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Summary: For a function field F/F, over a finite field of cardinality ¢, denote by g(F)
(resp. N(F)) the genus (resp. the number of rational places) of F//F,. In this paper we
present an explicit tower of function fields Fy C Fy, C F; C ... over [F, for ¢ = ¢3, such that

lim, o0 N(F.)/g(F:) > 2(¢° —1)/(q +2).

0. INTRODUCTION

Let F'/TF, be an algebraic function field of one variable, whose full constant field is the finite
field of cardinality ¢. By Weil’s theorem, the number N = N(F') of places of degree one of
F/F, is bounded by N < ¢+ 1+ 2gv/¢, where g = g(F) denotes the genus of F. This upper
bound is sharp in the sense that there are examples of function fields with N = £+ 1+ 2¢g\/?
(if £ is a square). However, if the genus of F' is large with respect to the size of the constant
field, Weil’s bound can be improved considerably. This was first observed by IThara, see [11].
Setting Ny(g) := mgX{N(F)}, where F' runs over all function fields over F, with g(F') = g,

and A({) := limsup, ., Ne(g)/g, we have the Drinfeld-Vladut bound (see [3])
A(0) < Vi 1. (0.1)

If ¢ = ¢* is a square, then inequality (0.1) is in fact an equality. In order to show this,
one produces a sequence of function fields (F),),>1 over Fp such that g(F,) — oo and
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limy, 0o N(F,)/9(Fn) = ¢ — 1. Thara [11] and Tsfasman, Vladut and Zink [18] were the first
to prove this, by showing that certain modular curves have sufficiently many rational points
over F2. Garcia and Stichtenoth [6] (see also [5]) gave an explicit and more elementary
construction of such a sequence by introducing a tower of function fields F; C Fy C F3 C ...
over Fp as follows: Let F; = Fp2(z1) be the rational function field, and for all i > 1 let
Fi11 = Fi(xi41) with

Tipq w7 iy —al = 0. (0.2)

In the tower given by Eq. (0.2) the genus of the field F,, is g(F},) ~ ¢"*(¢+1), and the num-
ber of rational places over F2 is N(F,) ~ ¢" !(¢*> — 1), hence lim,, o N(F,,)/g9(F,) = ¢ —1
(for two sequences A,, and B, the notation A, ~ B,, means that lim,_,., 4,,/B, = 1). Other
explicit towers over F 2 attaining the Drinfeld-Vladut bound were found subsequently (see
2, (4], 7], [8], 9], [12] and [19))

In case £ is not a square the situation is different. It seems that in this case modular curves
do not have enough rational points over [F, in order to produce a sequence of function fields
over F, with lim,_,., N(F,)/g(F,) > 0. Using classfield theory (in particular the Golod-
Safarevic theorem), Serre (see [14] and [15]) proved the existence of towers (F,),>1 over F,
such that lim, . N(F,)/g(F,) > c-log £ (with a constant ¢ > 0, independent of ¢), hence

A(l) > c-log £ >0 forall £. (0.3)

The exact value of A({), however, is not known if ¢ is a non-square. Good lower bounds for
A(f) were obtained through refinements of Serre’s classfield tower method (see [1], [13] and
[17]).

In the case £ = p? (p a prime number) the best known lower bound is

2(p* — 1)

A(p®) >
(r°) P

(0.4)

This was shown by Zink [20] using degenerations of Shimura modular surfaces. The method
of classfield towers and Zink’s approach do not lead to an explicit description of the corre-
sponding function fields. As a mathematical challenge, and also for various applications, e.g.
in coding theory and cryptography (see [13] and [16]), it is therefore desirable to construct
sequences of function fields (F},),>1 over [y explicitly such that lim, ., N(F,)/g(F,) is pos-
itive (or even better, a large number).

No explicit sequences with a positive limit are known when ¢ is a prime number. For
¢ = p* with ¢ > 1, the tower F} C Fy C F3 C ... over Iy defined recursively by F; = F,(z1)
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and F;,1 = Fj(x;41) with the relation
e+ (x; +1)"—1=0, where m=({—-1)/(p—1), (0.5)

provides an example with lim, ., N(F,)/g(F,) > 2/(¢{ —2) > 0, see [9]. However, for { > 4
the number 2/(¢ — 2) is far from the Drinfeld-Vladut bound (0.1).

Recently, van der Geer and van der Vlugt [10] found an explicit tower over the field
with 8 elements with a “good” limit. This tower is given recursively by F; = Fg(x;) and
Fii1 = F(z;41), where

xfﬂ—i—xiﬂ =z;+1+1/x;. (0.6)
For this tower over the finite field Fg the limit is lim,, o, N(F},)/g(F,) = 3/2, which is equal
to 2(p? — 1)/(p + 2) for p = 2; hence it attains Zink’s lower bound (0.4).

It is the aim of this paper to present a new explicit tower F of function fields over I,
with £ = ¢3, for any prime power q. The tower F is defined recursively by F; = Fy(x;) and,
for i > 1, F;11 = Fi(z;41), where the function z;; satisfies the following equation over the

function field Fj:
1—CEZ'+1 o l‘gﬁ—l‘z—l

(0.7)

T Li
The main result is (see Thm.3.3).

Main Theorem. Let { = q¢* and let the tower F := (Fy C F, C F3 C ...) of function fields
F;/Fy be defined as in (0.7). Then

. 2(¢° - 1)
JLII;ON(Fn)/g(Fn) > c1—|——2

The exact value of the genus g(F,.) is given in Thm.2.9. In the special case of a prime number
p = q, this Main Theorem provides a new and more elementary proof of Zink’s lower bound
(0.4) for A(p?). In Remark 3.7 we point out that the Main Theorem leads to an improvement
on the Gilbert-Varshamov bound about the asymptotic behaviour of the parameters of linear
codes over [ s, for all prime powers ¢ > 7.

The tower in [2] and the van der Geer-van der Vlugt tower [10] provided the inspiration
for Equation (0.7). In fact, the tower in [10] is a special case of the tower in (0.7): the sub-
stitution z; — 1/xz;, for all 4, transforms Eq.(0.7) into Eq.(0.6) if ¢ = 2. But one should note
that the cases ¢ = 2 and ¢ > 2 differ considerably. In the first case (the van der Geer-van
der Vlugt tower), all extensions F;;/F; are Artin-Schreier extensions of degree 2. For ¢ > 2,
the extensions Fj.;/F; are of degree ¢ but they are not even Galois. This fact makes the
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genus calculation more difficult.

The paper is organized as follows: In Section 1 we fix notations and put together some
results from the theory of algebraic function fields which will be used later. In Section 2
we study the ramified places in the extensions F,/F; of the tower given by Eq.(0.7), and
we determine the genus of F) for all » > 1 (see Thm.2.9). It turns out that wild and (for
q > 2) also tame ramification occur, and that some of the wildly ramified places have a
surprising ramification behaviour (see Prop.2.7). The analysis of these places is crucial for
the genus calculation. We postpone this analysis to Section 4, as it is very technical. In
Section 3 we investigate rational places over [Fys of the function fields F, of the tower given
by Eq.(0.7). In particular we show that some rational places of the field Fi split completely
in all extensions F,/F; (see Thm.3.2). In conjunction with the genus of F,, this fact yields
the Main Theorem. In Section 5 we present a variation B of the tower F above having
the same limit over Fys. The new feature of the tower B is that it alternates Kummer and

Artin-Schreier extensions.

1. PRELIMINARIES

Our general reference for the theory of algebraic function fields is the book [16]. Specifically

we will use the following notations:

F, - the finite field of cardinality ¢,

F, - an algebraic closure of Fy,

K - any field (in most cases, K = Iy or ),

F,E H... - algebraic function fields of one variable over K,
g(F) - the genus of F/K,

P(F) - the set of places of F/K,

(x =7) - the place of the rational function field K (z) which is a zero of
x — (for v € K), resp. the pole of z (for v = o0),

vp - the normalized discrete valuation of F//K associated with the
place P € P(F),
N(F) - the number of rational places (= places of degree one) of F'/K,

in case K =TF,.
Let E/F be a finite separable extension of function fields over K, let P € P(F') and let
Q € P(E) be a place lying over P. Then we write Q|P or P = Q|r and we denote

e(Q|P) - the ramification index of Q|P,
d(Q|P) - the different exponent of Q|P.
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A tower of function fields over a field K is an infinite sequence F = (F;);>; of function
fields F;/K with the following properties:
i) Fy ;Cé Fy ;Cé F3 ; s
ii) all extensions Fj,/F; are separable,
iii) g(F;) > 1 for some i.

It follows from the Hurwitz genus formula that g(F,) — oo for n — oco. We note that K
should be the full constant field of F; for all ¢; i.e., the field K should be algebraically closed
in F; for all 4.

For the convenience of the reader we recall a few results about ramification in extensions
of function fields.

Lemma 1.1. Let E = F(y) be a finite separable extension of algebraic function fields over
K, and let o(T) € F[T] be the irreducible monic polynomial of the function y over the field
F. Let P € P(F) be a place of F/K.

i) Suppose that y is integral at P (i.e. vp(c) > 0 for all coefficients ¢ of ¢(T)), and that
vo(¢'(y)) =0 for all Q € P(E) with Q|P. Then the place P is unramified in E/F.

ii) If Q|P is totally ramified (i.e. e(Q|P) = [E : F]) and if y is a prime element at the
place @), then

d(Q|P) = vo(¢'(v))-
Proof. [16], Ch.IIL5. O

Another result which will be used frequently in Sections 2 and 4 is a special case of
Abhyankar’s lemma (plus the transitivity of different exponents).

