular foliations” on CP(2)
studied in [15].

Finally, since our arguments are mainly of algebraic nature, it is nat-
ural to ask what remains from our work in the positive characteristic.
In this direction, we prove in the last section the

Theorem 1.10. Let M be a smooth projective variety defined over a
field K of characteristic p > 0 and w be a rational 1-form. If w is
integrable, then there exist a rational function F € K(M) such that
Fw is closed. In this sense, the associated foliation has length 1.
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2. BACKGROUND AND FIRST STEPS

2.1. Godbillon-Vey sequences. We introduce Godbillon-Vey sequences
for a codimension one foliation F and describe basic properties. Let w
be a differential 1-form defining F and X be a vector field satisfying
w(X) = 1. Then, the integrability condition of w is equivalent to

(6) wAdw=0 <& dw=wA Lxw.
Indeed, from Lxw = d(w(X)) + dw(X,.) = dw(X,.), we derive
O=wAdw(X,.,.)=wX) dv—wA (dw(X,.)) =dw —wA Lxw

(the converse is obvious). Applying this identity to the formal 1-form
2 k
z z
Q:dz+w0+zw1+§w2+~-+Ewk+---

together with the vector field X = 0,, we derive

0 Zk’ 0 Zk 0 Zk:—l
QNdQ2=0 < Zydwk: Hwk A\ Z(kj—l)'wk .
k=0 k=0 k=1

We therefore obtain the full integrability condition for Q:

dwo = Wo A
dw1 = Wo N W2
dwy = woAws+ wy Awy

dwg wWo N wy + 2&)1 N W3

dwi, = wo A\ wpsr + 2511 (zi)wl N Wiy1-1

For instance, if we start with w integrable and X satisfying w(X) =1,

then the iterated Lie derivatives wy, = Lg];)w define a Godbillon-Vey
sequence for F,,. Indeed, from the formula (Lxw)(X) = dw(X, X) =0,
we have

wo(X)=1 and wi(X) =0 for all &£ > 0;

therefore, Q(X) = 1 and integrability condition comes from

o k o0 k
QA LyQ = <dz +) %wk> A ( %wk+1> = dQ.
k=0 k=0
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From a given Godbillon-Vey sequence, we derive many other ones.
For instance, given any non zero meromorphic function f € M(M),
after applying the formal change of variable z = f -t to integrable
1-form

22 2"
Q:dz+w0+zw1+3w2+---+ywk+--- ;
we derive the new integrable 1-form

Q w d 2 3 k
7 dt+70+t(w1+7f)—i—%(fw2)+%(f2w3)+...+%(f’f1wk)_|_...

In other words, we obtain a new Godbillon-Vey sequence (@) by setting

( ~ 1
wo 7 wo
wp = wi + %
Wy = frw
(7) :
~ _ otk
Weg+1 = f *WE+1

\

By the same way, we can apply to €2 the formal change of variable
z=1t+f-t""1 k=1,2,..., and successively derive new Godbillon-Vey
sequences

Wy = wo Wy = wp
W = w1+ fwoy W = w
(:)2 = Wo -+ fw1 — df (:)2 = W2 + wa etc. ..

Conversally, we easily see from integrability condition that wiq
is well defined by wq, w1, ...,wr up to the addition by a meromorphic
factor of wy. In fact, every Godbillon-Vey sequence can be deduced
from a given one after applying to the 1-form €2 a formal transformation
belonging to the following group

G = {(p,Z) = (p,ka(p)-Z’“> , Jr € M(M), fi %0}-
k=1

In particular, the so-called Godbillon-Vey invariant wy A w; A we =
—w1 A dwy is closed and is well defined up to the addition by an exact
meromorphic 3-form of the form

ﬁ/\wo/\u@:ﬂ/\dwl or df ANwyAwi=df N dwy

f f

for some meromorphic function f € M(M).
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Remark 2.1. A natural Godbillon-Vey sequence for the formal folia-
tion Fq defined by €2 is given by
Sk

(= k)

O, =Ly = w,, k>0

0o
=k

or equivalently by the formal integrable 1-form

(t + 2)?

d(t+2z) +wo + (t+ 2)wy + 5

w2+

t2
= dt+ Qo+ 0+ S+

In fact, this remark also applies to the case where the w; are mero-
morphic 1-forms on a complex curve C. The so-called “ordinary differ-
ential equation” defined by

Nk
Q:dz%—zgwk,
k=1

defines a foliation F on C' x CP(1) (integrability conditions are
trivial in dimension 1). This foliation admits a natural Godbillon-Vey

sequence of length N given by ng)Q (or by replacing z by z + t) as
above.

Remark 2.2. When wo Awy A -+ Aw,—1 # 0 (where n = dim(M)
is the dimension of the ambient space), it follows from relations
that all subfamilies wg,ws,...,w;_1 are Frobenius integrable for i =
1,2,...,n— 1, thus defining a codimension ¢ foliation F;:

wo/\wl/\-~-/\wi,1/\dwj,1:() forallj:1,2,...,i.
Therefore, we obtain an “integrable flag”:

f:f():)le"'Dfn_1

the tangents spaces T,,F; define is a flag at a generic point p € M).
p
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We end-up the section with preliminary lemmas about finite Godbillon-
Vey sequences.

Lemma 2.3. Let wy,wy,...,wny be a Godbillon-Vey sequence of finite
length N. Then wi ANw; =0 for all k,1 > 2 and integrability conditions
become

dwr, = wo Awi1 + (E— Dwy Awy, k=0,1,...,N.

In particular, the condition wyy; = 0 in a Godbillon-Vey sequence
is not sufficient to conclude that the truncated sequence

Wo, W1,y ... ,(.UN,0,0, c.
provides a finite Godbillon-Vey sequence, except when N = 0,1 or 2.

Proof. We assume wy # 0 with N > 2, otherwise we have done. The
integrability conditions (3))

da)o = Wy A w1
dw1 = Wy N\ Wy
N (1
dony = > (N)wl NWN41-1
N !
0= dwuny = 2122 (NH)WZ N WN+2-1
_ _ 1 (N-1
0= dwn—o = R (2N—2)WN*1 N WN

Examining the line of index k = 2N —2, we deduce that wy_1 Awy = 0.
Futhermore, by descendent induction, we also deduce from the line of
index k + N — 1 that wy A wy = 0 for every k > 2. Therefore, the
remining N first lines of integrability conditions are as in the statement.

O

Corollary 2.4. Let wy, wy and we be differential 1-forms satisfying
conditions (@ for k =0,1,2 with dw; # 0. Then, there ezists at most
one finite Godbillon-Vey sequence wy, . ..,wy completing this triple.

Proof. The assumption dw; = wy A we # 0 implies in particular that

wy # 0. If wo,wsq,...,wn is a finite sequence, then we recursively see
from integrability conditions of Lemma that the line of index k
determines wy, £ = 3,..., N, up to a meromorphic factor of wy. But

since wy, is tangent to wy but wy is not, we deduce that wy is actually
completely determined by the line of index k. U
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2.2. Transversely projective foliations: the classical case [7,20].
A regular codimension one foliation F on a manifold M is transversely
projective if there exists an atlas of submersions f; : U; — CP(1) on
M satisfying the cocycle condition:

gy = Gali by (“ij bij) e PGL(2,C).

cifi+diy’ \ciy di
on any intersection U; N U;. Any two such atlases (f; : U; — CP(1));
and (gr : Vx — CP(1)); define the same projective structure if the
union of them is again a projective structure, i.e. satisfying the cocycle
condition f; = %—ﬂz: on U; NVj,.

Starting from one of the local submersions f : U — CP(1) above, one
can step-by-step modify the other charts so that they glue with f and
define an analytic continuation for f. Of course, doing this along an
element v € (M) of the fundamental group, we obtain monodromy
f(v-p) = A, f(p) for some A, € PGL(2,C). By this way, we define the

monodromy representation of the structure, that is a homomorphism
p:m(M) — PGL(2,C);y — A,

as well as the developing map, that is the full analytic continuation of
f on the universal covering M of M

f: M — CP(1).

By construction, f is a global submersion on M whose determinations
fi : Uy — CP(1) on simply connected subsets U; C M define unam-
biguously the foliation F and the projective structure. In fact, the map
f is p-equivariant

(8) fOy-p)=p(v) - f(p), Vv em(M).
Finally, we obtain

Proposition 2.5. A regular foliation F on M is transversely projective
iof, and only if, there exist

e a representation p : m (M) — PGL(2,C) and

e a submersion f: M — CP(1) defining F and satisfying (@)
Any other pair (¢, f') will define the same structure if, and only if, we
have p'(y) = A-p(y) - A7 and f' = A- f. for some A € PGL(2,C).
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Remark 2.6. If M is simply connected, then any transversely pro-
jective foliation F on M actually admits a global meromorphic first
integral f: M — CP(1).

Example 2.7 (Suspension of a representation). Given a representation
p:m(M) — PGL(2,C) of the fundamental group of a manifold M
into the projective group, we derive the following representation into
the group of diffeomorphisms of the product M x CP(1)

prm(M) — Aut(M x CP(1)) ; (p,2) = (v p,p(7) - 2)

(M is the universal covering of M and p — ~ - p, the Galois action of
v € m(M)). The image G of this representation acts freely, properly
and discontinuously on the product M x CP(1) since its restriction
to the first factor does. Moreover, G preserves the horizontal foliation
H defined by dz as well as the vertical CP(1)-fibration defined by the
projection  : M x CP(1) — M onto the first factor. In fact, we have
7(p(7) - p) = p(v) - 7(p) for all p € M and v € 7;(M). Therefore, the
quotient N := M x CP(1)/G is a manifold equipped with a locally
trivial CP(1)-fibration given by the projection 7 : N — M as well as
a codimension one foliation H transversal to m. In fact, the foliation
‘H is transversely projective with monodromy representation p o, :
m(N) — PGL(2,C) (7 induces an isomorphism 7, : w1 (N) — 7 (M))
and developing map M x CP(1) — CP(1); (p,z) — z (M x CP(1) is
the universal covering of N).

