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Abstract

In this work we consider the Cauchy problem associated to dissipative
perturbations of infinite dimensional Hamiltonian systems. we describe
abstract conditions under which the problem is locally and globally well
posed. Moreover we establish the existence of global attractor. Finally
we present several applications of the theory.

1 Introduction.

In this paper we consider the Cauchy problem for dissipative perturbations of
Hamiltonian systems. More precisely, we are interested in the properties of the
solutions to problems of the form

{
∂tu = −µAu + JΦ′ (u) + f ∈ X
u (0) = u0 ∈ H,

(1)

where µ > 0, H and X are reflexive Banach, spaces, u : [0, T ] −→ H for some
T > 0, A : D (A) ⊂ X −→ X is a linear operator, (−µAu) is the damping
term, Φ′ denotes the Gateaux (i.e. directional) derivative of the real valued
functional Φ, called the Hamiltonian of the system1, J is a skewsymmetric
operator and f is a time independent external excitation. See [8]. A very large
variety of problems arising in physics and engineering may be written as in (1),
that is, as dissipative perturbations of conservative equations. Among these one
finds nonlocal dispersive wave equations, the Ott-Sudan equation, the damped,
modified Korteweg-de Vries equation, the damped Benjamin-Ono equation and
dispersive nonlinear Schrödinger equations.

Our purpose here is to study the existence of global attractors associated
to such problems. This work is organized as follows. In section 2 we discuss
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local and global well-posedness for (1). Section 3 deals with the existence of
bounded absorbing sets and global attractors. Finally, in Section 4, we present
applications, including some that, as far as we know, are new in the case of
nonlocal equations.

We will use the following notations throughout this work. If X,Y, H...
are Banach spaces, we denote their norms by ‖·‖X , ‖·‖Y , ‖·‖H and so on.
B (Y, X)denotes the set of all bounded operators from Y into X. In case X = Y
we write simply B (X). If Y is densely and continuously embedded in X we
write Y ↪→ X. If O ⊂ Y is an open set, the symbols F ∈ C (O, X) means that
F is a continuous function from O into X. Furthermore, F ′ (y) ∈ B (Y, X) rep-
resents the Gateaux (i.e. directional) derivative of F at y ∈ O. Recall that if
X = R then F ′ (y) ∈ Y ∗. Finally we will use 〈·, ·〉 to denote the duality pairing
associated to any of the Banach spaces involved. No confusion will arise from
this.

We say that (1) is locally well-posed (in time) if
(i) ∃T > 0 and u ∈ C

(
[0, T ],H

)
such that u(0) = u0 and the partial differential

equation is satisfied with the time derivative computed with respect to norm of
X;
(ii) The map u0 7→ u is continuous with respect to appropriate topologies (see
Theorem 9 for a precise definition).

Note that our definition include the notion of persistence, that is, the solution
remains in H. This is a non-trivial requirement (see [10], [6] and the references
there in)
If the (i) and (ii) hold for all T > 0 we say that the problem is globally well-
posed.

2 The Cauchy Problem.

We begin discussing local well-posedness for a slightly more general problem.
Let H and X be as in the introduction, and consider

{
∂tu = −µAu + F (u) + f ∈ X
u (0) = u0 ∈ H.

(2)

We assume that
(A1) H ↪→ X, (so that we have the dual inclusion X∗ ↪→ H∗ with X∗ dense in
H∗).
(A2) F : H −→ X is continuous, F (0) = 0 and the following Lipchtz condition
is satisfied

‖F (v)− F (w)‖X ≤ γo (‖v‖H , ‖w‖H) ‖v − w‖H (3)

for all v, w ∈ H, where γo : IR2
+ → IR+ nondecreasing with respect to each of

its arguments.
(A3) (−A) , generates a C0 semigroup in X, so that (−µA), µ > 0, has the
same propriety.
(A4) If h ∈ H then exp (−µtA) h also belongs to H and the map t ∈ [0,∞) 7−→
exp (−µtA)h is continuous in the topology of H.
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(A5) exp (−µtA) ∈ B (X, H) for all t > 0, and satisfies the estimate

‖exp (−µtA) x‖H ≤ g (t) ‖x‖X (4)

for all x ∈ X where g ∈ L1
loc ([0,∞)).

(A6) The map t ∈ (0,∞) 7−→ exp (−µtA)x is continuous in the topology of H.
(A7) f : [0,∞) −→ X is continuous.

Example 1. The above properties are satisfied with A = ∂2
x, X = Hs (R) and

H = Hs+λ (R) , s ∈ R, λ ∈ [0, 2). In this case (4) takes the form

∥∥exp
(−µt∂2

x

)
ϕ
∥∥

s+λ
≤ Kλ

[
1 +

(
1

2µt

)λ
] 1

2

‖ϕ‖s , (5)

for all ϕ ∈ Hs (R) . For a proof see [3] or[5].

Under assumptions (A1)-(A7) we have the following results. Since they are
abstractions of some of the well-posedness results for various equations ocurring
in the litereature, we present only a brief sketch of their proofs (See [10] and
[5]).

Proposition 2. Problem (2) is equivalent to the integral equation

u (t) = exp (−µtA) u0 +
∫ t

0

exp (−µ (t− t′)A) (F (u (t′)) + f (t′)) dt′. (6)

More precisely, if u ∈ C ([0, T ] ,H) is a solution of (2), then u satisfies (6).
Conversely, if u ∈ C ([0, T ] ,H) satisfiies (6) then u (0) = u0, u ∈ C1 ([0, T ] , X)
and satisfies the differential equation in (2).

Theorem 3. Let µ > 0 be fixed and assume that (A1)-(A7) are satisfied. Then
problem (2) is locally well posed in the sense described in the introduction.

Proof. We will show that we can choose T > 0 suffiently small so that the map

(Ψv) (t) = exp (−µtA)u0 +
∫ t

0

exp (−µ (t− t′)A) (F (v (t′)) + f (t′)) dt′. (7)

is a contaction in the complete metric space (Ξ (T ) , d) defined by

Ξ (T ) = {v ∈ C ([0, T ] ,H) ‖v (t)− exp (−µtA) u0‖ ≤ M} (8)
d (v, w) = sup

[0,T ]

‖v (t)− w (t)‖H ,

where M > 0 a fixed constant. It is easy to see that if v ∈ Ξ (T ) then Φv ∈
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C ([0, T ] ,H) for any T > 0. Next note that

‖(Ψv) (t)− exp (−µtA)u0‖H

≤
∫ t

0

‖exp (−µ (t− t′)A) (F (v (t′)) + f)‖H dt′

≤
∫ t

0

g (t− t′) (‖F (v (t′))‖X + ‖f (t′)‖X) dt′ (9)

≤
∫ t

0

g (t− t′) [γo (‖v (t′)‖H , 0) ‖v (t′)‖H + ‖f (t′)‖X ] dt′.

‖v (t′)‖X ≤ ‖v (t′)− exp (−µtA) u0‖X + ‖u0‖X

≤ M + ‖exp (−µtA) u0‖X (10)
≤ M + ‖uo‖H , for all t ∈ [0, T ] .

Therefore

‖(Ψv) (t)− exp (−µtA)u0‖H ≤ Θ(M,u0, f)
∫ T

0

g (t− t′) dt′,

for all t ∈ [0, T ]
(11)

where

Θ (M, u0, f) =

[
γo (M + ‖u0‖X , 0) (M + ‖u0‖X) + sup

[0,T ]

‖f (t′)‖X

]
. (12)

Since the right hand side of this inequality approaches zero as T tends to zero,
we may choose T > 0, sufficiently small, such that

‖(Ψv) (t)− exp (−µtA)u0‖H ≤ M for all t ∈ [0, T ] and v ∈ Ξ (T ) . (13)

A similar computation shows that we can choose T > 0, small enough so that

d (Ψv, Ψw) ≤ αd (v, w) , for all v, w ∈ Ξ (T ) , (14)

with α ∈ (0, 1). Banach’s fixed point theorem implies existence and uniqueness
in Ξ (T ). Uniqueness and continuous dependence in C ([0, T ] ,H) follow from
standard arguments. (See [2], [7]and [4] for example.)