Lemma 1.2. Let E/F be a separable extension of function fields over K, and let Fy, Fy be
intermediate fields F' C F; C E such that E = F - F; is the composite field of Fy and F5. Let
Q € P(F) and denote P := Q|r and P, := Q|g, for i = 1,2. Suppose that the ramification
indices e; = e(B;|P) (for i =1,2) are relatively prime and that e, is relatively prime to the
characteristic of K. Then

i) e(Q|P) =e1 and e(Q|P;) = es.
i) d(Q|Py) = ey - d(P|P) — (ex — 1)(e2 — 1).
In particular, d(Q|Py) = d(P|P) if e; = 1.

Proof. From Abhyankar’s lemma (see [16], Ch.IIL.8) it follows immediately that we have
e(Q|Py) = ey and e(Q|P;) = e, and hence Q|P, is tame. By the transitivity of different
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exponents (see [16], Ch.II1.4) we obtain
d(Q|P) = d(Q|Py) + e(Q|P1) - d(P|P) = d(Q|Py) + eaer — 1),

and also
d(QIP) = d(Q|P2) + e(Q|P2) - d(P|P) = (e1 — 1) + €1 - d(P|P).
Hence
d(Q|P1) = e1 - d(P|P) + (e1 — 1) — ea(e1 — 1).
d
As we pointed out in the introduction we want to investigate the tower of function fields
FLCF CFC..over K=TF, ({ =¢), resp. over K = F,, where F; |, = F;(2;41) with

the relation
1—(1%.,.1 o .I';]—F.Tz—l

7 = , forall ¢>1.
Tit1 i

We put together some properties of the corresponding “basic function field”:

Proposition 1.3. Let K = F, and consider the function field F = K(z,y) with defining
equation

1— “pg—1
y_r+r-_ (1.1)
y? T
Then the following holds:

) F:K(2)] = [F:K@y)l=q

ii) The place (x = 0) of K(z)/K is totally ramified in F/K(x); i.e., there is exactly one
place Py € P(F) with By|(z = 0). We have e(FPy|(x = 0)) = q and d(Py|(x = 0)) =

iii) The place (x = 00) is totally ramified in the extension F/K(x); i.e., there is exactly
one place Py, € P(F) with Py |(z = 00). We have that e(Py|(z = 00)) = q and that
d(Py|(x = 0)) = 2q — 2.

iv) Let R == {a € K ; a?+ a = 1}. Then for a € R, the place (x = «) of
exactly two places Pa and Qo € P(F) above it. We have that e(P,|(z = «)
that e(Qa|(z = a)) = q — 1.

v) All other places of K(x) are unramified in F/K(z).

()
)=1a

vi) For any a € R, there is a unique place S, € P(F) above the place (y = a) of K(y),
and this place is a common zero of xt — 1 and y — a.

vii) The principal divisors in the function field F of the functions z,z — 1,z — o and of
v,y — 1,y — a (for « € R) are as follows:
(:L') =qP — qPx,
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(z —1) = 2aer Sa — 4P,

(z —a)=Pa+(¢—1)Qa — ¢Px,
(y) =P+ (¢ — )P — > 5cr Qs
(y—1)= ZaeR Po — Z,BGR Qp,
(y — @) = qSa — Y pcr Qs-

Proof. We only show the assertions concerning the different exponents in items ii) and iii),
and we leave the rest to the reader.

ii) Let Py € P(F) be a zero of z in F. Then it follows from Eq.(1.1) that vp,(z) = ¢ and
vp,(y) = 1; i.e., the function y is a prime element at Fy. The minimal polynomial of y over
K(z) is

T
™N=79+_ _~ .7~
U( ) +x‘1+x—1 zi+x—1

and hence d(FPp|(zo = 0)) = vp,(0'(y)) = vp,(z/(z? + 2z — 1)) = ¢, by Lemma 1.1.

iii) Now we consider a pole Py, of x in F. Again from Eq.(1.1) we obtain that vp_(x) = —¢q

-1

and vp_(y) = ¢ — 1, so the function ¢ := (zy)~! is a prime element for P,,. Its irreducible

polynomial over K (z) is

1 ; 4z —1
() = T%—— . T e,
and hence d(Py|(z = 00)) = vp (7'(t)) = vp_(z71 - t72) =q+ (¢ — 2) = 2q — 2. O

As an easy consequence we obtain from Prop.1.3 that (for ¢ > 2) both extensions F// K (x)
and F/K(y) are non-Galois. This follows from the ramification behaviour of the places
(x =) in F/K(z), resp. the place (y =0) in F/K(y).

2. RAMIFICATION AND GENUS

First we introduce some additional notation (valid throughout this section.)
K =T, is an algebraic closure of F, and R={a € K ; a?+a = 1}.

F = (Fy, Fy, F3,...) is the sequence of function fields over K, where F} = K(x;) is the
rational function field and, for all i > 1, F;; = F;(x;11) with

ib’;-]“ L
For a place € P(F,), we set

Qi =Q|r forj=1,...,r
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and we write, for v € K U {o0},
=y Q@ i Qllr;=7).

Lemma 2.1. For all r > 1 the following holds:
i) [F.: Fy]=q !

ii) The place (x1 = 0) of F1/K has a unique extension QQ € P(F,). This place Q is also a
zero of the function x,, and we have e(Q|(z; = 0)) = ¢" ! and e(Q|(z, = 0)) = 1.

Proof. Since Eq.(2.1) is an equation of degree ¢ in the variable z;,4, it is clear that [Fj; :
Fj] < g for all j > 1, and therefore [F, : F1] < ¢

Now let Q € P(F,) be a zero of z; in F,. It is sufficient to show that @ is a zero of z,,
and that e(Q|(z; = 0)) = ¢! and e(Q|(x, = 0)) = 1. The case r = 1 is trivial, and
we assume that our assertion is true for some r. We choose a place Q' € P(F,4;) with
Q'|Q and set Q1 := Q'|k(x,,2,.,)- By Prop.1.3 we conclude that @, is a zero of x,,; with
e(Q1|(z, = 0)) = q and e(@1|(zr11 = 0)) = 1. It follows that e(Q'|(z,+1 = 0)) = 1 and
e(Q'|Q) = e(Q1](z, = 0)) = ¢, by Abhyankar’s lemma. Hence e(Q'|(z; = 0)) = ¢ - ¢ =
q. O

We will show later (see Thm.2.9) that g(F3) > 1, and therefore we have:

Corollary 2.2. The sequence F = (F;);>1 which is defined recursively by Eq.(2.1) is a tower
of function fields over K and, for all j > 1, we have [Fj;1 : Fj] = q.

The main goal in this section is to determine the genus g(F) for all » > 1; hence we
must study the ramification behaviour of places in the tower F. Our next lemma follows

immediately from Prop.1.3 vii).

Lemma 2.3. Let r > 2 and consider a place Q € P(F,).

i) For 1 < j <r the following holds at the place Q:
- if x; =0 or x; = 0o then z;41 = 0,
- if x; = o for some o € R then either xj 11 = 00 or xj41 = 1,

- ifx; =1 then 1 = « for some a € R.

ii) For 2 < j <r we have at the place Q:
- if x; = 0 then either x;_1 =0 or x;_1 = o0,
- ifx; =1 orx; = oo then z;,_1 = « for some a € R,
- ifr; = o witha € R then ;-1 = 1.

Now we analyze the places @ € P(F}) of the function field F, which are ramified in the

extension F,/F}.
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Proposition 2.4. Letr > 2 and let Q € P(F,.) be a place which is ramified in the extension
F./Fy. Then Q is of one of the following types:

Type 1: 1 =0 at Q,
Type 2: x4 = 00 at @Q,
Type 3: x4 =00 at Q, for some s with 1 < s < r.

Proof. Recall that (); denotes the restriction of the place ) to the field F; C F,, for1 < j <.
Since Q|Q1 is ramified, there is some j < r—1 such that Q);1|Q; is ramified. Hence the place
() ramifies in the extension K (z;, z;41)/K (z;) by Abhyankar’s lemma (strictly speaking, the
restriction of @ to K(z;,x;41) ramifies over K(z;)). It follows from Prop.1.3 that z;4; =0
or xj41 = 0o at Q). Now we apply Lemma 2.3 ii) to obtain our assertion. O

The ramification behaviour of each of these 3 types of places of F,. is quite different from
each other; we will discuss it in the subsequent propositions.

Proposition 2.5. (Type 1) There is exactly one place Q) € P(F,.) which is a zero of 1, and
the following holds:

i) e(Q)lQj-1) = ¢, e(Q;l(z; =0)) =1 and d(Q;|Q;-1) =g, for2 < j <r.
i) d(Q[Q1) =q(¢" ' =1)/(qg—1).

Proof. We have already shown in Lemma 2.1 that z; has a unique zero @) in F}., and that @ is
a simple zero of z,.. It remains to determine the different exponents of Q;|Q;_1 and of Q|Q;.
We set Pj := Q|x(x;_,,2;) and then d(Pj|(z;_1 = 0)) = ¢ by Prop.1.3ii). Since Q;_; is a simple
zero of z;_; by item i), it follows from Lemma 1.2 that d(Q;|Q,-1) = d(P;|(zj—1 =0)) = gq.

Item ii) follows by induction from item i), using the transitivity of different exponents (see

[16], Ch.IIL4). O
Proposition 2.6. (Type 2) There is exactly one place Q € P(F}.) which is a pole of x1. This
place is a common zero of xa, ... ,x,, and we have
i) e(Q)|Qj-1) = ¢, e(Qjl(z; = 0)) = g—1 and d(Q;|Q;-1) = 2q — 2, for each index j with
2<j<r.

i) d(QlQ1) =2(¢" —1).

Proof. i) Let @ € P(F},) be a pole of z;. It follows from Lemma 2.3 i) that @ is a zero
of x5,... ,x,., and we prove the remaining assertions by induction over j. The case j = 2
follows from Prop.1.3. Now let 2 < j < r—1. By induction hypothesis, the place @); is a zero
of z; with e(Q;|(z; =0)) = ¢ — 1. Let Pj;1 = Q|k(z;2;4,)- Again by Prop.1.3 we have that
e(Pji1|(z; = 0)) = ¢, e(Pj1al(zjy1 = 0)) = 1 and d(Pj+1|(z; = 0)) = gq. By Abhyankar’s
lemma we conclude that e(Q;11]/Q;) = ¢ and e(Qj41|(zj41 =0)) = ¢—1, and by Lemma 1.2
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we obtain
d(Qj+11Q;) =(¢—1)-q¢—(¢—2)(¢—1)=2¢ -2
ii) Follows easily from item i) by induction over r. O
The ramification behaviour of places @ of Type 3 (see Prop.2.4) is much more complicated.