Conversely, a codimension one foliation H transversal to a CP(1)-
fibration # : N — M is actually the suspension of a representation
p: m(M) — PGL(2,C). In particular, H is transversely projective
and uniquely defined by its monodromy p.

Now, given a transversely projective foliation F on M, we construct
the suspension of F as follows. We first construct the suspension of
the monodromy representation p : m (M) — PGL(2,C) of F as above
and consider the graph

['={(p,2) € M xCP(1); z = f(p)}

of the developing map f : M — CP(1). Since f is p-equivariant, its
graph T is invariant under the group G and defines a smooth cross-
section f : M — N to the CP(1)-fibration 7 : N — M. By con-
struction, its image I' = f(M) is also transversal to the “horizontal
foliation” 'H and the transversely projective foliation induced by H on
I actually coincides (via f or 7) with the initial foliation F on M.
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Proposition 2.8. A regular foliation F on M is transversely projective
if, and only if, there exist

e a locally trivial CP(1)-fibration m : N — M over M,

e a codimension one foliation H on N transversal to m and

e a section f: M — N transversal to H such that the foliation
induced by H on f(M) coincides via f with F.

Any other triple (n' : N' — M, H', f') will define the same structure
if, and only if, there exists a diffeomorphism ® : N' — N such that
7 =mwm0®, f=dof and H = P*H.

Over any sufficiently small open subset U C M, the CP(1)-fibration
is trivial and one can choose trivializing coordinates (p, z) € U x CP(1)
such that f : U — 7~ 1(U) coincides with the zero-section {z = 0}. The
foliation ‘H is defined by a unique differential 1-form of the type

Q =dz + wy + 2wy + 22w,

where wg, w; and ws are holomorphic 1-forms defined on U. The inte-
grability condition 2 A d2 = 0 reads

du)() = wo N\ wq
(9) dwl = 2W0 N\ Wo
dwg == w1 VAN (o)

Now, any change of trivializing coordinates preserving the zero-section
takes the form (p,2) = (p, fo - 2/(1 + f1 - z)) where fy : U — C* and
f1: U — C are holomorphic. The foliation H is therefore defined by

a2
Q= MQ:d,€+@0+2&1+22®2
Jo
where the new triple (&g, &1, @2) is given by
wo = fowo
(10) w1 = wi—2fiwg — df—ﬁ)
Wy = 7 (w2 — frwn + fiwo +dfr)

Proposition 2.9. A regular foliation F on M is transversely projective
if, and only if, there exists an atlas of charts U; equipped with 1-forms
(wh, wi, wh) satisfying (9) and related to each other by (10) on U; NU;.
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Example 2.10. Consider

SL(2,(C)_{(“; Z) czv—yu =1}

The meromorphic function defined by
T ou x
:SL(2,C) — CP(1) ; — —
rissc)—ery (3 1) -2
is a global submersion defining a transversely projective foliation F on
SL(2,C). The leaves are the right cosets for the “affine” subgroup

A:{(g Zj) L4 40}

Indeed, we have for any z € C

(A ) e

and for any w=1/2 € C

(1}} ?)'A:{<a ’ )5a7’£0}={f=1/w}.

aw bw—l—%

In fact, if we consider the projective action of a matrix <:§ Z) on

(z : 1) € CP(1), then f is nothing but the image of the direction
(1:0) (i.e. 2z = 00) by the matrix and {f = oo} coincides with the
affine subgroup A fixing z = oco.

A global holomorphic triple (wg, w1, ws) for F can be constructed as
follows. Consider the Maurer-Cartan form

M= [T U - (% ) vdr — udy vdu — udv
S \y v y v) \zdy—ydr zdv—ydu)’
The matrix M is a differential 1-form on SL(2,C) taking values in the

Lie algebra sl(2,C) (trace(M) = d(zv — yu) = 0) and its coefficients
form a basis for the left-invariant 1-forms on SL(2,C). If we set

then Maurer-Cartan formula dM + M A M = 0 is equivalent to inte-
grability conditions (9] for the triple (wo,ws,ws). In fact, the “mero-
morphic triple”

((Iio, (111, UNJQ) = (df, O, O)
is derived by setting f, = —y% and f; = —% in formula .
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A left-invariant 1-form w = awy+Lw+yws, o, 3,7 € C, is integrable,
wAdw = 0, if, and only if, ay = (%2 The right translations act
transitively on the set of integrable left-invariant 1-forms and thus on
the corresponding foliations. For instance, if we denote by T, the right
translation

risuec) - siec) (5 u) - (3 05 5). sec

then we have TFwy = 22wy + 2w; + wy and the corresponding foliation
F. is actually defined by the global submersion

a b az +b
foT,:SL(2,C)— CP(1); (c d) = rd

The leaf {f o T, = w} of F, is the set of matrices sending the direction
(z:1) onto (w: 1).

Remark 2.11. Let (wp,w;,ws) be a triple of holomorphic 1-forms on
a manifold M satisfying integrability condition @ The differential
equation

dz + wy + 2wy + 2%ws =0
defined on the trivial projective bundle M x CP(1) can be lifted as

an integrable differential sl(2,C)-system defined on the rank 2 vector
bundle M x C? by

dZQ = w21 + ﬂZQ

{dzl = _w_2121 — W22y
2

which can be shortly written as

v
dZ = A-Z where A:( 2 w_‘?) and Z:(zl)

) 2 %)
The matrix A may be thought as a differential 1-form on M taking
values in the Lie algebra sl(2, C) satisfying integrability condition dA+
ANA = 0. Then, Darboux Theorem (see [7], I1I, 2.8, iv, p.230) asserts

that there exists, on any simply connected open subset U C M, an
holomorphic map

®:U — SL(2,C) such that A= d*M
where M is the Maurer-Cartan 1-form on SL(2, C) (see example [2.10)).

Moreover, the map ® is unique up to composition by a translation of

SL(2,C).
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Example 2.12. Consider the quotient M := I'NSL(2,C) by a co-
compact lattice I' C SL(2,C). The left-invariant 1-forms (wp,ws,ws)
defined in example [2.10| are well-defined on M and M is parallelizable.
Following [I0], there is no non constant meromorphic function on M
(i.e. the algebraic dimension of M is a(M) = 0). Therefore, any
foliation F on M is defined by a global meromorphic 1-form

w = awp + Pwy + Yws
and the coefficients are actually constants «a, 3, € C.

Corollary 2.13. Any foliation F on a quotient M := I'NSL(2,C) by
a co-compact lattice 1" is actually defined by a left-invariant 1-form. In
particular, F s reqular, transversely projective and minimal: any leaf
of F is dense in M. The set of foliations on M is a rational curve.

A foliation F is transversely euclidean if there exists an atlas of
submersions f; : U; — C on M defining F such that on any U; N U; we
have

fi=fi+ay, ay;eC.

Of course, we can glue the df; and produce a global closed holomorphic
1-form wy inducing F. In particular [(F) = 0. By the same way, F is
transversely linear when it can be defined by submersions f; : U; — C*
satisfying the cocycle condition:

fi=Xij - fi, X €C.

Again, we can glue the % and produce a global closed holomorphic

1-form inducing F and we have [(F) = 0. Via the exponential map,
this notion is equivalent to the previous one (in the complex setting).

Finally, a foliation F is transversely affine when it can be defined by
submersions f; : U; — C satisfying the cocycle condition:

f,‘ = aijfj + bm, aij c (C*, bij < C
Equivalently, an affine structure is locally defined by a pair of holomor-
phic 1-forms (wp,w;) satisfying

du)() = wo/\wl
dw1 = 0

w
up to modification -0
w1
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2.3. Transversely projective foliations: the singular case [1§].
A singular foliation F on a complex manifold M will be said trans-
versely projective if it admits a Godbillon-Vey sequence of length 2,
i.e. if there exist meromorphic 1-forms wy, w; and wy on M satisfying
F =F,, and

d(.d(] = wo N\ wy
dw1 = 2&10 N\ Wo
du)g = w1 N\ wo

The foliation F is actually regular and transversely projective in the
classical sense of on the Zariski open subset U = M \ ((Q) U Zp)
complementary to the set (€2), of poles for wy, w; and wy and the
set Zy of zeroes for wy that are not in (). In fact, (wo,ws,ws) is a
regular projective triple on U. Another triple (&g, @1, @2) defines the
same projective structure (on a Zariski open subset) if it is obtained
from the previous one by a combination of

wy = %'wo Qo = wo
(11) w0 = wi+ % and W, = w1+ g-wp
Wy = f-uwo Wy = wotg-wi+ g’ -wy—dg

where f, g denote meromorphic functions on M.

We note that any pair (wo,w;) satisfying dwy = wp A wy can be
completed into a triple subjacent to the projective struture in an unique
way. It follows that, in the pseudo-parallelizable case, a projective
transverse structure is always defined by a global meromorphic triple.

We say that F is transversely affine if it admits a Godbillon-Vey
sequence of length 1, i.e. meromorphic 1-forms wy and w; satisfying

dwg = wp Awy
dw1 =0

Another pair (&g, ;) will define the same affine structure if we have

Qo = %.wo
w, = (Ul‘i‘%

for a meromorphic function f. Finally, we say that F is transversely
euclidean (resp. transversely trivial) if it is defined by a closed mero-
morphic 1-form wy (resp. by an exact 1-form wy = df, f € M(M)).
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The foliation H defined on M x CP(1) by the integrable 1-form
Q =dz + wy + 2wy + 22w,

coincides over U with the suspension of the projective structure, and
will be still called suspension of F. In fact, the vertical hypersurface
(Q)o X CP(1) is invariant by the foliation H. Outside of this verti-
cal invariant set, the foliation H is transversal to the vertical CP(1)-
fibration. Along Z,, the foliation H is tangent to the zero-section
M x {z = 0} and the projective structure ramifies: it is locally defined
by an holomorphic map f; : U; — CP(1) up to composition by an ele-
ment of PGL(2,C). This ramification set Z; is invariant for F (union
of leaves and singular points). As in the regular case, one can define
the monodromy representation

p:m(M\ (Q)s) — PGL(2,C)

(ramification points Z; have no monodromy).