Following Kato ([8]), we now assume that Φ and J satisfy
(H1) Φ ∈ C (H,R), Φ (0) = 0 and Φ′ ∈ C (H,H∗) .
(H2) J ∈ B (H∗, X) ∩ B (X∗,H) and is skew-symmetric in the following sense

〈Jx, h〉 = −〈x, Jh〉 , for all x ∈ X∗ and h ∈ H∗.

Assume also that
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(H3) There exists a continuous function γ : R2 −→ R, nondecreasing with
respect to each of its arguments, such that

‖Φ′ (v)− Φ′ (w)‖H∗ ≤ γ (‖v‖H , ‖w‖H) ‖v − w‖H , (15)

for all v, w ∈ H.
It follows that (A3) is satisfied with F (v) = JΦ′ (v) and Theorem 3 implies

the local well posedness of (1) at once.

Corollary 4. Assume (A1), (A3)-(A-7) and (H1)-(H3) (so that (A2) is auto-
matically satisfied). Then (1) is locally well posed in the sense described in the
introduction.

Remark 5. Under appropriate condition it is possible to take the limit as µ →
0+ and construct a solution of (1) with µ = 0. Since this is not relevant for our
proposes in this work we omit such results. (See Chapter 6 of [10] case of the
generalized KdV equation is considered.)

Next we discuss an abstract regularity result. To do this we introduce further
assumptions. Let V be a real Banach space such that V ↪→ H and

(R1) exp (−µtA) ∈ B (X,V ) for all t > 0 and satisfies an estimate of the
form

‖exp (−µtA) x‖V ≤ g̃ (t) ‖x‖X (16)

for all x ∈ X where g̃ ∈ L1
loc ([0,∞)).

(R2) The map t ∈ (0,∞) 7−→ exp (−µtA) is continuous for each fixed x ∈ X.

Theorem 6. Assume that (A1)-(A7) and (R1), (R2) are satisfied. Then the
solution constructed in Theorem 3 satisfies

u ∈ C ((0, T ] , V ) ∩ C1 ([0, T ] , X) . (17)

Moreover, if F maps V into H and A ∈ B (V, H) , then

∂tu ∈ C1 ((0, T ],H) . (18)

Proof. We already know that u ∈ C1 ([0, T ] , X) , and it is easy to verify that,
under the present assumptions, (6) implies u ∈ C ((0, T ] , V ). An argument
similar to the one employed in the proof that a solution of (6) is differentiable
in the X topology, implies our last statement.

This result implies at once the following corollary.

Corollary 7. Assume that the hypothesis of Corollary 4 are satisfied and as-
sume further that Φ′ ∈ C (V,X) and J ∈ B (X∗,H). Then the solution of (1)
obtained in Corollary 4 satisfies

u ∈ C ([0, T ] , X)∩C ((0, T ] , V )∩C1 ([0, T ] , X) and ∂tu ∈ C1 ((0, T ],H) . (19)
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Now we turn to global well posedness. Assume that
(G1) There exists a real, bilinear map [·, ·] : H ×X −→ R that defines a real
inner product in H and satisfies the estimate

‖h‖2X ≤ C [h, h] , for all h ∈ H, (20)

and
[h,Ah] ≥ 0 for all h ∈ H ( A is dissipative in H). (21)

(G2) Let Y be the completion of H with respect to [·, ·], we write ‖y‖2Y = [y, y],
y ∈ H, its easy to see that H ⊂ Y ⊂ X continuously and densely.

(G3) 〈h, y〉HH∗ = [y, h], y ∈ Y ,h ∈ H.

(G4) Φ(u) ≤ C11 ‖u‖2H + C21 ‖u‖p1
Y ‖u‖q1

H , 0 ≤ p1, 0 ≤ q1 < 2 and u ∈ H.

(G5) Φ(u) ≥ C12 ‖u‖2H − C22 ‖u‖2Y − C32 ‖u‖p2
Y ‖u‖q2

H , 0 ≤ p2, 0 ≤ q2 < 2 and
u ∈ H.

(G6) [u, J Φ′(u)] ≤ C13 ‖u‖2Y + C23 ‖u‖p3
Y

∥∥A1/2 u
∥∥q3

Y
, 0 ≤ p3 < (2 − q3),

0 ≤ q3 < 2 and u ∈ H.

(G7) −[Φ′(u), Au] ≤ −C14‖u‖2V + C24‖u‖p4
H ‖u‖q4

V + C34‖u‖p5
H ‖u‖q5

Y ,
0 ≤ p4 < (2− q4), 0 ≤ q4 < 2, 0 ≤ p5 < 2, 0 ≤ q5 and u ∈ V .

(G8) [Φ′(u), f ] ≤ C15‖u‖2H + C25‖f‖2H + C35‖f‖p6
V ‖u‖q6

Y ‖u‖r6
H 0 ≤ p6, 0 ≤ q6,

0 ≤ r6 < 2, u ∈ H and f ∈ V .

(G9) There exists a constant C16 > 0 such that

‖J φ‖X ≤ C16

∥∥∥A1/2φ
∥∥∥

H
, ∀φ ∈ H.

Theorem 8. Suppose that the hypotheses of Corollary 7, conditions (G1)-(G8)
are satisfied. Then if uo ∈ H, there exists a unique u ∈ C([0, +∞),H) ∩
C((0, +∞), V ) such that u(0) = uo, ∂tu ∈ C([0, +∞), X) ∩ C((0,+∞),H) and
(2) is satisfied.

Proof. From

∂t u = −µAu + JΦ′(u) + f, t > 0, u(t) ∈ V, ∂tu ∈ H
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∂tΦ(u) =< ut,Φ′(u) >HH∗=
[
Φ′(u), ut

]

=
[
Φ′(u),−µAu + JΦ′(u) + f

]

= −µ
[
Φ′(u), Au

]
+

[
Φ′(u), JΦ′(u)

]
+

[
Φ′(u), f

]

≤ µ

[
− C11||u||2V + C21||u||p4

Y ||u||q4
V + C31||u||p5

H ||u||q5
Y

]
+

+
[
Φ′(u), JΦ′(u)] + [Φ′(u), f ]

Since J ∈ B(H∗, X) ∩B(X∗,H), Φ′ ∈ C(V,X∗) and

< Jx, y >HH∗= − < x, Jy >X∗X , for all x ∈ X∗, and y ∈ H∗

then
[
Φ′(u), JΦ′(u)

]
= 0. Hence

∂tΦ(u) ≤
[
− C11||u||2V + C21||u||p4

Y ||u||q4
V + C31||u||p5

H ||u||q5
Y

]
+

C41||u||H ||f ||H + C51||f ||p6
Y ||u||q6

Y ||u||r6
H .

(22)

For t > 0 we have

1
2

d
dt ||u||2Y = [ut, u] =

[− µAu + JΦ′(u) + f, u
]

= −µ[u, Au] + [u, JΦ′(u)] + [f, u]

= −µ||A1/2u||2Y + C12||u||2Y + C22||u||p3
Y ||A1/2u||q3

Y + ||f ||Y ||u||Y
Since q3 < 2 we obtain

d

dt
||u||2Y ≤ C13||u||2Y + C23(µ) + ||f ||2Y

Then
||u(t)||Y ≤ C(µ, ||uo||, ||f ||Y , t) (23)

The a priori estimates follows from (22) and (23)

Theorem 9. Under the hypotheses of Theorem 8 and condition (G9), for any
T > 0 the map

Λ: H → C([0, T ];H)
uo 7→ u

is continuous.

Proof. Let u, v be solutions of the equation (2) with u(0) = u0 and v(0) = v0.
Define w = u− v, thus w satisfies the equation

∂t w + µA w + J (Φ′(u)− Φ′(v)) = 0
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Moreover

1
2

d
dt ‖w‖2H = (w, wt)H

= (w,−µAw + J (Φ′(u)− Φ′(v)))H

= −
∥∥A1/2w

∥∥2

H
+ (w, J (Φ′(u)− Φ′(v)))H

≤ −
∥∥A1/2w

∥∥2

H
− 〈Jw, Φ′(u)− Φ′(v)〉

≤ −
∥∥A1/2w

∥∥2

H
+ ‖Φ′(u)− Φ′(v)‖H∗ ‖Jw‖X

≤ −
∥∥A1/2w

∥∥2

H
+ γ(‖u‖H , ‖v‖H) ‖Jw‖X ‖w‖H

≤ −
∥∥A1/2w

∥∥2

H
+ γ(sup

[0,t]

‖w‖H , sup
[0,T ]

‖v‖H) ‖Jw‖X ‖w‖H

≤ −
∥∥A1/2w

∥∥2

H
+ C1(µ, T, ‖u0‖H , ‖v0‖H , ‖f‖H) ‖Jw‖X ‖w‖H

Using condition (G9), it follows that

1
2

d

dt
‖w‖2H ≤ C3(µ, T, ‖u0‖H , ‖v0‖H , ‖f‖H) ‖w‖2H

the theorem follows from Gronwall’s inequality.

