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Abstract

We study codimension one smooth foliations with Morse singularities. A characterization of
the three-sphere in terms of the number of centers and saddles is obtained and generalizations
of the classical theorems of Reeb, Haefliger and Novikov are given.

Our purpose is to study the effect of the presence of singularities of Morse type on the global
topology of a codimension one foliation defined on a compact manifold of dimension n ≥ 2. After
some preliminaries in § 1 and § 2 we present in § 3 a method of elimination of singularities, via an
isotopy of the foliation, in a domain where the sum of the indices is zero. This is based in an index
theorem for foliations with isolated singularities that will be used throughout the paper and can
be found in the Appendix § 7.

In § 4 we prove generalizations of the Reeb and Milnor topological characterizations of the
n-sphere. A sample of our results reads as (Theorem 4.3):
Theorem. Let F be a C∞ codimension one Morse foliation on a closed, connected 3-manifold

M3. Suppose that in the singular set the number k of centers and the number ` of saddles satisfy

k ≥ ` + 1. Then M is homeomorphic to S3.

One of the fundamental theorems in codimension one foliation theory on compact manifolds
with finite fundamental group is the existence of a leaf with nontrivial holonomy. This is due to
Haefliger ([C-LN],[G]). The proof consists of two main steps. First, a closed transverse path to the
foliation is found, thus inducing in a 2-disc a pull back foliation by lines with Morse singularities,
transverse to the boundary. Then, using Poincaré-Bendixson theorem, one finds a leaf with one-
sided nontrivial holonomy. Taking this as a model we consider in § 5 codimension one foliations
with Morse singularities, defined on closed manifolds, and transverse to the boundary. We show
a generalization of Haefliger’s argument to this situation, using strongly the stability theorem of
Reeb, as a substitute for the Poincaré-Bendixson arguments. Along the same line of reasoning we
present in § 6 a generalization of Novikov’s compact leaf theorem for the case of foliations with
Morse singularities on 3-manifolds.

1 Preliminaries

Let F be a codimension one C∞ foliation on a manifold M and p ∈ M an isolated singularity of F .
We say that p ∈ sing(F) is a Morse type singularity if there is a neighborhood p ∈ U ⊂ M where
it is defined a C∞ function f : U → R such that F

∣∣
U

is given by df = 0 and p is a non-degenerate
critical point of f . We can assume that p is the only singularity of f in U and, by Morse Lemma,
we know that we have a coordinate system (y1, . . . , yn) ∈ U for M such that yj(p) = 0, ∀ j and
f = f(p) − (y2

1 + · · · + y2
r ) + y2

r+1 + · · · + y2
n . The number r ∈ {0, . . . , n} is the Morse index of

f at p. We say that p is a center singularity if r = 0 or n and p is called a saddle singularity
otherwise. In a neighborhood of a center the nonsingular leaves of F are diffeomorphic to (n− 1)-
spheres. Given a saddle singularity p ∈ sing(F) we have cone leaves given by the expressions
y2
1 + · · · + y2

r = y2
r+1 + · · · + y2

n 6= 0 in a neighborhood of the singular point p = (0, . . . , 0). These
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leaves will be called separatrices of F through p. A saddle connection for a foliation F is a leaf
L of F that contains separatrices of two distinct saddle singularities of F . We say that a saddle
singularity p ∈ sing(F) is self-connected if there is a leaf L of F containing two distinct local
branches of separatrices of F through p.

A codimension one C∞ foliation F with isolated singularities on M will be called a Morse

foliation if each singularity of F is of Morse type and F has no saddle connections. The first
example of a Morse foliation is given by the levels of a Morse function f : M → R. These functions
approximate any given C∞ function [M] and in this same spirit we can prove that if F0 is a C∞

codimension one foliation with isolated singularities on a compact manifold M and suppose that
each singularity of F0 admits a C∞ local first integral then F0 can be arbitrarily approximated by
Morse foliations on M .

A foliation F of codimension one and isolated singularities on M will be called orientable if
there exists a one-form Ω of class C∞ on M such that sing(F) = sing(Ω), Ω is integrable in the
sense that Ω ∧ dΩ = 0 everywhere, and F coincides with the foliation Ω = 0 outside the singular
set. The choice of such a one-form Ω is called an orientation for F and two such one-forms Ω and
Ω′ define the same orientation for F if Ω′ = h ·Ω for some positive function h on M . The foliation
F is called locally orientable if each (singular) point p ∈ M admits a neighborhood where F is
orientable, i.e., given by a one-form Ωp as above. Clearly a foliation with Morse type singularities
on a simply-connected manifold is always orientable.

2 Singular Seifert fibrations

Let M be a compact manifold of dimension n ≥ 3, connected, possibly with non-empty boundary
∂M . Let F be a codimension one C∞ foliation with isolated singularities on M and if ∂M 6= ∅ we
suppose ∂M is either a union of leaves of F or is everywhere transverse to F . We shall say that
the foliation F is a (singular) Seifert fibration of M if its leaves are compact with trivial holonomy
group. Assume now that the singularities of F are of Morse type. We introduce the set C(F) union
of all centers and leaves diffeomorphic to Sn−1 in Mn. Given any center singularity p ∈ sing(F)
we denote by Cp(F) the connected component of C(F) that contains p.

Remark 2.1. (i) If q ∈ sing(F) ∩ ∂C(F) then q must be a saddle. (ii) C(F) is open in M as a
consequence of Reeb local stability theorem. (iii) Cp(F) is open in M and Cp(F) ∩ Cq(F) 6= ∅ if
and only if Cp(F) = Cq(F). (iv) Since Cp(F) is open in M we have Cp(F) = M if and only if
∂Cp(F) = ∅. In this case the singularities of F are centers and the leaves diffeomorphic to Sn−1.
The classification of these foliations is given below:

Proposition 2.1. Let F be a Seifert fibration on M tangent to the boundary ∂M if non-empty.

Suppose that the singularities of F are of Morse type. Then we have the following possibilities:

(i) ∂M = ∅, M is homeomorphic to Sn, F is given by a function f : Mn → [0, 1] ⊂ R with exactly

two critical points and nonsingular levels diffeomorphic to Sn−1.

(ii) ∂M is diffeomorphic to Sn−1, M is homeomorphic to closed ball Bn, F is given by a function

f : Mn → [0, 1] ⊂ R with exactly one critical point and nonsingular levels diffeomorphic to Sn−1.

(iii) ∂M is diffeomorphic to the disjoint union of two spheres Sn−1, Mn is homeomorphic to Sn−1×
[0, 1], F is nonsingular given by a function f : Mn → [0, 1] ⊂ R with no critical points and levels

diffeomorphic to Sn−1.

(iv) F is nonsingular, ∂M = ∅ and F is given by a fibration f : M → S1 with typical fiber a leaf L
of F . In particular, if F has some leaf diffeomorphic to Sn−1 then M is homeomorphic to Sn−1×S1

and F is the trivial foliation by spheres Sn−1 × {y}, y ∈ S1.
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In the proof we shall use:

Lemma 2.1. Let F be a foliation with Morse singularities on Mn, connected, compact with bound-

ary ∂M invariant by F if non-empty. Suppose F has all leaves compact then we have the following

possibilities:

(i) ∂M = ∅ and F has exactly two singularities; (ii) ∂M 6= ∅ and F has exactly one singularity;

(iii) The foliation F is nonsingular.

Proof. Assume that ∂M = ∅ and sing(F) 6= ∅. Clearly any singularity of F must be a center for
F has all leaves compact. Take p ∈ sing(F) a center singularity. Define A(p;F) as the union of
leaves L ∈ F such that L is diffeomorphic to Sn−1 and bounds a region R(L) homeomorphic to
the ball Bn and such that p ∈ R(L). Notice that all leaves of F are diffeomorphic to Sn−1, indeed
M = ∪p∈sing(F)Cp(F) and A(p;F) ⊆ Cp(F) \ sing(F). We claim that:

Claim 2.1. A(p;F) = Cp(F) \ sing(F).

