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ABSTRACT. We study stable and unstable manifolds of a hyperbolic equilib-
rium of an autonomous system of ordinary differential equations under change
of parameters. Perturbation theory of orbits lying in the stable and unstable
manifolds is developed. Both theoretical and numerical aspects are addressed.
As an application, a new method of computing connecting orbits is presented.
As a numerical example, we compute a traveling wave (represented by a het-
eroclinic orbit) in a specific system of four viscous conservation laws.

1. INTRODUCTION

In this paper we consider stable and unstable manifolds of hyperbolic equilibria
for multi-parameter systems of ordinary differential equations. These manifolds
play very important role in the theory of ordinary and partial differential equations
for the analysis of structure and bifurcation of phase portraits, the construction
of basins of attraction, the study of chaotic behavior, the construction of traveling
wave solutions etc., see [12, 20, 22, 23]. The aim of this paper is to create a construc-
tive multi-parameter perturbation theory for stable and unstable manifolds, which
can be useful both for analytical and numerical analysis, especially for computing
connecting orbits.

The paper is organized as follows. Section 2 contains basic notions and def-
initions. Section 3 provides a theoretical basis for the sensitivity analysis. Per-
turbation of an orbit on the stable or unstable manifold is expressed in terms of
fundamental matrices of the linearized system. Explicit formulae for decomposing
the perturbation in normal and tangent directions to the manifold are derived.

The numerical analysis given in Section 4 is divided into two parts: local compu-
tation near the equilibrium (on the semi-infinite interval —oco < ¢t < T') and numeri-
cal computation far from the equilibrium (¢ > T'). There are a number of numerical
methods for computing local stable and unstable manifolds, see [5, 13, 16, 21]. We
also mention the numerical packages AUTO [8], DsTool [11], and P4 [2] for investi-
gating ordinary differential equations. In this paper, we suggest a very simple and
classical linearization approach for local approximation and for sensitivity analysis
of the manifold. To estimate the calculation error, explicit second order accurate
formulae are derived. The advantages of this approach are its considerable simplic-
ity for numerical implementation together with fine error control.

1991 Mathematics Subject Classification. Primary 37M20; Secondary 37D10, 37C29.

Key words and phrases. Stable and unstable manifolds, equilibrium, perturbation, parameter,
connecting orbit, traveling wave.

This work was supported in part by: CNPq under Grant 300204/83-3, FINEP under CT-
PETRO Grant 21.01.0248.00, IM-AGIMB/ IMPA.

1



2 A. A. MAILYBAEV, D. MARCHESIN, AND M. H. DE SA VERA

In Section 5, we consider an application of the previous results to the problem
of computing connecting orbits, either homoclinic or heteroclinic. The sensitivity
analysis describes the behaviour of an orbit on the stable or unstable manifold under
change of parameters. This information is used in a flexible numerical method
that is user-driven in the computation process. The resulting method of finding
connecting orbits is numerically stable and has high convergence speed. For other
methods addressing this problem, see [4, 7, 9, 15, 18]. As an example, we compute a
traveling wave (heteroclinic orbit) for a specific system of four viscous conservation
laws, where the wave speed is taken as a parameter.

2. STABLE AND UNSTABLE MANIFOLDS
Let us consider a nonlinear autonomous system of ordinary differential equations
(2.1) x =f(x),

where x € R™ is a point in state space, f € C? is a smooth function with values
in R™, and the dot represents the derivative with respect to ¢t € R. An equilibrium
xo of system (2.1) is determined by the condition

(2.2) f(xo0) = 0,

which implies that x(¢) = x¢ is a solution.
Let us denote by

” n- ().

the m xm Jacobian matrix of the function f(x) evaluated at the equilibrium x = xq.

We assume that the matrix F is nonsingular and has k eigenvalues with positive

real part, m — k eigenvalues with negative real part, and no eigenvalues on the

imaginary axis. In this hyperbolic case, there is a k-dimensional unstable manifold

M. (x0) in state space formed by solutions (orbits) of system (2.1) “starting” at

Xo, i.e., satisfying the condition

(2.4) x(t) = xo as t— —oo.

The (m — k)-dimensional stable manifold M (x¢) contains solutions “ending” at

xo (x(t) = %o as ¢ = +00). Both unstable and stable manifolds are smooth [12].
Now we analyze the unstable manifold M,(xg). All the results can be used

for the stable manifold M;(xo) because M(x¢) is the unstable manifold for the
system obtained through reversal t — —t:

(2.5) x = —f(x).