3 The Global Attractor.

We now introduce the following conditions
(G10) Exists a constant C17 > 0 such that

∥∥∥A1/2φ
∥∥∥

2

Y
≥ C17 ‖φ‖2Y , ∀φ ∈ H

(G11) There are a constants 0 < θo < 1, C18 > 0 such that

‖φ‖H ≤ C18 ‖φ‖θ0
Y ‖φ‖1−θ0

V , ∀φ ∈ H

Proposition 10. Assume that the hypotheses of Theorem (8) and condition
(G10) are satisfied. Let the solution operator {S(t)}t≥0 in H associated with
the equation (2). If f ∈ V there exist a constant ρ0 = ρ0(µ, ||f ||V ) such that for
every R > 0 there exist T (R) such that

||S(t)uo||Y ≤ ρ0, ∀uo ∈ H, ||uo||Y ≤ R, ∀t ≥ T (R). (24)
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Proof. We start with

1
2

d
dt ||u(t)||2Y = −µ [u,Au] + [u, JΦ′(u)] + [f, u]

≤ −µ
∥∥A1/2u

∥∥2

Y
+ C13‖u‖2Y + C23‖u‖p3

Y

∥∥A1/2u
∥∥q3

Y
+ [f, u] .

(25)

Since q3 < 3 and for θ > 0

−θ
∥∥∥A1/2u

∥∥∥
2

Y
+ C23‖u‖p3

Y

∥∥∥A1/2u
∥∥∥

q3

Y
≤ C(θ)‖u‖

2p3
2−q3
Y .

Then if 0 < θ < µ, we obtain

1
2

d

dt
‖u(t)‖2Y ≤ −(µ−θ)

∥∥∥A1/2u
∥∥∥

2

Y
−θ

∥∥∥A1/2u
∥∥∥

2

Y
+C13‖u‖2Y +C23‖u‖p3

Y

∥∥∥A1/2u
∥∥∥

q3

Y
+[f, u]

For α, β positive constant, it follows that

1
2

d

dt
‖u(t)‖2Y + (C17(µ− θ)− C13 − α− β) ‖u‖2Y ≤ C(θ, α) +

1
β
‖f‖2Y

Choose µ, θ, α and β so that

C17(µ− θ)− C13 − α− β > 0.

This implies the existence of absorbing set in Y .

Lemma 11. Assume that the hypotheses of proposition (10) and condition
(G11) are satisfied. Then exists absorbing set B in H.

Proof. From

1
2

d
dt Φ(u(t)) + µ Φ(u(t)) = µ

{
Φ(u)− [Φ′(u), Au]

}
+ [Φ′(u), f ]

≤ µ
{

C11‖u‖2H + C21‖u‖p1
Y ‖u‖q1

H − C14‖u‖2V +

C24‖u‖p4
Y ‖u‖q4

V C34‖u‖p5
H ‖u‖q5

Y }+ C15‖u‖2H+

C25‖f‖2H + C35‖f‖p6
Y ‖u‖q6

Y ‖u‖r6
H .

(26)
The lemma follows due to conditions (G4), (G11), (24) and the assumptions

on q1, q4, p5, q5, q6 and r6 are < 2.

Let {S(t)}t≥0 denote the solution operator associated with (2) defined in
H. It is a semigroup of continuous (nonlinear) operators in H, i.e. {S(t)}t≥0

satisfies
{

S(t + s) = S(t) ◦ S(s), ∀t, s ≥ 0,
S(0) = I,

(27)
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and S(t) is a continuous (nonlinear) operator from H into itself for any t ≥ 0.
We now introduce the following conditions:
(W1) Φ′ ∈ Cw (H, H∗) (is weakly continuous in the sense that if {uj}j ⊂ H
and uj ⇀ u in H, then Φ′(uj) ⇀ Φ′(u) in H∗). 2

Theorem 12. Assume that the hypotheses of Theorem (8) and condition (W1).
Then S(t) is weakly continuous in H for each t ≥ 0.

Proof. Let φ, {φn}n, n ∈ ZZ+ belong to H and suppose that φn ⇀ φ. Let T > 0
and R > 0 be such that ‖φ‖H ≤ R and ‖φn‖H ≤ R for all n ∈ IN .
Let the complete metric space (Ξ(T, ψ), d) defined by

Ξ(T, ψ) = {v ∈ C ([0, T ], H) : ‖v(t)− exp(−µtA)ψ‖H ≤ M, ∀t ∈ [0, T ]}

d(v, w) = sup
[0, T ]

‖v(t)− w(t)‖H

(28)
where M > 0 is a fixed constant. Let the map

(Ψ(ψ, v)) (t) = exp(−µtA)ψ +

t∫

0

exp (−µ(t− t′)A) (JΦ′(v(t′)) + f) dt′.

for ψ such that ‖ψ‖H ≤ R and v ∈ Ξ(T, ψ). We will show that we can choose
T > 0 sufficiently small so that the map Ψ(ψ, v) is a contraction in the complete
metric space (Ξ(T, ψ), d), where T is uniform in ψ with ‖ψ‖H ≤ R, i. e. T is
a constant depending only on R. Next note that

‖(Ψ(ψ, v)) (t)− exp (−µtA)ψ‖H

≤
∫ t

0

∥∥exp (−µ (t− t′) A)
[
J Φ′ (v(t′)) + f

]∥∥
H

dt′

≤
∫ t

0

g (t− t′) (‖J Φ′ (v (t′))‖X + ‖f‖X) dt′ (29)

≤
∫ t

0

g (t− t′) {γ (‖v (t′)‖H , 0) ‖v (t′)‖H + ‖f‖X} dt′.

‖v (t′)‖X ≤ ‖v(t′)‖H

≤ ‖v (t′)− exp (−µtA)ψ‖H + ‖exp (−µtA)ψ‖H (30)
≤ M + R,

for all t ∈ [0, T ].
Therefore

‖(Ψ(ψ, v)) (t)− exp (−µtA) ψ‖H ≤ Θ(M,R, f)
∫ T

0

g (s) ds, for all t ∈ [0, T ]

(31)
2⇀ denote weak convergence.
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where
Θ (M, ψ, f) = [γ (M + R, 0) (M + R) + ‖f‖X ] . (32)

Since the right hand side of this inequality approaches zero as T tends to zero,
we may choose T0 > 0, sufficiently small, such that

‖(Ψ(ψ, v)) (t)− exp (−µtA)ψ‖H ≤ M for all t ∈ [0, T0] and v ∈ Ξ (T0, ψ) .
(33)

Where T0 = T0 (M, R, f) only depends on M , R and ‖f‖X .
Now we will show that we can choose T0 > 0 uniformly in ψ, small enough so
that

d (Ψ(ψ, v),Ψ(ψ, w)) ≤ α d (v, w) , for all v, w ∈ Ξ (T0, ψ) , (34)

with α ∈ (0, 1).
Next note that

(Ψ(ψ, v2)) (t)− (Ψ(ψ, v1)) (t) =
t∫

0

exp (−µ(t− t′)A) J
[
Φ′ (v2(t′))− Φ′ (v1(t′))

]
dt′. (35)

Then

‖(Ψ(ψ, v2)) (t)− (Ψ(ψ, v1)) (t)‖H ≤ γ(M + R, M + R)




T0∫

0

g(s) ds


 d(v2, v1). (36)

for all v1, v2 in Ξ(ψ, T0) and ‖ψ‖H ≤ R.
Then exist T1 ≤ T0 such that, T1 = T1 (M, R, f) only depends on M , R and
‖f‖X , moreover

α = γ (M + R, M + R)

T1∫

0

g(s) ds < 1.

