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We show that the decomposition method for convex programming proposed by Chen and Teboulle
can be regarded as a special case in the hybrid inexact proximal point framework. We further

demonstrate that the more general decomposition algorithms for variational inequalities intro-
duced by Tseng are also either a special case in this framework or are very closely related to

it. This analysis provides a new insight into the nature of those decomposition schemes, as well

as paves the way to deriving more practical methods by solving subproblems approximately (for
example, using appropriate bundle methods). As a by-product, we also improve some convergence

results and extend the approach to a more general class of problems.
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1 INTRODUCTION

Let Z be a Euclidean space and M(Z) be the set of all subsets of Z. We start our
discussion with the classical problem

Find z ∈ Z such that 0 ∈ T (z), (1.1)

where T : Z → M(Z) is a (multi-valued) operator on Z. Throughout we assume
that T is maximal monotone. A wide variety of important problems, such as convex
minimization, monotone variational inequalities over convex sets, certain min-max
problems, etc., can be stated in the form of (1.1). If a given problem, and therefore
∗ The author is supported in part by CNPq Grants 300734/95-6(RN) and 471780/2003-0, by
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the associated operator T , have some separable structure, decomposition methods
come into play. Many of those methods, e.g., [18, 13, 34, 12, 35], are explicitly or
implicitly derived from the proximal point algorithm [19, 25] for solving (1.1).

More recently, some new decomposition schemes had been proposed in [9, 37]
which, however, did not appear to fit any previously known (proximal point) frame-
work for solving (1.1) with some appropriate T . Consider, for example, the problem

minimize f1(x1) + f2(x2)
subject to Ax1 − x2 = 0, (1.2)

where f1 and f2 are closed proper convex functions on Euclidean spaces X1 and
X2, respectively, and A : X1 → X2 is a linear operator (a matrix of appropriate
dimensions). The method of Chen and Teboulle [9] applies proximal point iterations
to the subdifferential of the Lagrangian function L(x1, x2, y) = f1(x1) + f2(x2) +
〈y,Ax1 − x2〉, alternately fixing the variables or the multipliers. Specifically, given
some (xk1 , x

k
2 , y

k) ∈ X1 × X2 × X2, the exact version of the method performs the
following updates:

ŷk = yk + αk(Axk1 − xk2),
xk+1

1 = arg minx1∈X1{f1(x1) + 〈A>ŷk, x1〉+ 1
2αk
‖x1 − xk1‖2},

xk+1
2 = arg minx2∈X2{f2(x2)− 〈ŷk, x2〉+ 1

2αk
‖x2 − xk2‖2},

yk+1 = yk + αk(Axk+1
1 − xk+1

2 ),

(1.3)

where 0 < αk < (2 max{‖A‖, 1})−1.
This method has some nice features not shared by previous decomposition al-

gorithms, when the latter are applied to (1.2). In particular, the minimization is
carried out separately in the spaces X1 and X2, and the two minimization problems
decompose further according to the separable structure of the functions f1 and f2.
Other methods do not achieve such a fine degree of decomposition for the given
problem, see [37] for a more detailed discussion.

As is well-known [24], the problem (1.2) is equivalent to (1.1) if we define

T (z) = ∂x1,x2L(x1, x2, y)×(−∂yL(x1, x2, y)), z = (x1, x2, y) ∈ Z = X1×X2×X2.
(1.4)

Although clearly related to the proximal point method, the decomposition scheme of
Chen and Teboulle did not appear to fit into any general proximal-based framework
for problem (1.1) with T given by (1.4) (or with any other appropriate choice of T ).
In [37], Tseng extended this decomposition scheme to more general problems (see
Section 3.2), and interpreted it as an “alternating projection-proximal method”.
This, however, still did not fit any proximal-based framework for problem (1.1)
that existed at the time.

In this paper, we show that the decomposition method of Chen and Teboulle is a
special case in the framework of inexact hybrid proximal point methods developed
in [28, 27, 31]. The same assertion essentially applies to the methods of Tseng
(although depending on the problem structure, one part of his iteration can be
slightly different, see Section 3.2). Apart from providing a new unified insight
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into those methods, this would allow us to extend them to a class of more general
problems, improve some convergence results, and suggest a practical approximation
criteria for solving the subproblems.

We proceed with describing the inexact hybrid proximal point framework. Given
some zk ∈ Z and having chosen the regularization parameter αk > 0, the exact
proximal iteration [19, 25, 17] for (1.1) amounts to solving the following system:
find zk+1 ∈ Z and vk+1 ∈ Z such that{

vk+1 ∈ T (zk+1),
0 = αkv

k+1 + zk+1 − zk.

Then zk+1 is declared the next iterate. To handle approximate solutions, it is
useful to relax both the inclusion and the equation in the above system (for some
motivation as to why it is important to relax both parts of the subproblem and
not just one, see [29] and Section 3.1 below). To relax the inclusion, the following
notion is fundamental: for ε ≥ 0, the ε-enlargement of T at z ∈ Z is given by

T ε(z) = {v ∈ Z | 〈v − v′, z − z′〉 ≥ −ε for all z′ ∈ Z and v′ ∈ T (z′)}.

It holds that for any z ∈ Z and ε ≥ 0, T (z) ⊂ T ε(z) and T 0(z) = T (z). If f is
a proper closed convex function, then ∂εf(z) ⊂ (∂f)ε(z), where ∂εf is the usual
ε-subdifferetial of f . For other properties and applications of ε-enlargements of
maximal monotone operators, see [5, 8, 7, 29, 26].

The following iterative procedure will be referred to as the Hybrid Inexact Prox-
imal Point Method (HIPPM): Given zk and having chosen the regularization pa-
rameter αk > 0 and the error tolerance parameter σk ∈ [0, 1), find ẑk ∈ Z, v̂k ∈ Z
and εk ≥ 0 such that {

v̂k ∈ T εk(ẑk),
δk = αkv̂

k + ẑk − zk, (1.5)

and
‖δk‖2 + 2αkεk ≤ σk

(
‖αkv̂k‖2 + ‖ẑk − zk‖2

)
. (1.6)

To obtain the next iterate, set

zk+1 = zk − τkαkv̂k, (1.7)

where

τk = θk
〈v̂k, zk − ẑk〉 − εk

αk‖v̂k‖2
, θk ∈ (0, 2). (1.8)

For future reference, we note that under the conditions (1.5)-(1.6), it holds that
(see [31, Proposition 4])

∃ θk ∈ (0, 2) such that τk = 1.

