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Abstract. We consider linear flow with forward combustion due to injection of air into a
porous medium containing solid fuel. We neglect the gaseous phase compressibility and heat
loss to the rock formation. Assuming that the combustion front is a traveling wave, we prove
that there are only two possible time asymptotic wave sequences in the Riemann problem,
depending on initial and injection conditions. One of the sequences consists of a thin region
of cool unburned air, a warming shock wave with very slow speed, a hot region with unburned
air, a combustion wave, a cool region with almost completely burned air, a gas composition
wave, and a cool region without oxygen. The other sequence consists of a very thin region
with unburned air at the injection temperature, a combustion wave, a hot region, a cooling
thermal wave, a cool region, a gas composition wave and a cool region without oxygen. The
waves in this problem have very different speeds, and therefore they cannot be observed in
laboratory experiments that focus on the combustion wave. However, they do occur in field
scale, so we analyze the Riemann solution for air injection with combustion.
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1. INTRODUCTION

Air injection and in-situ combustion have long been considered as a potential technique for
displacement and recovery of heavy oil reserves [6, 11]. Operational advantage of this thermal
recovery technique is the abundance of injection gas independent of location. It utilizes heavy
and immobile components of the crude oil as fuel producing in-place heat necessary for the
recovery of upgraded crude oil.

Despite the advantages and a long history, only a small fraction of the total thermal
recovery corresponds to this technique. Some reasons are technical, such as the possibility
of front extinction and the necessity of (re-)ignition for sustained propagation within in-situ
combustion in the presence of external heat losses [1]. Thus the mathematical analysis of this
problem is important to predict these events.

A large number of studies on the structure of the combustion front have been reported
since 1950s. See [14, 10, 7, 9, 5, 12, 4, 1, 2, 3], for instance. These studies did not take into
account other waves that occur in the combustion problem. As there is interaction between
the combustion wave and other waves, this paper focuses on the solution of the Riemann
problem with combustion, which takes into account all possible waves.

We assume that downstream processes during the in-situ combustion have already gener-
ated a stationary homogeneously distributed fuel. Burning of this fuel is the subject of the
paper. A bimolecular reaction is assumed to take place between the injected oxygen and
the solid fuel, hence the region of reaction behaves as a source of heat as well as a sink for
both of the reactants. We consider uniform flow, transport and reaction of injected air in
porous media of length [. We neglect external heat losses. We develop simplified theoretical
models for forward (co-flow) combustion under varying boundary conditions and obtained
the wave sequences in the Riemann solution. Formulation of the governing equations and
the nomenclature follow the ones introduced by Akkutlu [1]. However, the reaction rate is
further simplified for clarity in the context.

The paper is subdivided as follows. In Section (2) we derive the mathematical model. In
Section (3) we determine the characteristic speeds and prove that all of them correspond to
contact discontinuity shock waves. In Section (4) we introduce the combustion front as a
traveling wave of the evolution system derived in Section (2). In this section we also discuss
the Rankine-Hugoniot jump conditions for the combustion wave. In Section (5) we prove
that for the physical parameters considered in this paper, there are no resonances between
waves. As a consequence of this fact, we obtain two distinct temperature relationships for the
combustion front, which we call the hot upstream and the hot dowstream combustion cases.
Once these two cases are established we determine in Section (6) the ranges of parameters in
which these combustion waves may exist. In Section (7) we present our main results concern-
ing the possible wave sequences in the Riemann solution for the fuel deficient case behind
the front combustion. In Theorem (7.1) we prove that for the hot upstream case, the wave
sequence is uniquely determined under the temperature-controlled boundary condition ahead
the combustion front. A similar result is proved in Theorem (7.4) for the hot downstream
case. These cases occur for different injection-initial value conditions. We discuss the in-
ternal structure of noncombustion waves in Appendix (A), and the internal structure of the
combustion wave in Appendix (B). Finally in Appendix (C) we present tables with typical
values of parameters, constants and nomenclature used through the paper.
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2. FORMULATION OF THE PROBLEM

We assume a 1-D geometry for the wave propagation. Conservation equations are written
for the total energy and the total gas mass, and balance equations for the oxygen mass and
the fuel mass. For the latter, we define the fuel density per total volume p; and introduce
the extent of conversion depth, 7(Z,7) = 1— ps(Z,)/p% (p is the initial fuel concentration),
such that n = 0 corresponds to complete availability of fuel (denoted by superscript o) and
n = 1 to the complete lack of fuel (the latter may occur because the fuel was never present or
because it was completely consumed). The dependent variables are the temperature, T(i:, 1),
the oxygen mass fraction, Y (Z,%) and the fuel conversion depth 7(#,7). The gas density
pg(T, p) is expressed by equation of state in terms of temperature and gas pressure p(Z,1).