Let x(t) be a solution of system (2.1) lying in the unstable manifold M, (x¢). A
nearby solution %(t) lying in M, (x¢) can be expressed in the form

(2.6) x(t) = x(t) + ey (t) + o(e),

where ¢ is a small real perturbation parameter. Substituting (2.6) into equations
(2.1) and (2.4), the first order terms in ¢ yield the system of linear homogeneous
equations

(2.7) y =F(t)y,
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FIGURE 1. Orbits lying in the unstable manifold.

where

(2.8) F(t) = (j—i)x(t)

is the Jacobian matrix evaluated at x = x(t), and y(t) satisfies the condition
(2.9) y(t) =0 as t— —oo.

System (2.7), (2.9) represents the linearization of equations (2.1), (2.4) near the
solution x(t).

Since F(t) — Fo as t - —oo and the matrix Fy has k eigenvalues with positive
real part, equations (2.7), (2.9) have k linearly independent solutions y1 (¢), ...,y (¢).
Using these solutions, we construct an mxk fundamental matrix Y (¢) = [y1(¢), ..., yx(t)],
which generates an arbitrary solution of system (2.7), (2.9) in the form

(2.10) y(t) =Y(8)§,

where ¢ € R* is a constant vector. Substituting (2.10) into (2.6), we find the
following representation for orbits in the unstable manifold M, (x¢) near the orbit

x(t):
(2.11) x(t) = x(t) + €Y (t)€ + o(e),
see Fig. 1. The columns of the matrix Y (¢) span the tangent space of the unstable
manifold at the point x = x(¢).
Since system (2.1), (2.4) is autonomous, a solution of equations (2.1), (2.4) x(t)

has the property that %X(¢) = x(¢ + 7), obtained through phase shift, is a solution
too. Taking small 7, we find

(2.12) x(t) =x(t) + TC;—}: +o(1) = x(t) + 7£(x(¢)) + o(7),

which implies that y(¢) = £(x(¢)) is a solution of the linearized system (2.7), (2.9).

3. SENSITIVITY TO PERTURBATION OF PARAMETERS

Let us assume that the function f(x,p) in system (2.1) depends smoothly on a
vector of parameters p € R”, and xq is an equilibrium of the system for a given
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value of p = py, i.e., f(x0, o) = 0. Let us consider a perturbation of the parameter
vector in the form

(3.1) P = Po +¢e,

where e is a direction vector with unit norm. The corresponding perturbation of
the equilibrium takes the form

(3.2) Xo = Xo + €yo + o(e),
where the vector yo can be found from the equation f(x,p) = 0 as follows
(3.3) yo = —F;'Gge.
Here
B (@), e ()
Xo0,Po Xo0,Po

are m X m and m X m matrices, respectively, evaluated at x = x¢ and p = po.
Recall that the matrix F is nonsingular by the hyperbolicity assumption.

The perturbation of the parameter vector leads also to a perturbation of the
unstable manifold. Let x(¢) be an orbit lying in M, (xg). Then the orbit X(¢) lying
in the perturbed unstable manifold M, (%) can be expressed as

(3.5) x(t) = x(t) + ey (t) + o(e).

Substituting expressions (3.1)—(3.3) and (3.5) into equations (2.1), (2.4), the first
order terms in ¢ yield the variational linear system

(3.6) y =F(t)y + G(t)e,
(3.7) y(t) = yo = —F;'Gge as t— —oo,
where
(3.8) F(1) = (ﬁ) .G = (ﬁ)
9%/ x(t),po P/ x(t),po

are m X m and m X n matrices, respectively, evaluated at x = x(¢) and p = po.

The general solution of equations (3.6), (3.7) can be represented as a sum of
a particular solution and the general solution of the corresponding homogeneous
system (2.7), (2.9). Taking the latter from (2.10), we find

(3.9) y(t) = Yp(t)e + Y(2)E,

where the m x n matrix Y,(t) is a particular solution of the system
(3.10) Y, =F()Y, + G(t),

(3.11) Y,(t) > Yo=-F;'Gy as t— —oo.

Theorem 3.1. Let x(t) be a solution of system (2.1) lying in the unstable manifold
M (x0) for the parameter vector po. Then nearby solutions X(t) in M, (Xo) for
the perturbed parameter vector p = pg + €e can be represented in the form

(3.12) x(t) = x(t) + e(Yp(t)e + Y(£)€) + o(e),

where & € RF is an arbitrary constant vector. The sum x(t) + €Y ,(t)e is the
approzimation of a particular solution in the perturbed unstable manifold M, (Xo),
and the additional term €Y (t)€ describes nearby orbits of this particular solution
in M (Xo); see Fig. 2.
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FIGURE 2. Perturbation of an orbit lying in the unstable manifold
under change of parameters.