In particular,
zk+1 = zk − αkv̂k

is a special case of (1.7). The described version of HIPPM had been introduced
in [31]. HIPPM has all the desirable convergence properties of the exact proximal
point algorithm (if the solution set T−1(0) 6= ∅, the sequence {zk} converges to some
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z̄ ∈ T−1(0) for any starting point z0 ∈ Z; if T−1 is Lipschitz-continuous at zero then
the rate of convergence is linear). At the same time, in HIPPM the approximation
criterion for solving the proximal subproblems is considerably more constructive
and more suited for practical use when compared to the classical (summability-
type) approximation conditions (see [27, 30, 29, 32] for detailed discussions of this
issue and for some applications where this feature of HIPPM is useful; see also
Section 3.1).

To motivate and set the stage for further developments, we next show that the
decomposition method (1.3) of Chen and Teboulle falls within the framework of
HIPPM. The idea is to consider the point ẑk = (xk+1

1 , xk+1
2 , ŷk) ∈ Z = X1 ×X2 ×

X2 as an approximate solution, in the sense of (1.5)-(1.6), of the proximal point
iteration applied to T defined in (1.4). To establish the claim, we have to exhibit the
associated v̂k ∈ T εk(ẑk), verify that (1.6) holds, and show that (1.7) can produce
zk+1 coinciding with (xk+1

1 , xk+1
2 , yk+1) given by (1.3).

By the optimality conditions for the two minimization problems in (1.3), we have
that

rk1 := 0 = αkû
k
1 + xk+1

1 − xk1 , ûk1 ∈ ∂f1(xk+1
1 ) +A>ŷk = ∂x1L(xk+1

1 , xk+1
2 , ŷk),

rk2 := 0 = αkû
k
2 + xk+1

2 − xk2 , ûk1 ∈ ∂f1(xk+1
1 )− ŷk = ∂x2L(xk+1

1 , xk+1
2 , ŷk).

(1.9)
Furthermore, by the first relation in (1.3), we have that

−αk(Axk+1
1 − xk+1

2 ) + ŷk − yk = αkA(xk1 − xk+1
1 ) + αk(xk+1

2 − xk2) =: sk,
ŵk := −(Axk+1

1 − xk+1
2 ) ∈ (−∂yL(xk+1

1 , xk+1
2 , ŷk)).

(1.10)
Defining v̂k = (ûk1 , û

k
2 , ŵ

k) ∈ Z, we have that v̂k ∈ T (ẑk). Combining further (1.9)-
(1.10), we conclude that (1.5) holds with εk = 0 and δk = (rk1 , r

k
2 , s

k) = (0, 0, sk).
Taking τk = 1 in the update formula (1.7) and using again (1.9)-(1.10), we have

that

zk+1 = (xk1 − αkûk1 , xk2 − αkûk2 , yk − αkŵk)
= (xk+1

1 , xk+1
2 , yk+1),

where the right-hand side is the same as the objects in (1.3).
It remains to verify that the error tolerance condition (1.6) holds for appropriate

choices of αk, so that convergence is guaranteed. To this end, observe that

‖δk‖ = ‖sk‖ = αk‖A(xk1 − xk+1
1 ) + xk+1

2 − xk2‖
≤ 2αk max{‖A‖, 1}max{‖xk+1

1 − xk1‖, ‖xk+1
2 − xk2‖}

≤
√
σk‖ẑk − zk‖,

if we set αk ≤
√
σk(2 max{‖A‖, 1})−1, and take into account the definition of ẑk

and the monotonicity of the norm. Obviously, the above (rather conservative!)
estimate implies that (1.6) is satisfied.

We have thus demonstrated that the method of Chen and Teboulle is a special
case in the family of HIPPM. In Section 3.1, we shall further use this relation
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to set up a constructive rule for solving the two optimization problems in (1.3)
approximately. The latter is important, as solving those problems exactly is in
most cases impractical if not impossible. This is particularly true if f1 and/or f2

is nonsmooth, in which case bundle methods [4, Ch. 9] have to be used. We shall
argue that the approximation criterion which we shall propose is well suited for
coupling the decomposition scheme with bundle methods.

We note that HIPPM had proved to be a useful framework in a number of other
works related to splitting and decomposition methods. For example, the modified
forward-backward splitting of [38] can be derived from HIPPM, see [27]. The way
HIPPM can be combined with the method of partial inverses [34] has been studied
in [20, 6]. To conclude the Introduction, we cite some further literature related
to proximal-based decomposition, in addition to what has been already mentioned
above: [1, 2, 15, 22].

We next describe our notation. Given a space Z, M(Z) denotes the set of all
subsets of Z. For an operator T : Z →M(Z), domT = {z ∈ Z | T (z) 6= ∅} is its
domain, and for v ∈ Z, T−1(v) = {z ∈ Z | T (z) = v}. By I we shall denote the
identity operator (in a given space). By 〈·, ·〉 we denote the inner product and by
‖ · ‖ the associated norm, where the space would always be clear from the context.
For a proper closed convex function f : Z → < ∪ {+∞} and ε ≥ 0, ∂εf(z) = {v ∈
Z | f(z′) ≥ f(z) + 〈v, z′ − z〉 − ε ∀ z′ ∈ Z} is the ε-subdifferential mapping, and
∂f = ∂0f is the usual subdifferential. For a convex set C ⊂ Z, riC denotes its
relative interior. For a closed convex set C ⊂ Z, PC(z) = arg minz′∈Z ‖z′ − z‖ is
the orthogonal projection operator onto C, and dist(z, C) = ‖z − PC(z)‖ is the
distance from z ∈ Z to C.