These places are characterized by the condition z, = co at ) for some s with 1 < s < r. We
must distinguish the cases s = 1 mod 2 and s = 0 mod 2.

Proposition 2.7. (Type 3 and s odd). Let 1 < s <r and s = 1 mod 2, and let the place

Q € P(F,) be a pole of the function x,. Then we have:
i) The place Qs is ramified in Fy/K(x4) with ramification index

e(Qs|(zs = 00)) = q(s_l)/Q'
ii) The restriction Q; of the place Q satisfies
(1 if2<j<s—1,
q— 1 Zf ] =S,
e(Q;|1Qj-1) = g if s<j<2sandj=0mod 2,
1 if s<j<2sandj=1mod 2,
(g if j=2s
In all cases where e(Q;|Qj—1) = q, the different exponent is
d(Q;]Qj-1) =2q — 2.
iii) The different exponent of Q|Q is

)
g2r=3s+3)/2 9 if < r+1

1
d(Q|Q1) = grst3/2 2 if T—; <s<randr =0 mod 2,

1
gr—s+d/2 9 if T; <s<randr=1mod 2.

\

iv) Let A, .= #{Q € P(F,) ; Q is a pole of xzs}. Then

(
¢ i s< L
2
1
A g =1 =22 4f Tt <s<randr =0 mod 2,

1
gr=0/2 gf T;L <s<randr=1mod 2.
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Proof. The proof of items i) and ii) is hard and it is the content of Section 4.

r+1

iii) First we consider the case s < 5=, i.e. the case r > 2s — 1. By item ii) and the

transitivity of different exponents, the different exponent of Qos 1@ is

(s=3)/2
d(Q2s1|Q1) = ¢V (g =2)+ () ¢')-(2¢—2) =q"V? -2,

i=0
Again from ii) and the transitivity, we obtain

r—2s

d(Q,|Q1) = ¢~V - d(Qas1|Q1) + Z q') - (29 —2)

r—(2s—1)4+(s+1)/2 2 (2r—3s+3)/2 _ 2.

=q =q
In case T+1 < s <rand r =0 mod 2, we obtain in a similar manner that
(r—s—1)/2 ‘
dQilQ) =" (g=2)+( Y ) (0-2)=¢" -2
i=0
In case =% < s <7 and r =1 mod 2, we have

(r—s—2)/2
d(Q,1Q1) = ¢ 2. (g —2) + ( Z ¢') - (2q—2) = gDz _ 9,

1=0

iv) By items i) and ii), all poles @ € P(F}) of the function z, have the same pole order,

namely
)
1
g~ if s< I ,
e(Ql(zs =00))=<¢ ¢/* if L < s <randr=0mod 2,
1
qrV/2 if % <s<randr=1mod 2.
\
Since ¢" ! = [F, : K(z5)] = A, - e(Q|(z5 = o0)), we obtain the desired result. O

Proposition 2.8. (Type 3 and s even) Let 1 < s < r and s = 0 mod 2, and let the place
Q € P(F,) be a pole of the function xs. Then we have:

i) The place Q, has ramification index e(Qsl(zs = 00)) = ¢ 2/2 in the extension
F,/K(xy).
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ii) The restriction Q; of the place Q satisfies

(1 f 2<j<s—1,

q— 1 Zf j =S,

e(Q;|1Qj-1) = g if s<j<2s—2andj=1mod 2,

1 if s<j<2s—2andj=0mod 2,

\ q Zf ] Z 2s — 1.

In all cases where e(Q;|Qj-1) = q, the different exponent is
d(Q;]Qj-1) = 2q — 2.

iii) The different exponent of Q|Q is

(
q(2r—3s+4)/2 —9 ’Lf s < r+2

Y

r+2

dQ|Q1) =< ¢r—st2/2 2 if <s<randr=0mod 2,

2
grst/2 9 if 7“—12— <s<randr=1mod 2.

\

iv) Let A, s = #{Q € P(F},) ; Q is a pole of xs}. Then

( 2
¢t if s< It ,
2
A= q'/? sz <s<r andr =0 mod 2,

2
q(rfl)/2 if % <s<randr=1mod 2.

\

Proof. First we assume that s > 4. Then we know the ramification behaviour of the place
@ in the field K(zo,... ,zs, ... ,z,) from Prop.2.7. Moreover, the place Qs is unramified
in the extensions K (x,z3)/K(z1) and K(z1,25)/K(z2) by Prop.1.3. All assertions of the
items i), ii) and iii) in Prop.2.8 follow now by Abhyankar’s lemma. In the case s = 2 we
apply Prop.2.6 instead of Prop.2.7 to the field K(xs,... ,z,). Item iv) is proved similarly as
in Prop.2.7. O

Theorem 2.9. Let F = (Fy, Fy, F3, ...) be the tower over K = F, defined by Eq.(2.1). Then

the genus g(F,.) satisfies
F, 2
lim 9(F) _ 4t .
r—oo " 2((] — 1)

More precisely we have:
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i) Forr =0 mod 4,

T r_
— . gr2/2. (q+1).

g(F,) = (¢ +2¢" =207 —2¢"2 4 q) — S

2(g—1)

ii) For r =2 mod 4,

1 r—2
Fr — r+1 2" — 4 (r+2)/2 . L A(r=2)/2 1).
9(Fy) 2(q_l)(q +2¢" —4q +ta) =~ (¢+1)
iii) Forr =1 mod 2,
g(F,) = 1 (g1 + 2" — g+I/2 _3q0HD/2 4 gy r—1 V2,
7T 2(g— 1) 2

Proof. We will only consider the case r = 0 mod 4; the other cases are similar and we leave
them to the reader.
For 2 < s < r we choose a place Q) € P(F,) which is a pole of z,, and we denote by

ds = d(Q¥1Q7")

the different exponent of Q) over Qgs) = Q®)|p,. Asin Prop.2.7 and 2.8, we let A, s denote
the number of poles of x, in F,.. Applying Prop.2.4, 2.5 and 2.6, we see that the degree of
the different of the extension F,/F; is

r T

deg Diff (F,/F) =12 + 2 ~1) + Y d- A, (2.2)
q

—1
s=2

According to Prop.2.7 and 2.8 we split the sum ) d - A, 5 into four pieces as follows:

ng) = Z ds - Ar,s for j=1,2,3 and 4,

SEM]'

where the set M is defined as
M= {seN;s=1mod?2 and 3<s<(r+1)/2},
My;:= {s€N;s=1mod2 and (r+1)/2<s<r},
M;:= {seN;s=0mod?2 and 2<s < (r+2)/2},

My:= {s€N;s=0mod2 and (r+2)/2<s<r}.
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Since r = 0 mod 4, we have that

My = {seN;s=1+2i forsome ¢ with 1<i<r/4},
My= {seN;s=(r+4i—2)/2 for some ¢ with 1<i<r/4},
M;= {seN;s=2i forsome i with 1<1i<r/4},

M,= {seN;s=(r+4i)/2 for some i with 1 <i <r/4}.
From Prop.2.7 and 2.8 we have

. ‘ 1 2¢*
1 r—4)/4/ r—3i 7 r T q r—
DV = TG =2) 7 = (0 = g = (g - ),
q q 1
T —1 r— 1 T T r r—
DE = /A (g g) . WQ:;jTWBHW—¢+W%—-§@(”@
. : 1 2
DY = TP =2) 7 = (g = O - (g ),
qg—1 @2 -1
T —1 r 1 I r r r
D£4) _ Eiﬁ(q(r/zl)ﬂ —2)-q /2 F(q(S +4)/4 _ g +2)/2) -5 q/2.

Now it follows from Eq.(2.2) that

cngﬁ(E¢ﬂ):2@“4—1)+€—1§+LﬁW+D9%+D9%+D9

_(qr-i-l + 2qr . 2q(r+2)/2 . Q)

=2(¢ -1
(q )+q_1

2q
¢ —1

.
(g+ D22 =1) = 5" 22 (g+ 1)

1
— z(qr—l o 1) 4 _1(qr+1 + 2qr o 2q(r+2)/2 o 2qr/2 + q) o % . q(r—2)/2 . (q 4 1)
q_

The Hurwitz genus formula gives
2g(F,) — 2= —2¢""' + deg Diff (F,/F}),

and hence
2(F,) -3

(qr-i-l+2qT_2q(T+2)/2_2qT/2+q) 2

_ D2 (g 1),
1 q (¢+1)
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3. RATIONAL PLACES AND THE LIMIT OF THE TOWER

In this section we study the tower F as a tower of function fields over the finite field I,
of cardinality £ = ¢3. So we have the following situation:

F = (Fy, Fy, Fs, ...) is the tower of function fields over F, with ¢ = ¢®, where
Fy =TFy(z) is the rational function field and F i = Fj(z;41) with

1—$i+1_ﬂfg+$i—1

T = (3.1)
Note that [F;.; : F;] = ¢ and that F, is the full constant field of F; for all i > 1 (as follows
from Cor.2.2). Moreover, since the genus of a function field over F, does not change in the
constant field extension with K = Iy, the formulas for the genus g(F,) given in Thm.2.9 also
hold for the tower F considered over [F,. Our main goal here is to show that certain rational
places of F; = Fy(x;) split completely in the tower F; i.e., they split completely in F,./F; for
all » > 1. This will provide many rational places of F,./F, and, in conjunction with Thm.2.9,
this will prove our main result which is Thm.3.3.