3.1. Orthogonal decomposition of sensitivity. Let us consider the linear ho-
mogeneous differential equation

(3.13) 7z=—FT(t)z
with solutions z(t) satisfying the condition
(3.14) z(t) -0 as t— —oo,

where FT denotes matrix (2.8) transposed. Since —FT(¢t) — —F ast — —oo
and the matrix Fy has m — k eigenvalues with negative real part, system (3.13),
(3.14) has m — k linearly independent solutions zi (t),...,Zm—x(t). We take these

solutions as columns of an m x (m — k) real matrix Z(t) = [z1(t), ..., Zm—x(t)]. The
matrices Y (¢) and Z(t) satisfy the orthogonality condition
(3.15) ZT(t)Y(t) =0,

which can be verified by differentiating (3.15) with respect to ¢ and using the
equations

(3.16) Y=F1t)Y, Z=-FT'(1)Z
with solutions satisfying the conditions
(3.17) Y(t)—0, Z(t) -0 as t— —oo.

System (3.13), (3.14) is called the adjoint of (2.7), (2.9). The columns of the
matrices Y (¢) and Z(¢) form a basis in R™ depending smoothly on ¢. This basis is
appropriate to represent the columns of the unknown matrix Y,(¢) as

(3.18) Yp(t) = Y(£)Cy (1) + Z(1)C, (8),

where C,(t) and C,(t) are k x n and (m — k) x n matrices, respectively, depending
smoothly on ¢. The latter matrices can be found explicitly utilizing the following
theorem.
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Theorem 3.2. Any solution Y,(t) of system (3.10), (3.11) can be represented in
the form (8.18) through the matrices
t
C,(t) = Cyr + / (YTY) "' YT ((F + FT)ZC, + G) dr,
T

(3.19) t

C.(t) = (2T ()Z(t)) ™ / 77 Gdr,

—0o0

where Cyr s an arbitrary constant k X n matriz, and T is an arbitrary number.

Proof. Substituting expression (3.18) into equation (3.10) and using equations (3.16),
we obtain

(3.20) YC, +ZC, = (F +FT)ZC, + G.

Pre-multiplying (3.20) by Z”, using equation (3.16) for the matrix Z and condition
(3.15), we find

d
(3.21) E(szcz) =Z7G.
Integrating this relation in the interval (—oo, t] and pre-multiplying the result by
[ZT(t)Z(t)]~', we obtain the second expression in (3.19). Condition (3.17) for the
matrix Z(t) was used here.

Pre-multiplying (3.20) by (Y7Y) 1Y7 and using condition (3.15), we get
(3.22) C,=(YTY)'YT (F+FT)ZC, + G).

Integrating (3.22) in the interval [T, ¢] yields the first formula in (3.19). The con-
stant matrix C,7 = C,(T) yields the matrix Y (¢)C,r in (3.18), whose columns
are solutions of the homogeneous system (2.7), (2.9). O

Theorem 3.2 says that an orbit lying in the perturbed unstable manifold takes
the form

(3.23) x(t) = x(t) + (Y (£)(Cy(t)e + &) + Z(t)C.(t)e) + oe).

Taking into account the orthogonality condition (3.15), we see that expression (3.23)
decomposes explicitly the orbit perturbation into tangent and normal directions to
the unstable manifold, represented by the terms €Y (¢)(C, (t)e+£) and €Z(t)C,(t)e,
respectively.

Remark 3.3. The unstable manifold M, (xo) of a non-hyperbolic equilibrium xq is
tangent to the invariant subspace of the matrix F( corresponding to eigenvalues
with positive real part [12]. The above results remain valid for a non-hyperbolic
equilibrium, if the nature of the perturbation is such that the dimension of the
unstable manifold does not change under perturbation of parameters, and the de-
pendence of the unstable manifold on parameters remains smooth. Notice that
this happens only in specific situations. Nevertheless, this nongeneric situation ap-
pears in the study of traveling waves, see [20], as well as in the study of boundaries
between structurally stable phase portrait regions in parameter space, see [19].
Remark 3.4. Let x(t) be a homoclinic or heteroclinic orbit, i.e., it lies in the in-
tersection of stable and unstable manifolds of the same or two distinct equilibria.
Then the formulae in Theorems 3.1 and 3.2 allow evaluating the distance between
the stable and unstable manifolds due to perturbation of parameters. These formu-
lae yield a constructive generalization of the Melnikov theory to multi-dimensional
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and multi-parameter autonomous systems, as well as giving additional important
information on the manifolds behavior. For other generalizations of the Melnikov
method we refer to [3, 17, 24].