Note that α depends only on M and R so that this condition is independent of
ψ, with ‖ψ‖H < R. Then exits u ∈ C ([0, T1], H) solution to equation (1) with
u(0) = ψ and ‖ψ‖H ≤ R. By the uniqueness we obtain that

u = S(·)ψ = lim
k→+∞

Ψk(ψ, v), in Ξ (ψ, T1) .

uniformly in ψ with ‖ψ‖H ≤ R, where

Ψk(ψ, v) =





v, if k = 0

Ψ (ψ, Ψk−1(ψ, v)) , if k ≥ 1.

(37)
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Since J ∈ B(
H∗, X

)
and exp (−µτA) ∈ B(

X, H
)

for τ > 0, then the condition
(W1) implies the map

v(t′) 7→ G(t, t′) = exp (−µ(t− t′)A)
[
JΦ′ (v(t′)) + f

]

is weakly continuous in H, for each 0 ≤ t′ < t ≤ T1.
Given that (t, t′) 7→ G(t, t′) is continuous in H for 0 ≤ t′ < t ≤ T1 and

t′ 7→ χ[0, t] ‖G(t, t′)‖H is L1([0, T1]).

for each 0 < t ≤ T1, it follows that

t∫

0

exp (−µ(t− t′)A) (JΦ′(v(t′)) + f) dt′ (38)

is a Bochner integral. Hence, the weakly continuity the map

v 7→
t∫

0

exp (−µ(t− t′) A)
[
JΦ′ (v(t′)) + f

]
dt′. (39)

follows from the Dominated Convergence Theorem, for each t ∈ [0, T1].
We choose now v0(t) = (Ψ0(ψ, v0)) (t) = exp (−µtA) ψ, then the map

ψ 7→ Ψk(ψ, v0). (40)

is weakly continuous in H for each k ∈ IN .
On the other hand,

〈g, S(t)φn〉 − 〈g, S(t)φ〉 = 〈g, S(t)φn〉 − 〈g, (Ψk(φn, vn
0 )) (t)〉+

(41)
〈g, (Ψk(φn, vn

0 )) (t)〉 − 〈g, (Ψk(φ, v0))〉+ 〈g, (Ψk(φ, v0)) (t)〉 − 〈g, S(t)φ〉.
Where 〈·, ·〉 denote the duality pairing associated to (H∗, H), g ∈ H∗ and
vn
0 (t) = exp (−µtA)φn.

Notice that Ψk(φn, vn
0 ) → S(t)φn and Ψk(φ, v0) → S(t)φ, strongly in H and

uniformly in n, as k → +∞. Then for ε > 0 exist ko ∈ IN such that

|〈g, S(t)φn〉 − 〈g, (Ψk0(φn, vn
0 )) (t)〉| < ε

2
(42)

and |〈g, S(t)φ〉 − 〈g, (Ψk0(φ, v0)) (t)〉| < ε

2
, (43)

for all n ∈ IN .
Note also that Ψk0(φn, vn

0 ) ⇀ Ψk0(φ, v0), weakly in H, as n → +∞, then

lim sup
n→+∞

|〈g, S(t)φn〉 − 〈g, S(t)φ〉| ≤ ε for all ε > 0. (44)

Then S(t)φn ⇀ S(t)φ weakly in H, for each t ∈ [0, T1].
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If mT1 ≤ t < (m + 1) T1 for some m ∈ IN . Since

S(t)φ = S(T1) ◦ S(T1) ◦ · · · ◦ S(T1) ◦ S(r) φ

where r = t−mT1, the proof is complete.

We now introduce the following conditions:

(AS1) Φ = Φ0 + Φ1 such that Φ0 : H → IR+ is continuous, is bounded on
bounded subsets of H and if {uj}j is bounded in H, {tj} ⊂ IR+ with tj → +∞,
such that S(tj) uj ⇀ w weakly in H, S(tj) uj → w strongly in Y , and

lim sup
j→+∞

Φ0 (S(tj)uj) ≤ Φ0(w),

then
S(tj)uj → w strongly in H.

(AS2) Φ1 : H → IR is asymptotical weakly continuous in the sense that if {uj}j

is bounded in H, {tj} ⊂ IR+, tj → +∞, S(tj)uj ⇀ w weakly in H, then

Φ1 (S(tj)uj) → Φ1(w).

(AS3) K :
⋃

t>0
S(t)H → IR,

K(u) = [u, JΦ′(u)] + [f, u]

is asymptotically weakly continuous in the sense that if {uj}j∈N is bounded in
H, {tj}j∈N ⊂ IR+, tj → +∞, and S(tj)uj ⇀ w weakly in H, then

lim
j→∞

∫ t

0

e−µ(t−s) K(S(s + tj)uj) ds =
∫ t

0

e−µ(t−s) K(S(s)w) ds, ∀t > 0

where it is assumed that s 7→ K (S(s)u) belongs to L1(0, t), for each t > 0.
(AS4) L :

⋃
t>0

S(t)H → IR,

L(u) = µ
(
[u,Au]− ||u||2Y

)
.

is asymptotically weakly lower semi-continuous in the sense that if {uj}j∈N is
bounded in H, {tj}j∈N ⊂ IR+, tj → +∞, and S(tj)uj ⇀ w weakly in H, then

∫ t

0

e−µ(t−s) L(S(s)w) ds ≤ lim inf
j→∞

∫ t

0

e−µ(t−s) L(S(s + tj)uj) ds , ∀t > 0

where it is assumed that s 7→ L (S(s)u) belongs to L1(0, t), for each t > 0.
(AS5) G :

⋃
t>0

S(t)H → IR,
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G(u) =
[
Φ′(u), f

]

is asymptotically weakly continuous in the same sense of K.
(AS6) M :

⋃
t>0

S(t)H → IR,

M(u) = µ ([Φ′(u), Au]− Φ(u)) .

is asymptotically weakly lower semi-continuous in the same sense of L.
For a set B ⊂ H, we define its ω-limit set by ω(B) =

⋂
s≥0

⋃
t≥s

S(t)B. It is easy

to prove the following well known characterization of an ω-limit set:

w ∈ ω(B) ⇐⇒ ∃{wj}j∈N ⊂ B, ∃{tj}j∈N ⊂ IR+ such that

tj → +∞ and S(tj)wj → w in H.

A related concept is that of asymptotic compactness. One says that {S(t)}t≥0

is asymptotically compact in H if the following condition holds:

If {uj}j∈N ⊂ H is bounded and {tj}j∈N ⊂ IR+, tj → +∞

then {S(tj)uj}j∈N is precompact in H.
(45)

We can now proceed as in I. Moise, R. Rosa, and X. Wang.

Lemma 13. Let {S(t)}t≥0 be a semigroup of continuous (nonlinear) operators
in H such that u(t) = S(t)uo is the global solution to the equation (2), assume
that hypotheses of Theorem (12), the conditions (AS3) and (AS4) are satisfied.
It follows that if {un}n∈N is bounded in H and {S(t)un}n∈N ⊂ IR+, tn → +∞,
then S(tn′)un′ → w strongly in Y for some w ∈ H and some subsequence {n′}.
Proof. For t > 0

1
2

d
dt ||u||2Y = [ut, u] =

[− µAu + JΦ′(u) + f, u
]

= −µ[u, Au] + [u, JΦ′(u)] + [f, u].
(46)

Then
1
2

d

dt
||u||2Y + µ ||u||2Y + L(u) = K(u). (47)

Let then {un}n∈N ⊂ H be bounded and let {tn}n∈N ⊂ IR+, tn → +∞. Since
{S(tn)un}n∈N is bounded due to the existence of a bounded absorbing set B
and H is reflexive, it follows that

S(tn′)un′ ⇀ w weakly in H. (48)

for some w ∈ H. Similarly, {S(tn′ − T ) un′} has a weakly convergent subse-
quence for each T > 0,

{S(tn′ − T ) un′} ⇀ wT weakly in H, ∀T > 0 (49)
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with wT ∈ H. Note then by the weak continuity of S(T ) that

w = S(T )wT , ∀T > 0 (50)