In formulating the conservation equations we make the following assumptions: the pore
space and the solid matrix are in thermal equilibrium so that a one-temperature model is
used for the energy balance; heat transfer by radiation, energy source terms due to pressure
increase, and work from surface and body forces are all negligible; the ideal gas law is the
equation of state for the gas phase; thermodynamic and transport properties, such as con-
ductivity, diffusivity, heat capacity of the solid, heat of reaction, etc., all remain constant.
We also neglect heat loss to the surrounding rock formation. The heat loss will be taken as
zero as we study only the adiabatic case in this work. We assume that the pressure changes
within any wave are negligible compared to the pressure drop across the system, so that in
the ideal gas law and in other physical properties the pressure appears as a constant. Under
these assumptions the dimensional form (superscript tilde) of the energy balance, the oxygen
mass balance, the gaseous phase mass balance and the combustion kinetics equations are:

A(cspsT) N O(cyp,0T) 0T

=0 ox  am T (21)
a(qﬁgg?) N a(p(;;?f/) — DM% (pgg_}g AL (2.2)
e (23)

% =W, (2.4)

where W is the rate of reaction. In the above, ¢; denotes the average specific heat capacity
of species 7 (gas or solid) at constant pressure, p; is the volumetric density of species i, A\ is
the effective thermal conductivity (5\525\9), Q@ is the heat of combustion, D), is an effective
diffusion coefficient in the gas phase (D=D,;/¢), while i = YM,/M; and figy, = FopMyp/M;
are mass-weighted stoichiometric coefficients for oxygen and for combustion gaseous products,
respectively. The net gas mass production is determined from i, = fig, — fi, so that positive
or negative sign for fi, correspond to net gaseous phase mass production or consumption,
respectively. We will assume fi, > 0. For the rate of reaction, we use the first order law of
mass action and a modified Arrhenius Law:

W =k(T)Yp(1 —n), where

E(T) = koe "/BT=Ti) - for T >T,,, and k(T)=0, for T <T,
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with activation energy F and pre-exponential factor k,. The temperature dependent expo-
nential term in parenthesis ensures that the reaction rate is equal to zero at the ignition
temperature Tig > 0. In the standard Arrhenius law, Tig = 0 K. In this work we will use
Tig = Ty, the reservoir temperature. This artificial Tig is introduced to avoid technical prob-
lems related to the fact that the exponential factor becomes extremely small at ambient
temperatures, but the formalism we use requires it to be zero to model complete extinction
due to low temperature, [8].

We use the ideal gas equation of state pM, = ,ogRT.

Non-dimensionalized combustion equations. We introduce dimensionless space and
time variables. To bring out the internal structure of the combustion wave, we introduce
convenient variables and parameters that are defined in Section C.4. We scale the length by
I*=a,/v" and the time using ¢*=[*/v’, where v* is the injection velocity and «; the effective
thermal diffusivity. We introduce the scaled temperature 6§ = T/To, which means that the
reservoir temperature corresponds to fy = 1. Thus the equations (2.1)—(2.4) are transformed
into the dimensionless balance equations

a0 N d(apvd)  0%0
ot 0% 042

+4q@, (2.5)

d(@Yp) O(pwY) 1 0 ( 9Y
A =2 — ud 2.
o o Loz \"az) M (2:6)
Op  9(pv)
il — 11, ®, 2.7
% T or Mo 2.7)
on
7 (2.8)
o =1, (2.9)
where
d=aY(1-n)e VD ford>1, and ®=0, ford<1. (2.10)
The domain of the dependent variables is given by
#>0, 0<Y <1, 0<n<1, v>0. (2.11)

From now on, we write t — ¢, £ — x.

3. NON-COMBUSTION WAVES FOR THE MODEL IN HYPERBOLIC FRAMEWORK

In the absence of combustion, the terms containing the factor ® vanish in the right hand
sides of system (2.5)—(2.9). Of course ® vanishes for Y =0, or n =1, or # < 1. Even though
it is not essential, we take the shortcut of neglecting the second derivative terms, in order
to be in the hyperbolic framework and focus the waves for large times and long distances.
Assuming for the time being smoothness of solutions we can expand the derivatives in the
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remaining terms in Egs. (2.5-2.8), manipulate Eqgs. (2.6), (2.7), use Eq. (2.9) to eliminate p,
obtaining:

% + ag—z =0, (3.1)
(/586—}15/ + Ug—}; =0, (3.2)
<§+¢> %-ﬁ-v% =0, (3.3)
% =0. (3.4)

The characteristic speeds of system (3.1-3.4) in increasing order and the corresponding
characteristic vectors are

XT=0,  (0,0,1,0)%, (3.5)

6 _ v v T
A _aiﬁ—i-aqﬁ’ a(1,0,0,70+a¢) , (3.6)
X =v/¢,  (0,1,0,0)". (3.7)

It is easy to see that all characteristic speeds are constant along the integral curves defined
by the corresponding characteristic vector fields, which means that all of them are associated
to contact discontinuities, hence they satisfy the Rankine-Hugoniot conditions for (3.1)-(3.4),
[13]. The characteristic speed A" corresponds to an immobile discontinuity along which only 7
varies, A\’ corresponds to a thermal discontinuity along which § and v vary and A\¥ corresponds
to a gas composition discontinuity along which only Y varies.