In contrast with the regular case, the suspension H is well-defined
only up to a bimeromorphic transformation preserving the generic ver-
tical fibres {p} x CP(1) and the zero-section M x {z = 0}

®: M xCP(1) --» M xCP(1) ; (p2) — (p, f(p)z/(1 — g(p)2)),

where f,g € M(M) are meromorphic. Note that some irreducible
components of ()., may disappear after such a transformation ®. For
instance, one can show that any irreducible component of (£2)., which is
not F-invariant may be deleted by a change of triple. Only the remain-
ing persistent components can generate non trivial local monodromy
for the representation p. This leads to the following

Proposition 2.14. Let F be a (singular) transversely projective (resp.
affine) foliation on a simply connected manifold M. If (Q)s has no
persistent component, then F admits a meromorphic (resp. holomor-
phic) first integral.

Proof. The assumption just means that there exists a covering U; of M
by Zariski open subset on which the projective structure can be defined
by an holomorphic triple. Therefore, like in Remark the developing
map provides a well-defined meromorphic first integral f : M — CP(1)
(possibly with ramifications). O

Corollary 2.15. Let F be a transversely projective (resp. affine) foli-
ation on a simply connected manifold M. Then

e cither F has a meromorphic (resp. holomorphic) first integral,
e or F admits an invariant hypersurface.



20 CERVEAU, LINS-NETO, LORAY, PEREIRA AND TOUZET

Remark 2.16. A transversely projective foliation F on M with sus-
pension ‘H on M x CP(1) is actually transversely affine if, and only if,
there is a section g : M — M x CP(1) which is invariant by H. In-
deed, after change of coordinate Z = z/(1 — 2) on M x CP(1), we have
sent the invariant hypersurface g(M) onto {z = oo} which means that
wgo = 0. In the regular case, this is still true after replacing M x CP(1)
by the locally trivial CP(1)-bundle 7 : N — M (see Proposition
and if we ask moreover that the section g : M — N has no intersection
with the section f : M — N providing the projective structure.

Example 2.17 (The Riccati equation over a curve). Given meromor-
phic 1-forms «, 3, on a curve C, the Riccati differential equation

dz+a+pz+722=0

defines a transversely projective foliation H on C' x CP(1) with mero-
morphic projective triple

wo = dz+a+ Bz+ 722
w = B+ 2vz
Wy = Y

The polar set (£2) is the union of the vertical lines over the poles of
a, 3,7 and the horizontal line Lo, = {z = oco}. In the chart w = 1/z,
the alternate triple

W = —dw+aw®+ Pw+7y
W = -0 = 2aw
C(N)Q = —

(obtained by setting successively f = 1/w? and g = —2/w in )
shows that L., is not a persistent pole for the projective structure.
When v = 0, the foliation H is transversely affine with poles like above,
but additionally L., is a persistent zero for the affine structure (the
transverse affine coordinate has a pole along L).

The Riccati foliation above can be thought as the suspension of a
singular projective structure on the curve C' (i.e. a dimension 0 trans-
versely projective foliation on C').
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In the spirit of Theorem one can find in [I§] the following

Proposition 2.18 (Scardua). Let F be a transversely projective folia-
tion defined by a global meromorphic triple (wo,wr,ws) on M. Assume
that the foliation G defined by we admits a meromorphic first inte-
gral f € M(M). Then, F is the pull-back by a meromorphic map
®: M --»C x CP(1) of the foliation H defined by a Riccati equation
on a curve C.

Proof. One can assume that wy, = df. Integrability conditions yield

0=dwy, = w;Aws Wy, = gdf
dwi = 2woNAwy = wy = %dg + hdf
dwy = woAwp 0 = dh—g*)Ndf

for meromorphic functions g, h on M. It follows from Stein Factoriza-
tion Theorem that there exists some holomophic map ¢ : M +— C onto
a curve C' through which we can factorize h — g% = h(¢) and f = f(¢).
Therefore )
509 +{n(¢) + g°}odf

and F is the pull-back via the map ® = (¢, g) of the foliation defined

by the Riccati equation dz + hdf + 22df. O

Wy —

Lemma 2.19. If a foliation F admits 2 distinct projective (resp. affine,
euclidean) structures, then it is actually transversely affine (resp. eu-
clidean, trivial).

Proof. Assume we have 2 projective triples (wg,ws,ws) and (@g, @1, @s)
that are not related by a composition of the admissible changes above:
after the admissible change setting @y = wy and @ = w;, we have
Wy # wo. Therefore, by comparing the second line of integrability
conditions for both triples, we see that Wy, = ws+ fwy for a meromorphic
function f € M(M). Then, by comparing the third condition, we
obtain

d
d(fwo) =wi A (fwy) and thus wo Awy =wp A %
which proves that the pair (&g, 1) := (wo, %) is an affine structure

for F. Notice that \‘;—37 is closed: F becomes transversely euclidean

on a 2-fold ramified covering of M. By the same way, if (wp,w;) and
(@o,w1) are 2 distinct affine structures, then we may assume wy = wy
and @ = wy + fwy with dw; = d(fwy) = 0 and conclude that F is
actually defined by the closed meromorphic 1-form fwy. Finally, if
wo and fwy are 2 closed meromorphic 1-forms defining F, then f is a
meromorphic first integral for F. U
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The present singular notion of transversely projective foliation is
clearly stable under bimeromorphic transformations. Moreover, the
main result of [4] permits to derive

Theorem 2.20. Let ¢ : M --> M be a dominant meromorphic map
between pseudo-parallelizable compact manifolds and let F be a foliation
on M. Then, F = ¢*F is transversely projective (resp. affine) if, and
only if, F is so.

The analogous result for transversely euclidean foliations is false:
one can find in [I12] an example of a transversely affine foliation which
becomes transversely euclidean on a finite covering (a linear foliation
on a torus). The assumption dominant is necessary since there are
examples of non transversely projective foliations which become trans-
versely affine in restriction to certain non tangent hypersurface (see

section [3.5)).

Proof. Since a Godbillon-Vey sequence can be pulled-back by any non
constant meromorphic map, we just have to prove that projective (resp.
affine) structure can be pushed-down under the assumptions above. In
the case ¢ is a finite ramified covering, then the statement is equivalent
to Theorem 1.6 (resp. 1.4) in [4].

In the case ¢ is holomorphic with connected generic fibre, then choose
meromorphic 1-forms wy defining F and w; satisfying dwy = wp A wq
on M and consider their pull-back &y and @; on M. Then, there is
a unique meromorphic 1-form @y completing the previous ones into a
projective triple compatible with the structure of F. On the other
hand, reasonning as in Lemma at the neighborhood U = ¢~ (U)
of a generic fibre ¢~1(p), we see that the foliation F is defined by
a submersion f : U — CP(1) defining the projective structure and
can be pushed-down into a submersion f : U +— CP(1). This latter
one defines a projective structure transverse to F on U. There exists
a unique meromorphic 1-form wy on U completing wy and w; into a
compatible projective triple. By construction, ws must coincide with
¢*w, on U. Therefore, @, is tangent to the fibration given by ¢ on U,
and thus everywhere on M. By connexity of the fibres, @, is actually
the pull-back of a global meromorphic 1-form wy on M (which extends
the one previously defined on U).

Finally, by Stein Factorization Theorem, the statement reduces to
the two cases above. 0
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2.4. Algebraic Reduction Theorem. We now state the Algebraic
Reduction Theorem in the form we need. Let M be a compact con-
nected complex manifold and consider a subfield K C M(M) of the
field of meromorphic functions on M. The transcendence degree (or
algebraic dimension) n = a(K) of K over C is the maximal number of
elements fi,..., f, € K satisfying

dfy A -~ Adf,, # 0.

Following [19], K is integrally closed in M(M) if, and only if, given a
transcendence basis as above, we have

K={feM(M)/df Ndfy N---Ndf, = 0}.

For instance, M (M) is trivially closed in itself and its transcendence de-
gree a(M) is called the algebraic dimension of M. Recall that a(M) =
dim(M) if, and only if, M is bimeromorphically equivalent to an alge-
braic manifold.

Another important example for us is the following. Given meromor-
phic 1-forms wq,...,w, on M, the field of meromorphic first integrals

M(wy, ... ,wn) ={feMM) /df N\wi A+ Aw,, = 0}.

is integrally closed and 0 < a (M(wy,...,w,)) < n.
Theorem 2.21 (Algebraic Reduction Theorem). Let M be a compact
connected complex manifold. Let K C M(M) be an integrally closed
subfield having transcendence degree n. There exist

(1) a bimeromorphic modification ¥ : M — M,
(2) an holomorphic projection w : M — Ny with connected fibers
onto a n-dimensional algebraic manifold Nk

such that V*K = 7*M(Nk).

We will denote by redg the meromorphic map wo W1, In particular,
any integrally closed subfield K' C M(M) is a posteriori the field of
first integrals M(Gk) of a codimension n singular foliation G, namely
the foliation by fibers of redx. When a(M) < dim(M), i.e. M is not

bimeromorphic to an algebraic manifold M, M is equipped with the
canonical codimension a(M) fibration G induced by K = M(M).
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The space X' (M) of meromorphic vector fields over M acts by deriva-
tion on M(M) and, in this sense, preserves the fibration G. Precisely,
given any X € X (M), the pseudo-flow of X sends fibers to fibers at
the neighborhood of any point p € M where X and G are regular. In
other words, any vector field X on M is a lifting of some vector field Y
on the reduction N = red(M). This can be seen also directly from the
fact that a derivation on M (M) := red* M (N) is actually a derivation
on M(N). The kernel Xo(M) ={X € X(M)|X(f) =0,Vf e M(M)}
coincides with the subspace of those vector fields that are tangent
to the fibration G. The space X(M) is a Lie algebra over C, hav-
ing infinite dimension as soon as a(M) # 0, and Xy(M) is an ideal:
(X0 (M), X(M)] C Xy(M). Observe that Xy(M) is also a Lie algebra
over the field M (M), having dimension < dim(M) — a(M). We take
care that the space of meromorphic vector fields X' (F') on a given fiber
F can actually be much bigger than the restriction Xo(M)|r: except
in the case a(M) = 0, some of the fibers could carry non constant
meromorphic functions (even, all fibers could be algebraic)ﬂ Given
a foliation F on M, we will distinguish between the case where F is
tangent to the fibration G and the case where they are transversal at a
generic point. The latter case will be studied in Section [3] The former
case is completely understood by means of

Lemma 2.22. Let F be a foliation on a complex manifold M. Let
w: M — N be a surjective holomorphic map whose fibers are connected
and tangent to F, that is, contained in the leaves of F. Then, F is the
pull-back by 7 of a foliation F on N.