Proof. Indeed, A(p;F) is open in Cp(F) \ sing(F) by the Local Stability Theorem. To see that
A(p;F) is closed in Cp(F)\sing(F) we take a sequence of points xj ∈ A(p;F) say xj ∈ Lj ⊂ A(p;F)
with xj → xo ∈ Cp(F) \ sing(F). Since the leaf Lo 3 xo is also homeomorphic to Sn−1 the
Local Stability Theorem again shows that necessarily Lj → Lo and also by the local product
structure of F near Lo we have that Lo bounds a ball R(Lo) containing p and its interior, indeed
R(Lo) = lim R(Lj). Thus xo ∈ Lo ⊂ A(p;F). This implies that A(p;F) = Cp(F) \ sing(F) (recall
that by definition Cp(F) is connected and therefore Cp(F) \ sing(F) is also connected).

Claim 2.2. Cp(F) = M .

Proof. Clearly Cp(F) is open in M . Let now xj ∈ Cp(F) with xj → xo ∈ M . If xo ∈ sing(F)
then clearly xo ∈ Cp(F). Assume that xo /∈ sing(F). Then Lxo is homeomorphic to Sn−1 and by
the Local Stability Theorem we must have Lxj

→ Lxo in the Hausdorff topology. This implies that
for j >> 1 the leaves Lxo and Lxj

belong to the same connected component of C(F) and therefore
Lxo ⊂ Cp(F) as well. Thus Cp(F) is also closed in M and since M is connected we have Cp(F) = M .
Thus A(p;F) = M \ sing(F) and sing(F) = M \ A(p;F) = ∂A(p;F) 3 p.

Claim 2.3. ∂A(p;F) = {p, q} for some point q ∈ M \ {p}.

Proof. Suppose that ∂A(p;F) = {p}. Then F has only one singularity on M and is defined by a
function f : M → R with a single critical point. This cannot happen because M is compact with
empty boundary. Therefore ]∂A(p;F) ≥ 2. Suppose by contradiction that there exist q1 6= q2

in ∂A(p;F) \ {p}. Let A(p;F) be the collection of leaves that belong to A(p;F). In A(p;F) we
define an order < as follows: Given L1, L2 ∈ A(p;F) we say that L1 < L2 if R(L1) ⊆ R(L2). By
the definition of A(p;F) this order is total (notice that if L1 6= L2 then L1 ∩ L2 = ∅ and thus
R(L1), R(L2) are two balls containing p as interior point and therefore either R(L1) ⊂ R(L2) or
R(L2) ⊂ R(L1). Thus given qj ∈ ∂A(p;F), qj 6= p (j = 1, 2) we have a sequence {Lj

ν}ν such

that Lj
ν ⊂ Lj

ν+1 and qj = limν→∞ xj
ν for some points xj

ν ∈ Lj
ν . But we can always compare terms

{L1
ν} with terms {L2

ν}, therefore we may assume that L1
ν < L2

ν+1 < L1
ν+2 < L2

ν+2 up to passing

to subsequences. On the other hand, since qj is a center it follows that Lj
ν → qj in the Hausdorff

topology and therefore necessarily q1 = q2.
Now we assume that ∂M 6= ∅ and sing(F) 6= ∅. Any singularity of F is a center and therefore

all leaves are diffeomorphic to Sn−1. In particular any connected component of the boundary ∂M
is diffeomorphic to Sn−1. Let ∂M = L1 ∪ · · · ∪ Lr where Lj is a leaf of F diffeomorphic to Sn−1

and Li ∩ Lj = ∅ if i 6= j. We attach to M a closed ball Bj diffeomorphic to Bn, to the boundary
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Lj = Bj diffeomorphic to Sn−1, and obtain a compact manifold M , connected and with empty
boundary. On Bj we consider a foliation Fj with a single center singularity pj and tangent to
the boundary ∂Bj . Then M is equipped with a codimension one foliation F such that F

∣∣
Bj

is

conjugate to Fj , ∀j and F
∣∣
M

is conjugate to F . Using the empty boundary case we conclude that

] sing(F) = 2 and therefore since sing(F) 6= ∅ we have 1 ≤ r = ]{Bj} ≤ 1, that is r = 1 and
∂M ' Sn−1 and ] sing(F) = 1. This ends the proof of the lemma.

Proof of Proposition 2.1. We assume sing(F) 6= ∅. Suppose ∂M = ∅. We have seen above
that ] sing(F) = 2, sing(F) consists of two centers p, q and M = A(p;F) ∪ {p, q}. Also we have
M = A(q;F)∪ {p, q} and therefore A(p;F) = A(q;F). This shows that M is homeomorphic to Sn

and that F is given by a function f : Mn → R with exactly two critical points, its maximum and
minimum value points in M . Let [a, b] = f(M) then we can assume that a = 0, b = 1. The critical
values of f are 0 and 1 and we have {p, q} = f−1{0, 1}. This gives case (i).

Suppose now that ∂M 6= ∅. We have seen that sing(F) consists of a single center singularity
p ∈ M and ∂M is diffeomorphic to Sn−1. We can double F through the boundary Sn−1 and apply
(i) to obtain (ii). Alternatively we may repeat the argumentation of (i) to conclude this case (ii).

Suppose now that F is nonsingular and ∂M contains some sphere Sn−1. In this case by the
classical Global Stability Theorem of Reeb we obtain that F is a foliation by spheres and ∂M is
a union of spheres. The same argument as in the last part of the proof of Lemma 2.1, embedding
(M,F) into a pair (M,F) where M is compact with empty boundary, implies that ∂M is a union
of two spheres and F is given by a submersion f : M → [0, 1]. The conclusion of (iii) follows. Now,
(iv) follows from the Global Stability Theorem.

Corollary 2.1 ([R2]). If a closed orientable, connected, manifold Mn of dimension n ≥ 3 admits

a foliation F such that: (i) F has only Morse singularities and sing(F) 6= ∅. (ii) sing(F) consists

of centers or, equivalently, F is a foliation by compact leaves. Then M n is homeomorphic to the

sphere Sn.

Regarding the case when the boundary is transverse to the foliation, we have,

Proposition 2.2. Let Mn, n ≥ 2, be a compact, connected manifold with connected boundary ∂M .

Let F be a C∞ codimension one foliation on M , transverse to ∂M . Suppose sing(F) 6= ∅ consists

only of center singularities. Then: (i) F is a Seifert fibration for n ≥ 3. (ii) The restriction F
∣∣
∂M

defines a (nonsingular) fibration ∂M → S1. In particular, if M is the closed ball Bn then n = 2.

Proof. We may assume that n ≥ 3, otherwise the manifold is the closed 2-disc by Proposition 2.1.
Given a center p0 ∈ sing(F) ⊂ M \ ∂M the leaves of F in a punctured neighborhood of p0 in
Bn are diffeomorphic to (n − 1)-spheres. For n > 2 these leaves are simply-connected. Applying
Reeb’s Global Stability Theorem for nonsingular foliations transverse to the boundary of a compact
manifold ([G]) we conclude that all the leaves of F are compact with finite holonomy group and in
particular the restriction F

∣∣
∂M

is a foliation by compact leaves with finite holonomy and therefore
it is given by a submersion f0 : ∂M → S1. By Ehresmann’s theorem f0 must be a fibration. On
the other hand, if n ≥ 3 and ∂M is diffeomorphic to Sn−1 then Haefliger’s Theorem implies the
existence of a leaf with nonperiodic holonomy, a contradiction.

3 Dead branches, pairing and elimination of pairs of singularities

In this section we shall see how to perform modifications on foliations, under suitable conditions,
in order to eliminate certain arrangements of singularities.
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3.1 Trivial center-saddle pairings

In dimension two our basic picture is the following:

Figure 1

We have a pair center-saddle that is replaced by a trivial foliation. The replacement of a pairing
center-saddle as above does not change the holonomy of the foliation. In dimension n = 3 we have
the same construction which can be obtained from the two-dimensional case by rotation as in the
figure. The final result is a pairing center-saddle called trivial center-saddle pairing.