2 The general decomposition scheme

Consider problem (1.1) with

T (z) = F (x, y)× (G(x, y) +H(y)), z = (x, y) ∈ Z = X × Y, (2.11)

where X and Y are some Euclidean spaces, F : X × Y →M(X), G : X × Y → Y
and H : Y →M(Y ). We make the following standing assumptions:

(A1) G is (single-valued) continuous on X × Y ;
(A2) H is maximal monotone;
(A3) the mapping (x, y)→M(F (x, y)×G(x, y)) is maximal monotone;
(A4) domH ⊂ ri{y ∈ Y | ∃x ∈ X s.t. F (x, y)×G(x, y) 6= ∅}.

Under the stated assumptions, it follows from [23] that T is maximal monotone,
and further that the mapping x→ F (x, y) is also maximal monotone for any fixed
y ∈ domH [37, Lemma 2.1].

We next describe our decomposition algorithm. Let (xk, yk) ∈ Z be the current
iterate. We first choose a continuous monotone function Gk1 : Y → Y . We can
choose Gk1 ≡ 0, but in general the choice depends on the structure of G(xk, ·) and
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H(·). The chosen Gk1 is employed for function-splitting of the operator G(xk, ·) +
H(·), which is computationally useful in some applications. In particular, we pass
to the representation G(xk, ·) + H(·) = (G(xk, ·) − Gk1(·)) + (Gk1(·) + H(·)), and
perform a forward-backward splitting step [18, 21, 35, 10] for this representation of
the operator, with the x-part fixed. The resulting ŷk ∈ Y is used in the approximate
proximal point step for the operator F (·, ŷk), with the y-part fixed. The iteration
finishes with the update of (xk, yk), which makes use of the objects computed during
the above steps (and which is derived from HIPPM). To simplify the statement of
the algorithm, we shall leave out until a later discussion the detail of the choice of
the regularization parameter αk. Essentially, this parameter has to be sufficiently
small (recall the method of Chen and Teboulle). Its value can either be determined
by a suitable linesearch procedure or set according to some heuristic considerations.
We proceed to state the method.

Algorithm 2.1. Hybrid Proximal Decomposition Method (HPDM).
Choose (x0, y0) ∈ X × Y , 0 < σ ≤ σ̄ < 1, 0 < θ ≤ θ̄ < 2. Set k := 0.
Forward-Backward Splitting Step.
Choose a continuous monotone function Gk1 : Y → Y and αk > 0. Compute ŷk ∈ Y
by

ŷk =
(
I + αk(H(·) +Gk1(·))

)−1 ((
I − αk(G(xk, ·)−Gk1(·))

)
yk
)
, (2.12)

and define ĥk to be the element of H(ŷk) computed within (2.12).

Inexact Proximal Step.
Choose the error tolerance parameter σk ∈ [σ, σ̄].

Compute x̂k ∈ X, ûk ∈ X and εk ≥ 0 such that{
ûk ∈ F εk(x̂k, ŷk),
rk = αkû

k + x̂k − xk, (2.13)

where F εk(x̂k, ŷk) is the εk-enlargement of F (·, ŷk) at x̂k, with the y-part fixed,
and

‖rk‖2 + ‖sk‖2 + 2αkεk ≤ σk
(
‖αkûk‖2 + ‖αkŵk‖2 + ‖x̂k − xk‖2 + ‖ŷk − yk‖2

)
,

(2.14)
with

ŵk := G(x̂k, ŷk) + ĥk, sk := αkŵ
k + ŷk − yk.

Once (2.14) is satisfied, go to Iterates Update (If the proximal subproblem is
solved to “maximal” possible precision, but (2.14) is still not satisfied, decrease αk,
compute a new ŷk by (2.12), and repeat the Inexact Proximal Step with the new
ŷk).

Iterates Update.
Stop if x̂k = xk and ŷk = yk. Otherwise, define

xk+1 = xk − τkαkûk, (2.15)

yk+1 = yk − τkαkŵk, (2.16)
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where

τk = θk
〈ûk, xk − x̂k〉+ 〈ŵk, yk − ŷk〉 − εk

αk(‖ûk‖2 + ‖ŵk‖2)
, θk ∈ [θ, θ̄]. (2.17)

Set k := k + 1 and go to Forward-Backward Splitting Step.

Apart from our ability to satisfy condition (2.14), which would require a proof,
the other parts of the method are easily seen to be well-defined. Indeed, since Gk1 is
a monotone continuous function on Y , it follows that H+Gk1 is maximal monotone.
Thus ŷk in (2.12) is well-defined, and further ŷk ∈ domH. As already noted above,
for any ŷk ∈ domH, the mapping x → F (x, ŷk) is maximal monotone under the
stated assumptions. Thus the proximal point subproblem (2.13) is well-posed and
can be solved to any degree of precision, at least in theory (note that the exact
solution corresponds to setting rk = 0 and εk = 0). Furthermore, the stepsize
choice (2.17) is well-defined whenever ‖ûk‖ + ‖ŵk‖ 6= 0. Now, if it were the case
that ûk = 0 and ŵk = 0, then it would follow that rk = x̂k − xk and sk = ŷk − yk.
But by (2.14), ‖rk‖2 + ‖sk‖2 ≤ σk(‖x̂k − xk‖2 + ‖ŷk − yk‖2), where σk ∈ [0, 1).
From the latter inequality we conclude that in this case x̂k = xk and ŷk = yk, so
that the stopping rule would have been activated (as will be shown below, in this
case (xk, yk) is a solution of the problem).

To clarify the nature of (2.12) and some options concerning the choice of G1
k,

suppose that H is the normal cone mapping associated to a closed convex set
C ⊂ Y , i.e.,

H(y) = NC(y) =
{
h ∈ Y s.t. 〈h, y′ − y〉 ≤ 0 ∀ y′ ∈ C, if y ∈ C,
∅, otherwise. (2.18)

In that case, (2.12) gives

ŷk = PC
(
yk − αk(Gk1(ŷk)−Gk1(yk) +G(xk, yk))

)
.

If we take Gk1 ≡ 0, then

ŷk = PC
(
yk − αkG(xk, yk)

)
,

which is the standard projection step. If we take Gk1 ≡ G(xk, ·), then

ŷk = PC
(
yk − αkG(xk, ŷk)

)
,

which is an implicit (proximal) step. Obviously, the first choice requires the least
amount of computational work to obtain ŷk (for C with some special structure,
e.g., the nonnegative orthant, an explicit formula can be used), while the second
choice requires the most work. Inbetween there are various intermediate choices.
Which particular G1

k should be used depends on the structure of G(xk, ·) and of
H(·), see [37] for a more detailed discussion.