Proof. In a small connected neighborhood U C M of a generic point
p € M, the foliation F is regular, defined by a local submersion f :
U — C. Since f is contant along the fibers of 7 in U, we can factorize
f = f o for an holomorphic function f : m(U) — C. In particular,
the function f defines a codimension one singular foliation F on the
open set w(U). Of course, F does not depend on the choice of f.
Moreover, since f = f o, the function f extends to the whole tube
T := 7' (n(U)). By connectivity of U and the fibers of 7, the tube
T is connected and the foliation F is actually defined by f on the
whole of T', coinciding with 7*(F) on T. In this way, we can define a
foliation F on N\ S, where S = {p € N ; #~'(p) C Sing(F)} such
that F = 7*(F). We note that S has codimension > 2 in N; therefore,
F extends on N by Levy’s Extension Theorem. 0

1Un exemple ?
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2.5. First consequences. The first and easy alternative of Theorem
immediately follows

Corollary 2.23. Let F be a foliation on a compact manifold M. If the
fibers of the algebraic reduction red : M --+ red(M) are tangent to F,
then F is actually the pull-back of an algebraic foliation F on red(M).

In particular, even if M was not pseudo-parallelizable, F is a poste-
riori defined by a global meromorphic 1-form, namely the pull-back of
any rational 1-form defining F on the algebraic manifold red(M).

Let us apply Lemma to another situation. Let wy be an inte-
grable 1-form on a compact manifold M, wy A dwy = 0, and F be the
associated foliation. If wy is not closed, then the 2-form dw, defines a
codimension 2 singular foliation G on M whose leaves are contained in
those of F. Denote by M(dwy) C M(M) the corresponding (integrally
closed) subfield of M(M):

M(dwo) = {f € M(M) / df Adwy = 0}.

The transcendence degree of M (dwy) satisfies 0 < a(M(dwyp)) < 2. If
dim(M) = 2, then M(dwy) = M(M) and a(M(dwy)) = 2. Conver-
sally, if a(M(dwy)) = 2, then we have

Lemma 2.24. Let F be a foliation on a compact manifold M. If there
exists a meromorphic 1-form wy defining F such that a(M(dwy)) = 2,
then F is the pull-back of a foliation F on an algebraic surface S by a
meromorphic map ¢ : M --» S.

Proof. Let K = M(dwy) and M, U, n, S = Ng be produced by the
Algebraic Reduction Theorem applied to K. We loose no generality by
supposing that M = M. Therefore, the codimension 2 foliation defined

by dwy is tangent to F and actually coincides with the fibration defined
by 7. We conclude by Lemma [2.22] O

In the case a(M(dwy)) = 1 and M is pseudo-parallelizable, we have

Lemma 2.25. Let F be a foliation on a compact pseudo-parallelizable
manifold M. If there exists a meromorphic 1-form wqy defining F such
that a(M(dwp)) = 1, then F is transversely affine.



26 CERVEAU, LINS-NETO, LORAY, PEREIRA AND TOUZET

Proof. Let f be a non constant element of M (dwy). Since M is pseudo-
parallelizable, there exists a meromorphic 1-form w; satisfying dw, =
wo A wi (see introduction). Therefore, one can write

df = fowo + fiw:

for meromorphic functions fy and f; on M. After multiplication by wy,
we derive

wo A df = fidwg
After derivation, we deduce that f; € M(dwy). Finally, we have

a . df\ _df Ndfx
dwy =wo AN — with d(=) = = 0.
TN, R
In other words, the Godbillon-Vey sequence (&g, &1) = (wo, %) provides
an affine structure for F. O

From those two Lemmas, we deduce the

Proof of Theorem[1.5 Let F be a foliation on a compact manifold M
admitting a Godbillon-Vey sequence satisfying wg A wi A wy = 0. If
wo A wyp = 0, then we conclude that wy is closed and that F is actually
transversely euclidean. Otherwise, there exist meromorphic functions

fo and f7 such that
we = fo-rwo+ f1-wr.

From the Godbillon-Vey algorithm, we deduce that
dwl :CUO/\WQ = f1 'du)o

and by differentiation that df; A dwy = 0. Thus, we have that f; €
M(dwy). If fi € C is contant, then @; := w; — f1 - wp is closed and
satisfies dwg = wo A @1: F is actually transversely affine for the new
Godbillon-Vey sequence (wp,@;). If fi is not constant, then we deduce

that a(M(dwp)) > 0 and we conclude with Lemmas and O

Questions. Given a Godbillon-Vey sequence (wp, wr, . . .) for a foliation
F on a compact manifold M, what can be said, similarly to Theorem
when wy Awy A -+ Awg_1 = 0 for some k£ < dim(M) 7 Also,
when wy Awy A -+ Aw,_1 # 0 for n = dim(M), what can be said
when a(M(Fy)) > 0 for the codimension k foliation Fj defined by
Wo, W1y vy WEg—1 ?
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We end-up this section with a weaker version of Theorem [1.6]

Theorem 2.26. Let F be a foliation on a compact pseudo-parallelizable
manifold M. If length(F) < oo, then we have the following alternative:

(1) either F is the pull-back of a foliation F on an algebraic surface
S by a meromorphic map ¢ : M --+ S,
(2) or F is transversely projective, i.e. I(F) < 2.

Proof. Let (wo,w1,...,wy) be a Godbillon-Vey sequence for F with
wy # 0, N > 3 and wy, wy, w3 both non zero (otherwise we are in the
second alternative of the statement). Following Lemma there exist
meromorphic functions f such that wy = fi - wy. Observe that f3 # 0
since wy # 0. Recall that {wy} is a Godbillon-Vey sequence if, and only
if, the 1-form
SN
QIdZ+WQ+Zu}1+"'+ﬁu)N,

is integrable. Applying to 2 the change of variables z = t/f3 (see
Section , we derive a new Godbillon-Vey sequence of length N
satisfying wy = ws. Therefore

du.)Q = woNwsg —+ w1 Nwy = wo Nwy + w1 N\ wo
d(.dg = woNwy —+ 2'&)1/\(4)3 = f4'(.d0/\¢d2 + 2'W1/\W2

In particular (1 — f;)wo A ws = w1 A we implying that wy A wy Awy = 0.
We conclude with Theorem [I.5] O

Proof that length(F) = length(F) in Theorem[2.26 Since a Godbillon-
Vey sequence for F induces, by pull-back by ¢, a sequence for wy, it
follows that {(F) > I(F) = N. Let w, be the meromorphic 1-form
on S such that ¢*w, = wy. From the equality 0 = wy A w; A wy =
wy A dwy, we see that w, is integrable. Writing down the equations in
local coordinates we also see that the fibers of ¢ are tangent to the
foliation associated to w;. Moreover, wy is the pull-back by ¢ of a 1-
form w; on S. Recall that wy = fowg + fiwy and that df; A dwy = 0.
Differentiating the identity

du)g = W Nwo 4w Awy = (fl - fo)d&)g

it follows that dfy A dwy = 0. Consequently ws = ¢*w,, where w, is a
meromorphic 1-form on S. At this point we can rewrite () as

Q=dz + ¢*'wy + 20w, + h - d*w,,

where h = § + sz\is %hn. The integrability of € implies that dh A
¢*wy = 0, where d is the differential over M (i.e. dz = 0). This implies
that each h; belongs to ¢~ M(S) and therefore w; = ¢*w; for every j

and some w; on . This proves that [(G) < N. O
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3. PROOF OF THE MAIN RESULTS

3.1. Foliated Algebraic Reduction: the case a(M) = 0. Recall
first the classical

Lemma 3.1 (Lie). Let £ be a (finite dimensional) transitive Lie alge-
bra of holomorphic vector fields defined on some neighborhood of 0 € C.
Then, after a change of local coordinate, we are in one of the following
three cases:

(1)
(2)
(3)

In particular, £ is a representation of a subalgebra of sl(2,C).

C.0,:
C-0.+C20.;
C-0,+C-20,+C- 22%0,.

n

L
L
L

Proof of Lemma in the case K = C. Let G be a complex Lie group
whose Lie algebra is isomorphic to £. The subalgebra £’ induces a
(not necessarily closed) subgroup G’ and the left cosets g - G are the
leaves of a regular codimension one holomorphic foliation F on G. By
construction, the foliation JF is invariant under the action of G on itself
by left translations, and therefore by the corresponding infinitesimal
action. We inherit a representation

p:L— X(G,F)

of L to the Lie algebra of basic vector fields on G, i.e. of those vector
fields on G preserving F. On the other hand, given any transversal
disc A to F, the projection at any point p € A of the tangent space
T,G =T,F x T,A onto the second factor induces representation

T: X(G,F) — X(A)

to the Lie algebra of vector fields on A. Since G acts transitively on
itself, the image mop(L) acts transitively on the disc. Applying Lemma
.1 at a point p € A, we deduce that the composition

mop: L — X(A)
factorises into a representation p : sl(2,C) — X(A): there exists an ho-

momorphism ¢ : £ — sl(2,C) such that mop = po¢. By construction,
ker(¢) C L' and thus ¢ is not trivial. O
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We need a technical Lemma. Given a vector field X on a manifold
M, we denote by Lx the Lie derivative on differential k-forms. Notice
that, when X is a meromorphic vector field on a compact manifold M,
then Ly is trivial on the 0-forms M (M)

Lxf=0, VfeMM)

if, and only if, the vector field X is actually tangent to the fibers of the
algebraic reduction red : M — red(M) (see Theorem [2.21)).