4. NUMERICAL EVALUATION OF SENSITIVITY

We need to compute an orbit lying in the unstable manifold in a semi-infinite
interval —oo < t < tg. For numerical calculation of the orbit and its sensitivity it is
convenient to divide this interval into two parts. In the first interval —oco <t < T
we approximate the orbit using local information on the nature of the equilibrium.
Then, we use a numerical integration method in the second interval T' < t < ¢y,
where initial conditions at ¢ = T are taken from the local approximation.

4.1. First order approximation of an orbit near an equilibrium. A first
order approximation of an orbit x(¢) lying in the unstable manifold M, (x¢) can
be found using the equations

(4.1) Ax =FyAx, Ax=x— X,

(4.2) Ax(t) -0 as ¢ — —oo,

which are the linearization of system (2.1), (2.4) near the equilibrium xq. Solutions
of equations (4.1), (4.2) are determined by the unstable invariant subspace of the
matrix Fy. This subspace can be found in a convenient and numerically stable way
by the real Schur decomposition [10]:

(4.3) S=U"'F,U,

where S is a real Schur canonical form of the matrix Fo (block-upper-triangular real
matrix with diagonal blocks corresponding to real eigenvalues or complex-conjugate
pairs of eigenvalues), and U is an orthogonal real matrix. It is always possible to
order the diagonal blocks in S so that

S. §
4.4 S = . ,
(44) (% s)
where S, and S; are k x k and (m — k) x (m — k) block-upper-triangular matrices
having eigenvalues with positive and negative real parts, respectively. We partition

the orthogonal matrix U = [U,,, U,] according to (4.4). The matrices U, and Uj
satisfy the orthogonality conditions

(4.5) vfu, =1, UTU,=0, UTU,=1,,_,

where Ij is the k x k identity matrix. Using equations (4.3)—(4.5), we find that
(4.6) F,U, =U,S,, FlU,=1U,ST.

Then, a solution of the equations (4.1), (4.2) is given explicitly in the form
(4.7) Ax = U, exp(Sa(t - T))m,

where 17 € R* is an arbitrary constant vector, and 7' € R is an arbitrary number.
Expression (4.7) provides the first order approximation

(4.8) Xapp(t) = %0 + Uy exp(Su(t —T))n

of an orbit lying in M, (%) in the neighborhood of x. At the end of the approxi-
mation interval we have

(4.9) Xapp(T) = x0 + Uyn.
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Ush(q)

FicUre 3. Local representation of the unstable manifold.

The accuracy of the approximation depends on the vector 1. It can be estimated
using the second order approximation of the unstable manifold.

4.2. Second order approximation of the unstable manifold. The columns of
the matrices U, and U, span the tangent and orthogonal subspaces of the unstable
manifold M, (xo) at xo, respectively. This decomposition allows representing the
unstable manifold in the vicinity of xq as

(4.10) My (x0) = {x(q) =x0 + Uuq+Ush(q) | q € Rk}a

where h(q) is the unique smooth function in the vicinity of @ = 0 with values in
R™ % see Fig. 3. The tangency condition ensures that the function h(q) satisfies

dh
4.11 h0)=0, (=) =o.
iy 0 (dq> o
The tangent space of M, (%) at the point x(q) has the form
dh
(4.12) Tx(q)Mu(x0) = {Uudq + UsE dq: dq € R*},

where dh/dq is the (m — k) x k Jacobian matrix of the mapping h(q) evaluated
at x(q). Since M, (%) is an invariant manifold with respect to the vector field
f(x,po), we have

(413) f(X(q), pO) € Tx(q)Mu(XO)‘
Using condition (4.13) and expression (4.12), we find

dh
(4.14) f(x(a), po) = Uuda + U, 7 da.

Pre-multiplying equation (4.14) by U7 and using properties (4.5), we obtain

(4.15) dq = U7f(x(q), po)-

Pre-multiplying equation (4.14) by U7 and using expressions (4.5), (4.10), and
(4.15), we get [16]:

T dh_.r
(4.16)  Ulf(xo + Uuq+ Ush(q), po) = dq O f(xo + Uuq + Ush(q), po).
Notice that (4.16) is a system of first order partial differential equations for h(q).