Before proceeding with the convergence analysis, we make one final assumption:
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(A5) It holds that

u ∈ F ε(x, y)
w ∈ G(x, y) +H(y)

}
⇒ (u,w) = v ∈ T ε(z), z = (x, y),

where F ε(x, y) is the ε-enlargement of F (·, y) at x with the y-part fixed.

We note that this assumption is redundant if in HPDM we set εk = 0 for all k.
However, as will be argued in Section 3.1, having εk 6= 0 is useful, for example, for
coupling the decomposition scheme with appropriate bundle methods for solving
the subproblems. With ε 6= 0, the implication stated in the assumption above is not
true in general. But it does hold for some important special cases - in particular
those with the primal-dual structure, including the problem (1.2) of Chen and
Teboulle. We shall show this for the more general variational inequality

Find x ∈ D such that ∃φ ∈ Φ(x) with 〈φ, x′ − x〉 ≥ 0 ∀x′ ∈ D,

D = {x ∈ X | Bx = b},
where Φ : X → M(X) is maximal monotone, B : X → Y is a linear operator (a
matrix of appropriate dimensions) and b ∈ Y . This problem is equivalent to (1.1)
with T given by (2.11), if we choose

F (x, y) = Φ(x) +B>y, G(x, y) = b−Bx, H(y) = 0.

If u ∈ F ε(x, y) in the sense of Assumption (A5), then

〈u− (φ′ +B>y), x− x′〉 ≥ −ε ∀x′ ∈ X, φ′ ∈ Φ(x′).

Take w ∈ G(x, y) and any (x′, y′) ∈ Z, (u′, w′) ∈ T (x′, y′). We have that

〈(u,w)− (u′, w′), (x, y)− (x′, y′)〉
= 〈u− (φ′ +B>y′), x− x′〉+ 〈b−Bx− (b−Bx′), y − y′〉
= 〈u− (φ′ +B>y), x− x′〉+ 〈B>(y − y′), x− x′〉

+〈B(x′ − x), y − y′〉
= 〈u− (φ′ +B>y), x− x′〉
≥ −ε,

which verifies that Assumption (A5) holds.
To prove that HPDM converges, we shall show that for all αk small enough, a

sufficiently good approximate solution for the proximal subproblem (2.13) would
guarantee that the condition (2.14) is satisfied. Convergence then would follow from
relating HPDM to HIPPM and following the line of analysis for the latter. Note
that as a by-product, we shall obtain a new linear rate of convergence result for
decomposition methods of this type. Specifically, for the method of [37] the rate of
convergence had been established for the case of the normal cone (2.18) with C = Y
only (so that H(y) = {0}). We obtain linear convergence for the case of (2.18) with
a general C, and also for the case where H is not necessarily a normal cone but can
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be a general maximal monotone operator. We comment however that in the case
of the normal cone with C 6= Y , our decomposition method does not include the
method of [37] (the methods are slightly different is that case, see Section 3.2).

Theorem 2.1. Suppose that T−1(0) 6= ∅ and that Assumptions (A1)-(A4) hold.
Suppose further that either in Algorithm 2.1 we set εk = 0 for all k, or that As-
sumption (A5) holds.

If G is Lipschitz-continuous on X × Y and Gk1 is (uniformly in k) Lipschitz-
continuous on Y , then there exists ᾱ > 0 such that for {αk} satisfying

0 < α ≤ lim inf
k→∞

αk ≤ lim sup
k→∞

αk < ᾱ,

the sequence {(xk, yk)} generated by Algorithm 2.1 is well-defined and converges to
an element of T−1(0).

Moreover, if there exist c1 > 0 and c2 > 0 such that

dist(z, T−1(0)) ≤ c1 min
v∈T (z)

‖v‖ ∀z ∈ {z′ ∈ domT | min
v∈T (z′)

‖v‖ ≤ c2}, (2.19)

then the rate of convergence is linear.
Proof. Let k ≥ 0 be any iteration index. As is easily seen, (2.12) is equivalent to

ŷk + αk(ĥk +Gk1(ŷk)) = yk − αk(G(xk, yk)−Gk1(yk)), ĥk ∈ H(ŷk), (2.20)

from which we have that

ŷk − yk = αk(Gk1(yk)−Gk1(ŷk)−G(xk, yk)− ĥk).

We then further obtain

sk = αk(G(x̂k, ŷk) + ĥk) + ŷk − yk

= αk(Gk1(yk)−Gk1(ŷk) +G(x̂k, ŷk)−G(xk, yk)).

By the Lipschitz-continuity of G and Gk1 (with some modulus L > 0), it follows
that

‖sk‖ ≤ αkL(‖(x̂k, ŷk)− (xk, yk)‖+ ‖ŷk − yk‖)
≤ 2Lαk‖(x̂k, ŷk)− (xk, yk)‖,

where the monotonicity of the norm was used in the last relation. Hence,

‖sk‖2 ≤ σk(‖x̂k − xk‖2 + ‖ŷk − yk‖2) (2.21)

whenever

αk ≤
√
σk

2L
. (2.22)

The approximation condition (2.14) can be re-written as

‖rk‖2 +2αkεk ≤ σk(‖αkûk‖2 +‖αkŵk‖2)+
(
σk(‖x̂k − xk‖2 + ‖ŷk − yk‖2)− ‖sk‖2

)
.

(2.23)
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Under (2.22), relation (2.21) holds and implies that the second term in the right-
hand side of (2.23) is nonnegative. Hence, at the very least the exact solution of the
proximal system (2.13) would satisfy (2.23) and thus (2.14) (for the exact solution,
the left-hand side in (2.23) is zero). This completes the proof of the fact that the
algorithm is well-defined. (In fact, if the inequality in (2.22) is strict then the right-
hand side of (2.23) is guaranteed to be positive (unless ŷk = yk and x̂k = xk), and
then appropriate inexact solutions of the proximal system (2.13) with rk and εk
small enough would also satisfy (2.23).)