Now, since the trajectories of {S(t)}t≥0 are continuous, integrating we obtain
the energy equation (47) from 0 to T with uo = S(tn′ − T )un′ that

||S(T )uo||2Y + 2
∫ T

0

e−2µ(T−τ) L(S(τ)uo) dτ =

||uo||2Y e−2µ T + 2
∫ T

0

e−2µ(T−τ) K(S(τ) uo) dτ, (51)

for all T > 0, for all tn′ > T . From (24) and the assumptions on K, we can take
the lim sup in (51) to find

lim sup
n′→+∞

||S(tn′)un′ ||2Y + 2
∫ T

0

e−2µ(T−τ) L(S(τ)wT ) dτ ≤

ρ2
o e−2µ T + 2

∫ T

0

e−2µ(T−τ) K(S(τ)wT ) dτ, (52)

for all T > 0.
Combining the energy equation, now with uo = wT , and (50) we obtain

||S(T )wT ||2Y + 2
∫ T

0

e−2µ(T−τ) L(S(τ)wT ) dτ =

||wT ||2Y e−2µT + 2
∫ T

0

e−2µ(T−τ) K(S(τ) wT ) dτ. (53)

Subtract (53) from (52) to find

lim sup
n′→+∞

||S(tn′) un′ ||2Y ≤ ||w||2Y + ρ2
o e−2µ T , ∀T > 0 (54)

By letting T → +∞ we see that

lim sup
n′→+∞

||S(tn′) un′ ||2Y ≤ ||w||2Y (55)

which, together with the weak convergence (48), implies, since Y is a Hilbert
space, the strong convergence

S(tn′) un′ → w, strongly in Y (56)

Theorem 14. Suppose that the assumptions of lemma (13) and conditions
(AS1), (AS2), (AS5) and (AS6) are satisfied. Then, the solution operator
{S(t)}t≥0, in H associated with equation (2) possesses a connected global at-
tractor in H, i.e., a compact (in H), connected, invariant set which attracts all
the orbits (in the H-metric) of the system, uniformly on bounded sets of initial
conditions.
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Proof. For t > 0.

∂tΦ(u) =< ut, Φ′(u) >HH∗=
[
Φ′(u), ut

]

=
[
Φ′(u),−µAu + JΦ′(u) + f

]

= −µ
[
Φ′(u), Au

]
+

[
Φ′(u), JΦ′(u)

]
+

[
Φ′(u), f

]
(57)

Then
∂tΦ(u) + µ Φ(u) + M(u) = G(u). (58)

Let {un}n∈N ⊂ H be bounded and let {tn}n∈N ⊂ IR+, tn → +∞. We need to
show that {S(tn)un}n∈N is precompact in H. Since {S(tn)un}n∈N is bounded
due to the existence of a bounded absorbing set B and the space H is reflexive,
it follows that

S(tn′)un′ ⇀ w weakly in H. (59)

for some w ∈ H. Similarly, {S(tn′ − T ) un′} has a weakly convergent subse-
quence for each T > 0,

{S(tn′ − T ) un′} ⇀ wT weakly in H, ∀T > 0 (60)

with wT ∈ H. Note then by the weakly continuity of S(T ) that

w = S(T )wT , ∀T > 0 (61)

Now, we repeat the arguments lemma above for Φ, we obtain by integration the
energy equation (58) from 0 to T with uo = S(tn′ − T ) un that

Φ (S(T )uo) + 2
∫ T

0

e−2µ(T−τ) M(S(τ)uo) dτ =

Φ (uo) e−2µ T + 2
∫ T

0

e−2µ(T−τ) G(S(τ)uo) dτ (62)

for all T > 0, for all tn′ > T .
Similarly for uo = wT :

Φ (S(T )wT ) + 2
∫ T

0

e−2µ(T−τ) M(S(τ)wT ) dτ =

Φ(wT ) e−2µT + 2
∫ T

0

e−2µ(T−τ) G(S(τ)wT ) dτ. (63)

By subtracting (63) from (62) and the assumptions on Φ1, G and M , taking the
limit as n′ goes to infinity, and using (60) and (61), we obtain

lim sup
n′→+∞

Φo (S(tn′)un′) ≤ Φo (w) + C e−2µ T , ∀T > 0 (64)

where C is a constant independent of T . By letting T go to infinity in (64) we
find that

lim sup
n′→+∞

Φo (S(tn′)un′) ≤ Φo (w) (65)
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This, together with the strongly convergence in Y (56) and assumption (AS1),
implies S(tn′) un′ converges strongly to w in H. This proves the asymptotic
compactness property of the solution operator and, hence, the existence of the
global attractor.

4 Applications.

In the sequel we will use the following notations and definition

Js = (1−∆)s/2 and Ds = (−∆)s/2 denote the Bessel and Riesz potentials of
order −s, respectively.

Hs(IR) = J−s L2(IR) whose norm will be denoted by ||f ||s =
∫

(Jsf)2 dx and
scalar product by (f, g) =

∫
Jsf Jsg dx where the integral is over IRn. In

particular, H0 = L2 (IRn).

We denote F f = f̂ and F−1 g = ǧ denote Fourier transform and Fourier
inverse transform of f , respectively. We will use these symbols in all
contexts were the transforms are defined.

4.1 A class of fifth order model evolution equations.

This application is concerned with the initial-value problem for fifth-order evo-
lution equation of the form

ut + µuxxx + α uxxxxx + β uuxxx + δ uxuxx + q (u2)x + r (u3)x =

ut +
[

µuxx + α uxxxx + β uuxx + γ u2
x + q u2 + r u3

]
x

= 0,
(66)

where δ = β + 2γ. Here, µ, α, β, δ, γ, q and r are constants, u = u(x, t) is a
real-valued function ( see [9]). In this work we study the existence of the global
attractor in the space phase Hs(IR) of a damped, forced fifth order evolution
equation of the form





ut +
[

µuxx + α uxxxx + β uuxx + β
2 u2

x + q u2 + r u3
]

x
+

ε
(
Dλu + u

)
= f.

(67)

where D =
(−∂2

x

)1/2 and real λ > 0. First we write the equation as the
perturbation of a Hamiltonian

∂tu = −εAu + JΦ′1 (u) + f. (68)

where
A = Dλ +

µ

ε
∂3

x +
α

ε
∂5

x, J = −∂x,
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Φ1(u) =

+∞∫

−∞

{
−β

2
uux +

q

3
u3 +

r

4
u4 +

ε

2
u2

}
dx

and
Φ′1(u) =

β

2
u2

x + β u uxx + q u2 + r u4 + ε u.

Set H = Hs(IR), X = Hs−5(IR) for s ≥ 2 and λ = 4. Then the properties
(A1), (A3)-(A7) and (H1) -(H3) are satisfied, so that problem (67) is locally
well possed in Hs(IR) for all s ≥ 2, i.e. exist T > 0 and a unique

u ∈ C
(
[0, T ],Hs(IR)

) ∩ C
(
(0, T ],H∞(IR)

)
such that ∂tu ∈ C

(
[0, T ],Hs−5

)

and satisfies (67). Moreover, if V = Hs+1(IR) the conditions (R1), (R2) are
satisfied and Φ′1 ∈ C (V, X), then exist T1 > 0 such that the solution of (67)
satisfies

u ∈ C
(
(0, T1],Hs+1(IR)

)∩C1
(
[0, T1], Hs−5(IR)

)
and ∂tu ∈ C

(
(0, T1],Hs(IR)

)
,

(69)
for all s ≥ 2.

Now we turn to global well posedness in H2(IR), we write the equation in
Hamiltonian form

ut = −ε Bu + J Φ′2(u) + f (70)

where
B = Dλ + 1, λ > 0, J = −∂x

and

Φ2(u) =

+∞∫

−∞

{
α

2
u2

xx −
µ

2
u2

x −
β

2
u u2 +

q

3
u3 +

r

4
u4

}
dx.

with
Φ′2(u) = µuxx + α uxxxx + β uuxx +

β

2
u2

x + q u2 + r u3.