4. COMBUSTION WAVE

We proceed next with the study of combustion wave propagation, which occurs for 6 > 1
(see Eq. (2.10)). The combustion front connects burned states behind of it, denoted by
U = (6°, Y%, n°,v?), to unburned states ahead of it, denoted by U* = (6%, Y, n%, v%).

We look for combustion fronts as steady traveling waves of system (2.5)-(2.10) with prop-
agation speed V > 0 by setting ¢ = & — V¢ and t = ¢. In these moving nondimensional
coordinates, after using Eq. (2.9) to eliminate p, the equations (2.5)-(2.8) read, after writing
t—t 1z —x:

d B d?0 d(Vn)
%(av—VQ)—W—q dz (4.1)
d (1 1 d [/1dY d(Vn)
iz (5“’ - ‘W)Y) S L (5%) e (4.2)
= (Go-om) = -2, (4.3
d(Vn) - _d (4.4)

dz
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In the following, we consider the fuel-deficient case under three different conditions ahead of
the combustion wave at x = +o00: (1) the case where combustion wave ahead is temperature-
controlled; (2) the limit case of (1) with complete consumption of oxygen; and (3) complete
oxygen consumption not temperature-controlled. These conditions can be summarized as

(1) 0=0"=1, Y =Y">0, n=n*"=0, v=1v">0; x — +oo, (4.5)
(2) f=0"=1, Y =Y"=0, n=n"=0, v=0">0; x — +00. (4.6)
(3) 0=0">1, Y =Y"=0, n=n"=0, v=2v">0; x — +oo, (4.7)
In the adiabatic case studied here, reaction at the back of the combustion zone ceases due
to complete lack of fuel. This means that there is complete consumption of the fuel behind
(i.e., n°=1 at —oco). Since gas is continuously injected we have Y° = 1. The temperature

and the velocity behind the combustion need to be calculated. Thus the boundary conditions
behind the combustion front are generically given by:

6=6">0, Y =Yb=1, n=n"=1, v=1">0; T — —00. (4.8)

Integrating equations (4.1)-(4.3) from x to +o00 once, taking into account that n* = 0 at
x = 400 and re-ordering, we get

do “ “

T =a(v—v") = V(0 —6") +qn, (4.9)

dY 1 1. .

o = L.0 (5(1) — V)Y — Q_U(U —pV)Y" — an) , (4.10)

1 1

g0 = V) = (0" = oV) + gV = 0, (4.11)
dn

vl=—o. (4.12)

Next, we substitute the value of v given by equation (4.11) into (4.9) and (4.10), and
substitute the value of ® given by Eq. (2.10) into (4.12) to obtain the reduced system:

9 N "

- —Z (= =1 —p% ) - — 0% — 4.1
o a( o — Gz =)o+ pgmb)V —v ) V(0 — 6" — qn), (4.13)
ay ¥ (0] 1
iy Y (f G Y — uVy— —(v* — ¢V)Y¥ ), 4.14
. 0 (( g~ (g +gmV)Y — pV — 22 (v* = 9V) ) (4.14)
dn _ _o —1/(0-1) dn

%y - <1 .
- VY (1-n)e , for®>1, and - 0, for<1 (4.15)

We want to know if there is a solution of the reduced system (4.13)-(4.15) for any one of
the boundary conditions (4.5)-(4.7) together with (4.8) connecting the burned state U’ =
(6°,Y? n;vb) at £ — —oo to the unburned state U* = (8%, Y*, n*;v*) and z — +oo. If it
exists, such solution represents the profile of a traveling wave connecting the burned state to
the unburned state. As a preliminary step to establish its existence, the Rankine-Hugoniot
condition relating the burned and unburned states is considered in the next subsection.

4.1. The Rankine-Hugoniot equations for combustion. For the boundary conditions
given in (4.8) at —oo and in (4.5)-(4.7) at 400, taking into account that 06/0x, 0Y/0z and
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00/0z tend to zero as x tends to oo, the R.H.S. of equations (4.13)-(4.14) become

upnb b

a <vgf — ((z—u — 1)¢+,u90b) V- v”) — V(@ —6*—q)=0, (4.16)
(VO L w) _

L0 m (0u+u+ug)V eu(v PVI)Y" | =0, (4.17)

and Eq. (4.15) becomes a trivial identity. Taking x — —oo in Eq. (4.11) we obtain a separate
equation for v°:

1
v’ — PV = (0—u(v“ — V) — ,ugV> 0°. (4.18)
Equations (4.16)-(4.18) are the Rankine-Hugoniot conditions relating the combustion front
speed V' and the unburned and burned states ahead and behind the combustion wave.