3.2 Non-trivial center-saddle pairings

This is an example in R
3 of a combination of a center-saddle pairing where the saddle is also

accumulated by spherical leaves from a third singularity, of center type. We begin with a foliation
given by a quadratic center and by an inverse modification we introduce in a regular part a pair
center-saddle as depicted below:

p
1

p
2

p
1

L1

p
2

L2

Figure 2

The separatrix of the saddle has the topology of two spheres with a unique intersection point. All
other leaves are diffeomorphic to spheres and if we consider only the annular region bounded by one
internal leaf L1 and one external leaf L2 as in the figure, then we have a non-trivial center-saddle
pairing. This example can be completed to S3 by putting a center at infinity. Another example
can be obtained in R

3 by taking the center p1 to infinity in S3 and infinity to a finite point p′2.
Figure 2 shows this example.

3.3 Singular Reeb foliations

We shall now construct two analogous of the Reeb foliation on the solid torus. The first one F1

exhibits two Morse singularities in a center-saddle combination. We begin with a quadratic center
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at 0 ∈ R
3 defined on the ball B

3. Then we pick two different points q1, q2,∈ S2 = ∂B
3 and identify

them so as to become a singularity q of saddle type.

q

q

Figure 3

The 2-sphere becomes a self connecting separatrix homeomorphic to a 2-torus where a meridian
was identified to a point q. We can extend the foliation to the exterior of the singular solid torus
with trivial holonomy and leaves diffeomorphic to S1 × S1. We suppose the center of F1 is at
0 ∈ R

3. The second example, F2, is obtained by rotation of a mirror symmetric figure eight (see
Fig. 3). This generates a singular surface T homeomorphic to a 2-torus with a parallel identified
to a point p. This surface T bounds a solid torus T

3. In a neighborhood of T ⊂ T
3 we define a

trivial foliation whose leaves are 2-torus bounding a standard Reeb foliation. Outside T
3 all leaves

are homeomorphic to S2. Adding a center at infinity we can assume that this example is defined
on S3. It is clear that C0(F1) and C∞(F2) are homeomorphic.

3.4 Dead branches

Motivated by the examples we have given above we define:

Definition 3.1. Let F be a codimension one foliation with isolated singularities on a manifold
Mn. By a dead branch of F we mean a region R ⊂ M homeomorphic to the ball Bn and which is a
manifold with corners whose boundary ∂R is the union of connected invariant components (pieces
of leaves of F) and of totally transverse curves (segments transverse to F) say ∂R = P1∪P2∪Σ1∪Σ2

where Pj is F-invariant, Σj is transverse to F as in the picture.

1

2

1
2

singularity qP
1 P

1

P
2

P
2

basic 
region R

final regular
picture

Figure 4

We do not exclude the possibility P1 = P2 a priori. Moreover we also assume that the holonomy
form Σ1 to Σ2 is trivial in the sense that F

∣∣
Σ1

and F
∣∣
Σ2

are conjugate by a diffeomorphism
h : Σ1 → Σ2 such that Lh(p) = Lp ∀ p ∈ Σ1 except if p belongs to a leaf which is a separatrix of
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some singularity of F in R, in which case we ask the image of p to be another point h(p) belonging
to a leaf which is a separatrix of the same singularity of F in R.

Proposition 3.1. Let F be given on M having a dead branch R ⊂ M . Then there is a foliation F̃
on M such that: (i) F̃ and F agree on M\R. (ii) F̃ is nonsingular in a neighborhood of R; indeed

F̃
∣∣
R

is conjugate to a trivial fibration. (iii) The holonomy of F̃ is conjugate to the holonomy of F
in the following sense: given any leaf L of F such that L ∩ (M\R) 6= p then the corresponding leaf

L̃ of F̃ satisfies Hol(F̃ , L̃) is conjugate to Hol(F , L).

We shall refer to F̃ as a direct modification of F by elimination of the dead branch R. If a
foliation F is obtained from a foliation F̃ by introduction of a dead branch then we shall say F
is an inverse modification of F̃ by introduction of the dead branch R. Two singularities p, q of a
foliation F on M are said to be in trivial coupling or trivial pairing if they belong to a dead branch
R of F and F has no other singularities in R.

The examples above are not the unique examples of pairings of singularities in a dead branch,
indeed we can construct pairings of two saddles of complementary indices.

3.5 Regularization of singular Reeb foliations

Now we show how to transform a singular Reeb foliation into a regular foliation. Given a singular
Reeb foliation F we can assume that the center and the saddle are close as in the picture below.
In a small box B around these two singularities we have the following picture. We may therefore
replace the fibration F in the box B by a regular foliation as indicated. This corresponds to the
following foliation leading to a Reeb component.

Figure 5

3.6 Pairings in dimension three

For the rest of this section we assume dim M = 3.

Lemma 3.1 (Topology of separatrices). Let F be a Morse foliation on a compact 3-manifold

M3. If p ∈ sing(F) is a center and ∂Cp(F) 6= ∅, then sing(F) ∩ ∂Cp(F) = {q} is a saddle point.

Moreover we have the following possibilities for Cp(F) and ∂Cp(F):
(i) ∂Cp(F) \ {q} is connected. Then

(a) ∂Cp(F) is homeomorphic to a sphere S2 with a pinch at q and the pair q − p belongs to a dead

branch pairing, i.e. it can be modified to a trivial foliation; or

(b) ∂Cp(F) is homeomorphic to a singular torus obtained by pinching an sphere at two points and

joining these points., equivalently Cp(F) is homeomorphic to a singular torus with a pinching along

a meridian. The foliation has a singular Reeb component.

(ii) Cp(F) has two connected components. Then ∂Cp(F) is the union of two spheres S2 with a

common point q. In this case Cp(F) is homeomorphic to the example in figure 2.

Proof. ∂Cp(F) is compact, connected and invariant, i.e. a union of leaves and singularities. By the
Stability theorem of Reeb no leaf in ∂Cp(F) can be compact; otherwise it would be homeomorphic
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to S2 and therefore contained in Cp(F). Thus sing(F) ∩ ∂Cp(F) 6= ∅ and, as there are no saddle
connections, then sing(F) ∩ ∂Cp(F) = {q} is a singular point of saddle type. If ∂Cp(F) \ {q} is
connected then it is homeomorphic to a disc or to a cylinder. In other words, ∂Cp(F) is obtained
by taking a disc and identifying its boundary to a point q (case (i)-(a)) or by taking a cylinder and
identifying its two ends to a point q (case (i)-(b)).

If ∂Cp(F)\{q} is not connected then it must have two connected components. Each one of these
components is homeomorphic to a disc, thus ∂Cp(F) is a region bounded by two spheres touching
at one point q.

4 Variations on a Theorem of Reeb

One of the very first applications of Morse theory is the following theorem of Reeb:

Theorem 4.1 (Reeb, [R1]). Let Mn be a n-dimensional compact manifold admitting a C∞ func-

tion having only two critical points, both of which are non-degenerate. Then M is homeomorphic

to the n-sphere.

Remark 4.1. (i) This result also holds if the critical points are degenerate ([M1]), however with
a difficult proof. (ii) The manifold M is not necessarily diffeomorphic to a sphere with the original
differentiable structure. (iii) The function f defines a foliation with exactly two center singularities
and compact leaves on M .

Reeb’s Theorem above can be generalized as follows:

Proposition 4.1. Let F be a codimension one foliation with Morse singularities on a compact

manifold Mn. Suppose sing(F) consists of two center type singularities and M is oriented. Then

M is homeomorphic to a n-sphere.

Proof. If n = 1 then M is homeomorphic to S1 since it is compact. If n = 2 then F has exactly
two singularities of index +1 and therefore by the Index Theorem we have χ(M) = +2. So M is
homeomorphic to S2. If n ≥ 3 this result follows immediately from Proposition 2.1.