For abbreviation we introduce the rational functions

1-T 74T —1
a(T) = T and b(T) := %
We consider the sets
S:={yelF,; v =v-1} and Q:={weF,; a(w) € S}. (3.2)

Proposition 3.1. i) We have Q C F, and #Q = q(q +1).
i) Let w € Q. Then the equation a(n) = b(w) has ezactly q roots n in F, and all these
roots belong to the set €.

We postpone the proof of Prop.3.1 to the end of this section, and we draw first some
consequences of it.

Theorem 3.2. Let F = (Fy, Fy, Fs,...) be the tower of function fields over F, with { = ¢
which is defined recursively by Eq.(3.1) and let w € Q. Then the place (x; = w) splits
completely in all extensions F,/Fy. Therefore the number of rational places of F,./F, satisfies

N(F,) > [F.: Fi]|-#Q=q"(¢+ 1).

Proof. We claim that:

Claim 1): The place (r; = w) has exactly ¢"~! distinct extensions Q € P(F}).
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Claim i1): For any such place @ there is some w’ €  such that @ is a zero of the function

T, —w.

It is clear that the assertions of Thm.3.2 follow from Claim i). We prove both claims by
induction on 7. The case r = 1 is trivial, and we assume that Claim i) and Claim ii) are
both true for some r > 1. Let @ € P(F,) be one of the places lying above (z; = w), then
by induction the place @ is a zero of x, — ' with o' € 2. The function z,,; satisfies the
equation a(z,41) = b(z,). To any solution 7 of the equation a(n) = b(w’) corresponds a
place @' € P(F,,;) with Q'|@Q such that @ is a zero of x,,; —n. By Prop.3.1, the equation
a(n) = b(w’) has exactly ¢ distinct roots 7 € €2, and hence the claims i) and ii) also hold for

r+ 1. O
For any tower 7 = (T}, T», T3, ...) of function fields over a finite field, the limit
N(T,
A7) := lim ()
r—00 g(T'r)

exists, see [7]. An immediate consequence of Thm.2.9 and Thm.3.2 is now:
Theorem 3.3. Let F = (Fy, Fy, F3, ...) be the tower of function fields over Fy (with £ = ¢3),
which is defined recursively by Eq.(3.1). Then its limit satisfies

_N(E) _ 2P -1
NP =l SRy 2 e

For the real number A(q®) (see definition in the introduction) we obtain:

Corollary 3.4. (Generalization of Zink’s lower bound) For any prime power q, we have

3 2((12 — 1)
A(q®) > W

Now we prove Prop.3.1. For this we need the following two lemmas:

Lemma 3.5. Let the sets S and § be as defined in (3.2). Then:
1) #S =q+1 and #Q = q(¢+ 1).
ii) If v € S then v +9t1 = —1. In particular, the set S is contained in Fy.

iii) The set Q) is contained in Fy.

Proof. i) By definition, the set S consists of the zeros in the algebraic closure F, of the
polynomial f(T) = T% — T + 1. Since f(T) is clearly separable, we get that #S = q + 1.
Similarly, the set Q consists of the zeros of h.(T) := T4+~ 1T —~~1, for all elements v € S.
These polynomials are clearly separable, hence #Q = g(q + 1).

i) If 44t1 = v — 1, then 4%’ +9 = 4% — 1. Multiplying the last equality by v we then get that
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y@* et — 49+l _~ — 1. Note that ¢2 + ¢+ 1 is the norm exponent in Fy/F, and hence the
set S is contained in F,.

iii) Let w € Q. Then a(w) = v for some 7 € S; i.e., we have 1 — w = yw?. Using item ii), it
then follows that

Wl = —ydiratl 0 = _7q+1(7wq)q2 = —yrt1(1 — w>q2 — L ol e

=y 4y (W)= =T 4y (1 - w)? = T 4y —
=y ty-(l-w)= (" +y-D+w=uw,

and hence the set () is contained in F,. O
Lemma 3.6. Ifw € Q) then b(w) € S.

Proof. Let w € Q. Then there is some v € S with yw? =1 — w. Hence

q -1 4~y
o) = LT T 1) =2,

w w

and we have to show that g € S. We have

YWw(BH = B+1) = qw((1 =) W’ — (1= +1)
=91 =7 =71+t — (1 — 7w +qw

= —7H W — (1= P! +qw

= —y(Ww)! = (1-7)(1-w)+w

= (l-w)fi-1+y+w

=yw!i—-14+w=0.

Hence 89"' =3 —-1and B € S. O

Now we turn to the proof of Prop.3.1.

Proof of Proposition 3.1 i) This item was already shown in Lemma 3.5.

ii) Let A := {w € Fy ; b(w) € S}. Since deg(b) = g, the cardinality of the set A satisfies
#A < q-#S=¢q(qg+1). By Lemma 3.6 we know that Q2 C A and, since #£ = g(¢ + 1) by
Lemma 3.5, we conclude that €2 = A. This completes the proof of Prop.3.1. O

The following remark was pointed out to us by C. P. Xing:

Remark 3.7. (cf. [20]). It is well-known that good lower bounds for the quantity A(¥)
provide lower bounds for the function a,(d) which plays a prominent role in coding theory.
For the definition of ay(d) we refer to [13], Sec.6.2 or [16], Ch.VIL.2. The Gilbert-Varshamov
bound states that

ap(6) > 1 — Hy(6) forall §€l1,(— 1)/, (3.3)
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where Hy(0) denotes the f-ary entropy function. The following bound which is based on
algebraic-geometric codes was first proved by Tsfasman, Vladut and Zink (see [18])

a(0) >1—6— A" forany A€ R with 0< A< A(Y). (3.4)

For ¢ = ¢* we can choose A = 2(¢> —1)/(q +2) by Cor.3.4, and evaluating the bounds (3.3)
and (3.4) above at &y := (£ — 1)/(2¢ — 1) we find easily that

q+2

1_50_2((;2—1)

> 1—Hg(6) forall ¢>7.

Therefore the Tsfasman-Vladut-Zink bound improves on the Gilbert-Varshamov bound in a
non-empty open interval containing dy, for all £ = ¢* with ¢ > 7.

4. RAMIFIED PLACES OF TYPE 3

In this section we will prove the items i) and ii) of Proposition 2.7 and thus complete the
genus calculations (see Thm.2.9) for the tower F = (F;);>1 given by Eq.(0.7). Recall that
the extensions Fj,q/F; are given by F; ;1 = Fj(x;41) where

1—.’17i+1 . 1’34-1'1—1
vy Li ‘
This means that z;,; is a root of the polynomial
IV |
M.TQ+T_1 € F[T),
Z;

and hence we are led to study polynomials of the form a7 + bT + ¢ with coefficients a, b, ¢
in a function field F.

Lemma 4.1. Let E/H be a separable extension of function fields over a field K of charac-
teristic p > 0. Assume that [E : Hl = m = 0 mod p, and let p € E be such that E = H(u).
Suppose that u satisfies an equation

ap™ +bu+c=0

with a,b,c € H, and let P € P(H) be a place of H such that vp(a) = vp(b) = 0. Then the
following holds:

i) If vp(c) > 0 then P is unramified in E/H.
ii) If vp(c) = —1 then P is totally ramified in E/H, and the function p=' is a prime

element for the place Q € P(E) which lies over P. Moreover, the different exponent of
Q|P is equal to d(Q|P) = 2m — 2.
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Proof. By assumption, the polynomial
w(T):Tm+%-T+§ e H[T]
is the minimal polynomial of y over the field H.

i) In this case, vp(b/a) = 0 and vp(c/a) > 0, hence p is integral over the valuation ring of
P, and for all @ € P(E) with Q|P we have vg(¢'(u)) = vg(b/a) = 0. It follows by Lemma
1.1 i) that the place P is unramified in E/H.

ii) Let @ be a place of E lying over P. Then vg(a) = vg(b) = 0 and vg(c) = —e,
with e = e(Q|P). From the equation au™ + b + ¢ = 0 we conclude that vg(p) < 0,
hence vg(apu™) = m - vo(p) < vo(u) = vo(bp). Then m - vo(u) = vo(c) = —e. Since
e < [E : H] = m, this implies that e = m and vg(u) = —1, and so the function p~ ' is a
prime element for ). The minimal polynomial of ~* over H is

b a
pT) =T" 4= T 4 =
c c

and by Lemma 1.1 ii) we obtain

d(Q|P) =wq(p'(n™1))

= Q((b/C) (=™
= vg(b) —vo(c) + (m

—2)=2m—2.
O
From here on we assume all notations from Section 2. In particular, K = IF, is an algebraic

closure of I, and the tower F = (F}, Fy, F5, ...) over K is recursively defined by F} = K(z1)
and, for i > 1, Fiy1 = Fj(z;41), with

q
1 —q.Ti_H _ Zz, + IEZ — ].. (07)

Tit1 T
We need to investigate the ramification behaviour of places of “Type 3, for s odd”. This
means (see Prop.2.4) that we consider a place @) € P(F,) which is a pole of the function z
for some odd s € {3,...,r}. Since we will describe the ramification behaviour of such places

in all extensions F,,/F;, we can assume that r > 2s; so we have
s=2t+1 with t>1, and r > 4t + 2.

Since x, = oo at @, it follows from Lemma 2.3 that the following holds at the place @:

0 for j>2t+2,
oo for j=2t+1, (4.1)
e — .
! 1 for j=2t+1-2i, 1<i<t,

G; for j=2t+2—-2i, 1<7<t,
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with certain elements 3, € R={a € K ; a’4+a =1}, for i=1,... ¢t

Let E/F be an extension of function fields such that F* C E C F,. We say that the place
@ has ramification index e in E/F if the place Q| € P(F) has ramification index e over
the place Q|r. From Proposition 1.3 we can read off the ramification index e of @) in some
subextensions of F.:

(1 in K(xi,2i41)/K(21) for i >2t+2,
g in K(zy,ziq)/K(x;) for ¢ >2t+1,
¢g—1 in K(z;,2i41)/K(zip1) for i =2t+1,
e= 1 in K(zi,xiq1)/K(zig1) for i=24,... 2t (4.2)
q in K(z;,z41)/K(xip) for i=1,3,...,2t—1,
g—1 in K(z;,z;01)/K(z;) for i =2t
| 1 in K(xj%41)/K(z;) for 1<i<2t—1.