4.2. Solutions of the Rankine-Hugoniot equations. The solutions of the Rankine Hugo-
niot equations (4.16) and (4.17) for a fixed value §* > 1 are obtained now. Since A is the
particle speed of gas it is convenient to introduce the variable V*(V,v*) = V/A\Y (U%) given
by

V=gV /v" . (4.19)

Equations (4.16) and (4.17) give 6° and Y respectively in terms of V, v* and 6%, or in terms
of V* and 0" as follows:

y (0" +q+ad)V —av") 0" y (0" +q+ad)V" —ag) 6"
STt raV e C T v rag Ve —agr
yuo V@0V 0= (@ (gt OV (4.21)

vt — @V ¢(1—-V")

For a fixed value of 6%, Eq. (4.20b) represents #° in terms of V* as a hyperbola drawn
schematically in Fig. (4.1), constructed for the parameter range in Table I. This hyperbola
has vertical and horizontal asymptotes respectively at
0" 6"
V= i g (Pratadft (4.22)
(L + artg)0" + a0 (L + ay)0" + ad
The intersections of the hyperbola with the horizontal and vertical coordinate axes occur
at

ot =", and Vi 90
0" +q + ag
Notice that since ap, < ¢ from Eqs. (4.22) and (4.23) we see that #2 > 6% and V* < V! < 1,
respectively.

Remark 4.1. The constants V,* and 6 = 6°(V,*) in Fig. (4.2) are related to Eq. (4.21b) and
will be explained in the text. The constant 6, is calculated in (5.1) and V3§ = V*(0y) is
obtained from (4.28).

(4.23)
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o<
t

FIGURE 4.2. Y as a function of V* given by (4.21b).

Now let us consider Eq. (4.21b) for a fixed value of % > 1. This equation represents Y* in
terms of V* as a hyperbola, which is drawn schematically in Fig. (4.2). This hyperbola has
vertical asymptote V* = 1 and horizontal asymptote at Y = ¢ + 0% (u + uy)/¢ (denoted by
Y" in (4.2)), which has no physical meaning.
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The intersections of the hyperbola with the horizontal and vertical coordinate axes occur
at

, and V"= ¢

Y*=1 = )
P ¢+0u(ﬂ+ﬂg)

(4.24)

Notice that V! =1/Y; < 1.

Remark 4.2. For the quantities in Figs. (4.1) and (4.2), corresponding to the parameters in
Table I, the inequalities 0 < V' < V' < V5 <V <1 hold.

It is also possible to express #° in terms of % and V?, where
Vi =V/AY (U = ¢V /o, (4.25)

as follows. Using Eq. (4.18) we obtain

vt = % (9%” + (6" — 6" + ugeueb)v> . (4.26)

Substituting equation (4.26) into equation (4.20b) gives

VP(0°)? + (a(oV® — ¢ + g0 V) — (6" + q)V*) 6" + agf*(1 — V) = 0. (4.27)

Alternatively, instead of obtaining an expression for #° as a function of V* and #* as in
(4.20b), Eq. (4.16) could be utilized to find V* as function of #° and 6§

ag(" — 0")
V¢ = . 4.28
07— (0 —4) — (6 — 1) 0 — aglP (4:28)
Similarly V?® can be written in terms of 6°:
b _ pu
Ve = ag(8” - 6) (4.29)

(6)2 — ((0" + q) — a(¢ + pgh*))6° — agh®

The graph defined by Eq. (4.29) is schematically drawn in Fig. (4.3). Direct calculations
show that the denominator in Eq. (4.29) possesses two real roots #° and 65, with 62 < 0 and
6% > 0* > 1. Thus the graph of Eq. (4.29) possesses vertical asymptotes given by 6° = §° and
0° = 5. The graph possesses also a horizontal asymptote given by V? = 0.

Since we are interested in forward combustion we have that V' > 0. From Eqgs. (4.19) and
(4.25) it follows that V* > 0 and V® > 0. Thus, only the portions of the graphs in Figs (4.1),
(4.2) and (4.3) in the first quadrant must be considered. With this in mind we conclude that
the following restrictions hold:

0< V<V, or Vy<V"VP, (4.30)
0<6" <6, or 6 >6 >6", (4.31)
0<Vl<1. (4.32)
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b
\Y

FIGURE 4.3. V?(0") defined by equation (4.29).

5. ABSENCE OF WAVE RESONANCES

We can expect that changes of wave structure in the combustion Riemann problem oc-
cur whenever two wave speeds coincide, either in the burned or in the unburned regions.
Such changes are ruled out by the following theorem about resonances, plus some physical
considerations.

Theorem 5.1. Consider U = (0, Y, n, v) in the physical domain defined Eq. (2.11).

(a) The non-combustion waves have distinct speeds.

(b) The combustion, the immobile and the gas composition waves have distinct speeds.

(c) The combustion and the thermal waves have the same speed if, and only if, 6° = 0y, or
0" = 0, where

Oy = —. (5.1)
afhg
Proof. (a) From equations (3.5)—(3.7), we obtain explicitly that
M < A< \Y everywhere, (5.2)

which means that there are no speed equalities among the non-combustion waves.
(b) Since we are considering forward combustion there is no resonance between the combustion
and the immobile wave.