In order to present other generalizations of Reeb’s Theorem we shall first introduce a new
concept. Let F be a C∞ codimension one foliation on M and p ∈ sing(F) an isolated singularity
of F . We shall say that p is a stable singularity of F if there is a neighborhood U of p in M
where F is given by the levels of a C∞ function f : U → R and such that f(p) = 0 and the level
hypersurfaces {f = a} are compact if |a| > 0 is small enough. In other words, p has a fundamental
system of neighborhoods bounded by compact leaves of F . The first examples of these singularities
are centers, however we can give other kind of stable singularities.

Example 4.1. (i) Let f =
n∑

j=1
x

mj

j in R
n. Then the origin is a stable singularity if, and only if,

mj ≥ 2 is even ∀ j ∈ {1, . . . , n}. (ii) The function f = exp
( −1

x2+y2

)
defines a stable singularity and

its Taylor polynomial at the origin 0 ∈ R
2 is identically zero.

A simpler characterization of stable singularities is as follows:

Lemma 4.1. An isolated singularity p of a function f : U ⊂ R
n → R defines a stable singularity

if, and only if, there exists a neighborhood p ∈ V ⊂ U such that either ∀x ∈ V we have ω(x) = {p}
or α(x) = {p}, where ω(x) respectively α(x) is the ω-limit respectively the α-limit set of the orbit

of the vector field grad(f) through the point x.

8



As an immediate consequence we obtain the following well-known result:

Lemma 4.2. If a function f : U ⊂ R
n → R has an isolated local maximum or minimum at p ∈ U

then p is a stable singularity for df .

Example 4.2. Let us consider perturbations of the Monkey saddle singularity f0 = x3−3xy2. For
ε ∈ R we set f = f0 + ε(x2 + y2) obtaining grad f = (3x2 − 3y2 + 2εx,−6xy + 2εy). Thus f has 3
singular points (0, 0),

(
ε
3 ,± ε√

3

)
. The origin is a center and the other two singularities are saddles.

This does not occur when perturbing stable singularities:

Lemma 4.3. Let f : U ⊂ R
n → R be a C∞ function with a stable singularity at the point p ∈ U .

Then we can perturb f to obtain a function f̃ with a Morse center type singularity and no other

singularity in a neighborhod of p.

Proof. We can assume that p = 0 is the origin and f(0) = 0. There are two cases to consider:
1st case. The Taylor polynomial of f at 0 ∈ R

n is non-trivial. In this case we have a first non-trivial

jet for f at 0 and since the origin is stable we must have this jet of the form ±
n∑

j=1
aj x

2mj

j where

aj > 0, ∀ j ∈ {1, . . . , n} and mj ∈ N. If mj = 1, ∀ j then the origin is already a Morse singularity.

By adding to f terms of the form ±ε
n∑

j=1
x2

j for ε > 0 small we may perturb f obtaining a Morse

center at 0 ∈ R
n and no new singularities.

2nd case. f is flat at the origin, that is, all derivatives of f vanish at 0. In this case we put

f̃ = f + ε
n∑

j=1
x2

j . Since lim
xj→0

f(x1,...,xn)

xk
j

= 0, ∀ k ∈ N the function f̃ has a unique singular point in a

neighborhood of the origin and also this is a Morse center for f̃ .

Using the preceding results we obtain:

Proposition 4.2. Let F be a C∞ codimension one foliation on a compact manifold M . Suppose

the singularities of F are stable. Then F can be arbitrarily approximated by Morse foliations F ′

having only center singularities and such that # sing(F) = # sing(F ′).

Theorem 4.2. Let Mn be a closed n-dimensional manifold, n ≥ 3. Suppose M supports a C∞

codimension one foliation F with non-empty singular set all of whose singularities are stable. Then

M is homeomorphic to the sphere Sn.

Proof. We perturb F into a foliation F ′ having only center singularities and apply Corollary 2.1.

In particular we reobtain Milnor’s generalization of Reeb theorem: Given a C∞ function
f : M → R with only two critical points. Since they are a maximum and a minimum of F they are
stable singularities. The foliation F induced by f has therefore exactly two singularities both of
which are stable. Now we can easily conclude by applying Theorem 4.2 above.

4.1 The Center-Saddle Theorem

Now we proceed to search for further generalizations of Reeb theorem in the presence of saddles
or, more precisely, in terms of comparisons between the number of centers and saddles for a given
foliation on the manifold. Let Mn be a compact manifold supporting a nonsingular C∞ codimension
one foliation F (e.g., if M is odd-dimensional). Then by our standard modification procedure we
can obtain a foliation F̃ on M having as singular set k ≥ 1 centers and k ≥ 1 saddles. Nevertheless
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M is not necessarily homeomorphic to Sn. This indicates that, a priori, the topology of M is not
determined by the equality #{centers} = #{saddles} for a given foliation on M . An example of
a manifold that admits a C∞ function f : M → R having only three critical points of indices 0,
4 and 2 is the complex projective plane CP (2). Therefore M 4 = CP (2) admits a foliation with
exactly two centers and one saddle, though M 4 is not homeomorphic to S4. Thus, in general,
the inequality #{centers} ≥ #{saddles} + 1 also does not imply M is homeomorphic to a sphere.
Notice that if dim M = 4 then χ(M) = #{centers}+#{saddles}, hence the inequality #{centers} ≥
#{saddles} + 1 implies χ(M) ≥ 2#{saddles} + 1 ≥ 3 if F has some saddle. Therefore in this case
M4 is never homeomorphic to S4.

However, despite the above remarks, we can prove for dimension three a generalization of Reeb
theorem as follows:

Theorem 4.3 (Center-Saddle Theorem). Let F be a C∞ codimension one Morse foliation on

a closed 3-manifold M 3. Suppose that the number k of centers and the number ` of saddles in

sing(F) satisfy k ≥ ` + 1. Then M is homeomorphic to S3.

For the proof of this theorem we need some preliminary results besides Lemma 3.1:

Lemma 4.4. Let F be a codimension one foliation of Morse type on a 3-manifold M 3. Let q ∈
sing(F) be a saddle such that q ∈ ∂Cp1

(F)∩∂Cp2
(F) for two distinct centers p1, p2 ∈ sing(F). Then

the union of the separatrices of F through q with {q} is compact with each branch homeomorphic

to S2 and q belongs to a dead branch with a pairing q − p1 or q − p2 .

Proof. Let q ∈ ∂Cp1
(F) ∩ ∂Cp2

(F) be a saddle where p1 6= p2 are centers. We first prove that
∂Cp1

(F) is not a singular torus. Suppose on the contrary that Γq = ∂Cp1
(F) is a singular torus.

Then Lq = Γq \{q} is a leaf homeomorphic to a cylinder. We fix a small closed disc Σ transverse to
F and such that Σ ∩ Γq = {q}, with boundary γ = ∂Σ diffeomorphic to S1. The existence of this
disc is a consequence of the local normal form of F close to q. Notice that, since Γq is accumulated
on both sides by compact leaves (spheres) it follows that the leaf Lq has trivial holonomy. We can
assume that γ is contained in a leaf L0 of F diffeomorphic to S2 and that Σ is arbitrarily small.
Since L0 is diffeomorphic to S2 the loop γ bounds a disc DL0

in L0 . By triviality of the holonomy
DL0

projects normally (i.e., along the gradient vector field of the 1-form defined by the foliation,
cf.§ 7) into a disc DLq

in Lq. By the local description of F around q and by the choice of Σ and γ,
the boundary of DΓ0

is a meridian ∂DLq
in the torus Γq .

q

projected loop

Figure 6

This gives a contradiction because Lq is a cylinder and ∂DLq
is simultaneously a meridian in Lq and

bounds a disc in Lq. Therefore the only possibility is to have ∂Cp1
(F) and ∂Cp2

(F) homeomorphic
to S2 and a pairing q − p1 or q − p2 in a dead branch.