Suppose that for some k the stopping test is satisfied: x̂k = xk and ŷk = yk.
Then we have that rk = αkû

k and sk = αkŵ
k. Hence, using (2.14), we deduce that

ûk = 0, ŵk = 0 and εk = 0. By (2.13), it immediately follows that 0 ∈ F (xk, yk).
And using (2.20), we also have that 0 ∈ G(xk, yk) + H(yk). Thus (xk, yk) = zk ∈
T−1(0), i.e., we terminate at a solution of the problem.

Suppose now that the method does not terminate and an infinite sequence {zk}
is generated, zk = (xk, yk) ∈ Z. Define ẑk = (x̂k, ŷk) ∈ Z, v̂k = (ûk, ŵk) ∈ Z,
δk = (rk, sk) ∈ Z. By construction, ûk ∈ F εk(x̂k, ŷk) and ŵk ∈ G(x̂k, ŷk) +H(ŷk).
By Assumption (A5), v̂k ∈ T εk(ẑk), with the inclusion being automatic if εk = 0.
Combining this with condition (2.14), we conclude that all the relations in (1.5)-
(1.6) hold.

The rest of the proof mostly follows the analysis of convergence of HIPPM. We
include a streamlined proof for completeness (also, the condition (2.19) that we use
here to obtain the linear rate of convergence result does not imply the uniqueness of
the solution, unlike the previous analysis for HIPPM). Using (1.5), by re-arranging
the terms in (1.6), it is easy to see that the latter condition is equivalent to

〈v̂k, zk − ẑk〉 − εk ≥
1− σk

2αk

(
‖αkv̂k‖2 + ‖ẑk − zk‖2

)
. (2.24)

If the right-hand side in (2.24) is zero, then (1.5)-(1.6) imply that zk ∈ T−1(0),
and in particular, the method would have stopped. We consider therefore the case
when the right-hand side in (2.24) is positive. In that case,

zk 6∈ Sk := {z ∈ Z | 〈v̂k, z − ẑk〉 − εk ≤ 0}.

On the other hand, for any z̄ ∈ T−1(0), it holds that 〈v̂k − 0, ẑk − z̄〉 ≥ −εk (since
v̂k ∈ T εk(ẑk)), which means that z̄ ∈ Sk. By the basic properties of the projection
operator (onto the closed half-space Sk), we have that

PSk(zk) = zk − 〈v̂
k, zk − ẑk〉 − εk
‖v̂k‖2

v̂k = zk − τkαk
θk

v̂k,

〈z̄ − PSk(zk), v̂k〉 ≤ 0.
Using those relations, we obtain that

‖zk+1 − z̄‖2 = ‖zk − z̄‖2 + ‖zk+1 − zk‖2 + 2〈zk+1 − zk, zk − z̄〉
= ‖zk − z̄‖2 + ‖τkαkv̂k‖2 − 2τkαk〈v̂k, zk − PSk(zk)〉

+2τkαk〈v̂k, z̄ − PSk(zk)〉
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≤ ‖zk − z̄‖2 + (1− 2/θk)‖τkαkv̂k‖2.

Furthermore,

‖τkαkv̂k‖ = θk
〈v̂k, zk − ẑk〉 − εk

‖v̂k‖

≥ θk(1− σk)‖αkv̂k‖2

2αk‖v̂k‖
= θk(1− σk)αk‖v̂k‖/2,

where the inequality is by (2.24). Taking into account the choices of σk, θk and αk,
we then conclude that

‖zk+1 − z̄‖2 ≤ ‖zk − z̄‖2 − c3‖v̂k‖2, (2.25)

where c3 := (2/θ̄− 1)(θ(1− σ̄)α/2)2 > 0. Hence, the sequence {‖zk − z̄‖} is nonin-
creasing and convergent. (In fact, we have that the sequence {zk} is Fejér-monotone
with respect to the solution set T−1(0), and convergence can be claimed by invoking
certain facts about Fejér-monotone sequences, e.g., [3, 11] and references therein.
But we shall provide details for completeness).

It follows from (2.25) that the sequence {zk} is bounded and further

0 = lim
k→∞

‖v̂k‖. (2.26)

Recalling (2.22), define
ᾱ :=

√
σ/(2L), (2.27)

and assume that αk ≤ ᾱ for all k sufficiently large (so that (2.22) holds). Since by
(2.24) we have that

‖v̂k‖ ≥ (1− σk)‖zk − ẑk‖/(2αk) ≥ (1− σ̄)‖zk − ẑk‖/(2ᾱ), (2.28)

it follows that
0 = lim

k→∞
(zk − ẑk). (2.29)

Then (2.24) further implies that

0 = lim
k→∞

εk. (2.30)

Let z∗ be any accumulation point of the bounded sequence {zk}, and let {zkj} be
the subsequence converging to z∗. By (2.29), it follows that {ẑkj} also converges
to z∗. Take any z ∈ Z and v ∈ T (z). Since v̂k ∈ T εk(ẑk), we have that

〈v̂kj − v, ẑkj − z〉 ≥ −εkj .

Passing onto the limit in the above relation as j →∞ and using (2.26) and (2.30),
we obtain that

〈0− v, z∗ − z〉 ≥ 0.
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The maximal monotonicity of T now implies that 0 ∈ T (z∗). We have thus estab-
lished that every accumulation point of {zk} is a solution of the problem. We can
therefore take z̄ = z∗ ∈ T−1(0) in (2.25). The sequence {‖zk − z̄‖} converges and
it has a subsequence converging to zero (since z̄ = z∗ is an accumulation point of
{zk}). Thus {‖zk − z̄‖} converges to zero, i.e., {zk} converges to z̄ ∈ T−1(0).

We proceed to establish the linear rate of convergence under the assumption
(2.19). Define ξk ∈ Z and ψk ∈ Z as the exact solution of the proximal subproblem
0 ∈ αkT (z) + z − zk, that is

0 = αkψ
k + ξk − zk, ψk ∈ T (ξk).