From Egs. (4.30) and (4.32), we have that 0 < V* < 1 and 0 < V' < 1, respectively. Since
Ve =V/AY(U*) and V? = V/AY(U?), it follows respectively that

V<AV (UY) and V < AV (U?). (5.3)
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(c) Since the thermal wave is a contact discontinuity, the combustion speed V coincides with
A if and only if:

V= MU =X UY). (5.4)
From Egs. (3.6), (4.25) and (4.29), we have that
V =X(U% if and only if V= ﬁ if, and only if
(6> — 6v) 1

(092 — (6" + q) — a(d + py0")) 0° — adf®  6° + ao if, and only if (5.5)

0°(apg 0" —q) =0 if, and only if 6* = 0y .
From Egs. (3.6), (4.19) and (4.28) we have that

_\0 u : : u a’¢
V =X°(U*) if, and only if V_Gu—}-aqﬁ

if, and only if
(6"~ 0"

1
(04)2 — ((6° — q) — a(d — 1y0°)) 0* — agfb — 0 + ad
0“(ap,0° —q) =0 if, and only if 6° =0, .

if, and only if (5.6)

The proof is complete.

Remark 5.2. Direct calculations with the value of the parameters in Table I give us 63 =
24.21264641. This corresponds to an extremely large temperature value above 6000 K that
is beyond physical interest. Thus this value of 8, defines a maximum value for the range of
f, and below this value there are no speed coincidences.

Since V* and V? are both positive from Egs. (5.5) and (5.6), we see that the sign of (#°—6%)
determines if V < A or V > ).

Thus, given 8* > 1, we are led to the following two possible temperature relationships for
the combustion front:

(A) Hot downstream  6° > 6%, for V > X(U’) and V > X(U");
(B) Hot upstream 0<6<6* for V< XU’ and V < X(UY). (5.8)

6. THE ADMISSIBLE RANKINE-HUGONIOT LOCUS FOR THE COMBUSTION WAVE

Cases (A) and (B) in (5.7) and (5.8) give distinct possibilities for the admissible combustion
wave depending on the variable #°, Y® V% and V? sketched in Figs. (4.1), (4.2) and (4.3) as
will be discussed in the next two subsections.

6.1. Hot Dowstream. Since 6° > 6 (see Fig. (4.1)) it follows that V* > V*. Since
0 <Y? <1 (see Fig. (4.2)) it follows that V* < V».

Let Vs = V*(6) in Fig. (4.1) obtained from Eq. (4.28), where 6, is the maximum value
for the nondimensionalized temperature # defined in (5.1). In the same way, let V¥ = V°(0,)
and V) = V*(#)) in Fig (4.3) obtained from Eq. (4.29). Finally, let Y3 = Y*(V};) in Fig. (4.2)
obtained from Eq. (4.21b).
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Comparing Figs. (4.1), (4.2) and (4.3), we conclude that in case (A), for a fixed value of
6* > 1, the admissible values of %, V?, V* and Y vary in the ranges:

00 < 6" < By, (see Figs. (4.1), (4.3)),
Vi <VP< VP, (see Fig. (4.3)),
Vig < V"< VY, (see Figs. (4.1), (4.2)),