K(X3,X4) K(XSaxé) K(X7,X8)

X =1 x2=[«}2 X3 =1 x4:]31 X5 =00 x6:() X7=0 Xg=0 Xg=0 X10=0

Figure 1 (for t=2)

By Abhyankar’s lemma (see Lemma 1.2) we conclude from (4.2) that the ramification
index of the place () satisfies also

1 in Fj/F;, for j=2,...,2t
e=4¢ ¢g—1 in F;/F;_; for j=2t+1,
¢ n F2t+1/K(9U2t+1)-

This proves the item i) and part of the item ii) in Prop.2.7. Unfortunately, Abhyankar’s
lemma does not apply for 7 > s+ 1 = 2t + 2, see Fig. 2.
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K(XS-Z’XS- I’XS) K(XS-I ’XS’X5+ 1)

K(xg_») K(xg 1) K(xg) K(xgy 1)
¥s2=1 X1 =@ Xg=c® *s+1=0
Figure 2

21

It will be convenient to change the generators z; of the fields K (x;) slightly, according to

the place ). We set

X Topr1_i — 1 for 1 <¢<2t, ¢=0mod 2,
T Tory1—i — Bavy2 for 1 <4 <2t =1 mod 2,

Y= a3

Zi = Tott1+id for all 7 Z 1.

It is then obvious by (4.1) that the place @ is a common zero of the functions Xj, ..

Y, Z1,Z,,.... We can rewrite Eq.(0.7) in terms of the functions X;,Y, Z; as follows:

Xg"‘Xi o _ngﬂ

Xi+ ﬁgi+1)/2 - X+l

for i =1 mod 2,

—Xi X+ X
X!'+1 X+ Biutaye

for i =0 mod 2,
Xi =5

yi-yrt 1=41 _—
X1+ 5

Zy—1 Yyi-yerl_|
zi Y-l ’

. 5X2t7

(4.3)
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1-Zipw Z]+Z;—1

qu+1 Zi
The following subfields of F,. will play a crucial role for the determination of the ramification

behaviour of the place Q. We set for 1 < j < i <t (see Fig. 3):
H;j:=K(X1,Xs,... ,X0;,Y, Z1,..., Z;_9),

for i > 1. (4.7)

Eij = Hij(Z3-1)
Lj := E; j(Z;).
Moreover we set

P =Qlm,; and Qij = Q|g,,-

The next theorem is the key result leading to the genus formulas in Thm.2.9. The asser-
tions of Thm.4.2 correspond to the encircled ramification indices in Fig.3.

1=l Xo =By x3=1 xy=B, X5=1 Xg=B, X;=w Xg=0 Xg=0 X;p=0 X;;=0 X;p=0 *13=0

Figure 3 (for t=3)
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Theorem 4.2. Let 1 < 57 < i < t. Then the place Q) is totally ramified in the extension
E;;j/H;; and it is unramified in the extension L;/E; ;. Moreover, the different exponent of

Qi Py 1s

d(Qi;|Pij) = 2q — 2.
As a consequence of Thm.4.2 we have then

Corollary 4.3. The restriction Q; = Q|r, of the place Q satisfies
i) e(Q;]Qj—1) =14f 2t+1<j<4t+2 and j =1 mod 2.
i) e(Q;|Qj-1) =q and d(Q;|Q;-1) =2¢—2, if 2t+1<j <4t+2 and j =0 mod 2.
iii) e(Q;Qj-1) = ¢ and d(Q;[Q;-1) =2¢ — 2 if j = 4t + 2.

Note that Cor.4.3 includes all the missing assertions of Prop.2.7, and hence completes the
proof of the Main Theorem.

Proof of Cor.4.3 1) First we consider the case j = 4t + 1. Then F; = L; and Fj_1 = E4y,
and (@ is unramified in L;/E;; by Thm.4.2.

Next let 2t +1 < j < 4t+1 and j = 1 mod 2. Then F; = H, ;4 and Fj_; = E}, for some k
with 1 <k <t —1 (see Fig.3). Observe that Hy i1 D Eij O Epy and Hypy1 2 Ly O Egy,
and that H;j; is the composite field of E;j and L;. By Thm.4.2, the place () is unrami-
fied in the extension Ly/Ej, and therefore @) is unramified in the extension H; 1/ E;x by
Lemma 1.2.

ii) Now let 2t + 1 < j < 4t + 2 and j = 0 mod 2. Then there is some k with 1 < k <t
such that F; = E; and F;_; = H,j, and all assertions of item ii) follow immediately from
Thm.4.2.

iii) For j—1 > 4t+1, the ramification index of () in the extension F;_;/K(x;_1)ise = g—1,
by Thm.4.2 (see Fig.3). The place @ is totally ramified in the extension K (z;_1, x;)/K(z;_1),
with different exponent d = ¢ (see Prop.1.3 ii)). Using Lemma 1.2 we conclude that

e(Q;1Q;-1) = g and moreover d(Q;|Q;j-1) = (¢—1)-¢—(¢—2)(¢— 1) =2¢ — 2. O

It remains to prove Thm.4.2. This proof will be divided into two propositions which treat
the cases j = 1 and j > 1, respectively. In both cases, the main idea is to apply Lemma
4.1. Unfortunately, the “obvious” generator of the corresponding field extension E;;/H; ;
(resp. L;j/E; ;) does not meet the assumptions of Lemma 4.1. Therefore we must first per-
form “pole order reductions”, analogous to Hasse’s pole order reductions for Artin-Schreier
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equations (see [16], Ch.IIL.7).
The following notation will be very useful. For a function field F//K, a place P € P(F),
elements z;, 2o € F' and an integer n € Z we write
z21=20+0(n) at P, ifvp(zy—2)>n.

In particular, we write z = O(0) at P meaning that z is holomorphic at the place P. Recall
that P,; (resp. @Q;;) denotes the restriction of the place @ € P(F;) to the field H; ; (resp.

Figure 4 below helps to understand the statements in Prop.4.4 and 4.5.

Figure 4 (for t=3)
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Proposition 4.4. (The case j =1.) For 1 <i <t we consider the functions

T; 1= y-1. ch:l X € Hi,l and

=Y 2+ 3 (DR ABT, € By with Ay =115, Bl
Then the following holds:
1) Up; 1 (Y) = qi}
g F0/2 (g —1) for 1<k <2i, k=1mod 2,
Up; 1 (Xk) = (2i—k)/2 ) =
q (¢g—1)  for 1<k<2i, k=0mod?2,
vp,,(Ti) = —1, i.e. the function 7.1 is a local parameter at the place P;;.

i) Ei1 = Hi1(w;), and the minimal polynomial of p; over H; 1 has the form

o(T) =T7 — X}I + 0 T4 (1) Ay — b,
X1 — b

for some function h € H;, which is holomorphic at the place P; ;.

iii) The place Py is totally ramified in the extension E;1/H;1 and the function p;tis a
local parameter at ;1. The different exponent of ;1 s

d(Qin|Piy) = 29 — 2.
iv) For 2 <i <t one has
Tii1 = A;.H 18— 1, +0(0) at P;.
v) For 2 <i <t one has
pior = B - pi — Bi - pf +O(0) at Qix.
vi) Let f1:=Zy-pl+c1-py € Ly with ¢, = B9, Then Ly = Fy1(f1) and
(Z8+ 2y 1) fi+(Z0- pd ) fit by =0,

for some hy € Ey 1 which is holomorphic at the place Q1.

vil) The place Q) is unramified in the extension Ly/Ej ;.

Proof. The item i) follows easily from (4.2) and Abhyankar’s Lemma, cf. Fig.3.
We will first prove ii) and iii) in the case ¢ = 1. Eq.(4.6) can be written as

Z\" Zi—1
Y) YYi—vyel—1)
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and by Eq.(4.5) this gives

Z\* X VA X 1
Zi\"  Xi+ b L 1+51__:0. (4.8)
Y X{—-p Y X -5 Y

Observe that Ey; = Hyi(w) with w = Z;/Y, and that Eq.(4.8) is an equation for w over

Hy of the form aw? + bw + ¢ = 0 as in Lemma 4.1, with vp, ,(a) = vp ,(b) = 0. However

Lemma 4.1 cannot be applied directly since vp, ,(c) = —q. We then replace the generating
element Z;/Y of the field extension E; ;/H;; by the element

Z
M1 = = Ay BTy

Y
It follows from Eq.(4.8) that p is a zero of the polynomial
_Xi+ b6

o(T) =T¢ X5

T+ g (4.9)

with

Xi+6 |, Xi+ B 1
XT—p X{-5 Y
Note that 8; € F2 since 8{ + 3, = 1. Therefore we have A, = 3, € F2 and A3 = g7,
Using 7 = X3/Y and Eq.(4.3) we obtain

a1 g X1t P T Xi+06 1

O XI— B X -/ Y

:l g1 X3 _X1+ﬁ1. Xo X1+ 6
y \''! Yol X7 —p '11_1 X{—p1)
From Eq.(4.3) and (4.5) we have

X§ XI1-Y) (1-Y)(Xp+1)

g1 = Alpit] — Aipim - € Hy;.

Yool D yel—vye (X + )it (410)
and hence
1/ (1-Y) Xi+06 X X1+ﬁ1)
=== (Xa2+1) - -
"7y ((Xl + f1)a7! (2 +1) X -6 gt X{-p
1 Xo
— 7 (@ 0@)- (et )+ (14 0@) - 2% - 140(0))
' (4.11)
1 Xy
Xy 1
Y 7 +O0(0) = Ay + O(0) at the place P ;.
1
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We have used here that vp, ,(Y) = q and vp,,(X1) > g. Thus we have proved ii) in the case
i = 1. The assertions of iii) (for i = 1) follow now immediately from Lemma 4.1 (observe
that the place Py is a zero of X; and vp, ,(11) = —1 by i), so Lemma 4.1 applies).