Since v̂k ∈ T εk(ẑk), by [29, Corollary 2.1], it holds that

‖ẑk − ξk‖2 + α2
k‖v̂k − ψk‖2 ≤ ‖αkv̂k + ẑk − zk‖2 + 2αkεk.

Using further (1.6), we have that

‖ẑk − ξk‖2 ≤ σk(‖αkv̂k‖2 + ‖ẑk − zk‖2).

By (2.24), ‖ẑk − zk‖ ≥ (1− σk)αk‖v̂k‖/2. Hence,

‖ẑk − ξk‖ ≤ σk
(

1 +
4

(1− σk)2

)
‖ẑk − zk‖ ≤ c4‖ẑk − zk‖,

where c4 := σ̄(1 + 4/(1− σ)2) > 0. We further have that

αk‖ψk‖ = ‖ξk − zk‖
≤ ‖ẑk − ξk‖+ ‖ẑk − zk‖
≤ (1 + c4)‖ẑk − zk‖. (2.31)

By (2.29), it follows that ψk → 0. Hence, by (2.19), for all k sufficiently large it
holds that

dist(ξk, T−1(0)) ≤ c1‖ψk‖ = c1‖ξk − zk‖/αk ≤ c1‖ξk − zk‖/α. (2.32)

Let ξ̄k = PT−1(0)(ξk). Then

dist(zk, T−1(0)) ≤ ‖zk − ξ̄k‖
≤ dist(ξk, T−1(0)) + ‖ξk − zk‖
≤ (1 + c1/α)‖ξk − zk‖
≤ (1 + c1/α)(1 + c4)‖ẑk − zk‖, (2.33)

where the third inequality is by (2.32) and the last is by (2.31). Setting now
z̄k = PT−1(0)(zk), from (2.25) we obtain that

dist(zk+1, T−1(0))2 ≤ ‖zk+1 − z̄k‖2

≤ dist(zk, T−1(0))2 − c3‖v̂k‖2

≤ dist(zk, T−1(0))2 − c3(1− σ̄)2‖ẑk − zk‖2/(2ᾱ)2
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≤
(

1− c3(1− σ̄)2

(2ᾱ(1 + c1/α)(1 + c4))2

)
dist(zk, T−1(0))2,

where the third inequality follows from (2.28) and the last from (2.33). The latter
relation establishes the linear rate of convergence of {dist(zk, T−1(0))} to zero. For
Fejér-monotone sequences this is equivalent to the linear rate of convergence of {zk}
to its limit, e.g., [3].

Remark 2.1. We note that the assumptions of Lipschitz-continuity of G on
X×Y and of Gk1 on Y can be replaced by assuming the same properties on bounded
sets. Indeed, once the iterates are well-defined, the analysis above immediately
shows that the generated sequence is bounded, and thus we can restrict the analysis
to a bounded set.

Additionally, we could consider the case where G and Gk1 are assumed to be only
continuous, similarly to some results in [37], although in that case some further
technical details have to be worked out.

Remark 2.2. The choice of parameter αk can be made according to (2.27),
if the Lipschitz constant L is known or can be estimated (for example, in the
problem of Chen and Teboulle (1.2), L = ‖A‖). Of course, (2.27) is a rather
conservative estimate and one might expect that a larger value should still be
acceptable for convergence. Appropriate αk can be obtained by a suitable Armijo-
like backtracking procedure. The proof of Theorem 2.1 establishes that such a
procedure would be well-defined, since there exists an interval of acceptable values
(0, ᾱ] with ᾱ > 0.

Remark 2.3. It can be seen that after computing xk+1 and yk+1 by (2.15)
and (2.16), we could project the point (xk+1, yk+1) onto any closed convex set
containing T−1(0) before proceeding to the next iteration. For example, if H is the
normal cone operator defined in (2.18), then we can project onto the set X × C.
With this modification, the convergence analysis still applies, because the left-hand
side in the key relation (2.25) can only become smaller after the projection.

Remark 2.4. The error bound condition (2.19) is equivalent to the following
Lipschitzian property of T−1 at zero:

T−1(v) ⊂ T−1(0) + c1‖v‖B ∀ v ∈ c2B,

where B = {z ∈ Z | ‖z‖ ≤ 1}. We note that this condition does not imply that
the solution set T−1(0) is a singleton, unlike in most rate of convergence results
for proximal-like methods, e.g., [25, 9, 31] (there are some exceptions however, e.g.,
[36, 37]).

3 Some special cases

In this section we apply our general decomposition scheme to problems where some
further structure is assumed.
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3.1 Coupling the Chen-Teboulle method with bundle techniques

We now turn our attention back to problem (1.2) and decomposition scheme (1.3).
At each iteration of the method we have to solve a problem of the form

min
ξ∈X1×X2

{αkL(ξ, ŷk) + ‖ξ − xk‖2/2},

which is decomposable as discussed in Section 1. In this subsection we shall be
talking about solving the above problem as a whole, with the understanding that
the actual computational work is done separately for the two independent pieces.
The above problem can be written as

min
ξ

Ψk(ξ) := αk(f(ξ) + 〈bk, ξ〉) + ‖ξ − xk‖2/2, (3.34)

where
f(ξ) = f1(ξ1) + f2(ξ2), bk = (A>ŷk,−ŷk).

If the function f1 and/or f2 is nondifferentiable, then (3.34) is a nonsmooth con-
vex minimization problem. The family of bundle methods [4, Ch. 9] is perhaps the
most practical computational tool for nonsmooth optimization. In what follows, we
shall argue that HPDM provides a convenient framework for coupling the decompo-
sition scheme (1.3) with appropriate bundle techniques for solving the nonsmooth
minimization subproblems (3.34).

The approach of (proximal form of) bundle methods consists in replacing the
objective function with its regularized cutting-planes approximation in order to
generate the next candidate point. Since the smooth part of the objective func-
tion in (3.34) is quadratic, it appears to make sense to insert it directly into the
(quadratic programming) subproblems of the bundle method, using linearizations
of the nonsmooth part only. We therefore arrive at the following scheme.