Proof of Theorem 4.3. We will proceed by induction on the number ` of saddle singularities. If
` = 0 then F has only centers and the result follows from Corollary 2.1. Assume now that ` ≥ 1
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and that the result has been proved for foliations with at most ` − 1 singularities of saddle type.
By hypothesis F has some center type singularity, say p1 ∈ sing(F). If Cp1

(F) = M then the
theorem follows as remarked in §2. Thus we may assume that ∂Cp1

6= ∅ and by Reeb Stability
Theorem necessarily we must have ∂Cp1

(F) ∩ sing(F) 6= ∅, indeed any leaf L ⊂ ∂Cp1
(F) must be a

separatrix of some saddle singularity q1 ∈ sing(F). This singularity is unique for any fixed leaf L
because F has no saddle connections. According to Lemma 4.4 either q1 /∈ ∂Cp′

1
(F) for any center

singularity p′1 6= p1 or q1 belongs to a dead branch associated to a pairing q1 − p′1 for some center
p′1 ∈ sing(F) possibly p′1 = p1. In the first case we call p1 single. In this last case we can perform a
modification of F eliminating two singularities, one center and the saddle q1 . On the other hand,
since the number of centers is greater than the number of saddles, then not all the centers are
single. Thus necessarily we have the last case above occurring for some suitable choice of the center
p1. Therefore we can always perform the modification and, since for F the number of centers is
greater than the number of saddles, we conclude that the same holds for the modification of F . By
the induction hypothesis the manifold M is homeomorphic to S3.

5 Variations on a Theorem of Haefliger

Let us study the existence and properties of foliations transverse to spheres. We shall begin with
the most simple situation: Let F be a C∞ codimension one foliation of Morse type defined in a
neighborhood W of the closed ball Bn = Bn(0; 1) in R

n and transverse to the boundary sphere
Sn−1 = ∂B

n
= Sn−1(0; 1). Since Bn is simply-connected we can obtain a one-form Ω that defines F

in W fixing the orientation of F . Given any singularity p ∈ sing(F) ⊂ Bn we have local coordinates
(y1, . . . , yn) ∈ Up ⊂ Bn such that Ω(y1, . . . , yn) = hp d(−y2

1 − · · · − y2
rp

+ y2
rp+1 + · · · + y2

n), for a
C∞ function hp > 0 in Up . We have defined the index of F at p with respect to the orientation
defined by Ω as IndΩ(F ; p) = (−1)rp ∈ {+1,−1}. By the Index Theorem (see § 7-Appendix) we
have

∑
p∈sing(F)

IndΩ(F ; p) = +1, in particular sing(F) 6= ∅ and F has an odd number of singularities

in the ball. Since the boundary sphere admits a transverse foliation we have χ(Sn−1) = 0 and
therefore n is an even number. In particular, in this case, the index IndΩ(F ; p) does not depend on
the orientation fixed for F . Thus a center singularity always has index +1, however a saddle may
have index +1. If n = 2 then F has some center singularity because in dimension two a saddle
has index −1. From Proposition 2.2, if n > 2 then sing(F) must contain a saddle. The following
example illustrates this last situation:

Example 5.1 (a 2-2 saddle in the closed 4-ball). The following is an example of a codimension
one C∞ foliation in the ball B

4, of radius one centered at 0 ∈ R
4, with only one singularity of

saddle type 2− 2 at 0 ∈ B
4 and transverse to the boundary S3 = ∂B

4. Consider in R
4 the function

f(x) = −x2
1 − x2

2 + x2
3 + x2

4. The level zero of this function, C = f−1(0), is a cone over a 2-
torus. This can easily be seen by taking the intersection T = C ∩ S3 which is clearly a 2-torus,
intersection of the cylinders x2

1 + x2
2 = 1/2 and x2

3 + x2
4 = 1/2. Given ε > 0, f−1([−ε, ε]) is a

neighborhood of C and R
4\f−1([−ε, ε]) is the union of two connected components R1 and R2 ,

R1 ∩ {x3 = x4 = 0} 6= ∅, R1 ∩ {x1 = x2 = 0} = ∅. Moreover R1 and R2 are diffeomorphic to
B

3×S1. For ε > 0 small enough R1∩B
4 and R2∩B

4 are nonempty and S3\f−1((−ε, ε)) is a union
of two solid tori, i.e., diffeomorphic to B

2 ×S1. We define a new domain D = f−1((−ε, ε))∪S1 ∪S2

where S1 ⊂ R1 and S2 ⊂ R2 are diffeomorphic to B
3 × S1 and such that ∂S1 ∩ B

4 = ∂R1 ∩ B
4 and

similarly ∂S2 ∩B
4 = ∂R2 ∩B

4. We define on D a foliation F that on f−1((−ε, ε)) has as leaves the
levels of f . On S1 we plug in a Reeb component on B

3 ×S1, having as sections on each B
3 ×{θ} a

foliation by 2-spheres, taking as axis of the solid torus the circle (x3 = x4 = 0) ∩ S3. Similarly on
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S2 we introduce a Reeb component taking as axis of the torus B
3×S1 the circle (x1 = x2 = 0)∩S3.

Clearly the leaves of F are transverse to the 3-sphere S3. We finally take the restriction F
∣∣
B4 .

TC

I

S
1  

S
1  

S
2

S
2

B
3

S1

S
2

Figure 7

5.1 Haefliger’s Theorem for the disc

The classical Haefliger’s theorem for the disc states that if a C1-vector field X defined in a neighbor-
hood of a disc D ⊂ R

2 points inward the disc from the boundary and has only Morse singularities
without saddle-connections in D then there is a compact invariant one dimensional subset Γ ⊂ D
(Γ is either a periodic orbit or a graph of X) whose corresponding holonomy map is conjugate to
a germ of diffeomorphism h : R, 0 → R, 0 such that h

∣∣
(−ε,0]

is the identity and h
∣∣
(0,ε)

is not the

identity for some ε > 0. This implies the following:

Theorem 5.1 (Haefliger, [H1],[H2]). A codimension one regular foliation F of class C2 on a

manifold M has some leaf with one-sided holonomy provided that it has some null-homotopic closed

transversal. This is always the case if M is compact with finite fundamental group.

Let us show how our notions of dead-branch and modification can be used to simplify slightly
the proof of Haefliger’s theorem. We consider the following situation: F is a C2 Morse foliation
in a neighborhood W of the closed disc D ⊂ R

2 and transverse to the boundary ∂D ' S1. As
we have seen F is orientable and we can choose a C2 vector field X in W that is tangent to F ,
sing(X) = sing(F) and X points inward D from the boundary ∂D. By the classical Poincaré-
Hopf Index Theorem we have

∑
p∈sing(F)

Ind(X, p) = +1 and therefore F must have some center

singularity. Indeed we have k = ` + 1 where k = #{centers} and `#{saddles}. Denote by C(F)
the union of all centers and periodic orbits having trivial holonomy for the vector field X in D.
Notice that C(F) is an open subset of D and C(F) avoids a certain neighborhood of ∂D in R

2

(compare with the beginning of § 2). Denote by Cp(F) the connected component of C(F) that
contains the center p ∈ sing(F) ⊂ D. Then Cp(F) is a non-empty open subset of C(F) and of D.
Let us proceed again by induction on `. If ` = 0 then F has only one center singularity p1 ∈ D. In
particular, ∂Cp1

(F) ∩ sing(F) = ∅. In this case ∂Cp1
(F) must be a periodic orbit with non-trivial

holonomy map: indeed, by Poincaré-Bendixson theorem ∂Cp1
(F) is a periodic orbit of X because

it contains no singularity of F . We claim that the holonomy of the periodic orbit ∂Cp1
(F) is not

trivial and therefore unilateral. Otherwise in a small neighborhood of ∂Cp1
(F) in D2 every orbit of

X is periodic with trivial holonomy and therefore ∂Cp1
(F) must be contained in Cp1

(F), absurd.
Assume now that ` ≥ 1 and that the result has been proved for foliations with `− 1 saddles. Take
a center p1 ∈ sing(F). We have two cases to consider:

1st case. ∂Cp1
(F) ∩ sing(F) = ∅. According to what we have seen above, ∂Cp1

(F) must be a
periodic orbit with unilateral holonomy.