We use two real reflexive Banach spaces X = H−3(IR), H = H2(IR), Y = L2(IR)

and V = H2+s(IR), for 0 < s < 2. Defining [f, g] =
+∞∫
−∞

f̂(ξ) ĝ(ξ) dξ, for all

f, g ∈ S(IR), then are satisfied the conditions (G1), (G2) and (G3). Moreover

Φ2(u) ≤
( |α|+ |µ|

2

)
‖u‖22 + C

(
β

2
‖u‖7/4

0 ‖u‖5/4
2 + |q| ‖u‖11/4

0 ‖u‖1/4
2 +

|r| ‖u‖7/2
0 ‖u‖1/2

2

)
,

(71)
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and for α > 0

Φ2(u) ≥ α

2
‖u‖22 + C

{
−1

4
(|µ|+ µ) ‖u‖0 ‖u‖2 −

1
4

(|α− µ|+ α− µ) ‖u‖20−
|β|
2
‖u‖7/4

0 ‖u‖5/4
2 − |q|

3
‖u‖11/4

0 ‖u‖1/4
2 − |r|

4
‖u‖7/2

0 ‖u‖1/2
2

}
.

(72)

Then Φ2 satisfies (G4) and (G5). Integrate by parts to obtain

+∞∫

−∞
u ∂xΦ2(u) dx = 0.

Then Φ2 satisfies the condition (G6).
The argument to show that Φ2 satisfies (G7) and (G8) is similar. Since

‖∂xφ‖−3 ≤ C
∥∥∥
(
1 + D4

)1/2
φ
∥∥∥

2
,

(G9) is satisfied. Moreover, conditions (G10) and (G11) are automatically sat-
isfied. Using the Theorems (8) and (9) exits unique solution u the problem (70)
such that

u ∈ C
(
[0, +∞), H2(IR)

) ∩ C
(
(0, +∞), H2+s(IR)

)
and

∂tu ∈ C
(
[0, +∞), H−3(IR)

) ∩ C
(
(0, +∞), H2(IR)

)
.

(73)

for 0 < s < 2. In particular, S(t)φ satisfies the following a-priori estimates.

Lemma 15. The solution operator {S(t)}t≥0 in H2(IR) associated with the
equation (67) satisfies

‖S(t)φ‖0 ≤ ‖φ‖0 e−εt +
‖f‖0

ε

(
1− e−εt

)
(74)

for all t ≥ 0, φ ∈ H2(IR) and f ∈ L2(IR). Moreover

d

dt
‖S(t)φ‖22 +

ε

2
‖S(t)φ‖24 ≤ C (β, q, r, ε)

(
‖S(t)φ‖30/7

0 + ‖S(t)φ‖22/3
0

)

+
8
ε
‖f‖22. (75)

for all t > 0, φ ∈ H2(IR) and f ∈ H2(IR).

Proof. Let S(t)φ = u. Multiply equation (67) by Bu = u + ∂4
x u and integrate

to obtain
+∞∫

−∞

(
u + ∂4

x u
)

ut dx = −ε

+∞∫

−∞

(
u + ∂4

x u
)2

dx−
+∞∫

−∞
∂4

x u ∂xΦ′2(u) dx

−
+∞∫

−∞
u ∂xΦ′2(u) dx +

+∞∫

−∞

(
u + ∂4

x u
)

f dx (76)
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Integrating by parts we get

d

dt
‖u‖20 + ε

+∞∫

−∞

(
u + ∂4

x u
)2

dx = −ε

+∞∫

−∞

(
u + ∂4

x u
)2

dx− 2

+∞∫

−∞
∂4

x u ∂xΦ′2(u) dx

+2
∫

u f + 2

+∞∫

−∞
∂2

x u ∂2
x f dx (77)

Another integration by parts in (77) gives

+∞∫

−∞
∂4

x u ∂xΦ′2(u) dx = β

+∞∫

−∞
u ∂2

x u ∂4
x u dx +

β

2

+∞∫

−∞
(∂xu)2 ∂4

x u dx

+ q

+∞∫

−∞
u2 ∂4

x u dx + r

+∞∫

−∞
u3 ∂4

x u dx (78)

Integrating by parts each of the terms on the right of (78), we obtain

+∞∫

−∞
u ∂2

x u ∂4
x u dx =

1
2

+∞∫

−∞

(
∂2

x u
)3

dx−
+∞∫

−∞
u

(
∂3

x u
)2

dx (79)

+∞∫

−∞
(∂xu)2 ∂4

x u dx =

+∞∫

−∞

(
∂2

x u
)3

dx (80)

+∞∫

−∞
u2 ∂4

x u dx = −2

+∞∫

−∞
(∂xu)2 ∂2

x u dx− 2

+∞∫

−∞
u

(
∂2

x u
)2

dx (81)

+∞∫

−∞
u3 ∂4

x u dx = 6
∫

u (∂xu)2 ∂2
x u + 3

+∞∫

−∞
u2

(
∂2

x u
)2

dx (82)
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Combining interpolation and Gagliardo-Nirenberg inequality in (79 - 82) obtain
∣∣∣∣∣∣

+∞∫

−∞

(
∂2

x u
)3

dx

∣∣∣∣∣∣
≤ C1 ‖u‖11/8

0 ‖u‖13/8
4 (83)

∣∣∣∣∣∣

+∞∫

−∞
u

(
∂3

x u
)2

dx

∣∣∣∣∣∣
≤ C2 ‖u‖11/8

0 ‖u‖13/8
4 (84)

∣∣∣∣∣∣

+∞∫

−∞
(∂xu)2 ∂2

x u dx

∣∣∣∣∣∣
≤ C3 ‖u‖15/8

0 ‖u‖9/8
4 (85)

∣∣∣∣∣∣

+∞∫

−∞
u

(
∂2

x u
)2

dx

∣∣∣∣∣∣
≤ C4 ‖u‖15/8

0 ‖u‖9/8
4 (86)

∣∣∣∣∣∣

+∞∫

−∞
u (∂xu)2 ∂2

x u dx

∣∣∣∣∣∣
≤ C5 ‖u‖22/8

0 ‖u‖10/8
4 (87)

∣∣∣∣∣∣

+∞∫

−∞
u2

(
∂2

x u
)2

dx

∣∣∣∣∣∣
≤ C6 ‖u‖11/4

0 ‖u‖5/4
4 . (88)

Using inequalities (83 - 88), (78) and Young’s inequality give us

d

dt
‖u‖22 + ε

+∞∫

−∞

(
u + ∂4

x u
)2

dx ≤ C (β, q, r, ε)
(
‖u‖30/7

0 + ‖u‖22/3
0

)

+
ε

2
‖u‖20 + ε

∥∥∂2
x u

∥∥2

o
+

8
ε
‖f‖20 +

4
ε

∥∥∂2
x f

∥∥2

0

(89)

and the proof of (75) follows.
Multiply the equation (67) by u and integrate to obtain

1
2

d

dt
‖u‖20 = ε

+∞∫

−∞
u (−εBu + JΦ′2(u) + f) dx (90)

Integrating by parts

1
2

d

dt
‖u‖20 + ε

+∞∫

−∞

(
u2 +

(
∂2

x u
)2

)
dx =

+∞∫

−∞
u f dx. (91)

Then
d

dt
‖u‖0 + ε‖u‖0 ≤ ‖f‖0. (92)

This implies (74).
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Now we turn to existence the global attractor in H2(IR).

Lemma 16. The map Φ′2 : H2(IR) → H−2(IR) satisfies the condition (H3) in
H2(IR).