Suppose that the bundle method had already generated a sequence ξ0, . . . , ξm of
candidate points, m ≥ 0 (ξ0 is an arbitrary starting point). By ξ̄m ∈ {ξ0, . . . , ξm}
we denote the stability center, which is (roughly speaking) the point with the
lowest objective function value generated so far. At every candidate point ξi, we
have available the values of the nonsmooth part f of the objective function Ψk and
of one of the subgradients of f . This information defines the current cutting-planes
approximation of f :

f̌m(ξ) := max
i≤m
{f(ξi) + 〈gi, ξ − ξi〉}, gi ∈ ∂f(ξi).

The next candidate point is generated by

ξm+1 = arg min
ξ

Ψ̌m(ξ) := αk(f̌m(ξ)+〈bk, ξ〉)+‖ξ−xk‖2/2+µm‖ξ−ξ̄m‖2/2, (3.35)

where 0 < µ ≤ µm ≤ µ̄ is the stabilization parameter. We note that treating the
smooth part of Ψk directly in the subproblem (3.35) (instead of approximating it
by cutting planes) does not increase the complexity of the subproblem, since an
obvious reformulation of (3.35) is still a quadratic program. The new point ξm+1 is
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accepted as the next stability center ξ̄m+1 if Ψk(ξm+1) is sufficiently smaller than
Ψk(ξ̄m). Otherwise, the stability center does not change (ξ̄m+1 := ξ̄m), and the
next candidate point is generated using the enriched approximation f̌m+1 of f (and
therefore the enriched approximation Ψ̌m+1 of Ψk).

By optimality condition for (3.35), we have that

0 = αk(ǧm+1 + bk) + ξm+1 − xk + µm(ξm+1 − ξ̄m), ǧm+1 ∈ ∂f̌m(ξm+1). (3.36)

By the subgradient inequality, for all ξ it holds that

f̌m(ξ) ≥ f̌m(ξm+1) + 〈ǧm+1, ξ − ξm+1〉.

Since by construction f(ξ) ≥ f̌m(ξ), we have that for all ξ,

f(ξ) ≥ f̌m(ξm+1) + 〈ǧm+1, ξ − ξm+1〉 (3.37)
= f(ξ̄m) + 〈ǧm+1, ξ − ξ̄m〉 − e1

m,

where
e1
m = f(ξ̄m)− f̌m(ξm+1)− 〈ǧm+1, ξ̄m − ξm+1〉 ≥ 0,

with the nonnegativity of e1
m following from setting ξ = ξ̄m in (3.37). We therefore

have that
ǧm+1 ∈ ∂e1mf(ξ̄m). (3.38)

It can be also seen by direct verification that

(ξm+1 − xk) ∈ ∂e2m(‖ · −xk‖/2)(ξ̄m), (3.39)

e2
m = ‖ξ̄m − xk‖2/2− ‖ξm+1 − xk‖2/2− 〈ξm+1 − xk, ξ̄m − ξm+1〉 ≥ 0.

Using (3.36), we then obtain

ξm+1 = ξ̄m − 1
µm

Ǧm, (3.40)

where

Ǧm = αk(ǧm+1 + bk) + ξm+1 − xk

∈ αk∂e1mf(ξ̄m) + αkb
k + ∂e2m(‖ · −xk‖/2)(ξ̄m)

⊂ ∂emΨk(ξ̄m), (3.41)

where
em = e1

m + e2
m ≥ 0,

and the first inclusion is by (3.38) and (3.39), while the last inclusion follows from
the fact that (∂ε1ϕ1 + ∂ε2ϕ2) ⊂ ∂ε1+ε2(ϕ1 + ϕ2) for any convex functions ϕ1 and
ϕ2 and any ε1, ε2 ≥ 0.

The standard (implementable) stopping test for the bundle method applied to
(3.34) (e.g., [4, Ch. 9]) is

em +
1

2µm
‖Ǧm‖2 ≤ TOL, (3.42)
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where all the quantities involved are readily available, as exhibited above. We next
show that an appropriate choice of TOL > 0 guarantees that an approximate solution
of the minimization subproblems in (1.3) computed by the bundle method satisfies
the criteria of HPDM.

To decide whether the current ξ̄m can be accepted as x̂k within HPDM, we shall
be checking the criterion (2.14) (or, equivalently, (2.23)). So, given ξ̄m, define

ūm = ǧm+1 + bk ∈ ∂e1mf(ξ̄m) + bk ⊂ (∂xL)e
1
m(ξ̄m, ŷk),

where the second inclusion is by the fact that ∂εϕ ⊂ (∂ϕ)ε for any convex function
ϕ and any ε ≥ 0 (recall that the enlargement of the operator is understood here
with respect to the ξ-part, with the y-part fixed). Define further

r̄m = αkū
m + ξ̄m − xk = αk(ǧm+1 + bk) + ξ̄m − xk = Ǧm + ξ̄m − ξm+1,

where (3.41) was used. We then have that

‖r̄m‖ ≤ ‖Ǧm‖+ ‖ξ̄m − ξm+1‖ = (1 + 1/µm)‖Ǧm‖,

where the equality is by (3.40). Hence, if (3.42) holds then

‖r̄m‖2 + 2αke1
m ≤ (1 + 1/µm)2‖Ǧm‖2 + 2αkem
≤ 2(µm(1 + 1/µm)2 + αk)TOL. (3.43)

If we further define w̄m and s̄m as in HPDM but with x̂k substituted by the current
trial point ξ̄m, and set

TOLm :=
σk(‖αkūm‖2 + ‖αkw̄m‖2 + ‖ξ̄m − xk‖2 + ‖ŷk − yk‖2)− ‖s̄m‖2

2µm(1 + 1/µm)2 + αk)
,

then whenever the bundle method stopping test (3.42) would be satisfied with this
TOLm, it would imply (by virtue of (3.43)) that

‖r̄m‖2 + 2αke1
m ≤ σk(‖αkūm‖2 + ‖αkw̄m‖2 + ‖ξ̄m − xk‖2 + ‖ŷk − yk‖2)− ‖s̄m‖2,

which means that the HPDM condition (2.14) is satisfied for x̂k = ξ̄m, ûk = ūm,
rk = r̄m, sk = s̄m and εk = e1

m.
It remains to note that TOLm stays bounded away from zero, while by the con-

vergence properties of the bundle method,

0 = lim
m→∞

Ǧm and 0 = lim
m→∞

em.