12



2nd case. ∂Cp1
(F)∩sing(F) 6= ∅. By the argument of the first case we can assume that every leaf in

∂Cp1
(F) accumulates on sing(F). Since there are no saddle connections we have sing(F)∩∂Cp1

(F) =
{q1} which is a saddle point. We consider the separatrices of F at q1 . At least one separatrix S1 is
contained in ∂Cp1

(F) and since there are no saddle-connections we conclude that S1 is also a self-
connection separatrix of q1 so that necessarily S1∪{q1} is a graph of F . If S1 is the only separatrix
contained in ∂Cp1

(F) then we have a trivial dead-branch pairing p1 − q1. Suppose therefore that
∂Cp1

(F) consists of the union S1 ∪ {q1} ∪ S2 of q1 with two separatrices of q1. In this case ∂Cp1
(F)

is a graph for which there is a well-defined holonomy. If the holonomy of the graph ∂Cp1
(F) is not

trivial then it is unilateral and we are done. If the holonomy is trivial then we have an annular region
A ⊂ D bounded by circle leaves L1 and L2 (see figure 2) where we can perform a modification of F
to a trivial foliation by circles. In the trivial holonomy case we obtain by direct modification of F a
Morse foliation F1 with the same holonomy than F , also transverse to the boundary ∂D2 and such
that #{centers of F1} = #{center of F} − 1 and #{saddles of F1} = #{saddles of F} − 1. Now
by the induction hypothesis the modification F1 has some compact leaf of graph with unilateral
holonomy and the theorem follows.

5.2 Haefliger’s Theorem for the three sphere

In this section we prove the following version of Haefliger’s Theorem:

Theorem 5.2. Let F be C∞ codimension one Morse foliation on the 3-sphere S3. Suppose that

the number of centers k and the number of saddles ` satisfy the inequality k ≥ `. Either F has

some compact codimension one invariant set whose holonomy group is one-sided or F is an inverse

modification of a Seifert fibration of S3, i.e., a singular foliation by spheres S2.

Indeed, we shall prove that there is either a compact leaf L or a leaf L such that L ∪ {q} is
compact for some singularity q ∈ sing(F) and such that the holonomy group of L is one-sided, or
F is an inverse modification of a Seifert fibration on S3.
Proof. We fix an orientation for F . Let us proceed by induction on `. First we consider the case
` = 0. If also k = 0 then F is a nonsingular foliation on S3 and by Novikov theorem F has some
Reeb component and therefore F has a toral leaf L ' S1 × S1 with one-sided holonomy group.
Assume now that k ≥ 1 and ` = 0. In this case F has only center singularities and therefore it is
a Seifert fibration by Proposition 2.1. Assume now that k ≥ ` ≥ 1, and that the result has been
proved for foliations with ` − 1 saddles. Then F has some center singularity p1 in S3. Denote by
Cp1

(F) the connected component of C(F) that contains p1 , where C(F) is the union of all centers
and leaves diffeomorphic to S2 of the foliation F . If ∂Cp1

(F) = ∅ then by Corollary 2.1 Cp1
(F) = S3

and all leaves of F are compact diffeomorphic to S2 with trivial holonomy. In other words, F is
a singular Seifert fibration of S3. Suppose therefore that ∂Cp1

(F) 6= ∅. In this case we must have
∂Cp1

(F) ∩ sing(F) 6= ∅, indeed any leaf L ⊂ ∂Cp1
(F) is the separatrix of some saddle singularity

q1 ∈ sing(F), which is necessarily unique for F has no saddle-connections. On the other hand we
cannot have ∂Cp1

(F) ⊂ sing(F) because if a leaf accumulates on some saddle singularity q1 then
it accumulates on a separatrix of this singularity. Thus we can find a leaf L0 of F such that L0 is
a separatrix of a saddle q1 with Γq1

= L0 ∪ {q1} ⊂ ∂Cp1
(F). Notice that since Γq1

is accumulated
by spherical leaves if it has nontrivial holonomy then it has unilateral holonomy and the theorem
follows. Assume therefore that Γq1

has trivial holonomy. According to Lemma 3.1 we have the
following possibilities (for some suitable choice of Γq1

):
(i) We have a trivial center-saddle pairing for p1 − q1.
(ii) Γq1

is homeomorphic to a torus with a meridian reduced to a point.
(iii) The saddle q1 is not self-connected and Γq1

is homeomorphic to S2 diffeomorphic to a
sphere pinched at one point and with a nontrivial pairing with p1.
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In the first case we eliminate both singularities p1 and q1 obtaining a foliation F1 in S3

with same holonomy than F and with less one saddle and one center singularity. Notice that
#{centers of F1} ≥ #{saddles of F1}. By the induction hypothesis F1 has unilateral holonomy
and therefore the same holds for F . In case (ii), since Γq1

has trivial holonomy, Γq1
is surrounded

by leaves diffeomorphic to the torus. In particular we can isolated a region R ⊂ S3 containing
∂Cp1

(F), invariant by F and diffeomorphic to a solid torus. In this region we perform a modifica-
tion of F , replacing it by a standard Reeb foliation. We obtain in this way a foliation F1 on S3

with same holonomy than F and one center and one saddle singularity less. Now the induction
hypothesis applies to conclude the existence of unilateral holonomy. Assume that we are in case
(iii). In this case the other separatrix of q1 is also diffeomorphic to a pinched sphere at q1. Since
the holonomy of Γq1

is trivial these two separatrices are surrounded by spherical leaves. Thus we
can fix an invariant region R diffeomorphic to [0, 1] × S2, containing the union of separatrices and
with invariant boundary. In this region we perform a modification of F by a trivial foliation by
spheres. We obtain this in way a foliation F1 on S3 with same holonomy than F and one center
and one saddle singularity less. Now the induction hypothesis applies to conclude the existence of
unilateral holonomy.

6 A Novikov type theorem for singular foliations

The well-known theorem of Novikov states that a (nonsingular) codimension one C2 foliation on S3

must have a Reeb component and, in particular, a torus leaf with one-sided holonomy. This holds
indeed for foliations on simply-connected closed 3-manifolds. On the other hand if we consider
foliations with singularities then a construction due to Rosenberg and Roussarie [R-R] gives a C∞

foliation with Morse singularities on S3 and no compact leaf. Nevertheless restrictions on the
singularity types can lead to a singular version of Novikov theorem.

Definition 6.1. Let F be a C∞ foliation of codimension one on a compact 3-manifold M with
singular set sing(F) 6= ∅. We shall say that sing(F) is regular if its connected components are either
isolated points or smoothly embedded curves diffeomorphic to S1. We say that a connected compo-
nent Γ of sing(F) is topologically stable or C0-stable if Γ has a fundamental system of neighborhoods
in M bounded by compact leaves of F .

Theorem 6.1. Let F be a C∞ codimension one foliation on a simply-connected closed 3-manifold

M3. Assume that the singular set sing(F) is discrete and all the singularities are topologically-

stable. Then either (i) all leaves of F are compact or (ii) F has a Reeb component.

Proof. By Novikov’s theorem we may assume that F has a non-empty singular set. We divide the
proof in two cases:
1st case. The leaves of F are closed outside sing(F). In this case, since the singularities are
C0-stable, the leaves of F are all compact and we are in situation (i).
2nd case. F has some leaf which is not closed in M\ sing(F). In this case there exists a leaf L0 of
F accumulating at some point p ∈ L0\L0 , which is not a singular point of F . Since by hypothesis
the singularities of F are C0-stable it follows that there exists an open invariant neighborhood V of
sing(F) in M such that L∩V = ∅ for any noncompact leaf L of F and in particular L0∩V = ∅ and
p /∈ V . By standard arguments the existence of a non-closed leaf L0 as above implies the existence
of a smooth embedding a0 : S1 → M3 transverse to F and, since L0 ∩ V = ∅ we may (shrinking
V if necessary) assume that a0(S

1) ∩ V = ∅. The manifold M ′ = M\ sing(F) is simply-connected
because sing(F) is discrete a0(S

1) is homotopic to zero in M ′ and we may extend the map A0 to
a C0 map A0 : D2 → M ′ from the closed disc D2 ⊂ R

2 to M ′ such that A0

∣∣
∂D2 = a0 . We may
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indeed assume that A0 is of class C∞ and that A0(D
2) ∩ V = ∅ (notice that A0(D

2) and sing(F)
are disjoint compact sets).