6.
6.
6
0<Y* <Yy, (seeFig. (4.2)). 6

1
2
3
4

~~~ Y~ o~
~— ~— N~ N

6.2. Hot Upstream. Since 0 < §° < #* we see that 0 < V* < V., where V' was defined in
(4.23). See Fig. (4.1).

Let Y* = Y*(V*) in Fig.(4.2) obtained from Eq. (4.21b). Since 0 < V* < V* it follows
that Y* < V* < 1.

Since 0 < 6° < 0%, from Fig. (4.3), it follows that 0 < V? < 1.

Thus in Case (B), for a fixed value of §* > 1, the values of #°, V®, V¥ and Y* vary in the
ranges:

0 <0 < 6", (see Figs. (4.1), (4.3)),
0<VP<1, (seeFig. (4.3)),
0<V*<V",  (see Figs. (4.1), (4.2)),
Y <Y"<1, (seeFig. (4.2)).

~—~
o oo o
o N & Ot
SN SN N N

7. WAVE SEQUENCES IN THE RIEMANN SOLUTIONS

We have completed in Section (5) the proof that there is no wave speed coincidence in
combustion problems with incomplete oxygen consumption for temperatures of physical in-
terest. We also have determined the admissible ranges of the main parameters along the
Hugoniot-locus in Section (6). According to the discussion in Section (B) we will assume the
existence of a traveling wave profile representing the combustion front for parameters in the
ranges (6.1)-(6.4) and (6.5)-(6.8). Under this assumption, for any fixed value of 6* > 1, we
are able to obtain the description of the wave sequence in the Riemann solution for cases (A)
or (B) defined in (5.7) or (5.8).

7.1. Hot upstream combustion. In this case the wave sequence in the Riemann solution
may be at most a (perhaps trivial) immobile fuel shock, a thermal shock with speed )\’ a
combustion front with speed V, and a gas composition shock with speed \Y, depending on
the boundary condition ahead of the combustion front.

We denote this sequence of waves, represented in Fig. (7.1) by means of the following
convention:

. 6 Y
v S vt Lot S, (7.1)
The state U* = (6%,1,0,v") denotes the injection conditions, U; = (6%,1,1,v") denotes an
intermediate state in the burned region, U’ = (6°,1,1,0%) and U* = (1,Y",0,v,) are the
burned and the unburned states surrounding the combustion front and Uy = (1,0, 0, vp)
denotes the reservoir conditions at the production. The values of #* and v* are given, but the

speeds A\?, V, AY and the values of °, v°, Y* and v, have to be determined.
We have the following
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Theorem 7.1. Given the injection conditions U' = (6", 1, 0, v*) and the value of V¥ €
(Var, V'), assume that in the hot upstream combustion case (A) defined in (5.7) a combustion
wave is present in the wave sequence for the Riemann solution of (2.5)-(2.10), with param-
eters in the ranges given in Eqs. (6.1)-(6.4). Then the wave sequence in (7.1) is uniquely
determined for the boundary conditions (4.5) and (4.8).

Proof. Inspecting Fig. 7.1, we see that if the injection rate v’, the temperature §* and the
value of V¥ are given, then the speeds A, V and A in the wave sequence (7.1) and the values
of #°, v*, Y* v* and v, are determined as follows.

Ui:(ei,l, O,Vi)

u
U =(1,v"0,v"

AY
U0:(11 O; 01VO)

FIGURE 7.1. Case (A.1): Regions separated by immobile, thermal, combus-
tion and gas composition waves. Values of €, Y, n and v in each region. The
latter region is actually very thin.

From Eq. (3.6), we have:
o a
O+ ag’
From Eq. (4.20b) with 6* = 1, we have
y . (14+qg+ap)V* —ag
1+ ap, +ap) V¥ —ap
Since the thermal wave is a contact discontinuity, it follows that:
y 0 +ad
v=—"0".
0+ a¢
From Eq. (4.29) with #* = 1, we have

N (so \? is determined already).

ad(0® —1)

VE R (v gt )0 —ap
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From Eq. (4.25) we obtain the combustion speed V; then we obtain v* from Eq. (4.19). From
Eq. (4.21b) with #* = 1, we obtain Y* and from Eq. (3.7) with v = v*, we obtain the value
of \Y:

V=1"V"/¢,
vt = @V VY,

¢ = (¢ + pg +p) V"

YU =
d(1 — V) ’

Ao =v"/¢.
Finally, since the gas composition wave is a contact discontinuity it follows that
vy = v,

which provides a consistent solution of the system of conservation laws in the hyperbolic
framework for the boundary conditions (4.5) and (4.8). This completes the proof of the
Theorem (7.1).

Remark 7.2. Theorem (7.1) can be extended to the limit case (2) in Eq. (4.6) of complete
oxygen consumption and controlled-temperature ahead the combustion: #* = 1, Y* = 0,
n* =0, v* = > 0. See Fig. (7.2).

)\n ]

i .
Ul: (e !1!1’V|)

u“'=(1,0,0,vY% = U,

FIGURE 7.2. Case (A.2): Regions separated by immobile, thermal wave and
combustion waves. Values of 6, Y, n and v in each region.

Since 6" is given, it is not necessary to give the parameter V* because from Eq. (4.21b)
with 0" = 1 and Y* = 0, it follows that V* = V!, where V" is defined in Eq. (4.24) (see
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Fig. (4.2)). Since Y* = 0, the strength of the gas composition wave is zero. From Eq. (4.20b)
with 0* =1 and V* =V, it follows that
o (1+q+ap)V,) —a¢ _ g
(1+apg+ap)V¥ —ap — 7’