This means that the bundle method stopping test (3.42) (with TOLm in the right-
hand side) would be satisfied after a finite number of iterations, yielding an ac-
ceptable approximate solution for the proximal point subproblem in HPDM. To see
that TOLm stays bounded away from zero, observe that by the fact that the bundle
iterates converge to the minimizer of (3.34), it holds that

lim
m→∞

αkū
m = lim

m→∞
(xk − ξ̄m).
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If we are not at a solution of our problem (1.2), then it must be the case that
either the limit above is nonzero (equivalently, 0 6∈ ∂xL(xk, ŷk)) or that ŷk 6= yk

(equivalently, 0 6∈ ∂yL(xk, ŷk)), or both. In either case, it is easily seen that TOLm
is bounded away from zero as m→∞.

3.2 Relations with Tseng’s method

Consider now problem (1.1) with T given by (2.11), where H is the normal cone
mapping (2.18) for some closed convex set C ⊂ Y . Given (xk, yk) ∈ X × Y , the
decomposition method of Tseng [37] performs the following updates:

ŷk = PC
(
yk − αk(G1(ŷk)−G1(yk) +G(xk, yk))

)
,

xk+1 = (I + αkF (·, ŷk))−1xk,
yk+1 = PC

(
yk − αkG(xk+1, ŷk)

)
,

(3.44)

where G1 and αk are chosen in a manner analogous to HPDM, except that G1 is
fixed over the iterations.

We first note that the step to compute ŷk in (3.44) is precisely the forward-
backward step (2.12) in HPDM for the choice of H = NC . Furthermore, the step
to compute xk+1 in (3.44) amounts to demanding that rk = 0 and εk = 0 in (2.13)
of HPDM. In the latter case, if we choose τk = 1 in (2.15) (which is admissible),
we obtain in HPDM xk+1 = xk − αkûk = x̂k − rk = x̂k, with x̂k in that case being
the exact solution of the proximal subproblem. Therefore xk+1 from (3.44) can be
obtained within HPDM. But the steps to compute yk+1 in (3.44) and HPDM are
in general different, except when C = Y . If C = Y then H = NC = 0, and thus
ĥk = 0 in HPDM, so that ŵk = G(x̂k, ŷk). If we solve the proximal subproblem in
HPDM exactly then xk+1 = x̂k, as noted above. Taking further τk = 1 in (2.16),
we obtain yk+1 = yk − αkŵk = yk − αkG(xk+1, ŷk), which is the same as in (3.44)
when C = Y .

We emphasize that even for the case of C = Y , HPDM presents an important
improvement over (3.44) in allowing the proximal subproblems to be solved approx-
imately, according to a constructive criterion (e.g., recall Section 3.1). It should be
noted that the analysis of [37] could be extended to handle approximate solutions,
but using the standard summability-type error conditions only (which are not very
suitable for computational use). Some other potentially useful features of HPDM
which add more flexibility are the following. The splitting term Gk1 is not fixed and
can be adjusted along the iterations (the structure of G(xk, ·) may differ depending
on xk). Also, an extra stepsize parameter τk is allowed for accelerating convergence.

We next comment on the case of C 6= Y . As already noted, in that case the
resulting yk+1 is in general different for the two methods. One advantage of HPDM
is that we were able to establish the linear rate of convergence result, while in [37]
the rate of convergence was obtained for C = Y only (the case of C 6= Y was posed
as an open question). To further compare the different updates of y, consider
the case where (2.11) has no x-part, so that the problem becomes the variational
inequality

0 ∈ G(y) +NC(y).
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Choosing G1 ≡ 0, (3.44) gives

ŷk = PC
(
yk − αkG(yk)

)
, yk+1 = PC

(
yk − αkG(ŷk)

)
,

which is the extragradient iteration [16, 14]. Choosing Gk1 ≡ 0 and τk = 1 in
HPDM, we have

ŷk = PC
(
yk − αkG(yk)

)
= yk − αk(G(yk) + ĥk), ĥk ∈ NC(ŷk),

yk+1 = yk − αk(G(ŷk) + ĥk) = ŷk − αk(G(ŷk)−G(yk)). (3.45)

The latter is the projection method derived from the modified forward-backward
splitting scheme [38, Example 2], which is different from the extragradient method.
It is also related to the modified projection-type methods of [33]. In particular,
Algorithm 3.1 in [33] computes

yk+1 = yk − γk(yk − ŷk − αkG(yk) + αkG(ŷk)),

with a certain γk > 0. The latter is the same as (3.45) if γk = 1. It should be
noted, however, that it is not clear whether γk = 1 is admissible in [33].

Finally, we point out that HPDM is applicable beyond the case where H is the
normal cone operator. Consider, for example, the min-max problem

min
x∈X

max
y∈Y
{f(x)− g(y) + 〈y,Bx− b〉}, (3.46)

where f and g are closed proper convex functions on the Euclidean spaces X and
Y , respectively, B : X → Y is linear, b ∈ Y . This problem is equivalent to (1.1)
with T defined in (2.11), if we set

F (x, y) = ∂f(x) +B>y, G(x, y) = b−Bx, H(y) = ∂g(y).

It can be seen that applying HPDM (with G1
k ≡ 0, εk = 0, rk = 0, τk = 1), we

obtain

ŷk = arg miny∈Y {αk(g(y) + 〈y, b−Bxk〉) + ‖y − yk‖2/2},
xk+1 = arg minx∈X {αk(f(x) + 〈x,B>ŷk〉) + ‖x− xk‖2/2},
yk+1 = ŷk − αkB(xk − xk+1).

The two nonsmooth convex optimization problems above further decompose accord-
ing to the structure of f and g, and can be solved approximately by an appropriate
application of bundle methods, as discussed in Section 3.1.

We note that for problem (3.46) the method of [37] can handle only the case where
g(y) = h(y) + IC(y), where h is continuously differentiable and IC is the indicator
function of a closed convex set C in Y (then we could define G(x, y) = h′(y)+b−Bx
and H(y) = ∂IC(y) = NC(y)). In particular, within the framework of [37] g cannot
have any nonsmoothness except when induced by the constraints on the variable y.
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