Applying now the classical arguments from Haefliger Theorem we obtain a vanishing cycle

for F ′ = F
∣∣
M

, in M ′ which is a map H : S1 × [0, ε] → M ′ of class C∞ such that if we denote
Ht(x) = Hx(t) = H(x, t), ∀(x, t) ∈ S1 × [0, ε], then the following properties hold:

(a) Ht(S
1) is a closed curve contained in a leaf A(t) of F , ∀ t

(b) Ht(S
1) is null homotopic in (t), ∀ t > 0 and is not null homotopic in A(t) for t = 0.

(c) Hx([0, ε]) is transverse to F , ∀x ∈ S1.
We can also suppose that H(S1 × [0, ε]) ∩ V = ∅.

As in Novikov’s proof we can obtain a positive coherent normal and simple extension of H0 also
denoted H. This means that: fixed a transverse orientation for F ′ in M ′ and a Riemannian metric
on M ′, the curves Hx are normal to F and positively oriented. The map H is simple means that
the lift of the curve Ht(S

1) to the universal covering Â(t) of the leaf A(t), is a simple closed curve
in Â(t), ∀ t > 0.
Following the classical proof of Novikov we need to reprove the following lemma:

Lemma 6.1. Let H : S1× [0, ε] → M\V be as above then the exists an immersion F : D2× [0, ε′] →
M\V for some 0 < ε′ < ε satisfying the following conditions:

(i) Ft

∣∣
∂D2 = Ht, ∀ t

(ii) F (D2 × {t}) ⊂ A(t), ∀ t
(iii) F x([0, ε′]) is normal to F , ∀ t
(iv) If U = {x ∈ D2; lim

t→0
F x(t)exists} then ∂D2 ⊂ U and U 6= D2 is an open subset.

Proof. We only prove the part which represents a difficulty due to the existence of singularities.
Denote by π(t) : Ât) → A(t) the universal covering of A(t). It is enough to prove:

Claim 6.1. L̂t ' R
2 for all t ≥ 0 small enough.

Proof. Suppose the claim is not true. There exists then a sequence tn ↘ 0 such that Â(tn) ' S2:
notice that Â(0) is not homeomorphic to S2 because A(0) is not simply-connected since it contains
a vanishing cycle. The foliation F is assumed to be oriented, therefore A(tn) is compact and covered
by S2 so that A(tn) is homeomorphic to S2. We shall use the following lemma:

Lemma 6.2. If a foliation F on a compact manifold M has only C0-stable singularities and has

some compact leaf L0 with finite fundamental group then all leaves of F are compact.

Proof. By the local stability theorem of Reeb the set L(L0) of points p ∈ M ; p /∈ sing(F) such
that the leaf Lp is diffeomorphic to L0 is an open non-empty subset of M . We want to prove that
L(L0) = M\ sing(F). It is enough to prove that ∂L(L0) ⊂ sing(F). Suppose by contradiction
that ∃ p ∈ ∂L(L0), p /∈ sing(F). Then Lp ⊂ ∂L(L0) and, since the singularities are C0-stable, we
obtain Lp ∩ V = ∅ for an invariant neighborhood V of sing(F) as above. The leaf Lp therefore is
accumulated by leaves which are diffeomorphic to L0 compact and having finite fundamental group.
Since Lp and these leaves avoid the neighborhood U of sing(F), V invariant, we can conclude from
the classical arguments in the proof of Reeb Global Stability Theorem that Lp is also compact and
has finite fundamental group. The holonomy group of Lp is finite and since F is oriented and has
codimension one this group is trivial. Therefore Lp is diffeomorphic to L0 . In particular we cannot
have Lp ⊂ ∂L(L0). This proves the lemma.

Thus, since we are assuming that F has a vanishing cycle, we must have Â(tn) ' R
2, ∀ tn

proving the claim.
Once Lemma 6 is proved the next step, also according to the classical proof of Novikov, is:
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Lemma 6.3. Given α > 0 there are 0 < t′ < t′′ < α and an embedding h : D2 → Int(D2) such that

F (t′, h(x)) = F (t′′, x), ∀x ∈ D2. In particular there exists a sequence τn ↘ 0, τn > 0 such that:

(a) A(τn) = A(τn+1) = A ∈ F , ∀n
(b) D(τn+1) ⊃ D(τn), ∀n where D(t) ⊂ A(t) is the projection of the disc in Â(t) bounded by the

Jordan curve F̂t(S
1), t ∈ (0, ε].

(c) For each n ≥ 1, there exists a transformation gn : D2 → D2 such that gn : D2 → gn(D2) is a

diffeomorphism and Fτn = Fτn+1
◦ gn .

Proof. Again we only prove the part in the original proof which represents a difficulty arising from
the existence of singularities for F . This part is as follows:

Claim 6.2. Let x0 ∈ D2 − U in the above lemma. Then there exists a sequence sn ↘ 0, xn > 0
such that pn = F (sn, x0) converges to some point p0 ∈ M\ sing(F) such that F (sn, x0) ∈ Lp0

and

Lp0
6= A(0).

Proof of the Claim. Since M is compact there exists a sequence sn ↘ 0 such that pn = F (sn, x0)
converges to a point p0 ∈ M . It could happen, a priori, that p0 is a singular point for F . However
this does not happen because by construction the map F avoids an invariant neighborhood V
of sing(F) in M , F (S1 × [0, ε]) ∩ V = ∅. Therefore necessarily p0 ∈ F (S1 × [0, ε]) and thus
p0 /∈ sing(F). We can indeed assume that po /∈ V . The rest now follows as in the classical
nonsingular case. This finishes the proof of the lemma.

From now on there are no major difficulties in repeating the classical argumentation of Novikov.

We have also obtained:

Theorem 6.2. Let F be a C∞ foliation with C0-stable and discrete singular set on the closed

3-manifold M3. We have the following possibilities: (i) F has all leaves compact. (ii) F has a

Reeb component. (iii) Every closed transversal to F represents a non trivial element in π1(M) in

particular π1(M) is not finite.

For the case sing(F) is not discrete we can state:

Theorem 6.3. Let F be a C∞ codimension one foliation on a simply-connected closed 3-manifold

M3. Assume that the singular set is regular and C0-stable. There are three possibilities: (i) F has

all leaves compact. (ii) F has a Reeb component. (iii) Each closed transversal to F gives a non

trivial element in π1(M\ sing1(F)) where sing1(F) is the union of compact curves in sing(F).

7 Appendix - The Index theorem

We shall consider the following situation: M is a C∞ manifold and S ↪→ M is a submanifold. Given
a differential one-form Ω in M we denote by Ker(Ω) the distribution in M given by Ker(Ω)(p) =
{v ∈ Tp(M); Ω(p) · v = 0}, for every p ∈ M . We shall say that Ker(Ω) is transverse to S if for
every p ∈ S we have Ω(p) 6= 0 and Ker(Ω)(p) + Tp(S) = Tp(M) as real vector spaces. Denote by
sing(Ω) = {p ∈ M ; Ω(p) = 0} the singular set of Ω. Let p ∈ sing(Ω) be an isolated singularity
of Ω. We assume that M is an oriented manifold and choose a local chart ϕ : U → ϕ(U) ⊂ R

m

of M such that p ∈ U , ϕ(p) = 0, sing(Ω) ∩ U = {p} and ϕ belongs to the positive atlas of

M . Let ω = ϕ∗(Ω) = (ϕ−1)∗(Ω) ∈ Λ1(ϕ(U)). Write ω =
m∑

j=1
fjdxj with fj ∈ C∞(ϕ(U), R) and

fj(0) = 0, j = 1, ..., m. Let grad(ω) :=
m∑

j=1
fj

∂
∂xj

be the gradient vector field of ω. We define the
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index of Ω at p by Ind(Ω; p) = Ind(grad(ω); 0), where Ind(grad(ω); 0) is the ordinary Poincaré-Hopf
index of the smooth vector field grad(ω) at the singular point 0 ∈ R

m (cf. [M]). Notice that the
definition of Ind(Ω; p) does not depend on the positive chart ϕ : U → ϕ(U) chosen as above.