Taking the derivative §%/9q;0q; of both sides of equation (4.16) at g = 0 and
using equalities (2.2), (4.6), and (4.11), we find

(417) Ssh@‘j + fl’j = [hi17 ey hlk][Su]J + [hjl, ey hjk][Su]i,
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where [S,]; is the ith column of the matrix S,, and the vectors h;;, f;; € R™~* are

0’h 0
4.18 h;; = , fi; =0T
(4.18) 7 0q;0q; / s S Oz, 0.,

Uy (v,)Uu(w, j),

with derivatives evaluated at @ = 0 and x = x¢; Uy(v,%) denotes the (v,i)th
element of the matrix U,. Introducing the (m — k) x k® matrices

H= [hlly"-,hlk‘ah217"'ah2k7"‘7hk17"'7hk)k]a
F= [flly"'7f1k7f217'"7f2k7"'7fk17"'afkk]7

we write equation (4.17) in the form

(4.19)

(4.20) S,H- HR = —F,
where R is the k2 x k2 matrix
S. [Sul1 [Sulk
(421) R = ¥ N
Su [Sul1 [Sulk

with blank entries filled by zeros.

Equation (4.20) represents a system of linear equations for the elements of H. A
system of this type is called the Sylvester equation for the matrix H [10]. Such a
system has a unique solution, since there is a unique function h(q) parameterizing
the unstable manifold (4.10). The solution of the Sylvester equation can be found
numerically using standard codes, for example, LAPACK [1]. Having found the
matrix H, we use its columns h;; to approximate h(q) as

k
1
(4.22) h(q) = 5 Mzz:l hy;qiq; + of[|al).
Theorem 4.1. The second order approximation of the unstable manifold in the
neighborhood of the equilibrium xo has the form
1 - 2 k
(423)  Mulxo) = x(@) = %0 + Usa+ 50, O hiyaia; +ofllall’) | a € B:},
i,j=1

Notice that the second order analysis of individual orbits in the unstable manifold

is unnecessary for our purposes.

4.3. Error analysis. The second order term in (4.23) is orthogonal to the first
order term U,q and, therefore, it provides a good quantitative estimate for the
error in (4.8) as follows

k
1
§Us Z hy;qiq; || + o(|lall?),

ij=1

(4.24) [1%(2) = Xapp ()| =

where Xqpp(t) = x0 + Uyq with g = exp(S,(t — T))n, and x(¢) is the unstable
manifold exact orbit nearest to Xqpp,(¢). At the end of the approximation interval
t =T we find

k
1
7Us > higmans|| +ol(lmll?),

ij=1

(4.25) 1%(T") — %app (T)|| =
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where 7; is the ith component of the vector . If the error (4.25) exceeds a pre-
scribed bound, we can take a lower value of 7' of T' (i.e. T' < T'), thereby shortening
the approximate part of the orbit x(¢). Then, the approximate solution (4.8) is de-
fined in the interval —oco < ¢ < T" and is written as

(4.26) Xapp(t) = x0 + Uy exp(Su(t —T))m = x0 + Uy exp(S,(t — 1)) 1,
where
(4.27) n' = exp(S.(T' - T))n.

If 7' is low enough, the new vector n’ provides tighter estimate for error (4.25).

4.4. Orbit sensitivity near the equilibrium. Let us consider a perturbation of
the parameter vector p = pg + €e. Near the equilibrium, the variational equations
(3.6), (3.7) can be approximated by

(4.28) y = Foy + Goe,

(4.29) y(t) > y0o as t— —oo,

where Fy and Gy are the limits of F(¢) and G(t) as t — —oco. The general solution
of system (4.28), (4.29) is

(4.30) y =Yyo + Uyexp(Su(t —T))&,

where £ € R* is an arbitrary constant vector, and 7' € R is an arbitrary number.
Recall that the vector yo, determined by formula (3.3), describes the perturbation
of the equilibrium. Using expression (4.8), we find the first order approximation of
the orbit (3.5) on the perturbed unstable manifold M, (Xo) as

Kapp(t) = Xapp(t) +€(yo + Uuexp(Su(t —T)) &)

(4.31) _

= Xo,app t+ U, exP(Su(t - T))(n + 55)7
where
(432) iO,app =X+ €Yo =Xo + Y()Ap, Ap =ce,

is the approximation of the perturbed equilibrium Xg.