Lemma 3.2. Let M be a compact manifold, w be a meromorphic 1-
form on M and X be a meromorphic vector field satisfying w(X) = 1

and LxM(M) = 0. Then, for all meromorphic vector field Y on M,
we have

LYw(Y) = (~1)'w(LyY)
where LxY = [X,Y].
Proof. Since w(X) = 1, we have
Lxw = d(w(X)) + dw(X) = dw(X) .
Therefore, for any vector field Y, we have
Lxw(Y) = dw(X,Y) = Lx(w(Y)) = Ly (w(X)) —w([X,Y]).

By assumption, we have that Lx(w(Y)) = Lx(function) = 0 and
Ly (w(X)) = Ly(constant) = 0. Thus we conclude that

Lxw(Y) = —-w([X,Y]).
The proof immediately follows by induction on . O

Let M be a pseudo-parallelizable compact manifold with no non
constant meromorphic function. Therefore, the Lie algebra £ of mero-
morphic vector fields on M has dimension n = dim(M). If F is a
foliation on M, then the Lie algebra £’ of those vector fields tangent
to F has dimension n — 1. Following Lemma [1.4] there exists a mor-
phism ¢ : £ — sl(2,C) such that ker(¢) C £ C L. Discussing on the
codimension of ker(¢), we construct a meromorphic vector field X sat-
isfying w(X) = 1 (in particular X € £\ L) such that the Godbillon-Vey
sequence w; = Lg?w has length < 2.
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3.1.1. First Case: ker(¢) has codimension 1. Therefore, L' = ker(¢).
In particular, £’ is an ideal of £: [£,L£'] C L. Let X be any mero-
morphic vector field satisfying w(X) = 1. For every Y € L, we can
write

Y=c- X+Y,
where ¢ € C and Y’ € L'. Thus
WX Y] = w(X.Y]) =0 WY eL
allowing us to conclude that Lyw = 0 (see Lemma [3.2)). Finally, the
Godbillon-Vey sequence given by w; := Liw has length 0 (w; = 0) and
wp = w is closed.

3.1.2. Second Case: codimker(¢) = 2. One can choose a basis X7, Xy
of L/ ker(¢) such that w(X;) =1, X5 is a basis for £/ ker(¢) and

either [Xl,XQ] = Xl, or [Xl,XQ] = —Xg.

Indeed, after composing ¢ by an automorphism of si(2, C), the dimen-
sion two subalgebra ¢(L) identifies with the Lie algebra generated by

-1 0 01
(30 wa o= (0])

and ¢(L') is the one dimensional subalgebra generated by A or B.
Then, just choose X; and X3 so that correspondingly (¢(X1), p(X2)) =

(B, A) or (A, B) and normalize wy := (k7 SO that wo(X1) = 1. There-

fore, wo(L, X5) = 0 (le. L Xy € L') for i = 1 or 2. Finally, after
writing every vector field Y € £ into the form
Yzcl'X1+CQ'X2+Y/,

with ¢1,c0 € C and Y’ € ker(¢) and applying Lemma as in Section
3.1.1} we conclude that the Godbillon-Vey sequence given by w; :=
Lgﬁwo has length 0 or 1: F is transversely affine.

3.1.3. Third Case: codimker(¢) = 3. We construct a basis X1, Xo, X3
of L/ ker(¢) such that w(X;) =1, X5, X3 is a basis for £’/ ker(¢) and,
after composing ¢ by an automorphism of sl(2,C),

o= (1 0). o= (3" ) ana exa= (7 g)-

Therefore, we have
[Xb[Xla[Xl;XS]H = [Xl,[Xl,XQ]] =0 mod ker(¢)

and w(L%, (Y)) =0 for all Y € £. Finally, the Godbillon-Vey sequence
given by w; := Lg(lw has length 2: F is transversely projective.
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Remark 3.3. In the proof of Theorem case a(M) = 0, above, we
do not need M to be pseudo-parallelizable, but only the existence of
a meromorphic vector field X which is not identically tangent to F.
In this case, the foliation F is defined by the unique (and thus global)
meromorphic 1-form w satisfying w(X) = 1. Note that the Lie algebra
L of meromorphic vector fields on M has dimension n < dim(M) and
the subalgebra £’ of those vector fields tangent to F has codimension
one (because of X). Possibly, £’ is trivial.

3.2. Codimension one Lie subalgebras over K. Before proving
Theorem for arbitrary algebraic dimension a(M), we need the fol-
lowing more complete statement for Lemma [I.4]

Lemma 3.4. Let L be a finite dimensional Lie algebra over a field K,
char(K) = 0, having a codimension one Lie subalgebra L': [L', L] C L.
Then L also has a codimension < 3 Lie-ideal Z, [L,Z] C I, which is
contained in L and we are in one of the following 3 cases:

(1) L/IT=K-X and L' =1;

(2) L/IT=K-X+K-Y with[X,)Y]=X and L'/T =K -Y;

B) L/IT=K-X+K-Y+K-Z with [ X,Y] =X, [X,Z] =2Y and

Y. Z|=Z and L'JT =K-Y +K- Z.

In other words, there exists a non trivial morphism ¢ : L — sl(2,K)
whose kernel ker(¢) =T is contained in L.

Applying this Lemma to a finite dimensional transitive subalgebra
L C X(C,0) and to the subalgebra £’ of those vector fields fixing 0,
we retrieve a part of Lie’s Lemma [3.1] In this sense, Lemma may
be considered as an algebraic version of Lie’s Lemma.

Proof. We start with a general situation. Let K be a field (of arbi-
trary characteristic) and consider a (possibly infinite dimensional) Lie
algebra L over K together with a Lie subalgebra £'. Then, recursively
define the vector subspaces LD L' D L' D --- D> L% 5 ... by

LD =W e £® . (£, Ww] cL®}
We claim that the £ are actually Lie subalgebra satisfying moreover
(kD D) ¢ cOFHFD - for all k+1 > —1.
We prove the formula by induction on k£ + . Observe that the formula
is already true for K = —1 or [ = —1. By induction hypothesis, we
may already assume that [£*+D £0+D] ¢ £EH) since, for instance,

LEH) < £® - By definition of £L*tHD | we just have to prove that
(£, [£F+D) ] £ED]] s still contained in £F+Y . Following Jacobi identity

[Xv [Y7 Z“ + [Zv [X’ Y“ + [K [ZvX]] =0,
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it suffices to show that the double brackets [£!+YD [£, LE+D]] and
[LE+D [£0D ] £]] are both contained in £*+). But this immediately
follows by induction hypothesis. For instance, [£¢HY [£, L++D]] C
(£ £®] ¢ £E+D. The claim is proved.

Now, assuming that £’ has finite codimension, say n, we claim that

dimg £5 /£ < (dimg £/
where these quotients are viewed as K-vector spaces. Indeed, since
(£, L*+D) ¢ £E+D it follows that £*+Y) actually coincides with the
kernel of
E(k) — (ﬁ(kfl)/ﬁ(k))n ; W — ([Xl, W], cee [Xn, W])
where (Xi,...,X,) denotes a basis for £/L’. Therefore,
dimg £8) /5D < dimg (LD /W) = 5 dimg £57D /L5

which recursively prove the claim. In particular, if £’ has codimension
1 in £, then there is a smallest kg € N* U {oo} such that £%0) is an
ideal of £ and

1 if k’<k0

dimg (LW /L) = {() if k>k
= RO

Now, assume that £’ is not an ideal (otherwise, we are in case (1)) and
consider some Y € L' generating £'/L”. We have
[X,Y]=aX +bY mod L" for constants a,b € K, a # 0.
Replacing X and Y respectively by X + SY and %, we may assume
[X,Y] =X mod £".

Again, assume that £” is not an ideal (otherwise, we are in case (2))
and consider some Z € L" generating £”/L£®). Maybe multiplying Z
by a scalar, we can assume that [X, Z] =Y modulo £” and we have

[X,Y] = X+aZ
X,Z] = Y+bZ mod L£®),
Y, 7] = Z

for scalars a, b, c € K. Jacobi identity implies that (c—1)Y = 0 modulo
L”, which shows that ¢ = 1. If char(K) # 2, then we can assume a = 0
after replacing X by X + §Z. We thus obtain

X,V] = X
X,Z] = Y+bZ  mod L£®.
Y.z] = Z
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If L& is an ideal, then Jacobi identity applied in £/£® shows that
b =0 and we are in case (3).

Finally, we claim that £ has infinite dimension provided that £®) is
not an ideal and char(K) = 0. In fact, starting from a generator W of
LB /LD we recursively prove that Wy, := [Z, W] € LEFD satisfies

(X, Wis1] = axW),  mod  L®
[Y,Wi] =W, mod LFE+

for non vanishing scalars ay, b, € K. We can assume [X, W3] = Z
modulo £®). Jacobi identity

X, [V, Wil] + [We, [X, Y]] + [Y, [Wy, X]] = 0

shows that b3 = 2 for k = 3 and ay_1(by — bx_1 — 1) =0 for £ > 3. On
the other hand, Jacobi identity

(X, 12, Will + Wi, [X, Z]] + [ 2, [We, X]] = 0

shows that a3 = 2 for k = 3 and a, = ax_1 + by for kK > 3. It is now
easy to conclude that ay,br > 0 for all £ > 3 which proves the last
claim and the Lemma. ]

3.3. Foliated Algebraic Reduction: the general case. Let M be
a pseudo-parallelizable compact manifold having algebraic dimension
a(M) < dim M and let F be a foliation on M. We assume that F is
generically transverse to the fibers given by the Algebraic Reduction
Theorem, otherwise we conclude with Lemma[2.22) that we are actually
in the second alternative of Theorem [I.I, The idea of the proof is
to proceed as in section [3.1] along the fibers, but dealing only with
objects (vector fields and functions) living on the ambient manifold
M. Denote by Xy(M) the space of meromorphic vector fields that are
tangent to the fibers. Recall that £ := Xy(M) is a Lie algebra of
dimension dim(M) — a(M) over the field K := M(M) of meromorphic
functions on M. Consider £ C L the Lie subalgebra of those vector
fields that are tangent to the foliation F. Clearly, £ has codimension
1in L. Applying Lemma to this situation, we see that there is an
ideal Z C L contained in £, and there is some X € £\ £’ satisfying
L3Y €T for any Y € Xy(M) (for instance, L3 X = LYY = L% Z =0
modulo Z in case (3) of Lemma. Let w be the unique meromorphic
1-form defining the foliation F and satisfying w(X) = 1. Since Z C L/,
we deduce that w(L3Y) = 0 for any Y € Xy(M).