Now we show the item vi). By Eq.(4.7) we have
(Z3+2,—1)-Z§+2Zy-Zy— Z, =0,
hence
(Z8+ 20 = 1) 1+ (Zpd D) - o= (uf el ") Zo+ el 4+ b =0,

with some function h1 € E;; which is holomorphic at the place ()11. So we have to prove
that the function

(uf +epd ) 2y — el (4.12)
is holomorphic at @1 ;. It follows from (4.9) and (4.11) that
T = =Pl +m) + O(0) at Qu,

and hence
Z1)Y =p+Aim =+ BB

= 1 — Bi(pf + p1) + O(0)

(4.13)
= —fpi + (1 = Bi)ps + O(0)
= —Giuf + B + O0) at Qq1.
Eq.(4.5) and (4.6) give
Z Y 1
Fr - M) (5) Foa-1) a Qu
and therefore 74 p )
Y—z = — 71 v O(¢*(¢—2)) at Q1. (4.14)

We conclude from (4.13) and (4.14) that

=B (T O)
hence

Y =6 (L + 0(g?)
and

_ 42 2
Y =8 T - T+ 0(¢%) at Qua.
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Since ¢; = 397" we obtain
(uf + ] ") Zy =l = 0(0) at Qi
This completes the proof of the item vi), cf. (4.12). The assertion in vii) follows now from

vi) and Lemma 4.1.

Our next aim is to prove the items iv) and v) of Prop.4.4 in the case i = 2. By definition
of the function 7; we have 75 = X, - 71 and hence

=1l _
1 2 7_2qf]. . X4
From Eq.(4.3), (4.4) and (4.5) we obtain
L YT X (Gt B) (X BT (L4 Xe) !
4 X, Xd Xxi (1-Y)(1+ X4)

= (6102)7" - (1 = X4) + O(q)

= A%_l : (1 - X4) + O(q) at PQ?l.

We have used above that P, is a zero of X;, Xy, X5 and Y of order > ¢, and it is a zero of
X, of order (g — 1). Since the function 7, * is a prime element at P, ;, it follows that

T =Ty Ag_l (1= Xy)+0(0)
= AV - AV X+ 0(0)

= Ag_l . Tg — T3 + O(O) at PZ,l-

This is the assertion in iv) for i = 2.

By (4.9) and (4.11),

X1+ 6
i — X4, s+ Aim = 0(0) at Py,
SO
X1+ 6 1 -1
M?—Xg_ﬁl'uﬁrﬁ—g'(flg T3 — 1) =0(0) at P
Therefore
X1+ 5 X1+ 5 1
+ AyBy19)9 — . + Ay By10) + cAgfBamy — — -1 = O(0
(11 23272) XT3, (k1 2327s) X7_ g, 20272 3 2 (0)



A TOWER OF FUNCTION FIELDS OVER CUBIC FIELDS 29

and by the definition of the function us,
'uq Xl + ﬁl
X6

By Lemma 4.1, the place P2,1 is totally ramified in the extension Es;/Hy; and the function

Mo — AQTQ = O(O) at P271. (415)

p3 ' is a prime element of the place Q21 = Q|g,,. Moreover we conclude from (4.15) that
ph+ po — Ao = O(0) at Q.
Since pg = p1 + Asfe7s, this implies
p1 = pa — BoAsTr = po — Ba(p + p2) + O(0)

= —Papg + B3p2 + O(0)  at the place Q1.

Hereby we have proved the item v) in the case i = 2. Note that we have also proved the
items ii) and iii) of Prop.4.4 in the case i = 2, by (4.15).

Now we proceed by induction. Let 2 < i < t and suppose that the assertions ii) - v) of
Prop.4.4 hold for 2 < k£ <. We want to show that they hold also for £ = i+1. By induction
hypothesis we have

T = Xgi cTi—1 = Xgi . Ag_l . Tl-q + O(O) at Pi,l

and hence x
T=A". X7 2. 1.+ 0(0) at P
2(i+1)
By Eq.(4.3) and (4.4), the following identity holds:
Xoi (X5 4+ 1) (Xgigr + Biqa)? (4.16)
Xq(lﬂ) (Xait1 + Biy1)(Xogr) + 1)
So
X2z
X1 5,+1 (1= Xoy1)) +O(g) at P
2(i+1)
and consequently
T =Al ' ﬁz+1 (1 = Xo(i11)) 741 + O(0)
(4.17)

= Ag-q—ll' Tit1 Az+1 (Xogit) z+1) Tit1 +O(0) at P
Now we observe that
Xo@it1) - Tz—l—l A’:Ll-i-{] O(1) at Py,
which follows easily by induction (using (4.10) and (4.16)), and hence (4.17) yields

Azq+11 : iq+1 — Tit1 T+ O(O) at Py (4.18)
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This is assertion iv) of Prop.4.4.

The induction hypothesis for item ii) says that

i — ;}—t% i+ (=) A = 0(0) at P
By (4.18) we obtain then
pi = ))(('{ll—tgi i+ (CD)TA(ALT 7 — i) = O(0) at Py,
Therefore
<Iui HEDTA (ﬁirl)q_ln“)q - ))21—1_?1 ' (Mi HEDTA (ﬁilﬂ)q_l ‘ Tiﬂ)
+))21_4_rg1 S(—1) A - ( ﬁ;)q—l T+ (1) Ay = O(0) at P

This implies that

X1+ 5

(ki + (_1)i+1Ai+1ﬁi+lTi+1)q ~ 37 A (p: + (_1)i+1Ai+lﬁi+17—i+1)
Xi{— b

+(=1)"*? A 1701 = O(0) at Py

ie.,
e — Xt o
1+1 Xil _ 51

with &’ € H, 11 holomorphic at P;;;. This is assertion ii) for £ = ¢ + 1, and now the item

Hiy1 + (—1)i+2Ai+1Ti+1 =h (419)

iii) follows from Lemma 4.1. Finally, from the definition of p;,
pivr = pi + (=) A BT
and then it follows from (4.19) that

i = prip + (=12 B AiaTin

X1+ 01 >
= Mi+1 — s ! = +O(0
Mit1 — Bit1 <N+1 X7 3, Hit1 (0)

= Byt + B + O(0) at Qg1
This finishes the proof of Prop.4.4. O
In the following proposition we will investigate the case 7 > 2. We keep all notations as

above. In particular we have a place ) € P(F}) of Type 3 and consider the fields H; ;, E; ;
and L; and the places @; ; and P, ;, for 1 < j <17 <t. As before, we set ¢; = f_l.
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Proposition 4.5. (The case j > 2.) Define &1 := p; € E;1 as in Prop.4.4, and for
2 <j <1<t define the function & ; € E; ; by

Zoji &j-15-1+¢1- B &j if i=7j,
fz',j =
i1+ (Bicjrr - B2/ B1) &1 if P> ]

Then the following holds, for 2 < j <1 <'t:

i)

if)

iii)

iv)

vi)

vPi,j(Y) — qj—l . qi)
Up, (Zr) = g tqr- (g—1) for 1<k<2(j—1),

x) @l qB kN2 (g —1) for 1<k <2, k=1mod?2,
vp, ; = . »
Fog etk ¢t g2 (q—1)  for 1<k<2i, k=0mod 2.

E;; = H, (& ), and the function & ; satisfies an equation of the form

53, j+2
b1

with some function h € H; ; which is holomorphic at P, ;.

(Z8; 0+ Zajo—1) - &L+ (Zaj 2 - §17150) - iy + Gy =h,

The place Q; ; is totally ramified over P, ;, the function 5&1 is a local parameter at Q; ;,
and the different exponent is

d(Qi ] Pij) = 2q — 2.

If i +1 < t then there exists a function h € E,;,; which is holomorphic at the place
Qit1,; such that

/Bifj+2
fi,j = z’qu+2 ) £i+1,j - ? ’ iq+1,j + h.
1

Let f; = Zaj - & ; + ¢ -&; € L. Then Lj = E;;(f;), and the function f; satisfies an
equation of the form

(Zyos+ Zaja = 1) ] + (o &157) - fy = =0,

with some function h € Ej;; which is holomorphic at the place Q); ;.

The place Q) ; is unramified in the extension L;/E; ;.

Proof. We first consider the case j = 2. Item i) follows then (for all 2 < ¢ < t) immediately
from Prop.4.4 and Abhyankar’s Lemma, see Fig.3. We prove the remaining assertions (for

j = 2) by induction over i. By Prop.4.4 vi), the function f; = Zou{ + ¢11 is holomorphic

at the place P 9; i.e.