Proof. Let u, v in H2(IR) and ψ ∈ H2(IR), observe that
∣∣∣∣∣∣

+∞∫

−∞
(uxx − vxx) ψ dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

+∞∫

−∞
(u− v) ψxx dx

∣∣∣∣∣∣
≤ ‖u− v‖2 ‖ψxx‖−2, (93)

∣∣∣∣∣∣

+∞∫

−∞
(uxxxx − vxxxx) ψ dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

+∞∫

−∞
(u− v) ψxxxx dx

∣∣∣∣∣∣
≤ ‖u− v‖2 ‖ψxxxx‖−2,

(94)
∣∣∣∣∣∣

+∞∫

−∞
(uuxx − vvxx) ψ dx

∣∣∣∣∣∣
=

∣∣∣∣
∫

(u− v) uxx ψ +
∫

(uxx − vxx) v ψ

∣∣∣∣

≤ ‖u− v‖0 ‖ψ‖L∞ ‖uxx‖0+

‖uxx − vxx‖0 ‖ψ‖L∞ ‖v‖0, (95)

∣∣∣∣∣∣

+∞∫

−∞

(
u2

x − v2
x

)
ψ dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

+∞∫

−∞
(ux − vx) (ux + vx) ψ dx

∣∣∣∣∣∣
≤ ‖ux − vx‖0 ‖ψ‖L∞ (‖ux‖0 + ‖vx‖0) , (96)

∣∣∣∣∣∣

+∞∫

−∞

(
u2 − v2

)
ψ dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

+∞∫

−∞
(u− v) (u + v) ψ dx

∣∣∣∣∣∣
≤ ‖u− v‖0 ‖ψ‖L∞ (‖u‖0 + ‖v‖0) , (97)

and ∣∣∣∣∣∣

+∞∫

−∞

(
u3 − v3

)
ψ dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

+∞∫

−∞
(u− v)

(
u2 + uv + v2

)
ψ dx

∣∣∣∣∣∣

≤ ‖u− v‖0
(
‖u‖2L∞ + ‖u‖L∞ ‖v‖L∞+

‖v‖2L∞
)
‖ψ‖0. (98)

From the estimates (93)-(98), obtain

‖Φ′2(u)− Φ′2(v)‖−2 ≤ γ (‖u‖2, ‖v‖2) ‖u− v‖2.
where γ is nondecreasing with respect to each of this arguments. This completes
the proof.
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The proof the weakly continuity of {S(t)}t≥0 is almost identical to the one
given by I. Moise, R. Rosa, and X. Wang (see lemma 4.3.3, [11]). It is a conse-
quence of Theorem (12).

Observe that

K(u) =

+∞∫

−∞
u (−∂x Φ′2(u)) dx +

+∞∫

−∞
f u dx. (99)

Integrate by parts, to obtain

K(u) =

+∞∫

−∞
f u dx. (100)

Moreover

L(u) = ε




+∞∫

−∞
u

(
D4 + 1

)
u dx−

+∞∫

−∞
u2 dx


 . (101)

Integrate by parts, to get

L(u) = ε

+∞∫

−∞
u2

xx dx. (102)

Moreover

G(u) =

+∞∫

−∞
Φ′2(u) f dx, (103)

and

M(u) = ε




+∞∫

−∞
Φ′2(u)

(
u + ∂4

xu
)

dx− Φ2(u)


 . (104)

By (74) and (75), for φ ∈ H2(IR), t′ 7→ S(t′)φ belong to L2
(
[0, t]; H4(IR)

)
,

for each t > 0.
Let {φj}j∈IN ⊂ H2(IR) bounded and {tj}j∈IN , tj → +∞, let j0 ∈ IN such

that t+ tj > T (M) for all j > j0, where T (M) =
1
ε

ln
(

εM

‖f‖0

)
and ‖φj‖2 ≤ M ,

for all j ∈ IN , of (74) follows

‖S(t′ + tj)φj‖0 ≤
2 ‖f‖0

ε
. (105)

for 0 ≤ t′ ≤ t and for all j > j0.
Using (105) in (75) and integrate to obtain

‖S(t + tj)φj‖22 +
ε

2

t∫

0

‖S(t′ + tj)φj‖24 dt′ ≤ C1 (β, q, r, ε, ‖f‖2) t. (106)
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for all j > j0 and each t > 0. Then {S (·+ tj) φj}j∈IN is bounded in L2
(
[0, t]; H4(IR)

)
,

for each t > 0. Of the observations above, the conditions (AS1) - (AS6) for K,
L, G and M are satisfied, then using the Theorem (14), obtain

Theorem 17. The solution operator {S(t)}t≥0 in H2(IR) associated with equa-
tion (67) possesses a connected global attractor in H2(IR), i.e., a compact (in
H2(IR)), connected, invariant set which attracts all the orbits (in the H2(IR) -
metric) of the system, uniformly on bounded sets of initial conditions.

4.2 On the Benney-Lin and Kawahara Equations.

In this application consider of the initial value problem associated to the Benney-
Lin and Kawahara equation,





ut + u ux + uxxx + β (uxx + uxxxx) + η uxxxxx = 0

u(x, 0) = φ(x).
(107)

where β > 0, η ∈ IR (see [12]). Consider the damped, forced Benney-Lin and
Kawahara equation.





ut + uux + uxxx + β (uxx + uxxxx) + η uxxxxx + µ B u = f

u(x, 0) = φ(x).
(108)

where
B u = u or B u = u +

(−∂2
x

)λ/2
u, λ > 0, (109)

µ > 0 and f is a time independent, external excitation.
Using Hamiltonian of the KdV equation,

Φ2(u) =
1
2

+∞∫

−∞

[
1
3

u3 − (ux)2
]

dx,

(108) can be written as

ut = −µAu + JΦ′2(u) + f, (110)

where Au = β
µ

(
∂2

x u + ∂4
x u

)
+ η

µ∂5
x u + B u and J = −∂x.

For the case B u = u, note that e−µ t Aφ = e−µ t Eη, β(t) φ , where {Eη, β(t)}t≥0

is C0-semigroup associated to linear equation (2.1) in [12]. Set H = Hs(IR),
X = Hs−5(IR) for s ≥ 0. It follows from Proposition 2.1., in [12], that prop-
erties (A1), (A3)-(A7) and (H1)-(H3) are satisfied, then the problem (110) is
locally well possed in Hs(IR) for all s ≥ 0, i.e. exist T > 0 and unique

u ∈ C ([0, T ], Hs(IR))∩C ((0, T ], H∞(IR)) such that ∂tu ∈ C
(
[0, T ], Hs−5(IR)

)
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and satisfies (110). Note that for the case B u = u+
(−∂2

x

)λ/2
u, we obtain the

same results which can be proved analogously to the preceding case, with λ < 4
(see [13]).

Now we turn to global well posedness in H2(IR), we write the equation as
the perturbation of a Hamiltonian

ut = −µA u + J Ψ′(u) + f (111)

where Au = β
µ (uxx + uxxxx) + B u, B u as in (109), µ > 0, J = −∂x and

Ψ(u) =

+∞∫

−∞

(
η

2
u2

xx −
1
2

u2
x +

1
6

u3

)
dx, η > 0

with
Ψ′(u) = η uxxxx + uxx +

1
2

u2.

We use to real Banach spaces reflexive X = H−3(IR), H = H2(IR), Y = L2(IR)

and V = H2+s(IR), for 0 < s < 4. Defining [f, g] =
+∞∫
−∞

f̂(ξ) ĝ(ξ) dξ, for all

f g ∈ S(IR), then are satisfied the conditions (G1), (G2) and (G3). Moreover

Ψ(u) ≤ η

2
‖u‖22 + C1 ‖u‖11/4

0 ‖u‖1/4
2 , ∀u ∈ H2(IR).

and

Ψ(u) ≥ η

2
‖u‖22 −

η

2
‖u‖20 − C2 ‖u‖0 ‖u‖2 − C3 ‖u‖11/4

0 ‖u‖1/4
2 , ∀u ∈ H2(IR).

The Ψ satisfies (G4) and (G5). Integrate by parts obtain

+∞∫

−∞
uJ Ψ′(u) dx = 0

Then Ψ satisfies the condition (G6).
As a consequence of Proposition 2.1 part 3 in ([12]),

{
e−µ t A

}
t≥0

satisfies

∥∥e−µ t A
∥∥
B(Hs)

≤ e(µ− β
4 ) t,

for the weak dissipation Bu = u. Then
{
e−µ t A

}
t≥0

is contraction semigroup

in Hs(IR) ∀s ∈ IR, if µ >
β

4
. The case Bu = u +

(−∂2
x

)λ/2
u is analogy (see

[13]). Hence we obtain

(
1− β

4 µ

)−1/2 ∥∥∥B1/2 u
∥∥∥

0
≥ ‖u‖0,
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and (G9) is satisfied.
The argument to show that Ψ satisfies (G7) and (G8) is similar, and condition
(G10) and (G11) are automatically satisfied.
Using the Theorems (8) and (9) we obtain a unique solution u the problem (108)
such that

u ∈ C
(
[0, +∞), H2(IR)

) ∩ C
(
(0, +∞), H2+s(IR)

)
and

∂tu ∈ C
(
[0, +∞), H−3(IR)

) ∩ C
(
(0, +∞), H2(IR)

)
.

(112)

for 0 < s < 4. In particular, S(t)u0 satisfies estimates a-priori analogy as in
Lemma (15). Moreover Ψ satisfies the condition (H3) in H2(IR), the proof is
similar to that of Lemma (16).