Now, recall that £ = X,(M) is a Lie ideal of the full Lie algebra
X (M) of meromorphic vector fields on M: for any Y € X (M), we
have LxY € L and therefore w(L%Y) = 0. Following Lemma ,
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we deduce that Liw = 0 and finally that the Godbillon-Vey sequence
(Lw); has length < 3.

In case F is not transversely projective ((Liw); has really length
3), then F is the pull-back of a foliation F on an algebraic surface
S by a meromorphic map ¢ : M --» S following Theorem [2.26] Of
course, ¢ factorizes through the algebraic reduction. But this implies
that the fibers of the algebraic reduction are actually tangent to F,
contradicting our assumptions. We conclude that F is transversely

projective, thus proving the Theorem [1.1]

3.4. Some consequences. In the special case where a(M) = n — 1,
we directly obtain the

Proposition 3.5. Let F be a foliation on a compact manifold M,
defined by a global meromorphic 1-form w. Assume that a(M) =n—1.
Then

(1) either F is the pull-back of a foliation on the reduction red(M);
(2) or F is transversely affine.

Proof. Assume that F is not tangent to the fibration of the algebraic
reduction. Here Xy(M) is an algebra of dimension one over the field
M(M) and is also an ideal of X(M). One defines a non trivial element
X € Xy(M) just by setting w(X) = 1. Then, for every Y € X'(M), we
have that adg?)Y = [X,[X,Y]] =0. Infact [X,Y] =AX and X(\) =0
Therefore Lg?)w(Y) = w(adg?)Y) = 0 implying that Lg?)w = 0 and
I(F) <1 O

In particular we have the

Corollary 3.6. Let F be a foliation on a pseudo-parallelizable compact
surface S. Assume that a(M) < 2. Then F is transversely affine.

Proof. In the case a(M) = 0, we just notice that X' (M) is a Lie algebra
of dimension 2 over M(M) = C. In the case a(M) = 1 and F is
tangent to the fibration of the algebraic reduction, then they actually
coincide and F is transversely trivial, i.e. F has a meromorphic first
integral. U
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When the dimension of the ambient manifold is three, we resume

Corollary 3.7. Let M be a 3-dimensional pseudo-parallelizable com-
plex manifold and let F be a foliation of M. We have the following
possibilities:

(1) a(M) = 3 and F is bimeromorphically equivalent to an algebraic
foliation of an algebraic manifold;

(2) a(M) =2 and either F is the meromorphic pull-back of a foli-
ation on an algebraic surface, or F s transversely affine;

(3) a(M) =1 and F is transversely affine;

(4) a(M) =0 and F is transversely projective.

Proof. Only the case a(M) = 1 does not follow from previous results.
Let f € M(M) be a non constant meromorphic function. We can
suppose that F is generically transverse to the fibers of f, otherwise F
is defined by df.

Let wy define F and w; be such that dwg = wy A w;. We can assume
that wy A w; # 0, otherwise wy is closed. If wy A wy Adf = 0, we
conclude by lemma that F is transversely affine. Thus suppose
that wyg A wy Adf # 0 and let wy be such that dw; = wy A wy. We can
choose w, without component in wy, i.e. ws = fiw; + gdf. Replacing
wy by @1 = w; — fiwy we have that

d(:)l = dwl — fldwo — dfl A wo
= fiwo Awr + gwo A df — frwg Awy — dft A w
= wo N\ (gdf + dfl) = hu)() A\ df,

for some meromorphic function h satisfying dhAdf = 0 since a(M) = 1.
After derivation, we deduce that hdwoAdf = 0 which implies that h = 0:
w; is closed and F is transversely affine. O

The next proposition generalizes some of the results obtained by E.
Ghys in [§] for the foliations on complex tori.

Proposition 3.8. Let F be a foliation on a compact manifold M and
assume that there exist n = dim(M) independent closed meromorphic
1-forms on M. Then we have the following alternative:

o cither F s the pull-back of a foliation F on red(M) wvia the
algebraic reduction map M --+ red(M),

e or F is transversely euclidean, i.e. defined by a closed mero-
morphic 1-form.
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Proof. If the algebraic dimension a(M) of M is n, the second alter-
native is trivially satisfied. Also, when a(M) = 0, any 1-form on M
is closed since it is a linear combination of the given n closed ones
with coefficients in M(M) = C; in particular, any 1-form defining F
is closed.

Let fi,..., f, € M(M), ¢ = a(M), be such that df; A ... Adf, # 0.
By our hypothesis we can find p = n — ¢ closed meromorphic 1-forms
such that wy A... Aw, Adfy A...Adfy #0. If wis a 1-form defining F
then we can write it as

w = ZAiwi‘i‘Zlujdfja

where the \; and the p; belong to M(M). If all the \; are zero then
we are in the first case; if not we can suppose that A\; = 1.
Therefore

dw:id)\i/\wﬁ—Zduj/\dfj,
i=2 j

and the integrability condition writes:

0 = w1 A (Zd)\z/\wl+2d/1]/\df]>

i<2 j

i<2 j i<2 j

First suppose that dim(M) > 3. Notice that the d); and dy; are in
the M (M )-vector space generated by the df;. Since the meromorphic
3-forms w; Aw; Adfy, together with w; Adf; Adfy, are linearly independant
over M(M), we deduce that the first term is zero: w; does not occur
when one developp the second term on the 3-forms above. Therefore

zq:d)\,-/\wi—i—Zduj/\dfj —0,
i=2 j

and consequently w is closed.
When dim M = 2, we just have to consider the case where a(M) = 1.
Then, w = w; + Aidf; and dw = d\; A df; = 0 since a(M) = 1. O
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3.5. Proof of Theorem In fact, we prove the more precise

Theorem 3.9. Let F be a foliation admitting a finite Godbillon-Vey
sequence (wo,wsq, . ..,wy) of length N > 3 with wy # 0. Then

o cither F is the pull-back by a meromorphic map ® : M --»
C x CP(1) of the foliation F defined by

dZ"—QO_’_QlZ—i_"'_’_QNZn

where w,. are meromorphic 1-forms on the curve C,
e or F is transversely affine.

In particular, we see that a purely transversely projective foliation
cannot admits other finite Godbillon-Vey sequences than the projective
triples.

Proof. Following Lemma [2.3] we have

N
Q=dz+wy+ 2wy + (kazk> WN

k=2
for meromorphic functions f, € M(M), fx = 1. If fy_1 = 0, then
integrability conditions imply that dw; = 0 (see Lemma and F
is transversely affine. Otherwise, after a change of Godbillon-Vey se-
quence of the form (see Section , we may assume moreover
fv—1 = N. Now, the change of coordinate Z =2+ 1 on 2

QO = dzZ-D+w+E—-Dw+-+E—-1DNuy
= di4ao+ i+ + Ny
provides a new sequence (&g, @1, - .. ,wx) of length N satisfying integra-
bility conditions (see Introduction). We take care that this is not
a new Godbillon-Vey sequence for F (but for F,, whenever @y # 0).
In fact, we have
Wop =wo +wi +wz+ -+ wn.

We also note that wy = wy and wy_; = 0. Following Lemma [2.3]
there exist meromorphic functions g satisfying

(12) W =g -wy for k=0,2,...,N—2
and integrability conditions now write

(13) doy, = (k— 1) AN@y,  for k=0,2,...,N—2
and

(14) d(.UN = (N — 1)(.:)1 A WN, d(:)l = 0.
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In particular, we see that wy is transversely affine and that
(15) wo =@+ (go+ g2+ -+ gn_2)wn.

Following Lemma below, there is a non constant meromorphic
function g € M(M) such that dg A wy = 0. It follows from Stein’s
Factorization Theorem that there exist:

e a meromorphic map ¢ : M --+ C onto a smooth, compact,
complex and connected curve C',
e a meromorphic function g : C' --+ C,

such that g = go ¢ and the generic fibers ¢~!(c) are irreducible hyper-
surfaces of M. Let w be a non zero meromorphic 1-form on C. The
1-form w := ¢*w on M is closed, non zero and df A w = 0. Therefore,
we can write Oy = hy - w for a meromorphic function h and setting
hy = hy - gx, we get

(16) Op = hw for k=0,2,...,N—2 N.

From equations , we deduce that

either hy = 0,
(17) or@rnL%Qszo for k=0,2,...,N—2 N.

k—1 hy

Thus, for any k,01=0,2,..., N — 2, N such that hy, h; # 0, we have

1 dhy 1 diy B

(1-1)
and % is a first integral for w. Let r = ged{k — 1 ; hy # 0}: we
l

have >, _nx(k — 1) = r for integers ny. Set
he= ] n
hy#0
Therefore, summing equations over [, we get

B I—1dh, k—1dh  (dhy  k—1dh
O—;%m<7~hk r m)A”_(hk r h)A“
1
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Thus, —%+ is a first integral for w and we can write
h

’r

either hy = 0
1 e for k=0,2,...,N-2N
I T

and meromorphic functions h;, : C' --» C. From equation (15, we
deduce

(20) wo=@1+< Z hod-h'r )
k=0,2,...,

(setting h;, = 0 whenever hy, = 0). On the other hand, from (17 and
(119) we get

1 dhy 1dh
(21) A i ey
and @1 = 1 dh + fw for a meromorphic functlon f. Since @, and w are
closed, we get after derivating equation (21)) that df Aw = 0, i.e. we
can write f = f o ¢ for a meromorphic functlon f:C - C. Finally,
we obtain

1dh
wo=——-+]o gbw+< > hko¢ W' )
k=0,2,...,

h

and, setting ® = (¢, h) : M --» C' x CP(1)

rhwy = <I>*<dz+r(f z+ Z hkzr“)).

k=0,2,...,.N

O

Lemma 3.10. Let F be a foliation admitting a finite Godbillon-Vey
sequence (wo, w1, . ..,wy) of length N > 3 with wy # 0. Then

o cither wy = fdg for meromorphic functions f,g € M(M),

e or F is transversely affine.