The values of the thermal shock speed A\?, v®, the combustion front speed V and v, are
obtained through the same procedure used in the proof of Theorem (7.1).

(see Fig. (4.1)). (7.2)

Remark 7.3. We remark that the case (3) given by Eq. (4.7) is inconsistent with the hot
upstream case (A) due to the restrictions in Eq. (5.7) that V' > M (U*) = \?. If §* > 1, then
there should be another thermal wave ahead the combustion front, where the temperature
decreases from 6 = 6" to 6, = 1, contradicting the conditions in Eq. (5.7).

7.2. Hot downstream combustion. Recall that in the downstream combustion case we
have to restrict the parameters to the ranges defined by Egs. (6.5)—(6.8). Since 0 < Y <
Y* < 1 complete oxygen consumption (as stated in case (2) defined by Eq. (4.6) and case (3)
defined by Eq. (4.7)) is impossible.

For the temperature-controlled case in (4.5) we have that §* = 1, the reservoir temperature.
Since the combustion front is the first non immobile wave, it follows that the thermal wave
possesses zero strenght. See Fig. (7.3)

Thus we have the following wave sequence represented in Fig. (7.3):

vl 2 pr e A g, (7.3)

where the state U = (6%,1,0,v*) denotes the injection conditions, U®* = (#,1,1,v%) and
U* = (1,Y* 0,v"*) define the burned and the unburned states surrounding the combustion
front, respectively, and Uy = (1,0, 0, vy) denotes the reservoir conditions at the production.
The values of #°, v* and v* are given, but the speeds V, and \¥ as well as the value of Y
have to de determined.

We have the following

Theorem 7.4. Given the injection conditions U* = (6%, 1, 0, v*) and the velocity v* ahead of
the combustion front, assume that in the hot downstream combustion case (B) defined in (5.8)
a combustion wave is present in the wave sequence for the Riemann solution of (2.5)-(2.10),
with parameters in the ranges given in Eqs. (6.5)-(6.8). Then the wave sequence in (7.8) is
uniquely determined for the boundary conditions (4.5) and (4.8).

Proof. From Eq. (3.7), we obtain the gas composition shock speed:
N =v"/¢p =vy/¢p. Thus vy = v™
From Eq. (4.18) with #° = #%, v* = v* and * = 1, the value of the combustion front speed is
given by:
V' — v’
G(1 — 07) — gt

From Eq. (4.21a) with #* = 1, we obtain the value of Y* as:
_ V= (@t g+ )V

v — @V ’
which concludes the proof of Theorem (7.4).

V=

YU
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Ui:(ei,l, O,Vi) .
> U:(l’YL’JO’VU)

)\Y

W)

FIGURE 7.3. Case (B.1): Regions separated by immobile, combustion and gas
composition waves. Values of #, Y, n and v in each region.

Remark 7.5. It is easy to see that in case (A) the ratios \’/V and \Y/V do not depend on
the injection data v® and #%, but only on the parameter V. We have that \’/V ~ 107! and
NV~ 103,

Remark 7.6. We notice that, due to the fact that the combustion and the thermal waves
are very slow, it takes a long time for these waves to separate from each other, while the
gas composition wave (the extremely fast wave) separates from the others immediately. This
should explain why such phenomena were not observed in laboratory experiments, since it is
reflects transient rather than asymptotic behavior.
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APPENDIX A. THE INTERNAL STRUCTURE OF THE NONCOMBUSTION WAVES

A.1. The gas composition wave. As we have seen, across the gas composition wave only
Y varies from Y~ to Y, while 6, 1, v are constant, which we denote by @, 7, ¥, respectively.
A constant 6 in Eq. (2.9) yelds constant p = p. A constant 1 in Eq. (2.8) is consistent with
® = (. Thus Eqgs. (2.5) and (2.7) are automatically satisfied and Eq. (2.6) becomes

ov _ 1oy
ot oL, 0a2

(A.1)

Therefore, the gas composition wave is a diffusive wave given by the solution of Eq. (A.1)
with initial condition Y (z,0) =Y~ ifz <0 and Y (z,0) = YT if z > 0.

A.2. The thermal wave. For the thermal wave we know that the shock speed A’ is positive,
Y and 7 are constant across it, Y =Y, n =7, and 6, v vary respectively from 6~ to §* and
from v~ to v™. Since 7 is constant, from Eq. (2.8) we obtain that ® = 0.

For constant Y and ® = 0, Egs. (2.6) and (2.7) are equivalent. Let us keep Eq. (2.7)
with zero right hand side. Then substituting Eq. (2.9) in Eq. (2.5), the system (2.5)-(2.9) is
reduced to

90 O(av) 0%0
+ p—

ETRERr ralal (A-2)
90~t  9(6~1v)
g+ o = 0. (A.3)

In Eq. (A.2), the value of a is very small (103 according to Table I) Thus we will neglect
the term containing a. This is certainly a good approximation for very large times, up to

~ v/a. With this approximation, Eq. (A.2) becomes a heat equation, which can be readily
solved with boundary condition 6(0,¢) = 6~ and initial condition #(x,0) = 8" if z > 0.

Now we substitute the obtained solution 6(z,t) of Eq. (A.2) in Eq. (A.3). Integrating

the resulting equation for a fixed value of ¢, from z = —oo to z, and using the boundary