Approximations of the fundamental matrix Y (¢) and of the partial solution
Y,(t), determined by equations (3.16), (3.17) and (3.10), (3.11), are obtained as
solutions of the systems

Y =F,Y, Y(t) =0 as t— —oo,
(4.33)

Yp :F()Yp+G0, Yp(t) —Yy as t— —00,
in the form
Yam)(t) = U, exp(S.(t = T)),

(4.34)
Yp,app(t) =Yo.



SENSITIVITY ANALYSIS OF STABLE AND UNSTABLE MANIFOLDS 11

4.5. Numerical computations away from the equilibrium. For ¢ > T the
orbit x(t) lying in the unstable manifold can be found by numerical integration of
equation (2.1) with the initial condition

(4.35) x(T) =x0 + Uyn

obtained from the approximation (4.9).

Sensitivity of the orbit is determined by the matrices Y (¢) and Y, (¢), which can
be evaluated numerically using equations (3.16) and (3.10). The initial conditions
follow from approximations (4.34) as follows

(4.36) Y(T)=U,, Y,(T)=Y,.

Solutions lying in the unstable manifold diverge from each other as we move away
from the equilibrium. The rate of divergence is different in different directions; it
depends on real parts of eigenvalues of the Jacobian matrix F(¢). If the real parts of
these eigenvalues differ strongly, the matrix Y (¢) becomes ill-conditioned for large
values of t. As a result, the numerical accuracy of the sensitivity estimate may be
affected. This loss of accuracy can be minimized by utilizing the QR-decomposition
of the matrix Y(t) as

(4.37) Y(t) = Q()R(?),
where Q(t) is an m x k orthogonal matrix satisfying the condition

(4.38) QT (1)Q(t) = L,

and R(¢) is an upper-triangular £ x k matrix [10]. The matrices Q(¢) and R(¢t) are
smooth functions of ¢.

The QR-decomposition is a practical tool for computing and storing ill-conditioned
matrices: the ¢th column of the orthogonal matrix Q determines the direction for
the difference between the ith column of the matrix under consideration and the
linear span of its first ¢ — 1 columns, while the matrix R provides coordinates in
the basis given by the columns of Q. Working with the matrices Q and R instead
of the original ill-conditioned matrix decreases the effect of numerical errors.

Substituting expression (4.37) into the first equation in (3.16) and differentiating
the orthogonality condition (4.38) with respect to ¢, we obtain

QR + QR = F(/)QR,

(4.39) . .
Q'Q+Q"'Q=0.

The first equality in (4.39) contains m X k independent equations. The second
equality of (4.39) is obtained by differentiating the symmetric & x k& matrix Q7 Q
and, hence, it contains k(k +1)/2 independent equations. The unknowns are m x k
elements of the matrix Q and k(k+1)/2 elements of the upper-triangular matrix R.
It can be shown that implicit equations (4.39) can always be solved for derivatives.
Hence, the matrices Q(t) and R(¢) can be found by numerical integration of system
(4.39). The initial conditions follow from (4.36) in the form

(4.40) Q(T)=U,, R(T)=L.
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5. COMPUTATION OF CONNECTING ORBITS

Let us consider two equilibria x¢ and xj}. An orbit tending to x2 as t — —o0
and tending to x} as ¢ — 400 is called an orbit connecting x¢ to x§. A connecting
orbit is called heteroclinic if x¢ # x§ and homoclinic if x3 = x}. The set of orbits
connecting x2 to x} represents the intersection of the unstable manifold M, (xg)
with the stable manifold M (x5). If M, (x¢) has dimension k% and M(x}) has
dimension k®, then the dimension of the intersection is generically k% + kb — m,
where m is the state space dimension. If k% 4+ k* —m < 0, then connecting orbits
may exist only for specific values of the parameter vector.

Let us consider a connecting orbit with a corresponding parameter vector as a
curve in state-parameter space. Then a set of connecting orbits (intersection of
the unstable and stable manifolds) in state-parameter space has dimension k% +
k* — m + n, where n is the number of parameters. In particular, existence of a
connecting orbit for at least one value of the parameter vector requires generically
n > m — k% — k® parameters. Homoclinic orbits require n > m — k% — k® = 0 and,
hence, parameters are generally necessary to ensure the existence of a homoclinic
orbit.