Proof. We start as in proof of Theorem [3.9] keeping the same notations.
Substituting into integrability conditions yield

(dgk—i-(N—k)gchdl)/\(IJN:O for k:O,Q,...,N—Z.
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If there exist two distinct integers k,l € {0,2,..., N — 2} such that
9k, g1 7 0, then we can deduce that

((N_k)@—uv—z)%) Adn =0

i Gk
if moreover the left factor is not zero, then we can conclude that
(N—k)
dgNwy =0 with g¢:= gl(Nl) non constant
k

ie. wy = fdg for some meromorphic function f. Otherwise, the
discussion splits into many cases.
Case 1. Assume that g = 0 for all k € {0,2,..., N —2}. Then

N
wo = E Wy = w; +WN
k=0

and, since dw; = 0, we have
dwy = doy = (N — 1)y Aoy = (N — 1)@y A wy
and F is transversely affine.
Case 2. Assume that g # 0 for at least one k € {0,2,..., N —2} but
1 dg 1 dgg
N—lg N-—kag
for all k,1 € {0,2,..., N — 2} such that g, g; # 0: the closed 1-form
1 dgk

R

does not depend on k.
Subcase 2.1: 3 = 0. Since

Wwy=wi1+g-wn, g=gotga+t--+gnoa+1l

we get that either g = 0 and wy = @, is closed, or g # 0 and we have
d(22) = dioy = (N — D)in Ay = (N — )i A =2,
g g
in each case, we see that F is transversely affine.
Subcase 2.2: 3 # 0. Therefore, one can write wy = hf for some
meromorphic function h # 0 and we have

- dh
dwN = 7 N WN.

Comparing with doy = (N — 1)y Aoy and A Ox = 0, we get

dh N —-1d
<___ﬂ>M)N:
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Subsubcase 2.2.1: N—idgi =% for all k € {0,2,...,N — 2} such
that g # 0. Then
wo=w1+gh-B, g=go+gat+- - +gnatl

with dg A dh = 0. Smceﬁ—wl—l—Nllh,Weget

Either 1+ gh = 0 and wy is closed, or 1+ gh 7é 0 and “’0 is closed; in
each case, F is transversely affine.

Subsubcase 2.2.2: 1 dg’“ s dh for at least one k. Therefore, we can
conclude that

h(N—E)
dgN\Nwoy =0 with g¢:= ~vp hon constant
Ik
i.e. wy = fdg for some meromorphic function f. 0

4. EXAMPLES

4.1. Degree 2 foliations on CP(n) have length < 3. Here, we
prove Theorem In fact, given a degree 2 foliation F on CP(n), we
prove that, after a convenient birational transformation

O : CP(n) --» CP(n — 1) x CP(1),

the tangency locus A between the foliation F' := ®,F and the projec-
tion 7 : CP(n — 1) x CP(1) — CP(n — 1) takes the following special
form:
e cither A is a vertical hypersurface, i.e. defined by Rom = 0 for
a non constant rational function R on CP(n — 1),
e or A is the union of a vertical hypersurface like above and the
horizontal hyperplane at infinity Hy, := CP(n — 1) x {oo}.
One can easily deduce from this geometric picture that F’ is actually
defined by a unique rational integrable 1-form

N
Q=dz+ Z wp2"
where wy, are rational 1-forms on CP(n—1) and z is the CP(1)-variable.
A Godbillon-Vey sequence of length < N is therefore provided by
(Lg’;)Q)k where X = 0, is the vertical vector field. We will also prove
that N < 3 in our case. In the first case of the alternative above, we
have N < 2: Ais vertical, F' is a Riccati foliation with respect to m and
is in particular transversely projective. In the second case, N =2+ m
where m is the multiplicity of contact between F' and the projection
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7 along the hyperplane at infinity H.,,. Actually, it is better to view
A as a positive divisor, defined in charts by the holomorphic function
w(X) where X is a non vanishing holomorphic vector field tangent to
the fibration given by 7 and w a holomorphic 1-form defining F" with
codimension > 2 zero set. Then, m is the weight of A along H..

Let F be a degree 2 foliation on CP(n). In order to construct ®
and reach the geometrical picture above, the rought idea is to find a
rational pencil on CP(n) such that the tangency locus A between the
foliation and the pencil intersects each rational fiber once. In fact, we
choose any singular point p of the foliation F and consider the pencil of
lines passing through p. Of course, the number of tangencies between
a line and F, counted with multiplicities, is 2, the degree of F; but
looking at the pencil passing through p, we expect that the tangency
occuring at the singular point disappear after blowing up the point p.
Let us compute.

A foliation F of degree < 2 on CP(n) is given in an affine chart
C™ C CP(n) by a polynomial 1-form with codimension > 2 zero set
having the special form

Q:wo+w1+w2+w3

where w; is homogeneous of degree i and ws is radial (see [5]): we have
w3(R) = 0, where R := x10,, + - -+ + 2,0, is the radial vector field.
Saying that F is not of degree less than 2 just means that, if ever
w3 = 0, then wy is not radial. Let us assume p = 0 be singular for
F,ie. wg= 0. The tangency locus between F and the pencil of lines
passing through 0 is given by tang(F,R) = Q(R) = 0. If Q(R) is the
zero polynomial, then this means that F is actually radial; we avoid
this by choosing another singular point p. Therefore, tang(F,R) is a
cubic hypersurface which is singular at p. After blowing-up the origin,
the foliation lifts-up in the chart

™ (tla P P Z) = (Ztla ooy 2t Z) = (xb Ty -1, xn)
just by lifting-up the 1-form €2 which now takes the special form
Q0 =2 ((fo(t) + 2f1(t))dz + 201 + 2°@2 + 2°W3)

where fy and f; are polynomial functions of ¢t = (¢1,...,t,_1) and @; are
polynomial 1-forms depending only on t. We observe that tang(F,R)
is now defined by {z(fo(t) + zf1(t)) = 0}, has possibly some vertical
components given by common factors of fy and f; and has exactly 2
non vertical components defined by z = 0 and z = —fy/f1 (the two
tangencies between any line of the pencil with F). Also, as expected,
the first section z = 0 is irrelevant since it disappears after division of
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7 the tangency locus between the lifted foliation F and the lifted
pencil (the vertical line bundle {t = constant}) actually reduces to
{fo(t) + zf1(t) = 0} in the chart above. We now discuss on this set.

If fo =0, then % is Riccati with wingular set over {fi(t) = 0}:
F has length < 2. Recall that we have supposed F non radial and thus
fo and f; cannot vanish identically simultaneously.

If fo # 0, then the non vertical component of tang(F,R) is the
section z = s(t), s(t) = —?1’8 If f{ = 0, then this section is the

hyperplane at infinity {z = oo}: foi(t) is already in the expected geo-

metrical normal form and has length < 3. If f; # 0, it suffices to push
it towards infinity by a meromorphic change of coordinate of the form

Z.= z+sm; after this birational transformation, we are in the previous

case y; = 0 and we have done. Precisely, the foliation is defined by

dz — 222 4 3

: 201 dfo | dh @2)_53<& W f0@3).
0

fo hf R h

o np

In order to finish the proof of Theorem [I.7, we note that a generic
degree 2 foliation of CP(2) has length 3, i.e. is not transversely projec-
tive. Actually, this is a well known fact. For instance, it immediately
follows from Corollary and the fact that a generic degree d > 2 fo-
liation on CP(2) has no invariant algebraic curve. An explicit example
is given in Section [£.2]

Remark 4.1. If F is a foliation of CP(2) given by a 1-form of the
type w = w, + w1 + for1(xdy — ydx) then, for generic w as above,
Tang(F, £) is a rational curve and an argument similar to the one used
above implies that F also satisfies [(F) < 3.
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4.2. The examples of Jouanolou. In [I1}, Jouanolou exhibited the
first examples of holomorphic foliations of the projective plane without
algebraic invariant curves. His examples, one for each degree greater
than or equal to 2, are the foliations of CP(2) induced by the homoge-
neous 1-forms in C?

de dy dz
Qu=det | =z y =z
yl 24 gl

The automorphism group of the foliation J;, induced by €24, is iso-
morphic to a semi-direct product of Z/(d* + d + 1)Z with Z/37Z and is
generated by the transformations ¢q(z : y : 2) = (6% x : 6% : 0z) and
p(x:y:z)=(y:z:x), where d is a primitive (d*> + d + 1) root of
the unity.

In [I4] it is observed that the foliations J; can be presented in a
different way. If F, is the degree 2 foliation of CP(2) induced by the
1-form

dx dy dz
wg = det x Yy < )
r(—z+dy) y(—y+dz) z(—z+dz)

and ¢4 : CP(2) --» CP(2) is the rational map(of degree d* + d + 1)
given by
A+l | . d+1 d+1

da(x:y:2)=(y z:2 i xt e y)

then the foliation 7; is the pull-back of the foliation F; under ¢y, i.e.,
Ja = ¢3Fa. Conversely we can say that Fy is birationally equivalent
to the quotient of J; by the group generated by .