Zg,u‘% = —Ci11 + O(O) at P272.
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Eq.(4,7) for i = 2 gives
(Z3+Zy— 1) Z3+ ZyZ3 — Zy = 0.
We multiply this equation by pf and obtain
(Z§+ Zy — 1) - (Zap)" + Zopd ™" - (Zapa) — Zop =0,
hence
(Z§+ Zy — 1) - (Zs1)" + Zop{ ™"+ (Zspr) + crpn = O(0) at Py
Observing that the place Q2 lies below P 5 and using Prop.4.4 v), we get
(Z8+ Zy = 1) - (Zapn)" + Zop{ ™" - (Zap) — c1aph + 18302 = O(0) at Py,
Since (Z3 + Zs) - 11 is holomorphic at P, 4, it follows that

(Z3 4 Zy — 1) - (Zapus + AB3p2)? + Zopd™" - (Zapn + c2B3ps)
— Zop{ ™t ABps + 1Bl = O(0)  at Py

Since (ngfi’_l + ¢1) - p1 is holomorphic at the place P, and since vp,,(p1) = —¢, we have
Zg,u'{_l = —c; + O(q) at Py5 and hence

q

(Z§+Zy— 1) - &y + Zopl " Cop+ =2 s = 0(0) at Py (4.20)
1

Since vp,,(p2) = —1, it now follows from Lemma 4.1 that the place P is totally ramified
in the extension Es/Hs o, that the function §2’7 % is a prime element at the place ()22 and
that d(Q22|P22) = 2¢ — 2. Moreover we obtain from (4.20) that

Bapz = (1850 + Brci€ap + O(0)  at Qap. (4.21)
We know from Prop.4.4v) that
p = Pape — (Bip2) + O(0)  at Qo (4.22)

hence (4.21) yields
= =B &y + Bl Eaa+ O(0) = —B1 - E4,(1 — &,57 + O(g)

and therefore

1\? . )
pt=— (E) 655 (14657 +0(8%) at Qo

From the definition of the function & 2 and (4.21), we have
Zzpr = B{&a2 — c1B1&35 + O(0)  at Qao,
and then
1 (- 2
Zy=(Zym)u' =7 6377 -6V +0) at Qa (4.23)

)
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Eq.(4.7) gives, for i = 3,
(Z3+ Zs = V)(Zi&3o)" + (2835 V)Zaho) — Zatdr = 0.
Since (Z3 + Z3) - £3 5 is holomorphic at @y, this implies
(Z8+ 25 — 1)(Za&hy + & &22)" + (2855 V)(Za&d 5 + ¢ - &22) (4.24)
_ 2
+ Clq 522 - Z3(C1 fq vl 53,2) = 0(0) at Q2,2
By (4.23) we have

— — —(q?— —(q?—1 —
Zy- (3 ey el = (60 6 TV L O() - (G- ey T el

g, +0(0) = (¢ £2)7+0(0) at Qap.
So (4.24) gives an equation for the function f; over s, as follows:
(Z8+ 25— 1) fi+ (6897 2) - fo— b1 =0,

with hy € Es5 holomorphic at QQ29. This is assertion v) (for j = 2), and item vi) follows
from v) and Lemma 4.1. The induction hypothesis over i (for j = 2) tells us that

/Bq
B
with h € H, 5 holomorphic at P, 5. By Prop.4.4 v) we have

(Z3+Z2 = 1) €y + Zop§ "G+ - = h

pi = By - i1 — Bisr - i +O0(0)  at Pryao,
therefore
B
A
As (Z3 + Z) - pi,4 is holomorphic at P19, it follows that

(Z3+ 22— 1) fiqg + ZZMl &ip+ - (Blapin — Bivaply) = 0(0)  at Pip.

Bi ! _ B;
(Z§+Zy—1)- (fm + @@qﬂum + Zopd T (Gio + @ﬁfﬂmﬂ
1

—1 ﬁl q
ﬁl i+1

Using once again that Zgu‘{_l = —c; + O(1) at Py5, we conclude the proof of item ii) for

q
— Zopd Miv1 + %ﬁgﬂmﬂ =0(0) at Piio.

7 =2:1le.,

Bin

ﬁl Uil = O(O) at B+172. (425)

(Z8+ Zy = 1) - &y 5+ Zop§ - &,
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Since P41 is a simple pole of the function p;;1, we apply Lemma 4.1 to Eq.(4.25) and this
finishes the proof of item iii) for 7 = 2. It remains to prove the item iv). From Eq.(4.25) it
follows that

By
Eliiot e Gipio — gl piy1 = O(0)  at Q1o (4.26)
1
Using the definition of the function &1 2, Eq.(4.26) yields assertion iv) of Prop.4.5 for j = 2;
i.e. 3
ia=0] &2 — C—Z s+ 0(0) at Qi
1

The proof of Prop.4.5 in the case j = 2 is thus finished.

Suppose now that all statements of Prop.4.5 hold for some j with 2 < 5 <t. We want to
show that they also hold for j + 1.

Assertion i) (for j + 1) follows from the induction hypothesis (i.e., from items iii) and vi)
for j). It also follows from the induction hypothesis that the function f; = Zs; - {7, + &
is holomorphic at the place P; ;1 for 7 > j + 1, and that

ﬁi* j 42
i = Bijio &it1g — —. f1; T 0O(0) at Piygjia

A
This means that, for ¢+ > j, we have
Zoj &l =— - &i+h (4.27)
and
— 74 Bi—jr2 .q p
§ig = Bijya ivrg — : +h (4.28)

DR
1
with h,h' € H;iq j+1 holomorphic at P, q ;+1. From Eq.(4.7) with ¢ = 2j and Eq.(4.27) we
find
(Z8;+ Zoj — 1) - (Zajyr - §5)° + Zaj - €15 (Zajia - €i5) + & - €, = O(0) at Pipyjin.
Now Eq.(4.28), for i = j, implies
(Z8; + Zaj — 1) - (Zajur - &) + 203685+ (Zajur - &55)
] By —afa- €y, =0(0) at P

Observing that the place Pjy1 ;41 is a simple pole of the function ;4 ;, that the function
(Z§; + Zy;) - €1, ; is holomorphic and that Zo; - £4;' = — ¢ + O(1) at the place Pjyq 41, we
obtain

(Z3j + Zoj — 1) - (Zojur - &g+ ¢1 - B3 - &) + 2o '531,}1 (Zojar - §ig+ - 07 &)
B8 Gyt el- B &y = 0(0) at Piyaja
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Thus at the place Pj i ;41 we have

_ 83 i
(28 + Zoj — 1) - €101 ja + (Zoj - €151) - Eirrgn + ﬁ_j €y = 0(0). (4.29)
By induction over ¢ we show then that
_ Bljm - -
(Zgj + 225 — 1) 'gzg,jﬂ + (2 - 5;'1,1'1) i+ + 5—];1 - t §ij="h (4.30)

with h € H; ;11 holomorphic at P, .1, for j +1 < ¢ < t. In fact, (4.29) gives (4.30) for
i =j+ 1. Assuming (4.30) for i and using (4.28), we obtain

(Z3; + Zo; = 1) - €1 + (Z05€];") - i
B A g it — Piivs ea =n (431)
—51 1 i—jt+2 " Sitl,j C{'—l i+l ] T

with A" € H;4 j11 holomorphic at Py j+1. Since Piq j11 is a simple pole of ;14 ;, since the
function (Z3; + Za;) - £y, ; is holomorphic and since Zj; - f;{j_.l = —c] +O(1) at Py 41, we
obtain from (4.31) and the definition of the function &1 ;11 that

_|_

— /qu 1)—j+1 -
(Z8;+ Zoj — 1) - €y jo1 + (Z2i€05) - Eiprgin + % 7t & = 0(0)

at P11 41. We have thus proved (4.30) for all ¢ with j +1 < ¢ < ¢, and hence Prop.4.5 ii)
holds for j + 1. It is then clear that also the assertion iii) holds for j + 1, by Lemma 4.1.

Next we prove item iv) for j + 1. By Prop.4.5 iii) and observing that &;; ; has a simple
pole at P;y; ;41 we see that the function

. ﬂlq_ 5 .
§loij o G — ﬁ]1+ - ¢} b it (4.32)

is holomorphic at Q;+1,;+1. Note that (4.32) in case j + 1 = 2 is just (4.26). So, as in case
j+1 =2, we obtain assertion iv) from (4.32) and from the definition of the function & ji1;
i.e., we have

Pijsz 3

_ 9
Sitrgtr = Bljpa - Givagrn — = Elhagn th
1

with h holomorphic at the place Q2 j+1.

In order to simplify notation we set n; := & ;. From Prop.4.5 iii) it follows that 77]-111 =
{;rll’jﬂ is a local parameter at the place Qj11+1, and by (4.32) we have
3

Ny +m — 3 A7 &y =0(0) at Q. (4.33)
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Note that (4.33) in case j + 1 = 2 is just (4.21). By Prop.4.5 iv) we know that

b
n; =& =03 &1 — 67—,21 €1, 0(0) at Qi1 i1
1
Hence it follows from (4.33) that
2
ng = =B i+ B nj+ O(0)

2

2
=10l (L—n it +0(¢*) at Quijn
and consequently

_ 1 e 1-¢?
;= 37 i (Ui +0(@%) at Qe

Since Zgj+1 Ny = Nj+1 — Cl{ : ﬁg : fj—l—l,ja we obtain from (433) that

B B
Zaj1 M5 =Mjp1 — 1 - B3 < 1 T Mt ﬁ_%’ M1 | +O(0) at Qi1
261 2
and hence we have an equation of the form
7 _ 34 q A q A
2j+1'77j—ﬁ1 '77j+1_01‘F‘77j+1+ )
1
with h holomorphic at @;4+1,+1. We multiply this equation by nj_l, and we obtain
1—¢? C({ q—q> 2 1—¢? 2
Zojr1 ==\ Mjp1 — g‘njﬂ +0(¢) ) - (L+m51 +0(q7))
1
(4.34)
_ 1-¢° i a—q* 2
=N + = Nj+1 + O(q ) at Qj+1,j+1-

a
We have from Eq.(4.7) for i = 25 + 1, that

-1 2
(Z81 + Zojir — 1) - (Zojuz - 184)? + (Zojir - 10T D) - (Zajin - 1841) — Zojin - 1y = 0.
As before (cf. (4.24)) this implies that
. . .
(Z3j11 + Zajsr — 1) - (Zajiz My + A i)+ (Zajn - U;]Srq . (Zajia-mjss + At i)

i . 2 2
F TV~ Zojr - (T T T ) = O0) at Qjer
From (4.34) we then get

j+1 2—g+1 2
Zojt1 - (1 '77?+1q + 77?+1)

q

1_g? C 2 i 2,11 2

o (%ﬁ - j‘nﬁf +O(q2)> AT )
1

=— N1 +0(0) at Qji1541.
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Since fj11 = Zaji2 - 7]?+1 + C{H - M;+1, we have thus found an equation
~1
(Z8;41 + Zojer = 1) - flo0 + (0T - Zojia) - fiaa = h

with a function h € Ej; ;41 which is holomorphic at the place ()1 ;+1. This proves assertion
v) for j 4+ 1 and, as before, assertion vi) follows from v) and from Lemma 4.1. The proof of
Proposition 4.5 and therefore of the Main Theorem is finished. O

5. MAKING THE TOWER GALOIS

We consider again the tower F = (Fy, Fy, Fy,...) over the field F, (with £ = ¢*) which is
defined recursively by Fy = Fy(z,) and F,,11 = F,,(,41), where z,,,, satisfies the equation

1—z, 4 +z,—1
qa: 0Tt , foralln>1. (5.1)
Ty Tn

As we pointed out before, all extensions F),,1/F, in this tower F are of degree ¢ and they
are non-Galois in the case ¢ > 2. In this section we show that we can enlarge F to a tower
B over F;, having the same limit as F, and with the additional property that all steps in the
tower B are Galois extensions.