5.1. Approximation of the connecting orbit. First, we consider heteroclinic
orbits, when the equilibria x¢ and x} are different. Let x®(¢) and x°(¢) be the orbits
belonging to the unstable manifold M, (x3) and to the stable manifold M(x}),
respectively. By Theorem 3.1, under perturbation of the parameter vector p =
Po + e, the orbits x%(¢) and x°(¢) change as follows

%% (t) = x(t) + Y2()Ap + Y (1)E" + o(e),

(5.1) .
%0(t) = x0(t) + Y2 (1) Ap + Y ()€ + ofe),
where we introduced the vectors Ap = ce, éa = &£?, and éb = ¢£. Recall that
the analysis of the orbit x®(¢) is carried out using the system (2.5) obtained by
the reversal t — —t, where the solution x®(—t) lies in the unstable manifold of the
equilibrium x.

Let us consider a hyperplane

(5.2) n’x+a=0,

where n € R™ and a € R, as a Poincaré section (typically, a finite part of the plane
is used), and assume that the orbits x%(t) and x”(¢) intersect this plane on opposite
sides at the points x% = x%(t%) and x5 = x°(t%); see Fig. 4. We assume that
4, = t% = tp, which can always be achieved by phase shift in one of the solutions.

The parameter vector ppew = Po + Ap for which the connecting orbit exists
can be approximated using the condition that the perturbed orbits %*(¢) and %°(t)
coincide up to a phase shift in ¢t. Without loss of generality, we assume that the
perturbed orbits intersect the plane (5.2) at the same value of ¢t = tp. This re-
quirement can be treated as a phase condition. Using the expressions (5.1) in the
connection equation X%(tp) = X°(tp) and the intersection condition (5.2) for the
first orbit, we obtain the approximate equations

~a ~b
(5.3) xp+ Yo(tp)Ap+ Y% (tp)§ =xp + Y (tp)Ap + Y'(tp)€

(5.4) n” (Y5 (tp)Ap + Y*(tp)€") = 0.
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Xp b
X4(1) | ® ! /xo,new
%o — —— —x;
- b {
,/x(t)/ e x°(1)

a
xO,new

F1GURE 4. Numerical computation of a heteroclinic orbit.

Xy

xO,new

F1GURE 5. Numerical computation of a homoclinic orbit.

Notice that equations (5.3), (5.4) imply the intersection condition (5.2) for the
second orbit as well.
System (5.3), (5.4) contains m + 1 linear equations in n + k% + k” unknown

. b
components of the vectors Ap, £a, and £ . Hence, the solution of this system is a

hyperplane of dimension n + k% + k* —m — 1. Substituting solutions Ap, éa, and éb
into expressions (5.1), we obtain the first order approximation of the intersection of
M, (x2) and M, (x4) in state-parameter space. If n = m + 1 — k% — k®, equations
(5.3), (5.4) generically have a unique solution, and there is a single connecting orbit.
If n > m+1— k% — kP, a particular solution is singled out according to user choice
of a specific connecting orbit.

In the homoclinic case the equilibria coincide, x3 = x} = x, see Fig. 5. The
analysis of this case is identical to that for a heteroclinic orbit.

5.2. Computer program. The proposed approach was implemented in a com-
puter program for finding connecting orbits in a multi-parameter autonomous sys-
tem of ordinary differential equations. The m-dimensional space is visualized
through several two-dimensional projections. The program automatically detects
equilibria and evaluates orbits on stable and unstable manifolds. A specific orbit
can be chosen by providing a reference point, where the orbit is likely to pass. Then
this point is projected to the tangent space of the manifold to determine the value
of the vector 7, see equation (4.9). The length of the approximate local part of the
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orbit is corrected to attain a required accuracy, see Subsection 4.3. The Poincaré
section is implemented as a convex hull of m points (simplex with m vertices),
e.g. it is a segment and triangle in two- and three-dimensional spaces, respectively.
Manipulations of orbits and Poincaré section are done automatically as well as
interactively using a flexible graphical user interface.

As soon as two orbits are chosen on stable and unstable manifolds intersecting
the Poincaré section on opposite sides, Newton’s method based on equations (5.3),
(5.4) is applied to find a connecting orbit. If the difference ||x% — x5 || is large,
then a gradient method is used initially. At each iteration step, the vector Ap is
used to update the parameter vector, and new reference points for two orbits are
found from approximations (5.1). Recall that orbits (5.1) are determined up to
phase shifts represented by the terms c*f(x®(t)) and c?f(x°(t)) (c?,c® € R), which
are contained in the fundamental matrices Y¢(¢) and Y?(t), respectively. In the
program, we choose these terms in such a way that the phase shifts at the reference
points are minimized.