The proof the weak continuity de {S(t)}t≥0 is almost identical to that given
by I. Moise, R. Rosa, and X. Wang (see lemma 4.3.3, [11]). It is a consequence
of the Theorem (12).

Observe that

K(u) =

+∞∫

−∞
u (J Ψ′(u)) dx +

+∞∫

−∞
f u dx. (113)

Integrate by parts, obtain

K(u) =

+∞∫

−∞
f u dx. (114)

Moreover

L(u) = µ




+∞∫

−∞
[uBu] dx−

+∞∫

−∞
u2 dx


 . (115)

where

µ [u, Bu] = µ

+∞∫

−∞
uBu dx = β ‖uxx‖20 − β ‖ux‖20 + µ ‖u‖20.

Moreover

G(u) =

+∞∫

−∞
Ψ′(u) f dx. (116)

and

M(u) = µ




+∞∫

−∞
Ψ′(u)B udx−Ψ(u)


 . (117)

As in the problem in (4.1), the conditions (AS1) - (AS6) for K, L, G and
M are satisfied. Then using the Theorem (14), obtain
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Theorem 18. The solution operator {S(t)}t≥0 in H2(IR) associated with the
equation (108) possesses a connected global attractor in H2(IR), i.e., a compact
(in H2(IR)), connected, invariant set which attracts all the orbits (in the H2(IR)
- metric) of the system, uniformly on bounded sets of initial conditions.

4.3 Generalizations the Korteweg-de Vries Burgers.

This application is concerned with the initial value problem (see [14])





∂u
∂t +

n∑
j=1

∂
∂xj

[f(u) + αLu] + εBu = g(x), x ∈ IRn, t > 0

u(x, 0) = u0(x)
(118)

with periodic and non-periodic boundary conditions.
In problem (118), u = u(x, t) is a real valued function, f and g are scalar
functions, α and ε > 0 are constants. We assume that L stands for a differential
or pseudo-differential operator

L : D(L) ⊂ L2(Πn) → L2(Πn),

where Πn = [0, 2π]× [0, 2π]× · · · × [0, 2π] n-times and

(Lφ)(x) =
∑

k∈ZZn

ei k· x l(k)φ̂(k), ∀φ ∈ C∞π (IRn). (119)

where l ∈ L∞loc(ZZ
n, IR) and C∞π = {ψ ∈ C∞(IRn) : ψ is 2π−periodic in x }.

It follow that L is self-adjoint. B stands for a differential or pseudo-differential
operator with non negative symbol b(k) where

(Bφ)(x) =
∑

k∈ZZn

ei k· x b(k)φ̂(k), ∀φ ∈ C∞π (IRn), (120)

b ∈ L∞loc(ZZ
n, IR). Thus B is self-adjoint and non negative. Consider Hilbert

space scale associated self-adjoint operator L, i. e. if s ≥ t ≥ 0,

Hs
π(L) ⊂ Ht

π(L) ⊂ H0
π(L) ⊂ H−t

π (L) ⊂ H−s
π (L)

for s ≥ 0, Hs
π(L) = (1 + |L|)− s

2 L2(Π) with scalar product 〈u, v〉Hs
π(L) =

〈(1 + |L|) s
2 u, (1 + |L|) s

2 v〉
L2(Π)

Similar by in the case of Sobolev spaces, if s ≥ t ≥ 0,

Hs(L) ⊂ Ht(L) ⊂ H0(L) ⊂ H−t(L) ⊂ H−s(L)

for s ≥ 0, Hs(L) = (1 + |L|)− s
2 L2(IRn) with scalar product 〈u, v〉Hs(L) =

〈(1 + |L|) s
2 u, (1 + |L|) s

2 v〉
L2(IRn)

Consider energy integral
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Φ(u) =
∫

IRn

[α

2
uLu − G(u)

]
dx.

where G(s) =
s∫
0

f(ξ) dξ. Here we write the equation as the perturbation of a

Hamiltonian
∂t u = −εB u + J Φ′(u) + g. (121)

where Jφ =
n∑

i=1

∂
∂xi

φ, for all φ ∈ S(IRn).

We consider only the following class studied originally Saut ([14])




∂u
∂t +

n∑
j=1

∂
∂xj

[f(u) + αLu] + ε
(
u + (−1)k∆k u

)
= g(x), x ∈ IRn, t > 0

u(x, 0) = u0(x)
(122)

where L = H + K, K is operator defined for

Ku(x) = (2π)−n/2

∫

IRn

r(x, ξ) û(ξ) ex·ξ dξ (123)

with r ∈ C∞ (IRn × IR), such that
∣∣Dα

ξ Dβ
x r(x, ξ)

∣∣ ≤ Cα, β (1 + |ξ|)−1−ρ |α|+δ |β|
, (x, ξ) ∈ IRn × IRn, (124)

for 0 ≤ δ < ρ ≤ 1 ( r belongs to the class S−1
ρ, β (IRn) of Hörmander [15]) .

The operator H is defined for

Hu(x) = (2π)−n/2

∫

IRn

p(ξ) û(ξ) ex·ξ dξ, (125)

where p satisfies the following conditions:
(i) p ∈ L∞loc (IRn, IR),
(ii) p(ξ) = p(−ξ) a. e.,
(iii) Exists λ, µ, 0 ≤ λ ≤ µ and constants R, C1, C2 > 0, such that

C1 |ξ|λ ≤ p(ξ) ≤ C2 |ξ|µ for |ξ| ≥ R.

(iv) p(ξ) > 0, ∀ξ ∈ IRn.
We consider H : D(H) ⊂ L2(IRn) → L2(IRn). This operator not bounded.

It follows the condition (i) - (iv) that H is densely defined, symmetric, self-
adjoint. These properties are satisfied by H1/2, which is well defined due to
condition (iv).
We define the Hilbert space H = D(H1/2), with inner product

〈u, v〉H =
∫

IRn

u v dx +
∫

IRn

H1/2uH1/2v dx.
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It is easy to see that

Hµ/2(IRn) ⊂ H ⊂ Hλ/2(IRn),

with the inclusion continuous and dense, suppose that λ > n + 2 and g ∈
H∞(IRn) (see [14]).

Remark 19. The above hypotheses are verified by many physical examples:
p(ξ) = ξ2, the Korteweg-de Vries equation; p(ξ) = |ξ|, the Benjamin-Ono
equation; p(ξ) = (1 + |ξ|)1/2 the Smith equation; p(ξ) = ξ2 (ln |ξ|+ c), c ∈ IR
the Pritchard equation and p(ξ) = ξ2 (K0(k |ξ|) + c), c 6= 0, k > 0 where K0

is Modified Bessel function of order 0, the Leibovitch-Benjamin-Bona-Mahony
equation.

Suppose that f is a polynomial, f(u) =
d∑

i=1

ai u, such that d <
2λ

n
+ 1,

ai ∈ IR are constants.
We consider the problem (122) on the phase space H, under these assump-

tions the properties (A1), (A3)-(A7) and (H1)-(H3) are satisfied, then the prob-
lem (122) is locally well possed in H, i.e. exist T > 0 and unique

u ∈ C ([0, T ], H) ∩ C ((0, T ], H∞(IRn)) .

and satisfies (122) with u0 ∈ H.
Now we turn to global well posedness in H. Verification of the conditions

(G1) - (G11) is straightforward (see [14]). For example

Φ(u) ≤ 1
2
‖u‖2H +

d−1∑

k=0

ck ‖u‖qk(n, λ, d)
0 ‖u‖

n(d−k−1)
λ

H .

qk(n, λ, d) > 0 and n(d−k−1)
λ < 2 if d <

2λ

n
+ 1.

The proof the weak continuity of {S(t)}t≥0 the solution operator in H asso-
ciated with the equation (122) is consequence of the Theorem (12).

As the Theorem 1 in ([14]), the conditions (AS1) - (AS6) for Φ, K, L, G
and M are satisfied. Using the Theorem (14), obtain

Theorem 20. The solution operator {S(t)}t≥0 in H associated with the equa-
tion (122) possesses a connected global attractor in H, i.e., a compact (in H),
connected, invariant set which attracts all the orbits (in the H - metric) of the
system, uniformly on bounded sets of initial conditions.
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