We define the tower B over the field F, = F s inductively as follows:

q
B=(Gi,H,Gy, Hs,...,Gj,Hj,...),
G1 =Fy(x;) is the rational function field,
Hy = Gi(z) with 207"+ (2%4 21 —1)/z, =0, (5.2)
Gni1 = Hy(zpy1)  with  (zp1120)? — (Tpg120) + 20 =0,
Hpiy = Gia(zni1)  with 2000 + (@l + 2pp1 — 1)/2n1 = 0,

for all n > 1. The main result of this section is

Theorem 5.1. The tower B = (G1, Hy,Ga, Ha,...) over the field Fy = Fps as defined in
(5.2) has the following properties:

(i) For alln > 1 the extensions H, /G, and G,.1/H, are Galois. The extension H, /G, is
a Kummer extension of degree [H,, : G,] =q— 1, and Gpy1/H, is an Artin-Schreier
extension of degree [Gpni1: Hy) = q.

(i) The limit \(B) satisfies A(B) > 2(¢*> —1)/(q + 2).

Remark 5.2. It follows immediately from (5.2) that the elements z, € G, satisfy the
equation

(1—zpy1)/al = (2f + 2, —1)/2,, forall n>1.

Hence the tower F given by (5.1) is a subtower of the tower B.
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For the proof of Thm 5.1 we need an analogue of the Hurwitz genus formula for towers of
function fields, see [9]. For the convenience of the reader we recall this result here. Consider
a tower L = (Lq, Ls, L3, . .. ) of function fields over F,, where L, /L, is separable of degree
[Lnt1, Ln] > 1 for all n > 1. We define the relative genus v(L/L,) as

AE/Le) = lm (L)L, L.
Moreover we define the ramification locus of L/L; as

V(L/Ly) :={P € P(Ly) ; P isramified in L,/L; for some n > 2}.
If V(L/L,) is finite, we define the divisors

An(L)Ly) = Z Q, foral n>2.

QEP(Ln)
QNL; EV([,/L1)

It is easy to see that the limit
a(L/Ly) := lim deg A,(L/L1)/[Ly : L]
n—oo
exists. Now we can state the Hurwitz genus formula for towers of function fields.

Proposition 5.3. (see [9], Thm 3.6). Suppose that L = (L1, La, Ls,...) is a tower of
function fields over Fy. Let Li/Ly be a finite separable extension such that L} and L, are
linearly disjoint over Ly, and such that F, is algebraically closed in L} := Li - L, for all
n > 1. Denote by L* := (Lf, L%, L5, ...) the composite tower of L and Li. Assume that the
following conditions hold:

(1) The ramification locus V(L/Ly) is finite, and a(L/Ly) = 0.

(ii) All places P € V(L/Ly) are tame in the extension Lj/L;.

Then we have
29(L}) —2v(L*/L}) — 2 = [L : Lu] - (29(L1) — 2y(L/L1) — 2) + 6,

with
6= > dQ|QNLy)-deg Q.

QeP(L])
QNL1€V(L/Ly)

Corollary 5.4. In addition to the assumptions (i) and (ii) in Prop. 5.3 we assume:

(i) All places P € P(Ly) which are ramified in the extension Li/Ly belong to the ramifica-
tion locus V(L/Ly).

Then we have y(L*/L}) = [Ly : L1] - v(L/Ly).
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Proof. From assumption (iii) it follows that the number ¢ in Prop. 5.3 is equal to the different
degree of the extension Lj/L, and hence 2g(L3}) — 2 = [L} : L1](29(L1) — 2) + 0. Now the
assertion of Cor. 5.4 follows immediately from Prop. 5.3.

O

Proof of Thm. 5.1 As in Secton 3 let us denote b(T') := (T7+ T — 1)/T. We start with
the tower F = (F}, Fy, F3,...) which is recursively defined by (5.1), i.e., by the equation
(1 —zp41)/x} 1 = b(x,), and we consider the composite tower & = (Ei, Es, Es,...) of the
tower F with the function field F; := Fy(z), where 27" +b(z1) = 0. Note that E, = F,(z)
and in particular Fy = Fy(z1) = E1(x921), with the following relation

(x921)? — (2221) + 21 = zl(:v%zf_l —xy+1)

(5.3)
=z1(—22 - b(x1) — 224+ 1) =21((z2 — 1) —292+ 1) = 0.

By Prop. 2.4 and Lemma 2.3 the ramification locus of F/F is
V(F/F) ={(z1=0a); a=0,1,00 0or a?+ a = 1}.

So V(F/Fy) is finite, and it follows from Prop. 2.5, 2.6, 2.7 and 2.8 that a(F/F;) = 0.
Therefore condition (i) of Prop. 5.3 is satisfied. The condition (ii) of Prop. 5.3 holds
trivially since E;/F; is Galois of degree ¢ — 1. By the theory of Kummer extentions of
function fields (see [16], Prop. II1.7.3), only the zeroes and the poles of the function b(z;) =
(2] + 1 — 1)/z; may ramify in the extension E;/Fj, and hence also the condition (iii) in
Cor. 5.4 holds. Therefore we obtain y(£/E;) = (¢ — 1) - v(F/Fy) from Cor. 5.4. Observing
that v(€/Es) = q - v(€/E1) and that v(F/F1) = q(q + 2)/2(q¢ — 1) by Thm. 2.9, it follows

VE/E2) = ¢*(q +2)/2. (5.4)
Next we show that sufficiently many rational places of E; split completely over [Fs in the
tower £/Es. Let
Q:={welF; bw)?™ =bw) -1},
and
QF) ={(z1=w); weQ} CP(F).

We know from Prop. 3.1 and Thm 3.2 that #Q = ¢(¢ + 1) and that all places P € Q(F})
split completely in the tower F/Fj.

We want to show that the places P = (x; = w) € Q(F)) also split completely in the
extension E/Fy. In fact, since By = Fi(z) and 2¢"" = —b(z1) we have to show that the

element —b(w) is a (¢ — 1)-th power in the finite field Fy, and this assertion is equivalent to
show that (—b(w))?*9*1 = 1. We have by Lemma 3.5

(b)) = —b(w) o = (1) = 1
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and this proves our claim. Since E,, = E; - F}, it follows now that the places P € Q(F}) are
also completely splitting in the extensions E, /F}, for all n > 1. Setting

Q(Ey) :={PeP(Ey); PNF, €Q(F)}

we have shown:

(1) All places P € Q(FE>) are Fy-rational, and they split completely in the tower £/ FEs.

(2) #Q(E2) = [E2 : ] - #Q(F1) = ¢(¢* = 1).

(3) The places P € (E,) are exactly the zeroes in the function field E, of the functions
Ty — w, with w € Q.

From (1) and (2) it follows that the number of F,-rational places of E, satisfies the
inequality N(E,,) > [E, : Es] - ¢*(¢*> — 1), and then Eq.(5.4) yields

#QE) PP -1)  2(A-1)
MO 2 ) T Par D2 g2

In the tower £/FEs, the extensions E, 1/ FE, are non-Galois for all n > 2 (in the case ¢ # 2),
and we consider therefore the composite tower £ = (Lo, L3, Ly, . .. ) of the tower £ with the
function field L, := F(2;) where 22" +b(z2) = 0. As before we see that Ls = Ly(232,) with
(x329)7 — (2322) + 20 = 0, so L3/ Ly is an Artin-Schreier extension of degree q. The relative
genus of £L/L3 is

Y(L/L3) = q(qg — 1) - v(E/Ez),
and the set
Q(L3) :={P € P(L3) ;PN E; € Q(Ey)}

has cardinality q(q¢ — 1) - #Q(Es). All places P € Q(Lj) split completely in the tower £/Ls,
and we obtain that the limit of the tower £ satisfies A\(£) > 2(¢®> — 1)/(q + 2). Continuing
this process we now define the tower M = (M3, My, M5, . ..) as the composite of the tower
L£/Ls with the function field M3 = Ls(z3) where 28! + b(z3) = 0, etc.

Setting G := Fi, Hy := Ey, G5 := Es, Hy :== Lo, G35 := L3, H3 := M3, etc... we see that
the tower B = (Gy, Hy,Go, Ho, .. .,) is defined as in (5.2). Since the limit of all horizontal
towers in Fig. 5 below is bigger than or equal to 2(¢? — 1)/(q + 2), it follows that also the
limit of B satisfies A(B) > 2(¢*> — 1)/(¢ + 2), and this proves Thm 5.1. O
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The following picture summarizes the construction above leading to a tower with alternat-
ing Kummer and Artin-Schreier extensions (the bold-face vertical extensions are Kummer
extensions of degree ¢ — 1 and the bold-face horizontal extensions are Artin-Schreier exten-
sions of degree ¢q).

N Ny Njs
M My My M35
L L, Ls Ly Ls
E E; E, E; E4 Es

F: Fy Fs F3 Fy4 Fs
Figure 5
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