Note that the suggested method is convenient from the point of view of inter-
action with the user: changes in the parameters lead to prescribed changes in the
phase portraits. Other advantages, related to the usage of Newton’s and gradient
methods, are high convergence speed, simplicity in numerical implementation, and
accurate error control. The latter is especially important for application to the
stability analysis of traveling waves, see [6]. Limitations are related to the local
nature of the method.

5.3. Example: computation of a traveling wave for a system of four vis-
cous conservation laws. Let us consider the system of partial differential equa-
tion for w(z,t), —oo < z < 00, t > 0 [14]:

ow  Of(w 0 ow

Ow  oW) _ 9 (pw)2¥),

ot ox ox oz

where the m x m viscosity matrix D(w) and the m-dimensional flux function f(w)

are smooth functions of w € R™. Traveling waves for system (5.5) are given by
heteroclinic orbits x(¢) of the system of ordinary differential equations

(5.6) D(x)x = —o(x — o) + f(x) — £(x0),

such that the left state is x§ = xo; the parameter o represents the speed of the
traveling wave. When the dimension k* of the unstable manifold M, (x%) and the
dimension &’ of the stable manifold M,(x}) are related as k*+k® = m, a connecting
orbit appears at isolated values of o that need to be determined numerically.

Let us investigate the problem of finding the traveling wave and the correspond-
ing wave speed o for a particular system of fourth order (m = 4), where

0.01z; + 0.1z2 + 0.02z3 — 0.522 + 0.5z2
- —0.1z1 + 0.01z4 + 2122
—0.02z5 — 0.1223 + 0.01z4 + 0.22324
0.01z1 + 0.01z3 + 0.11x4 + 0.121 24

(5.5)

and x¢ = (0.13,0.07,0.05,0.02)”. The system has a single parameter p = ¢. As an
initial value we take o9 = —0.01. The second equilibrium is found numerically as
x} = (—0.168036,0.128799, 0.045215,0.055120) 7.
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FIGURE 6. Initial orbits x?(¢) and x°(¢) (solid lines) and the het-
eroclinic orbit (dotted line).
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FIGURE 7. Sensitivity analysis of the orbits x?(¢) and x°(t) lying
in the unstable and stable manifolds.

The orbits on the stable and unstable manifolds are chosen using the computer
program described above. They intersect the Poincaré section, which is given by
four points that are vertices of the tetrahedron, see Fig. 6. In this figure the (1, 24)
and (z2,z3) projections are shown. Sensitivity analysis of these orbits provides the
vectors Y3 (¢) and Y)(t) and the 4 x 2 matrices Y*(t) and Y®(t) describing the
structure of the perturbed manifolds. Fig. 7 shows components of the vectors
Y2(t) and Y5 (t), where tp = % = t% is set to zero. These vectors describe specific
orbits on the perturbed manifolds. Solving equations (5.3), (5.4) yields the value
Ao = —0.011196, which is used to get a new corrected o = g9 + Ao = —0.021196.

Application of Newton’s method implemented in the computer program yields a
heteroclinic orbit x(t) after four iterations. All the computations were carried out
using the absolute error bound ¢ = 1076, Table 1 gives the values of o together
with the distance ||x% — x%|| between two orbits at the Poincaré section found at
each iteration step. As a result, we obtain the value ¢ = —0.025955 for the wave
speed corresponding to the heteroclinic orbit x(¢). Each of the components of x(?)
for i = 1,2,3,4 are shown in Fig. 8. The same connecting orbit is given in Fig. 6
by the dotted line.

6. CONCLUSION

In this paper, we developed a constructive perturbation theory for orbits lying
in stable and unstable manifolds of equilibria for autonomous systems of ordinary
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Tteration number o |lx5 — x4 ||
Initial state —0.01 0.078619

1 —0.021196  0.024450

2 —0.025612  0.002195

3 —0.025954 3.836E—5

4 —0.025955 2.459E—7

TABLE 1. Results of Newton’s iteration procedure for calculation
of the heteroclinic orbit

xrl 2
0.1 | 3
0of 2
-0.1 F
-0.2 1 1 1 1 1 1 1 1 1
-40 -20 0 20 ¢ 40

FIGURE 8. Traveling wave (heteroclinic orbit).

differential equations depending on several parameters. The sensitivity analysis
with a simple and efficient error control is implemented numerically. As an appli-
cation, we propose a new method for computing heteroclinic and homoclinic orbits;
the method was tested in interactive computer software. The results of this paper
are useful for parametric analysis in problems of applied mathematics and natural
sciences modeled by systems of ordinary differential equations.
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