conditions that v(0,t) = v~ and v(z,t) = v* as x — 0o, we obtain the solution v(z,t) of
Eq. (A.3).

Thus the thermal wave consists of a contact wave with diffusive profile.
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A.3. The fuel wave. As we know, across this wave the temperature, gas composition, and
velocity remain constant: § =6, Y =Y, v = ¢ and 7 varies from n~ to n*.

Constant temperature implies constant density, p = p from Eq. (2.9). Constant tempera-
ture 6, density p, and velocity v imply ® = 0 from Eq. (2.5) and Eq. (2.7). From Eq. (2.8) it
follows On/0t = 0, which means that the standing wave is in fact a sharp discontinuity.

APPENDIX B. THE INTERNAL STRUCTURE OF THE COMBUSTION WAVE

For convenience, by rescaling x, we rewrite the system (4.13)-(4.15) multiplied by §*V* =
OupV Jv:
do

7 = (80 —6") = ((0 = 0") + ™ nb)V*) + V6" (qn + (6" - 6)), (B.1)
dy

=L (6 = (& + pt V)Y — p Vi = $(1 = V*)Y"), (B.2)
dn —ab¢? i dn

pri YA —newn, f 1 =0, forf<1. B.
dz ~ (v4)2Ve (1—=ne , forf0>1, and T 0, forf< (B.3)

Equations (B.1)-(B.3) are the reduced system of nonlinear ODE’s involving expressions de-
pendent on the variables 6, Y and 7. Let us define the quantity A depending on 7, V* and
6"

A=¢—(d+ ptn)V*. (B.4)
The Jacobian matrix of system (B.1)—(B.3) in the variables §, Y and 7, for 6 > 1, is
al — V' o" 0 (g — ap,H)V "
Le (AY — pf*Viy — ¢(1 — Vo)Y™) L.OA ~Leb(p+ pY)V'0" | (B.5)
—afv o2 = —afvo? = aftp? =
@«tg)iz\(/ﬁuy(l —1)e@ D 5y (v?»?z‘(/pu (I —mn)e@D (Uua);z‘:/u Ye@b

B.1. Local analysis near the burned state U°. We consider Case (A) in (5.7) together
with the boundary conditions (4.8), for which #* > §* =1, Y® =1 and n* = 1.

Susbtituting U® and U* in Eq. (B.4) we have that A = ¢ — (¢ + pg)V* = A and the
Jacobian matrix Eq. (B.5) turns to be:

ah® — v 0 (q — ap 0*)V"
Lo(Ab — pV% — (1 = VYY) LAY —L.60°(u+ pg) V| (B.6)
0 0 o e D

The characteristic values of the matrix in Eq. (B.6) are:

2
M=aA-V* N = (vf)fwev/w”l) and A} = L,A%°. (B.7)

We notice that in Case (A) in (5.7) we have V" varying in the range in (6.3), and since
Vi > VE=a¢/(1+ ap+ ap,) (see Figs. (4.1), (4.2)), we have that A\’ < 0. Similarly, for V*
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varying in range (6.3) we obtain that A} > 0. On the other hand the sign of A} in (B.7) is
obviously positive. Thus we have

M <0o< A<\,
which means that the repelling (unstable) manifold from U? is two dimensional.
B.2. Local analysis near the unburned state U*. We consider the boundary conditions
(4.5), for which #* =1, Y* > 0 and n* = 0.

Substituting U* in Eq. (B.4) we have that A = ¢(1 — V*) = A" and the Jacobian matrix
(B.5) turns to be:

aAk* —V* 0 (g — apy)V*
0 LAY —Le(p+ pgY*)V® (B.8)
0 0 0

The matrix in (B.8) has characteristic values
Al =aA* - V" Ay =10 and Ay = LA™, (B.9)
We notice that for the parameter V* in the range given in Eq. (6.3) we have
AT < A5 =0< ).

In conclusion, even though the mathematical analysis is not complete, there is no obstacle
to the existence of a heteroclinic orbit connecting the state U’ to state U®. If the central
manifold associated to the zero characteristic value at the unburned state in (B.9) behaves
as an atractor, then there is a real possibility of the existence of a heteroclinic connection
family. If it behaves as a repeller, then we may have uniqueness of the connection and the
combustion wave is precisely determined. We have also numerical evidences that confirm this
tendency, but the necessary mathematical analysis is more sophisticated and lies out of the
scope of this paper. It is the subject of a future work.

ApPPENDIX C. TYPICAL VALUES, NOMENCLATURE AND CONSTANTS

In Egs. (2.5)—(2.10), we introduced the following variables and parameters

T ~ E T }’} D — 0 Y
T = E*’ t:_*7 9:"_’ Y:_’ p:ua p:&a ’U—E-, (C]_)
l t Ti Y; Pinj = Do Py v*
£p} FiogPF fgPF C!Jp.fi *
/.1/ = f’ u = f, u = —.’ (]/ = 7’ @ = Wt 9 (C.2)
prY TP piyi B gt (1= )esps
0 l* 7 iLt*
g = 9 . (C.3)
(1 - QS)cspsﬂg K(pmJ - po) (1 - (/b)cspSTigH
X S E )
oy, = ——m—— L. = a Y= =, 0= kOYZpot*: (C4)

(1—@)esps” ~° Dy’ RT;,
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where p, corresponds to the initial gas pressure and is typically much larger than the pressure
drop across the system.

TABLE I TABLE 11
Parameter | Value Parameter | Value
q | 1.0121 Q | 39542 kJ /kg fuel
w | 205.8 E | 7.35*10* kJ/kmole
Ky | 68.19 R | 8.314 kJ/kmole-K
L. | 0214 ko | 498 kW-m/atm-kmole
v | 23.69 T, | 373.15 K
a | 0.027 Do | 1.0 atm.
a | 6.13E-4 Yi|0.23 (kg/kg)
¢ 103 Dy | 2.014*¥10% m? /s
A | 8.654%10~* kW /m-K
Source: [1], [2] ¢ 0.3
cgply | 12.338 kJ/m3-K
p% | 19.2182 kg/m?
(1 = ¢)esps | 2.012*%10% kJ/m3-K
i | 3.018
iy | 1.000

Source: [1], [2]

TABLE I. Typical values of the non-dimensional parameters for in-situ combustion
TABLE II. Typical values of the dimensional parameters for in-situ combustion