From the results of the previous section it follows that F; has length
at most 3. Pulling-back a Godbillon-Vey sequence by ¢4 we obtain
that the length of 7, is also bounded by 3 and since it does not admit
invariant algebraic curves its length is precisely 3. We have therefore
proved the

Corollary 4.2. The foliations Jy, for every d > 2, have length 3.
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4.3. A new component of the space of foliations on CP(3). We
start by considering the transversely projective foliation on CP(2) given
in the affine chart {(z,y)} = C* C CP(2) by the 1-form

w = zdy — ydx + Pydx + Q2dy + Ro(zdy — ydx) .

where P, ()2, Ry are generic homogeneous polynomials of degree 2.
This is a degree 2 foliation of CP(2) transverse to the Hopf fibration
x/y = const outside three distinct lines. Let us consider the homoge-
nization €23 of w in the coordinates (z,y, z) of C3:

Q3 = 2% (xdy — ydz) + 2(Padx + Qady) + Re(xdy — ydz) — Radz,

where R3(z,y) = P, + yQ2. The genericity condition on P, Q2, Rs
implies that df23 has only one zero on C? which is isolated and located
at the origin. Of course, (23 defines a transversely projective foliation
of C* € CP(3). We will twist this foliation by a polynomial automor-
phism of C3. More precisely, if o(z,y, 2) = (z,y, 2 + 2?) then

Q= O'*Qg = Qg +Q4+Q5 with

Q3 = 2X(xdy — ydz) + z(Padx + Qady) + Ro(xdy — ydx) — Rydz
QU = 2z2%(ady — ydz) + 23 (Padx 4+ Q2dy) — 2z Rydx
Qs = 2*(xdy — ydo)

The 1-form  defines a degree 4 foliation on CP(3) which is transverse
to the Hopf fibration(induced by the Euler vector field $% + ya% + Z%)

outside the union of the four hyperplanes Q(E) = z*R3(z,y) = 0. If
P, Q)s, Ry are generic, then these four hyperplanes are distinct.

Let F’ be a foliation of degree 4 close to Fq: F’ is given in the affine
chart C3 by a polynomial 1-form

Q =Q0+ Q)+ Q5+ Q5 + Q) + Q5

where the €2}, are homogeneous of degree k and Q25(E) = 0.

After normalization, we can suppose that the coefficients of Q' are
close to those of 2. Since df23 has an isolated singularity at 0, there
exists (see [2]) a point 0" where the 2-jet of €' is zero, and the Euler
vector field centered at 0 is in the kernel of the 3-jet. Therefore, after
translating 0’ to 0, we can suppose that F is given by

Q =Q5+Q, 4+ Q5.

We verify that Q' is transversely projective (with poles contained in
Q(FE)). In fact, since F is not transversely affine, the same holds for
F'. Therefore every element F’ of the component of F(3,4) containing
F is actually transversely projective.
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4.4. Transversely projective foliations that are not pull-back.

Example 4.3 (Example 8.6 of [9]). Let I" be discrete torsion free sub-
group of PSL(2,R)™ such that the quotient PSL(2,R)"/T" is compact.
For n > 2, there exists examples such that the projection 7(I") on the
first factor is a dense subgroup of PSL(2,R) (see [I]). The action of I'
on H", the n product of the upper half-plane, is free, cocompact and
preserves the regular foliation induced by the projection on the first
factor. In this way, we obtain a regular transversely projective foli-
ation F on a n-dimensional compact complex manifold M such that
every leaf is dense and the generic leaf is biholomorphic to H"~!. Ob-
serve that F is not the pull-back of a foliation on a lower dimensional
manifold, otherwise there would exist compact subvarieties in H"!.

Example 4.4 (Hilbert Modular Foliations). Let K be a totally real
number field of degree n > 2 over the rational numbers Q and let Oy
be the ring of integers of K. The group I' = PSL(2,Ok) is dense in
PSL(2,R), but considering the n embeddings i o o : K < R given by
the action o € Gal(K/Q), we get an embedding I' — PSL(2,R)" as a
discrete subgroup of the product. The quotient of H", the n-product
of the upper-half plane H, by I' is a quasiprojective variety V' which
can be singular due to torsion elements of I'. One can compactify and
desingularize V' and obtain a projective manifold M. The n fibrations
on H" given by the projections on each of the factors induce n foliations
on M which are regular and pair-wise transversal outside the invariant
hypersurfaces coming from the compactification and desingularization
of V. By construction, they are transversely projective and all leaves
apart from the invariant hypersurface above are dense in M. In [2]]
and [15], some basic properties of these foliations are described.

When K = Q(v/5), the resulting variety is birationally equivalent
to the projective plane. In [I5] explicit equations for the foliations
associated to the two projections H? — H, denoted by F, and F3, are
determined. We give below an explicit projective triple for them. The
corresponding suspensions Hs and Hjz defined by

QO =dz+ wy + 2wy + 22w

can be seen as singular foliations on CP(2) x CP(1) or equivalently on
CP(3). Although the leaves of F; are dense, we note that the same is
not true for Hy since the monodromy lie in PSL(2,R).
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Theorem 4.5. The explicit suspensions Hy and Hs above are not the
meromorphic pull-back of a foliation on a surface.

Proof. Suppose that there exists a foliation H, on a surface S and a
meromorphic map ¢ : CP(2) x CP(1) --» S such that ®*H,, = Hs.

Let U C CP(2) x CP(1) be the Zariski open subset where & is
holomorphic and Uy = U N (CP(2) x {0}). After blowing-up S, one
can assume ®(Up) having codimension < 1. The generic rank of &
restricted to Uy = U N (CP(2) x {0}) is 2, otherwise we are in one of
the following contradicting situations

(1) The closure of ®(Uy) is a proper submanifold of S non-invariant
by H,. In particular F, is the pull-back of a foliation of a
foliation on a curve and is transversely euclidean; contradiction.

(2) The closure of ®(M,) is a proper submanifold of S invariant by
H, (and not contained in the singular set of H,). Reasoning
in local coordinates at the neighborhood of a generic point p €
O (Uy), we see that CP(2) x {0} is invariant by Hs obtaining a
contradiction.

We conclude therefore that @, is dominant and H, = ®,F» has dense
leaves (in fact all but finitely many). Therefore, the same density prop-
erty holds for the pull-back Hy = ®*H, providing a contradiction: the
Riccati foliation Hy has no dense leaf since its monodromy is contained
in PSL(2,R). This proves the Theorem. O

5. INTEGRABLE 1-FORMS IN POSITIVE CHARACTERISTIC

Due to the algebraic nature of many of the arguments used through
this paper it is natural to ask if it would be possible carry on a similar
study for integrable 1-forms on varieties defined over fields of positive
characteristic.

The surprising fact, at least for us, is that over fields of positive
characteristic every 1-form admits a Godbillon-Vey sequence of length
one. In the case of 1-forms on the projective plane this is already
implicitly proved in [17].

Our argument is based on the following

Lemma 5.1. Let M be a m-dimensional smooth projective variety de-
fined over an arbitrary field. If w is an integrable rational 1-form then
there exists m — 1 rationally independent vector fields X1, ..., X1
such that

(1) [Xi, X;] =0 for everyi,jel,....,m—1;

(2) w(X;) =0 for everyiel,...,m—1.
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Proof. Let f1,..., fm—1 € k(M) be rational functions such that
WAdfy AN+ Ndfn1 #0.

If w, =w and w; =df;, fori =1...m — 1 then {w;}; form a basis of
the k(M )-vector space of rational 1-forms over M.

Let {X;}", be a basis of the space of rational vector fields on M
dual to {w;}72,, i.e., wi(X;) = 0;;. It is clear that w(X;) = 0 for every
i=1...m—1. We claim that [X;, X;| =0 for everyi,j =1...m— 1.
It is sufficient to show that

(22) wi([Xi, X;]) =0 forevery k=1...m

For k£ = m the integrability of w implies that holds. For k <m
we have that

wr([Xi, X)) = Xi(wr(X;)) — Xj(wi(Xi)) + dwi (X3, Xj) =
= Xi(Okj) — X;(0ri) + & (X5, X;) = 0.

This shows that holds for every £ = 1...m and concludes the
proof of the lemma. O

Theorem 5.2. Let M be a smooth projective variety defined over a
field K of characteristic p > 0 and w be a rational 1-form. If w is inte-
grable then w admits an "integrating factor”, i.e., there exist a rational
function F € K(M) such that Fw is closed. Equivalently we have that

dF

dw=wAN —.

F
Proof. Let m be the dimension of M and X;,..., X,,_1 be the rational
vector fields given by lemma [5.1 We will distinguish two cases:

(1) for every i = 1...m — 1 we have that w(X?) =0
(2) there exists i € {1,...,m — 1} such that w(X}) # 0

Let F be the unique saturated subsheaf of the tangent sheaf of M
which coincides with the kernel of w over the generic point of M. The
integrability of w implies that F is involutive. If we are in the case (1)
then we have also that F is p-closed. From [16, propositions 1.7 and
1.9, p. 55-56] it follows that w = gdf where g, f € k(M).

In case (2) we can suppose that w(X?) # 0. If F = w(X?)™! then

d(Fw) = Fw A Lxr(Fw).

To conclude we have just to prove that Lyr(Fw) = 0. In fact since
Fw(X?) =1 it follows that

fo(Fu)) = Zde(Fu}) .
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Moreover for every i = 1...m — 1 we have that [X7, X;] = 0, since X,
commutes with X;, and therefore

ixpd(Fw)(X;) = Fw([XT, Xi]) = X7 (Fw(Xi)) + Xi(Fw(X7)) = 0.

This is sufficient to show that Lxr(Fw) = 0 concluding the proof of
the Theorem. O

As a corollary we obtain a codimension one version of the main result
of [17].

Corollary 5.3. Let w be a polynomial integrable 1-form on AJ, where
k is a field of positive characteristic. If dw # 0 then there exists an
wrreducible algebraic hypersurface H such that i*w = 0, where i : H —
A} denotes the inclusion.

Proof. Of course w can be interpreted as rational 1-form over P} which
is regular over A?. From Theorem [5.2] there exists a rational function
F € k(xq,...,x,) such that

dF
dw =w A Tl
Since dw #= 0 we have that dF' # 0, i.e., F' is not a p-th power. In
particular the polar set of dF/F is not empty. It is an easy exercise
to show that every irreducible component H of the polar set of dF'/F

satisfies i*w = 0, where ¢ : H — A} denotes the inclusion O
In fact the same proof as above yields the stronger

Corollary 5.4. Let w be a reqular integrable 1-form over a smooth
quasiprojective algebraic variety M defined over k, a field of positive
characteristic. Suppose that H°(M,0%,) = k*. If dw # 0 then there
exists an irreducible algebraic hypersurface H such that i*w = 0, where
1: H — M denotes the inclusion.

Observe that the result above can be applied to projective varieties
since there exists such varieties with global regular 1-forms which are
not closed, see [16].
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