Theorem 7.1 (Index Theorem). Let Mm be an oriented manifold and D b M a domain with

connected regular boundary of class C2. Given a C∞ differential one-form Ω in M such that the

singular set sing(Ω) is discrete and the distribution Ker(Ω) is either everywhere transverse to ∂D or

everywhere tangent to ∂D we have
∑

p∈sing(Ω)∩D

Ind(Ω; p) = χ(D) where χ(D) is the Euler-Poincaré-

Hopf characteristic of D.

Proof of Theorem 7.1. Fixed a Riemannian metric 〈, 〉 on M we denote by grad(Ω) the only
C∞ vector field orthogonal to Ker(Ω) and such that Ω · grad(Ω) > 0 everywhere in M \ sing(Ω)

and which is given in local coordinates (x1, ..., xm) by Ω =
m∑

j=1
fjdxj and grad(Ω) =

m∑
j=1

fj
∂

∂xj
.

Let also ρ : M → R be a C∞ global defining function for D ∪ ∂D in the following sense: D =
ρ−1(−∞, 0), ∂D = ρ−1(0) and 0 ∈ R is a regular value of ρ. We may assume that ρ is a Morse
function in D and in particular its critical points in D are non-degenerate. Therefore the vector field
~n = grad(ρ) has only simple singularities in D and thus its singular set in D is finite. This is done
by replacing ρ and D by a Morse function ρ1 : M → R of class C∞ close enough to ρ in the strong
Whitney topology and taking D1 := ρ−1

1 (−∞, 0) which is a domain with boundary ∂D1 = ρ−1(0),
in such a way that the pair (D1, ρ1) is close to the pair (D, ∂D) as manifolds with boundaries in
M . We may therefore assume that the pairs (D, ∂D) and (D1, ∂D1) are in homotopy equivalence
so that we have χ(D) = χ(D1). On the other hand Ker(Ω) is transverse to ∂D which is compact
so that, for ρ1 close enough to ρ, we also have Ker(Ω) transverse to ∂D1. Finally, clearly, we
may assume that sing(Ω) ∩D = sing(Ω) ∩D1 so that

∑
p∈sing(Ω)∩D

Ind(Ω; p) =
∑

p∈sing(Ω)∩D1

Ind(Ω; p).

Hence we may assume that ~n = grad(ρ) has only simple singularities in D. Notice that ~n points
outward D from ∂D. We introduce the auxiliary set ΣΩ = {p ∈ M ; Ω(p) · ~n(p) = 0}. There are
two cases to consider:
Case 1. If ΣΩ ∩ D = ∅. In this case sing(~n) ∩ D = ∅ and sing(Ω) ∩ D = ∅. By the classical
Poincaré-Hopf index theorem ([M]) we have χ(D) =

∑
p∈sing(~n)∩D

Ind(~n; p) = 0. Also clearly we have

∑
p∈sing(Ω)∩D

Ind(Ω; p) = 0. Thus Theorem 7.1 is true in this case.

Case 2. ΣΩ ∩ D 6= ∅. Notice that not necessarily we have ΣΩ ∩ ∂D 6= ∅. If ΣΩ ∩ ∂D = ∅ then
0 6= Ω(p) · ~n(p) = 〈grad(Ω)(p), ~n(p)〉, ∀p ∈ ∂D. This implies that grad(Ω) is transverse to ∂D and
therefore we may apply Poincaré-Hopf index theorem to obtain

∑
p∈sing(grad(Ω))∩D

Ind(grad(Ω); p) =

χ(D). Since by definition sing(Ω) = sing(grad(Ω)) and Ind(grad(Ω); p) = Ind(Ω; p) for every
isolated singularity of Ω we obtain again the formula stated in Theorem 7.1. Thus we may assume
that ΣΩ ∩ ∂D 6= ∅. Given p ∈ ΣΩ ∩ ∂D we have Ω(p) · ~n(p) = 0 but Ω(p) · grad(Ω)(p) 6= 0 because
p is not a singularity of Ω. Therefore, ~n(p) and grad(Ω)(p) are not collinear.

For a point p ∈ ∂D we have p ∈ ΣΩ ⇐⇒ 〈grad(Ω)(p), ~n(p)〉 = 0 ⇐⇒ grad(Ω)(p) ⊥ ~n(p) ⇐⇒
~n(p) ∈ Ker(Ω)(p) ⇐⇒ Ω(p) ·~n(p) = 0. Let p ∈ ∂D \ (ΣΩ ∩ ∂D) then grad(Ω)(p) is not orthogonal
to ~n(p) and therefore grad(Ω)(p) is transverse to Tp(∂D).

Let V be a tubular neighborhood of ∂D given by the trajectories of the vector field ~n in a
neighborhood of ∂D. We may assume that V is fibred by discs of radius ε > 0 given by a projection
π : V → ∂D.

Notice that if p ∈ ∂D is such that grad(Ω)(p) and ~n(p) are collinear then ~n(p) is orthogonal to
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Ker(Ω)(p) and therefore Ker(Ω)(p) = Tp(∂D). Since by hypothesis Ker(Ω) is transverse to ∂D this
cannot occur, that is, the vector fields grad(Ω) and ~n are never collinear in ∂D.

By continuity of Ω and compactness of ∂D we may choose the neighborhood V such that
grad(Ω) and ~n are never collinear in V . In particular, for any continuous function ϕ : V → R we
have grad(Ω) + ϕ.~n 6= 0 in V . Let now C > 0 be a constant such that

C. inf
V

||~n||2 > sup
V

|〈~n, grad(Ω)〉|.

Then the vector field grad(Ω) + C.~n is transverse to ∂D because
〈grad(Ω)+C.~n, ~n〉 = C.||~n||2+〈grad(Ω), ~n〉 > 0 in ∂D by the choice of C. Also, it points outward D
from ∂D. Choose now a C∞ bump-function ϕ : M → [0, C] such that: (i) ϕ = C in a neighborhood
V ′ of ∂D with ∂D ⊂ V ′

b V . (ii) ϕ = 0 outside V in M . (iii) 0 < ϕ < C in V .
We introduce the C∞ vector field Z in M by setting Z := grad(Ω)+ϕ ·~n. Then Z is transverse

to ∂D, points outward D from ∂D and also we have

Lemma 7.1. sing(Z) ∩ D = sing(Ω) ∩ D indeed, D ∩ sing(Ω) ⊂ D \ (V ∩ D).

Proof. Clearly Z coincides with grad(Ω) in D\(V ∩D), thus it remains to show that sing(Z)∩V = ∅.
This is clear because grad(Ω) and ~n are linearly independent in V .

Given any singularity p ∈ sing(Z) ∩ D we have Z = grad(Ω) in a neighborhood of p in M and
therefore Ind(Z; p) = Ind(grad(Ω); p). Applying now Poincaré-Hopf index Theorem to ξ̃ we obtain∑
p∈sing(Z)∩D

Ind(Z; p) = χ(D) therefore χ(D) =
∑

p∈sing(Ω)∩D

Ind(grad(Ω); p) =
∑

p∈sing(Ω)∩D

Ind(Ω; p)

and the first part of Theorem 7.1 is proved. Now we prove the second part. Consider the vector
field grad(Ω) in M as above. Since Ker(Ω)(p) = Tp(∂D), ∀p ∈ ∂D we conclude that grad(Ω)(p) ⊥
Tp(∂D), ∀p ∈ ∂D and therefore grad(Ω) is transverse to ∂D. Since ∂D is connected we have
either grad(Ω) always points inward D from ∂D or it always points outward D from ∂D. In any
case, applying Poincaré-Hopf index theorem we conclude that

∑
p∈sing(Ω)∩D

Ind(grad(Ω); p) = χ(D).

Therefore
∑

p∈sing(Ω)∩D

Ind(Ω; p) = χ(D).
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